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Abstract 

Power consumption has become a major concern in the design of computing systems 

today. High power consumption increases cooling cost, degrades the system reliability and also 

reduces the battery life in portable devices. Modern computing/communication devices support 

multiple power modes which enable power and performance tradeoff.  Dynamic power 

management (DPM), dynamic voltage and frequency scaling (DVFS), and dynamic task 

migration for workload consolidation are system level power reduction techniques widely used 

during runtime. In the first part of the dissertation, we concentrate on the dynamic power 

management of the personal computer and server platform where the DPM, DVFS and task 

migrations techniques are proved to be highly effective. A hierarchical energy management 

framework is assumed, where task migration is applied at the upper level to improve server 

utilization and energy efficiency, and DPM/DVFS is applied at the lower level to manage the 

power mode of individual processor. This work focuses on estimating the performance impact of 

workload consolidation and searching for optimal DPM/DVFS that adapts to the changing 

workload. Machine learning based modeling and reinforcement learning based policy 

optimization techniques are investigated.   

Mobile computing has been weaved into everyday lives to a great extend in recent years. 

Compared to traditional personal computer and server environment, the mobile computing 

environment is obviously more context-rich and the usage of mobile computing device is clearly 

imprinted with user’s personal signature. The ability to learn such signature enables immense 

potential in workload prediction and energy or battery life management. In the second part of the 



dissertation, we present two mobile device power management techniques which take advantage 

of the context-rich characteristics of mobile platform and make adaptive energy management 

decisions based on different user behavior. We firstly investigate the user battery usage behavior 

modeling and apply the model directly for battery energy management. The first technique aims 

at maximizing the quality of service (QoS) while keeping the risk of battery depletion below a 

given threshold. The second technique is an user-aware streaming strategies for energy efficient 

smartphone video playback applications (e.g. YouTube) that minimizes the sleep and wake 

penalty of cellular module and at the same time avoid the energy waste from excessive 

downloading.  

Runtime power and thermal management has attracted substantial interests in multi-core 

distributed embedded systems. Fast performance evaluation is an essential step in the research of 

distributed power and thermal management. In last part of the dissertation, we present an FPGA 

based emulator of multi-core distributed embedded system designed to support the research in 

runtime power/thermal management. Hardware and software supports are provided to carry out 

basic power/thermal management actions including inter-core or inter-FPGA communications, 

runtime temperature monitoring and dynamic frequency scaling. 

 
 
 
 
 
 
 
 
 

 
 
 
 



 

 

ADAPTIVE POWER MANAGEMENT FOR COMPUTERS AND MOBILE DEVICES 

 
 
 
 
 

by 
 

Hao Shen 
 

B.S., Southeast University, 2008 
 

 

 

 

Dissertation 

Submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Electrical and Computer Engineering 

 

 

 

 

 

 

Syracuse University 

December 2014 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Hao Shen  December 2014 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

v 

 

Table of Contents 

Chapter 1 Introduction .................................................................................................................... 1 

1.1 System level dynamic power management for general purpose computing ......... 3 

1.2 Battery aware power management for  mobile computing ................................... 5 

1.3 Dissertation Contributions..................................................................................... 6 

Chapter 2 Workload Consolidation and Adaptive Power Management for General Purpose 

Computing Systems ...................................................................................................................... 10 

2.1 Chip Multiprocessor Performance Modeling for Contention Aware Task 

Migration and Frequency Scaling ............................................................................................. 10 

2.1.1 Introduction .................................................................................................... 10 

2.1.2 Motivational observations .............................................................................. 15 

2.1.3 Model construction ........................................................................................ 25 

2.1.4 Model directed task mapping ......................................................................... 31 

2.1.5 Experimental Results ..................................................................................... 33 

2.1.6 Conclusions .................................................................................................... 45 

2.2 Learning Based DVFS and DPM for CPU and Peripheral devices .................... 45 

2.2.1 Introduction .................................................................................................... 45 

2.2.2 Related Works ................................................................................................ 51 

2.2.3 General Architecture of Q-learning based Power Management .................... 54 

2.2.4 Learning based Power Management for Peripheral Devices ......................... 59 

2.2.5 Learning based CPU Power Management ..................................................... 73 

2.2.6 Experimental results and analysis .................................................................. 78 

2.2.7 Conclusions .................................................................................................... 99 

2.3 Chapter Summary ................................................................................................ 99 

Chapter 3 Adaptive Battery Management for Mobile Device .................................................... 101 

3.1 Battery Aware Stochastic QoS Boosting in Mobile Computing Device .......... 101 

3.1.1 Introduction .................................................................................................. 101 

3.1.2 Battery Level Prediction Using Neural Networks ....................................... 103 

3.1.3 Stochastic Control for Smartphone Energy Management ........................... 106 

3.1.4 Implementation and Evaluation ................................................................... 111 

3.1.5 Conclusions .................................................................................................. 116 



 

 

vi 

 

3.2 User-Aware Energy Efficient Streaming Strategy for Smartphone Based Video 

Playback Application .............................................................................................................. 117 

3.2.1 Introduction .................................................................................................. 117 

3.2.2 Background .................................................................................................. 119 

3.2.3 User Behavior Modeling and Downloading Strategy Optimization ............ 121 

3.2.4 Experimental Results ................................................................................... 126 

3.2.5 Conclusions .................................................................................................. 131 

3.3 Chapter Summary .............................................................................................. 131 

Chapter 4 An FPGA-based Distributed Computing System with Power and Thermal 

Management Capabilities............................................................................................................ 133 

4.1 Introduction ....................................................................................................... 133 

4.2 Altera Nios II Embedded Evaluation Kit (NEEK) ............................................ 136 

4.3 System Architecture .......................................................................................... 137 

4.3.1 Single FPGA multi-core system .................................................................. 137 

4.3.2 Multi-FPGA distributed system ................................................................... 140 

4.4 Frequency Scaling and Temperature Monitoring.............................................. 140 

4.4.1 Glitch free clock switching .......................................................................... 141 

4.4.2 Monitor the processor’s temperature ........................................................... 144 

4.5 Experiments ....................................................................................................... 145 

4.5.1 Characterization of communication latency ................................................ 146 

4.5.2 Parallel matrix multiplication ...................................................................... 148 

4.5.3 Evaluation of the temperature sensor and clock selection module .............. 150 

4.6 Conclusion ......................................................................................................... 152 

Chapter 5 Conclusions ................................................................................................................ 153 

Bibliography ............................................................................................................................... 155 

 

 

 

 

 

 

 



 

 

vii 

 

List of Figures 

 

Figure 1-1 Data center power consumption trend ........................................................................... 1 

Figure 1-2 Performance and battery capacity trend ........................................................................ 2 

Figure 1-3 Power Consumption of Opteron X4 processor ............................................................. 4 

Figure 2-1 Performance sensitivity to resource contention and frequency scaling ...................... 17 

Figure 2-2 Relation between target performance and LLC miss of its SMT neighbor ................ 22 

Figure 2-3 Percentage performance boost of target process when its SMT neighbor changes from 

lbm to gamess ............................................................................................................................... 24 

Figure 2-4 Percentage performance boost of target process when its SMT neighbor changes from 

lbm to sleep task............................................................................................................................ 24 

Figure 2-5 Estimated performance is highly correlated to actual performance ............................ 29 

Figure 2-6 Performance for all workloads .................................................................................... 36 

Figure 2-7 Energy and EDP of model_full and capping............................................................... 39 

Figure 2-8 Performance of model predictive task migration ........................................................ 41 

Figure 2-9 Model directed hierarchical power management ........................................................ 44 

Figure 2-10 Illustration of system under power management. ..................................................... 57 

Figure 2-11 State transition diagram of SP, SR and SQ models. ................................................. 60 

Figure 2-12 Pseudo code for Q-learning power manager using the VSS technique. ................... 66 

Figure 2-13 Level 1 neural network.............................................................................................. 68 

Figure 2-14 Relation between power and lg   for a given workload. .......................................... 71 

Figure 2-15 Block diagram of the power control flow of the Q-learning power manager. .......... 73 

Figure 2-16 Qualitative illustration of the relation between CPU temperature, performance, 

energy and clock frequency. ......................................................................................................... 77 

Figure 2-17 Response of Q-learning power manager to synthetic trace 1. ................................... 80 

Figure 2-18 Response of Q-learning power manager to synthetic trace 2. ................................... 81 

Figure 2-19 Three consecutive days' requests from HP hard disk traces. .................................... 83 

Figure 2-20 Power/Latency tradeoff curves for workload. (a)HP-1; (b)HP-2; (c)HP-3; 

(d)Desktop-1; (e)Desktop-2 .......................................................................................................... 85 

Figure 2-21 Q-value for observation-action pair(000,0). .............................................................. 86 

Figure 2-22 Power/Latency tradeoff curves for (a) HP workloads (b) desktop workloads   when 

   = 8 seconds. ............................................................................................................................ 89 

Figure 2-23 Relative average power deviation from user constraints. ......................................... 90 



 

 

viii 

 

Figure 2-24 Percentage MSE of instant power versus user constraints. ....................................... 91 

Figure 2-25 Relative average latency deviation for latency constrained power management. .... 92 

Figure 2-26 Energy, temperature and performance results of Q-learning algorithm with 

constraints and expert-based algorithm without constrains: (a) energy versus performance; (b) 

temperature versus performance ................................................................................................... 98 

Figure 3-1 Average prediction error. .......................................................................................... 105 

Figure 3-2 Battery level at the beginning of 100 battery charges ............................................... 105 

Figure 3-3 Prediction error vs. time to next battery charge ........................................................ 106 

Figure 3-4 Battery change histogram .......................................................................................... 108 

Figure 3-5 Temporal correlation of phone usage. ....................................................................... 109 

Figure 3-6 MDP training process ................................................................................................ 109 

Figure 3-7  actual depletion rate vs. depletion tolerance ............................................................ 114 

Figure 3-8 QoS Boosts vs. (a) depletion tolerance (b) actual depletion rate .............................. 114 

Figure 3-9 MDP violation percentage histogram........................................................................ 115 

Figure 3-10 The radio resource state machine of 3G interface ................................................... 120 

Figure 3-11 Power trace and network activities during YouTube playback .............................. 120 

Figure 3-12 Adjusting the PDF based on obtained usage information ....................................... 126 

Figure 3-13 Comparison of wasted seconds for different users and different buffering strategies

..................................................................................................................................................... 130 

Figure 3-14 Buffering points of user 1 by the GMM approach .................................................. 131 

Figure 4-1 Hierarchical architecture ........................................................................................... 137 

Figure 4-2 Processor configuration ............................................................................................. 138 

Figure 4-3 Topology of on-chip inter-processor connections..................................................... 139 

Figure 4-4 Clock generation block ............................................................................................. 142 

Figure 4-5 Simulation result of clock transition process ............................................................ 142 

Figure 4-6 Temperature sensor and processor ............................................................................ 145 

Figure 4-7 Inter-FPGA communication latency ......................................................................... 147 

Figure 4-8 Inter-processor communication latency .................................................................... 147 

Figure 4-9 Overall task execution time for processors with and without embedded multipliers 149 

Figure 4-10 Computation and communication time for processors with embedded multipliers 149 

Figure 4-11 Processor’s temperature change under different working frequency ...................... 151 



 

 

ix 

 

List of Tables 

 

Table 2-1 Top 9 selected events sorted by its correlation to the performance for PEFS model ... 27 

Table 2-2 Accuracy of 3 different PEFS models .......................................................................... 28 

Table 2-3 Top 9 selected features sorted by its correlation to the performance for PPTM model 31 

Table 2-4 Workloads used in the evaluation................................................................................. 37 

Table 2-5 Average performance, power and violations ................................................................ 45 

Table 2-6 Input selection vs. prediction error. .............................................................................. 70 

Table 2-7 Characteristics of Service Provider .............................................................................. 78 

Table 2-8 Characteristics of Different Reference Policies ........................................................... 80 

Table 2-9 Characteristics of Workload Traces. ............................................................................ 83 

Table 2-10 Constraining performance and temperature. .............................................................. 94 

Table 3-1 Comparison of user behavior models ......................................................................... 127 



 

1 

 

 

Chapter 1 Introduction 

Energy conservation and power management have become two of the most important 

challenges in today’s computing systems, including general purpose computers and mobile 

devices. 

It is estimated that datacenters consume about 2% of all US electricity, with an 

unsustainable annual growth of 15%. Datacenter power is projected to be over 8% of US power 

by 2020, and its carbon emission by that time will exceed those of the airlines by 2020. As 

Figure 1-1 shows, the amount of server shipments and internet traffics increase almost 4 times 

from 2006 to 2012, while the power consumption of data centers increases more than 8 times 

from 2000 to 2014. Improved operation techniques in data center are needed to make it more 

economically and ecologically sustainable and scalable. High power also means high 

temperature, which has many other adverse side effects such as decrease of system reliability, 

performance, increase of leakage power, cooling cost and etc..  

 

Figure 1-1．Data center power consumption trend[135] 
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Energy conservation is even more important to battery operated mobile computing 

devices (e.g., smart phone). Battery life has continuously been one of the top critical factors that 

affect user satisfaction. While mobile computing has become indispensable in everyday lives for 

communication, sensing, controlling and entertainment, the increasing complexity of hardware 

and applications in the mobile devices greatly outpaces the development of battery technology. 

Figure 1-2 shows that from Samsung Galaxy S to S3, the CPU performance increases 5.9 times, 

while the battery capacity only increases 1.4 times. To narrow such gap, there is an urgent 

demand to manage the energy usage and battery lifetime for mobile devices. 

 

Figure 1-2．Performance and battery capacity trend[136] 

 

In addition to increased energy dissipation, excessive power consumption has also 

become a major roadblock in the design of computing systems. High power consumption 

increases die temperature, which further reduces performance, accelerates the electromigration, 

and raises the leakage power.   
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Power consumption and performance of an optimized design are contradictory design 

metrics. Gaining one will lead to the sacrifice of the other. The ultimate goal of power 

management is to minimize power consumption while still maintaining certain performance 

levels required by different users on different platforms. 

1.1 System level dynamic power management for general purpose 

computing 

Modern computing/communication devices support multiple power modes, which enable 

power and performance tradeoff. Dynamic power management (DPM) has proven to be an 

effective technique for power reduction at the system level. It selectively shuts-off or slows-

down system components that are idle or underutilized. The power manager needs to make wise 

decisions on when to put the devices into which power mode. Dynamic voltage and frequency 

scaling (DVFS) is another technique that has been widely used in modern processors for energy 

reduction or temperature control by dynamically changing the working frequency and voltage of 

the processor. Both DVFS and DPM provide a set of control knobs for runtime power 

management. From this perspective, they are fundamentally the same. While the DVFS is 

usually found as the power control knob for CMOS digital ICs, such as micro-controllers or 

microprocessors, during the active time; the DPM is usually for the peripheral devices, such as 

the hard disk drives and network interface, or for microprocessors running interactive 

applications accompanied with long idle intervals.  

One of the major issues in today’s general purpose computing devices is the lack of energy 

proportionality. Figure 1-3 shows the power consumption of Intel Opteron X4 processor. As we 

can see, even if the CPU utilization is approaching to 0%, the processor still consumes about 60% 
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of its peak power consumption. Since high utilization corresponds to high energy efficiency, 

workload consolidation is widely used in today’s data centers to improve server utilization and 

energy efficiency. Through dynamic task migration, the workloads of a few servers are increased, 

which create more power management opportunities for the other servers.  

 

Figure 1-3．Power Consumption of Opteron X4 processor 

In a hierarchical power management framework, the upper level is usually virtual 

machine management that performs workload consolidation, while the lower level is usually 

DPM or DVFS. What is the performance impact of those system level power management 

techniques, how to achieve the optimal tradeoff between power consumption and performance  

are two questions that need to be answered. 

Robust power management must consider the uncertainty and variability that come from 

the environment, the application and the hardware. For example, the workload of a complex 

system is usually unpredictable as it strongly depends on the nature of the application, the input 

data and the user context. The workload variation changes the device usage pattern and has the 
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most significant impact on the system speed and power consumption. The contention of shared 

resources such as buses or I/Os in an MPSoC also increases the variability of hardware response 

time for communication and computation. Furthermore, the process, voltage, and temperature 

(PVT) variation results in a large fluctuation in hardware performance and power consumption. 

Therefore, statically optimized resource and power management policies are not likely to achieve 

the best performance when the input characteristics change. The ability to observe, learn and 

adapt to different hardware systems and different working environments is essential for a power 

management controller. 

Tasks demand different resources at different levels. In a parallel computing system with 

dynamic workload activities, such demand varies from task to task and from time to time. The 

level of resource contention is determined by the selection of “co-runners” on the same core or 

the same processor. Task migration, which re-distributes tasks across multiple cores/processors 

during runtime, may effectively mitigate resource contention. Searching for the best task 

distribution is a non-trivial problem and if not handled properly, will lead to performance 

degradation instead of performance improvement. 

1.2 Battery aware power management for  mobile computing  

The goal of power management for a battery powered mobile computing device is to 

minimize the chance of battery depletion while providing high quality of service. In addition to 

computing communication activities, battery charging and discharging activities as well as 

battery state of charge should also be included as part of the decision making framework.  
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The workload on a mobile computing device and its battery charging activities have clear 

imprint of user’s personality. The power management controller has to adapt to the usage pattern 

of different users. Proper learning and decision making techniques must be developed.  

Mobile device’s context is the internal and external environment with which it runs. The 

context can be collected from sensors such as location, mobility, environmental light brightness 

and etc.. It also can be inferred from phone’s interval working state such as the application 

launch history, call time, time of the day and etc. The context of a mobile device provides rich 

information that helps workload prediction and power management decision making. While 

traditional controller selects power management actions solely based on the status of the 

computing device,  the power management of a mobile computing device may benefit from 

available context information collected from various sensors.  

1.3 Dissertation Contributions 

 In the first part of the dissertation, we will concentrate on the dynamic power 

management of the personal computer and server platform where the hierarchical management 

frame work is adopted. The upper level performs virtual machine management for workload 

consolidation, and the lower level is performs adaptive DPM or DVFS.  

Workload consolidation is usually performed in datacenters to improve server utilization 

for higher energy efficiency. One of the key issues related to workload consolidation is the 

contention for shared resources such as last level cache, main memory, memory controller, etc, 

which may degrade system performance. Furthermore, we have found that the degree of resource 

contention of a system affects its performance sensitivity to CPU frequency. There is a close 

coupling between the decision of workload consolidation at upper level and effectiveness of 
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DVFS in the lower level. Without detailed architecture level information, the complex 

relationship between contention, frequency and performance can only be retrieved through 

learning and modeling. In this thesis,, we apply machine learning techniques to construct a 

model for chip multiprocessor (CMP) Performance Estimation under Fixed workload Scheduling 

(PEFS). It quantifies performance degradation of target process caused by resource contention 

and frequency scaling for current CMP workload with the assumption of a fixed task mapping. 

The model is further generalized for performance prediction with task migration (PPTM), which 

predicts the performance degradation under new task mappings generated by potential intra-

processor task migration. The inputs of both models are readings from Performance Monitoring 

Units (PMU) screened using standard feature selection technique. Both models are tested on an 

SMT-enabled chip multi-processor with 10~20% estimation error in average. Experimental 

results show that, guided by the performance model, better task migration and DVFS decisions 

can be made to explore tradeoffs between performance and energy dissipation. 

We also present a novel on-line power management technique based on model-free 

constrained reinforcement learning (Q-learning). The proposed learning algorithm requires no 

prior information of the workload and it dynamically adapts to the environment to achieve 

autonomous power management. We focus on the power management of the peripheral device 

and the microprocessor, two of the basic components of a computer. Due to their different 

operating behaviors and performance considerations, these two types of devices require different 

designs of Q-learning agent. We will discuss system modeling and cost function construction for 

both types of Q-learning agent. Enhancement techniques are also proposed to speed up the 

convergence and better maintain the required performance (or power) constraint in a dynamic 

system with large variations. Compared with the existing machine learning based power 
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management techniques, the Q-learning based power management is more flexible in adapting to 

different workload and hardware and provides a wider range of power-performance tradeoff.  

In the second part of the dissertation, we present our work on mobile device power 

management, which considers battery status and user behavior.  

We first extend the learning based power management framework for battery energy 

management. The goal is to maximize the quality of service (QoS) provided by the mobile 

device (i.e., smartphone), while keep the risk of battery depletion below a given threshold. A 

Markov Decision Process (MDP) is learned from history user behavior. The optimal 

management policy is solved using linear programing. Simulations based on real user traces 

validate that, compared to existing battery energy management techniques, the stochastic control 

performs better in boosting the mobile devices’ QoS without significantly increasing the chance 

of battery depletion. 

A smartphone consists of different energy-consuming components from processor, LCD 

screen, to WiFi card, cellular interface and etc. Although the percentage of power consumption 

of different components varies in different applications and different system settings, the cellular 

interface consumes more than 50 percent of total power consumption of the smartphone [107], 

when it is used as the network interface. We further present a methodology to design user-aware 

streaming strategies for energy efficient smartphone video playback. The goal is to manage the 

streaming process to minimize the sleep and wake penalty of cellular module and at the same 

time avoid the energy waste from excessive downloading. The problem is modeled as a 

stochastic inventory system, where the real length of video playback requested by the 

smartphone user is considered as demand that follows a stochastic process. Through user 
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behavior analysis, a Gaussian Mixture Model (GMM) is constructed to predict the user demand 

in video playback, and then an energy efficient video downloading strategy will be determined 

progressively during the playback process. Experimental results show that compared to a static 

downloading strategy that is optimized by exhaustive trail, our method can reduce the wasted 

energy by 10 percent in average. 

In the last part of the dissertation, we present an FPGA based emulator of distributed 

multi-core embedded system designed to support the research in runtime power/thermal 

management. The system consists of multiple FPGAs connecting through Ethernet with each 

FPGA configured as a multi-core system. Hardware and software supports are provided to carry 

out basic power/thermal management actions including inter-core or inter-FPGA 

communications, runtime temperature monitoring and dynamic frequency scaling. 
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Chapter 2 Workload 

Consolidation and Adaptive 

Power Management for General 

Purpose Computing Systems 
 

2.1 Chip Multiprocessor Performance Modeling for Contention Aware 

Task Migration and Frequency Scaling 

2.1.1 Introduction 

It has been pointed out [56] that the server energy efficiency reduces super-linearly as its 

utilization goes down. Due to the severe lack of energy proportionality in today’s computers, 

workload consolidation is usually performed in datacenters to improve server utilization for 

higher energy efficiency. When used together with power management on idle machines, this 

technique can lead to significant power savings [55].  

Today’s high-end servers have multiple processing units that consist of several 

symmetric multiprocessing (SMP) cores. Each physical core also comprises more than one 

logical cores enabled by the simultaneous multithreading (SMT) technique. One of the key issues 

related to workload consolidation is performance degradation due to the contentions for shared 

resources. At SMP level the shared resources include main memory, last level cache, memory 
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controller, etc. At SMT level, the shared resources also include execution modules such as 

instruction issue ports, ALU, branch target buffers, low level caches, etc. [59][60]. The degree of 

performance degradation is a function of the resource usage of all processes that are co-running 

and hence is hard to predict. Even if we can measure the execution time of an application 

accurately, there is no direct way to tell how much degradation that the process went through 

unless we have a reference copy of the same application running alone on an identical hardware 

machine. 

Dynamic voltage and frequency scaling (DVFS) [66][67][68]is another effective low 

power technique that has widely been used. Compared to workload consolidation and runtime 

power management, DVFS provides finer adjustment in power-performance trade-offs with 

much less control overhead. In a hierarchical power management framework [55][62], the upper 

level is usually virtual machine management that performs workload consolidation, while the 

lower level is usually voltage and frequency scaling.  Due to the gap between CPU and memory 

speed, the performance impact of DVFS is not linearly proportional to the scale of frequency 

reduction [66][67][68]. Different applications have different sensitivity to frequency scaling. A 

memory intensive application usually suffers less performance degradation from DVFS than a 

CPU intensive one, as the CPU speed is no longer the performance bottleneck. The same can be 

expected for many systems running multiple consolidated workloads. As their performance 

constrained by the contention for shared resources, power reduction can be achieved by applying 

DVFS without significant performance impact. However, similar to systems with resource 

contention, it is hard to directly tell an application’s performance sensitivity to frequency scaling 

without having a reference copy to compare with during runtime. 
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Tasks demand different resources at different levels. In a parallel computing system with 

dynamic workload, such demand varies from task to task and from time to time. The level of 

resource contention is affected by the selection of “co-runners” on the same core or the same 

processor. Task migration, which re-distributes tasks across multiple cores/processors during 

runtime, may effectively mitigate resource contention. Searching for the best task distribution is 

a non-trivial problem and if not handled properly, will lead to performance degradation instead 

of performance improvement.   

Performance degradation should be hidden from the customers, especially in a cloud 

environment, where the quality of service (QoS) is specified by the service level agreement 

(SLA) between service providers and customers and charges are determined based upon usage or 

reservation of cloud resources. How to guarantee the service level in a system that performs 

workload consolidation and DVFS for power control is an urgent research problem [71][73].  

Previous works studied how to optimize process scheduling to mitigate the resource 

contention ([58], [61]~[65], [68]~[70]). Many of them aim at finding a metric that must be 

balanced across the running threads to minimize the resource contention. The metrics are 

normally related to the last level cache miss rate. These works make the best effort to mitigate 

the resource contention, however, they do not report the performance degradation during runtime. 

Hence, without a reference copy, it is almost not possible to tell at runtime if certain scheduling 

algorithm does improve the performance and how much it improves. After all, resource usage of 

a software program is dynamically changing. An increase in IPS (instruction per second) does 

not necessarily indicate the adoption of a more efficient scheduling algorithm. It may be simply 

because the program has entered a phase which requires less memory access. It would be 

beneficial if the service provider knows how much degradation the target process is undergoing 
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when it is co-scheduled with other processes competing for the shared resource and when the 

DVFS is applied. With such information, further adjustment in performance power tradeoff can 

be adopted. Another limitation of those previous works is the lack of ability to quantitatively 

predict the exact performance change caused by the change in task mapping. Therefore, they are 

not able to make fine-grained task migration decisions. Furthermore, their goal is to improve the 

average performance of all tasks. Given a mixed workload with both performance critical and 

noncritical tasks, this may lead to over-optimization for those noncritical tasks. To overcome the 

above limitations, a model that estimates the performance degradation of each individual target 

process under different task distributions will be extremely useful.  

The problem is further complicated when CPU frequency scaling is performed in a 

system with resource contention, because its impact on different resources is not equal. 

Obtaining an analytical model to quantify performance degradation in a system with resource 

contention and frequency scaling is almost not possible. Machine learning techniques seem to be 

the only feasible solution [57].   

Some previous works have been proposed to apply machine learning to model the 

performance change of tasks when their co-runners vary [71][57][61]. [71] trains a MIMO model 

online. Its inputs are different control actuators for different cores (e.g., CPU cycles scheduled to 

different cores and etc.). Its outputs are predicted QoS value. [57] uses the information from 

hardware performance counter to estimate the performance degradation of an SMP machine. [61] 

presents a model to predict the potential performance impact from different co-running neighbors 

to make better decision of task migration. However, none of these works consider the possibility 

that a system could also run at different voltage and frequency levels. All of these previous 
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works consider SMP machine where only single thread is running on each core, therefore, they 

ignore the contention for shared execution resources.  

In this work, we apply machine learning techniques to develop a model for Performance 

Estimation under Fixed task Scheduling (PEFS). It estimates task performance degradation 

caused by existing resource contention and voltage/frequency scaling in current workload 

settings. We need to point out that, this model does not “predict” the performance of a given task 

schedule and frequency setting. Instead, it monitors the PMUs of current server, and estimates its 

performance degradation with the respect to an ideal system (i.e. the system without any resource 

contention and frequency scaling.) The information can be used as feedbacks to guide scheduling 

and DVFS. We further present a generalized model for Performance Prediction under Task 

Migration (PPTM).  The second model “predicts” the performance degradation under new task 

mappings caused by potential intra-processor task migration. Based on the predicated results, the 

best task scheduling on the chip is found using either integer linear programming or graph 

analysis.  

Compared to previous works (especially [57] and [61]), the contributions of this work are: 

1. It studies the joint impact on performance from resource contention and frequency 

scaling. Our results demonstrate the necessity of considering them together at the same time for 

performance modeling. 

2. It studies the effectiveness of traditional performance prediction using last level cache 

(LLC) miss rate. Our results show that the absolute value of LLC miss rate and performance in 

general do not have high correlation. 
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3. Performance estimation model (PEFS) and prediction model (PPTM) are presented to 

quantify performance degradation of a task under current (or potentially future) resource 

contention and frequency scaling in SMT-enabled chip multi-processor 

4. The performance estimation information is used in a feedback control loop to guide 

voltage and frequency selection and the performance prediction results are used to guide task 

mapping/migration for reduced contention. The framework is flexible to handle variety of 

workload with mixed performance critical and non-critical tasks. 

The rest of this section is organized as follows: sub-section 2.1.2 presents some 

observations that motivate the proposed performance model. Subsection 2.1.3 presents the model 

construction procedure. Subsection 2.1.4 talks about how to apply the model to find the best task 

mapping/migration. Experimental results are presented in 2.1.5, and Section 2.1.6 gives the 

conclusions. 

2.1.2 Motivational observations 

(1) Impact of co-running neighbors on DVFS sensitivity 

In this section, we provide some experimental data that motivate the search for a model 

that captures the performance impact of both resource contention and frequency scaling. Our 

experimental system is an Intel Ivy Bridge i3770K CPU machine with 4 physical cores and 8 

logical cores (SMT2). Each physical core has dedicated L1 and L2 cache (shared by two logical 

cores) while all cores share the same 8MB L3 cache. It supports frequency scaling from 3.5 GHz 

to 1.6 GHz with a step of 0.1 GHz. It is also equipped with 8GB two-channel 1600 MHz DDR3 

memory. Ubuntu Linux is installed. The configuration of this experimental platform is 

representative among many commercial computers on the market nowadays. 
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Though many research papers assume that frequency scaling can be applied at core level, 

Intel Ivy Bridge processors only have one voltage regulator. The per-core level frequency scaling 

is disabled by firmware and OS [77]. Each physical core can be put in deep sleep C state 

independently [77] when they become idle. This state has very low power consumption due to 

power and clock gating. The socket power of our experimental system is around 24W during idle 

state when deep sleep C state is enabled. When the deep C state is disabled, the idle power 

becomes 36W at lowest frequency and 63W at highest frequency. 

Nowadays the memory subsystem becomes relatively fast. We observe that running a 

single memory intensive task will be far from saturating the memory subsystem of the server. 

The performance of the task scales almost linearly during frequency scaling as the CPU and 

cache speed are still the bottleneck even for memory intensive tasks. The linear relation stops 

only when multiple memory intensive tasks are actively running simultaneously. 

Our hypothesis is that different co-scheduled jobs not only affect the performance of an 

application by generating resource contentions, but also affect its sensitivity to frequency scaling. 

To demonstrate this, we create workload that has various levels of resource contention. Our 

workload consists of two benchmarks from SPEC CPU2006 [80]. One is lbm, which is memory  
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Figure 2-1 Performance sensitivity to resource contention and frequency scaling 
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intensive; and the other is gamess, which is CPU intensive. Different workloads are generated 

using these two benchmarks. In these workloads, each logic core executes at most one 

benchmark program. We refer the two processes sharing the same physical core as SMT 

neighbors and the two processes running on different physical cores as SMP neighbors. The 

performance of these two benchmarks and their sensitivities to frequency scaling are tested in the 

context of different workload mappings. The test cases are labeled as n-m-T-SMT[SMP]. The 

parameters n and m specify that there are n lbm processes and m gamess processes running. The 

parameter “T” is the name of the target process whose performance we are interested in. The 

label “SMT” indicates that the SMT neighbor of our target process is the same benchmark 

program; otherwise the label “SMP” is attached to the workload. 

 Figure 2-1(a)~(c) show the performance degradations for each test case. The x-axis is 

CPU frequency and the y-axis is the normalized performance of the target benchmark program 

compared with the same target program running alone on a dedicated processor at the highest 

frequency (i.e. 3.5 GHz).  

In Figure 2-1 (a) we can see that when only one task is running, regardless whether it is 

memory intensive or CPU intensive, the performance scales linearly with CPU frequency at the 

same rate. This is because of the high memory bandwidth of the modern server. When all 8 logic 

cores running the same task, the memory intensive task (lbm) suffers much more degradation 

than the CPU intensive task  (gamess) due to the memory contention. However, it is also much 

less sensitive to frequency scaling than gamess, because the CPU is no longer the bottleneck of 

performance. Figures (b) and (c) show the performance of lbm and gamess separately when they 

are scheduled with different co-runners. Three major observations are made from the two figures. 
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First: Having lbm as the SMT neighbor causes more performance degradation than 

having gamess. For example, 2-6-lbm-SMT has less performance than 2-6-lbm-SMP and 6-2-

gamess-SMT has better performance than 6-2-gamess-SMP. The similar trend can be observed 

for other test cases. This is mainly because a memory intensive SMT neighbor competes for the 

L1 and L2 cache.  

Second: With more and more lbm processes running on the processor, the performance 

degradation of the target is exacerbated. For example, 2-6-lbm-SMT has better performance than 

4-4-lbm-SMT and 6-2-gamess-SMT has less performance than 4-4-gamess-SMT. Such trend is 

more prominent for memory intensive target (i.e. lbm) than for CPU intensive target (i.e. 

gamess). 

 Third: The gamess is more sensitive to frequency scaling than the lbm. Figure 2-1 (c) 

shows that its performance decreases almost linearly with frequency scaling. However, as more 

lbm processes are added into the system, the decreasing ratio reduces, which indicates a reduced 

sensitivity to frequency scaling. For example, the performance of 6-2-gamess-SMT changes 

slower than 4-4-gamess-SMT with frequency scaling. On the other hand, lbm’s performance is a 

nonlinear function of the CPU frequency. When the number of lbm processes increases, its 

performance is almost constant as shown in Figure 2-1 (b), indicating a low sensitivity to 

frequency scaling. 

To sum up all the discussions above, the contention and DVFS both affect the workload’s 

performance. To make things more interesting, a program’s sensitivity to frequency scaling is 

not only determined by itself but also its SMT and SMP neighbors. And the performance does 

not always scales linearly. The performance model considering only one frequency will no 



 

20 

 

longer be accurate when DVFS is enabled. In order to provide accurate performance estimation 

to guide power management at different level, our performance model must provide accurate 

estimation across a wide range of CPU frequency.  

Many previous works focus only at performance degradation due to SMP level 

contention; however, the SMT level contention has even greater performance impact. To further 

show this impact, we pick two processes from lbm, gamess and mcf (which is another memory 

intensive benchmark in SPEC CPU2006) and run them as SMT neighbors. Because only two 

processes are running, the SMP level contention is almost negligible.  

Figure 2-1 (d) shows the normalized performance of each processes running with 

different neighbors. The two benchmarks running together are bundled. As we can see, gamess 

has large performance degradation when running with either lbm or mcf; while lbm has 

relatively less degradation in either cases, which indicates low sensitivity to SMT level 

contention. The performance of mcf exhibits the behavior of bimodal. It is has large degradation 

when running with lbm and marginal degradation when running with gamess. This suggests that, 

compared to other two, mcf is more sensitive to having a memory intensive SMT neighbor. In 

other words, its performance is a function of the characteristics of its SMT neighbor. These 

observations motivate the development of the PEFS model, which will be discussed in Section 

2.1.3. 

(2) Limitation of traditional performance model based on LLC miss  

Many previous task mapping/migration algorithms try to minimize resource contention 

and performance degradation by balancing the last level cache miss across co-scheduled tasks. 

The rationale behind this is the assumption that performance degradation and LLC miss rate are 
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highly correlated. However, our experimental results show that such assumption is not always 

true. Although LLC miss rate in general is a good indicator of how severe tasks will compete for 

shared memory resources, it is not a comprehensive indicator of overall resource contention and 

performance degradation.  

Two sets of experiments are conducted to evaluate the relationship between target task 

performance degradation and its LLC miss rate. In the first set of experiments, we use gamess as 

the target task and change its SMT neighbor from the remaining set of 29 benchmarks in SPEC 

CPU 2006. Its SMP neighbor is set to either lbm or gamess, which stereotypes memory intensive 

or CPU intensive environment. The relation between the target performance and the LLC miss 

rate of its SMT neighbor is plotted in Figure 2-2 (a) and (b). In the second set of experiments, the 

same procedure is repeated with the target process set to lbm and the results are given in Figure 

2-2 (c) and (d). 

In Figure 2-2 the Y-axis represents the normalized performance of the target task while 

the X-axis represents the LLC miss rate of its SMT neighbor. Correlations between X value and 

Y value of data points are listed on top of the figure. As we can see from the figures, the 

performance degradation of a CPU intensive target task (e.g. gamess) only has weak correlation 

with the LLC miss rate of its SMT neighbor. Even memory intensive target task (e.g. lbm) does 

not have high correlation between its performance and its SMT neighbor’s LLC miss rate, if the 

rest of the tasks running are also memory intensive. That’s because as the SMP neighbors 

become more memory intensive and the overall memory access gets heavier, the impact from  

the SMT neighbor will be less important. These observations motivate us to develop a new 

performance prediction model that considers information beyond the LLC miss rate. 
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Figure 2-2.  Relation between target performance and LLC miss of its SMT 

neighbor 

 (3) Potential performance improvement by task migration 

The next set of experiments is performed to find out the potential of performance 

improvement by task migration. Figure 2-3 shows the performance boost of 29 benchmarks in 

SPEC CPU 2006 when its SMT neighbor changes from lbm to gamess. These benchmarks are 

indexed based on the ascending order of their LLC miss rate. The blue bars and red bars 

correspond to the experiments where the SMP neighbors of the target are CPU intensive and 

memory intensive respectively. In order to closely resemble the effect of task migration, the total 

workload running on the processor does not change before and after the switch of SMT neighbor. 
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The first observation from Figure 2-3 is that different benchmark benefit differently from 

replacing a memory intensive SMT neighbor to a CPU intensive one. The performance boosts 

varies from 5% to 35%. We also noticed that although switching the SMT neighbor from lbm to 

gamess always gives positive performance improvement, the magnitude varies for different SMP 

neighbors. For example, when running with CPU intensive SMP neighbors, task #12 (“gromacs”) 

has 22% performance gain if its SMT neighbor changes from lbm to gamess. This number 

reduces to 7% if its SMP neighbors are memory intensive. Furthermore, the relative order of the 

performance gain among tasks changes in different SMP settings. For example, in a CPU 

intensive SMP setting, pairing gamess with task #12 (“gromacs”) gives higher performance gain 

than pairing it with task #14 (“perlbench”). However, the reverse is observed if the SMP setting 

is memory intensive. A simple LLC miss rate model is not able to provide such detailed 

information on performance changes. First of all, some benchmarks with high LLC miss rate 

might have less demand on other resources, which allows certain co-runners run faster. Secondly, 

as mentioned in [58][72][75], LLC miss rate along cannot represent the cache contention 

characteristics as different programs have different access patterns of the cache. Different 

programs have different spatial preferences of the cache access, which cannot be captured by the 

LLC miss rate. 

Although they show significant variations, the data in Figure 2-3 do not pose strong 

motivation for a more powerful and better task-mapping algorithm, as the average performance 

gain is only about 13%. This is because, running 8 SPEC benchmark tasks simultaneously, the 

processor already has very high utilization and there is not much room for performance 

improvement.  
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Figure 2-3. Percentage performance boost of target process when its SMT neighbor 

changes from lbm to gamess 

 

Figure 2-4. Percentage performance boost of target process when its SMT neighbor 

changes from lbm to sleep task 

The high utilization in previous example is not very common in data center. More 

performance improvement can be achieved from appropriate task-mapping algorithm when the 

cores are not fully utilized. Figure 2-4 shows the performance boost of different benchmark 

when their SMT neighbor switches from lbm to a “sleep” task. The “sleep” task is introduced to 

represent an idle logic core or a task that has extremely low resource demand. As we can see, for 
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different target program, replacing its memory intensive SMT neighbor with a “sleep” (idle) task 

can provide 10% to 100% performance improvements. Furthermore, some benchmarks benefits 

more from such switch under CPU intensive SMP setting, while the others benefit more under 

memory intensive SMP setting. Obviously, good task mapping algorithm should pair the SMT 

co-runners so that the best performance gain can be achieved. The above analysis shows that 

LLC miss rate only provides a rough guideline for task mapping; searching for the best solution 

is something more subtle.  

2.1.3 Model construction 

(1)  Performance estimation under fixed scheduling (PEFS) 

In this section, we apply machine learning technique to construct a model that assesses 

the performance degradation of target application considering the impact from its current 

neighbors and the CPU frequency. The degradation is measured with the respect of a reference 

system which has no resource contention and frequency scaling. The discussion is carried out 

based on Intel Ivy Bridge i3770K CPU, which has 4 physical cores and 8 logical cores. However, 

the same method can be applied to other processors. Because we focus on CPU-bound workloads 

(i.e., SPEC CPU2006), in our model, we assume only one thread is running on each logical core 

[58].  

We classify the processes running on the same processor into 3 categories: Target, SMT 

and SMP. Target is the process whose performance degradation needs to be characterized. The 

SMT process shares the same physical core with the Target, and the rest of the processes running 

on the same chip belong to the SMP category.  
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To train and test the model, we created 30 groups of workloads. Each workload consists 

of 4 benchmarks in SPEC CPU2006. One of them will be Target, and another one will be its 

SMT neighbor. The other two benchmarks will be duplicated to 6 processes and run on the rest 

of the 3 physical cores. During the selection, we try to involve as many benchmarks as possible 

while exploring different combinations of memory and CPU intensive benchmarks [74] to create 

variety. Each workload is run with 8 different frequencies swept from 1.6 GHz to 3.5 GHz. 

(a) Feature selection 

There are around 260 PMU candidates on each logical core. We use perf [78] to collect 

the PMU values. There are only 4 hardware performance counters for each logical core which 

means only 4 events can be monitored at the same time without loss of accuracy. If more events 

are to be recorded, the counters will be time-multiplexed. Even if we collect 8 events in each run, 

to collect around 260 PMU events requires running the same workload repeatedly for more than 

30 times. As we can see, not only it is impossible to have all       events as inputs for model 

construction, to collect all of these events will also take a prohibitively long time. A feature 

selection step must be performed first to reduce the size of events to simplify modeling and data 

collection.  

In this step, we run each workload for only 10 seconds and repeat this for about 40 times. 

Each time 6~8 PMU events are collected. The data forms the preliminary training set. First, we 

consolidate the PMU events of the 6 SMP processes by calculating their sum. To the target 

process, they are like background activities and it is not necessary to keep the individual 

information. After consolidation, we have 3 sets of PMU events from Target, SMT and SMP 

processes respectively plus the CPU frequency. Then we apply Weka [79] for feature selection. 
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The events are evaluated using CFsSubsetEval algorithm which evaluates the subset of events by 

considering the individual predictive ability of each feature along with the degree of redundancy 

between them. A set of 24 events is selected at the end. Table 2-1 shows the top 9 events that are 

selected and their correlation to the target performance. Interestingly, we found that the attribute 

frequency itself is not selected at last. However, the frequency information is reflected in the 

PMU readings.  

(b) Model construction 

After feature selection, a more comprehensive and accurate data collection is performed 

again. Each workload runs for 40 seconds to get more coverage and the 24 selected PMU events 

are recorded with 4 collected at each run. The model output is normalized performance (PF) with  

Table 2-1 Top 9 selected events sorted by its correlation to the performance for 

PEFS model 

PMU event name Correlation 
UOPS_DISPATCHED.PORT_3(Target) 0.83 
CYCLE_ACTIVITY.CYCLES_NO_EXECUTE(SMP) 0.77 
CYCLE_ACTIVITY.CYCLES_LDM_PENDING(Target) 0.67 
IDQ.ALL_DSB_CYCLES_ANY_UOPS(SMP) 0.63 
CYCLE_ACTIVITY.CYCLES_L1D_PENDING(SMP) 0.61 
L2_LINES_OUT.PF_CLEAN(Target) 0.54 
MEM_LOAD_UOPS_RETIRED.HIT_LFB(Target) 0.40 
LOAD_HIT_PRE.HW_PF(Target) 0.36 

MOVE_ELIMINATION.INT_ELIMINATED(SMT) 0.33 

 

respect to the reference system. It is calculated as    
               

              
, where                 is 

retired instruction of the target application running on the test system that has contention and 

frequency scaling, and                is the retired instruction of the target application running 
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on a reference system that has no contention and frequency scaling. Both are collected over the 

same amount of time.  It is easy to see that performance degradation can be calculated as 1-PF. 

About 16 different modeling algorithms are evaluated for their relative absolute error 

through the 10 folds cross-validation process. The results show that MultilayerPerceptron (i.e., 

neural network) model yields the best accuracy. We refer this model as “model_full”. 

Two reference models are also constructed in the similar way. However, the first one 

ignores the impact of frequency scaling. Its training data is collected from systems performing no 

frequency scaling (i.e. running at 3.5GHz). The model is referred as “model_no_freq”. The 

second one does not explicitly consider the impact of SMT neighbor. It’s training set does not 

have PMU data for the SMT process. This model is referred as “model_no_SMT”. 

The accuracy of those three models and their correlation with the actual performance are 

given in Table 2-2 . As we can see, “model_full” gives the highest accuracy and correlation. The 

“model_no_SMT” also has a low error rate. This is because the impact from SMT process is 

partially reflected in the Target process’s PMU change. Finally, Figure 2-5 shows the correlation 

between the PEFS estimated performance and the actual performance. As we can see they are 

highly correlated. 

Table 2-2 Accuracy of 3 different PEFS models 

 model_full model_no_freq model_no_SMT 

Relative absolute error 11.2% 30.2% 13.5% 

Correlation 0.994 0.940 0.985 
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Figure 2-5 Estimated performance is highly correlated to actual performance 

(2) Performance prediction under task migration (PPTM)  

Our discussion in section 2.1.2 shows that co-runners have significant impact on 

performance of target process, and dynamic task migration, which remaps task during runtime 

when workload characteristic changes, is desirable. An effective task migration controller needs 

the ability to predict how different task mappings may affect the performance of the target 

process. In this section we generalize the PEFS model for Performance Prediction under Task 

Migration (PPTM). We limit our discussion to migrations within the single chip multi-core 

processor, which is referred as intra-processor task migration. We focus on intra-processor task 

migration because it has very low overhead but quite significant performance impact if 

performed correctly. The similar modeling technique can also be applied for performance 

prediction under inter-processor task migration.  

Unlike PEFS, PPTM predicts how the performance of target process will change if a new 

task mapping is adopted. The prediction relies on the architectural activities observed under 

current task mapping and the knowledge obtained during the training process. For good 
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mapping. In this work, the task migration is confined to switch the CPU affinity of only two 

processes running on different cores. One of them is the target process and the other is referred 

as the migration target (mTarget). Based on this definition, migrating the target process to an idle 

core can be done by switching it with an “idle process.” Besides Target and mTarget, PPTM 

divide the rest of processes running on the processor into 3 categories based on current task 

mapping: SMT, mSMT, and SMP. SMT and mSMT share the same physical core with Target 

and mTarget respectively. However, this relation will be reversed after migration. In other words, 

after migration, SMT process will share the same physical core with mTarget and mSMT process 

will share the same physical core with Target. All processes running on other cores are SMP 

tasks.  

To train and test the model, we created around 720 groups of workloads. Each workload 

consists of 6 benchmarks randomly selected from SPEC CPU2006. Four of them will be Target, 

SMT, mTarget and mSMT tasks. The remaining 2  benchmarks will be duplicated to 4 processes 

and run on the rest of the 2 physical cores. Except the Target, all other tasks can also be set as 

“idle task”, which does nothing but sleep. Each workload is run twice. In the first round, PMU 

information is collected. In the second round, Target and mTarget processes will be switched and 

performance will be recorded. Each workload is run with 3 different frequencies swept from 1.6 

GHz to 3.5 GHz. The rest of the feature selection and model construction steps are similar to that 

of the PEFS model introduced in Section 2.1.3.  

Table 2-3 shows the top 9 selected features for the PPTM model and their correlation 

with the target performance. The average absolute error is 21.1% by 10 fold cross validation and 

the correlation between predicted performance and real performance is 0.967.  
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Table 2-3 Top 9 selected features sorted by its correlation to the performance for 

PPTM model 

PMU event name Correlation 
UOPS_DISPATCHED_PORT.PORT_2(Target) 0.75 
BR_MISP_EXEC.ALL_BRANCHES(SMP) 0.60 
CYCLE_ACTIVITY.CYCLES_LDM_PENDING(Target) 0.52 

RESOURCE_STALLS.SB(mSMT) -0.36 

LD_BLOCKS_PARTIAL.ADDRESS_ALIAS(mTarget) 0.34 

MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE (SMT) 0.32 

LD_BLOCKS_PARTIAL.ADDRESS_ALIAS(mSMT) -0.31 
RESOURCES_STALLS.ROB(SMP) 0.27 

MEM_LOAD_UOPS_RETIRED.LLC_HIT(Target) 0.25 

 

2.1.4 Model directed task mapping 

With the help of PPTM model, the task mapping can easily be formulated as an integer 

linear program. Similar problems are discussed in [76], however, with slightly different 

objectives. 

We use N to denote the total number of logic cores in the processor. Similar to [76], we 

assume that each logic core runs only a single task including the idle task. Therefore, the total 

number of tasks running on the processor is also N. Let T denote the set of tasks, |T|=N, and Tc 

denote the set of performance critical tasks. Our goal is to maximize the total performance of 

those critical tasks. We define the target variable     to be 1 when task i and j are mapped to the 

same physical core, otherwise it is 0. We use     to denote the performance of task i when it is 

co-scheduled with task j. The value of pij can be obtained using PTMM prediction if i and j are 

not scheduled together at current mapping, otherwise it can be obtained using PEFS estimation. 

The following specifies the objective function and the constraints of the integer linear 

program for model directed task mapping:                                
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    ∑ ∑                    s.t. 

           

                  

∑    
   

         

The constraints ensure that each task is scheduled exactly once and it must be mapped 

with a different task other than itself. We used lp_solve [81] to solve this problem in our 

experiment. 

The task mapping can be found by looking for a perfect match in a graph [76]. By 

considering each task as a vertex and setting the weight of edge between 2 vertices as the total 

performance of the two corresponding tasks when they are mapped together, the authors of [76] 

search for the performance optimal mapping by looking for a set of edges with maximum weight 

such that each vertex is connected to exactly one edge. This is a perfect matching problem and 

polynomial complexity algorithm exists for this problem.  

The exact same graph model as [76] cannot be used in this work, because our goal is to 

only increase the performance of the set of critical tasks while their objective is to maximize the 

total performance of all tasks. The difference can be resolved with simple modification in the 

edge weight. By defining the weight of an edge eij, which connects task i and j, as the following: 

    {

                                                

     (      )             (    )                 

                                                                   

, 
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the same perfect matching algorithm can be used to find the mapping that maximizes the 

performance for the set of critical tasks. 

2.1.5 Experimental Results 

We apply the PEFS model and PPTM model to achieve runtime performance 

optimization and power management. Three sets of experiments are conducted that represent 

different application scenarios.  

(1) Runtime power management without task migration 

In the first set of experiments, we consider DVFS based power management on a 

multicore processor with fixed CPU affinity mapping. PEFS model is used to provide 

performance feedback to guide the DVFS controller. Four different workloads are generated and 

tested. Each workload contains 8 copies of SPEC CPU2006 benchmark. The first workload 

(WL1) has 2 memory intensive processes and 6 CPU intensive processes. The second workload 

(WL2) has 4 memory intensive processes and 4 CPU intensive processes. The third and fourth 

workloads consist of only memory intensive benchmarks and CPU intensive benchmarks 

respectively. Two different scheduling methods are applied to WL1 and WL2. The first one 

schedules a memory intensive process to be the SMT neighbor with a CPU intensive process. 

The second one schedules two memory intensive (or two CPU intensive) processes to be SMT 

neighbors to each other. The first method causes less resource contention [58] and hence will be 

denoted as “G”, which stands for “good” scheduling. The second method is denoted as “B” 

which stands for “bad” scheduling. The detailed information of workloads and their mappings is 

presented in  Table 2-4. Labels (M) and (C) indicate if the benchmark is memory or CPU 

intensive. In this work, we do not consider task migration. The performance feedback from the 
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model is only used to guide DVFS settings. Please note that, the testing workloads are 

significantly different from the training set. None of the training workload has more than 50% 

similarity to a testing workload. 

Each workload will run for 400 seconds (benchmarks will run iteratively if their actual 

length is less than 400 seconds). A user-level Shell script is developed for performance 

monitoring and DVFS control. It dynamically calls the Linux perf tool to collect the 24 PMU 

attributes from each logical core to form the inputs of the model. The interval of data collection 

is set to be 10 seconds, which is long enough to let each event be monitored for substantial 

period of time to get good sampling accuracy. We assume that a set of target processes are 

critical and have QoS constraints. The constraint is expressed as the normalized performance (PF) 

of the process with the respect to the reference system. If all critical tasks exceed performance 

threshold, the chip’s frequency will be increased by 0.1GHz (chip voltage will be adjusted 

accordingly). Otherwise, the frequency will be decreased. Two sets of critical tasks are selected 

for WL1 and WL2. The first one consists of all memory intensive tasks, while the second one 

consists of all CPU intensive tasks. For WL3 and WL4, all tasks are critical.  

We refer to a system that uses our model as “model_full”. It is compared with 4 reference 

systems: (1) model_no_smt: the system conducts performance assessment without considering 

SMT neighbor’s impact explicitly, i.e. it uses model_no_smt specified in Table 2-2 for 

performance estimation; (2) model_no_freq : the system conducts performance assessment 

without considering the impact of frequency scaling, i.e. it uses model_no_freq specified in 

Table 2-2 for performance estimation; (3) direct_scaling: the system scales CPU frequency 

linearly according to the given performance threshold; (4) capping: instead of frequency scaling, 

the system set a cap on the CPU quotas that a task can take based on the given performance 
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threshold. The cap is set using Linux cgroups[82]. The same cap is given to all tasks on the chip. 

The processor will run at the highest speed and enter deep sleep mode when it is capped. Both 

“direct_scaling” and “capping” ignores SMP level resource contention. A constant 50% 

performance degradation is assumed for SMT level contention. Although not very accurate, this 

is the best approximation that we can have without dynamically tracking the performance, which 

is the purpose of using simple management approaches such as “direct_scaling” and “capping”. 

The CPU frequency and cap are set accordingly. For example, if the performance threshold is 30% 

of reference system, then “direct_scaling” will set CPU frequency to       ⁄      of the 

maximum frequency, while “capping” will cap the CPU quota to 60%.  

The performance for all 4 workloads running on 5 different systems is reported in Figure 

2-6. Please note that WL1 and WL2 both have 2 different task mappings and for each mapping 

two sets of critical tasks are tested. Therefore, four plots are presented for each workload. The 

left two plots in Figure 2-6 (a) are for WL1(G) and the right two plots are for WL1(B). The top 

two plots in Figure 2-6 (a) are for systems where memory intensive tasks are critical, while 

bottom two plots are for systems where CPU intensive tasks are critical. Each bundle of bars 

corresponds to the performance of one task running at different systems. The bars with dark solid 

outlines are the critical tasks whose performance is important while the bars with dotted outlines 

are noncritical. The dotted horizontal lines indicate the performance thresholds. If a solid bar 

falls below this line then there is a performance violation. A task with performance violation is 

marked by a small red cross underneath the bar. Those critical tasks that have the lowest 

performance are referred as bottleneck tasks, as their performance is the bottleneck that 

determines the CPU frequency of the entire chip. They are marked with red boxes. In order to  
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(a) WL1             

 

(b) WL2 

 

(c) WL3 and WL4 

 

Figure 2-6. Performance for all workloads
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 Table 2-4. Workloads used in the evaluation  

 WL1 (G) WL1 (B) WL2 (G) WL2 (B) WL3 WL4 

0 

lbm (M) 

gamess (C) 

lbm (M) 

lbm (M) 

mcf (M) 

hmmer (C) 

mcf (M) 

libq (M) 

milc (M) 

milc (M) 

namd (C) 

namd (C) 

1 

lbm (M) 

namd (C) 

povray (C) 

namd (C) 

libq (M) 

namd (C) 

mcf (M) 

libq (M) 

milc (M) 

milc (M) 

namd (C) 

namd (C) 

2 

povray (C) 

h264ref (C) 

namd (C) 

h264ref (C) 

mcf (M) 

gromacs (C) 

hmmer (C) 

gromacs (C) 

milc (M) 

milc (M) 

namd (C) 

namd (C) 

3 

namd (C) 

gobmk(C) 

gamess (C) 

gobmk(C) 

libq (M) 

tonto(C) 

namd (C) 

tonto(C) 

milc (M) 

milc(M) 

namd (C) 

namd(C) 

 

From the figure we can see, systems using the PEFS model (i.e. model_full) have almost 

no performance violation except for WL1 (B). This only performance violation is because of the 

inefficient task mapping. All of the reference systems have performance violations for this test 

case. Furthermore, our model keeps the performance of those bottleneck tasks much closer to the 

performance threshold than all other techniques. This means that lower frequency level is used 

and hence more energy savings are achieved. Comparing systems with different mapping choices, 

our model can correctly identify the ‘bottleneck’ tasks and make frequency scaling decision 

accordingly. We also observed that “capping” gives large violation most of time when the 

critical tasks are memory intensive. This is because it runs the CPU at full speed, hence the 

memory becomes the performance bottleneck. Furthermore, when the CPU is throttled, the 

memory access is stopped too. The similar is not observed for DVFS based approaches, where 

both CPU and memory operate all the time. 



 

38 

 

The third thing we observed is that “model_no_smt”, “model_no_freq” and 

“direct_scaling” lead to more violation when the critical tasks are CPU intensive. This is because 

frequency scaling based on inferior performance model or simple linear scaling obviously cannot 

accurately capture the performance degradation of CPU intensive tasks, which varies greatly 

during frequency scaling; while the performance of memory intensive tasks generally do not 

change that much. We also observed that there are fewer violations for WL2 than WL1 if the 

critical jobs are CPU intensive. It seems that the more memory intensive tasks are running, the 

easier for all the models to make the right decision since sensitivity to frequency scaling reduces. 

Please note that all systems use the same task mapping. And all of the first four systems 

“model_full”, “model_no_SMT”, “model_no_frequency” and “direct_scaling” perform DVFS 

based power management. Since Intel Ivy Bridge processor only supports chip level frequency 

scaling, the system that has the minimum power consumption without performance violation is 

the bottleneck task, whose performance should exactly meet the threshold. Therefore, it is not 

necessary to compare the power consumption among “model_full”, “model_no_SMT”, 

“model_no_freq” and “direct_scaling”. Because model_full brings the performance of the 

bottleneck task closest to the threshold, its power consumption must be lower than the other three 

reference models. However, the same comparison cannot be applied to “capping”, because it 

performs power management using CPU capping instead of DVFS. Therefore, we still need to 

compare its power consumption with that of “model_full”. The power consumption of the 10 test 

cases in Table 2-4 is measured using Watts up?PRO power meter. 

Figure 2-7 shows the energy and energy delay product (EDP) of systems using “capping” 

and “model_full”. Both systems execute the same amount of instruction. Here the whole system 
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idle power (around 24W) is removed from calculation. As we can see, in average “model_full” 

has 24% reduction in energy and 38% reduction in EDP compared to “capping”. 

 

Figure 2-7. Energy and EDP of model_full and capping 

    (2) Task migration for optimal performance 

In the second set of experiments, we apply the PPTM model to guide task migration. The 

input of the PPTM model  

is the PMU information collected while the tasks are running under current mapping. The 

goal is to find a new mapping that maximizes the performance of a set of critical tasks. No 

DVFS power management is considered in this experiment. Since only the highest CPU 

frequency is used in this experiment, we train the PPTM model with only the data collected at 

the single clock frequency, and refer it as PPTM-SF. 

As we pointed out in section 2.1.2 that task migration will not provide much performance 

gain if the CPU utilization is very high. Here we assume that at least one of the cores is not fully 

utilized, i.e. there is at least one idle task in the workload. Two scenarios are evaluated. In the 

first scenario, the workload has two critical tasks and one idle task; in the second scenario, the 

workload has 4 critical tasks and 2 idle tasks.  
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Our reference algorithm is task migration based on LLC miss rate. It chooses the set of 

tasks with the minimum LLC miss rate during run time and pairs them with the critical tasks.  

For each of the two scenarios, 20 different workloads are created based on randomly selected 

SPEC benchmarks. We run each workload for 400 second. Every 40 seconds the PPTM-SF 

model will be called or the LLC information will be checked. Based on the prediction, a new 

task mapping is found. If it differs from the current one, tasks will migrate accordingly. 

Figure 2-8 (a) and (b) give the performance comparison between PPTM based and LLC 

based system for both scenarios. The X-axis in both figures gives the index of workloads, and the 

Y-axis gives the summation of the performance of all critical tasks normalized with the respect 

of an ideal system. As we can see in the figure, the PPTM based task migration in average gives 

4% better performance than LLC based migration for a system with 2 critical tasks and 1 idle 

task. It gives 9% better performance in average for a system with 4 critical tasks and 2 idle tasks. 

We can see that the more critical tasks we have, the better the PPTM-SF model performs than the 

LLC based migration. The results also show that, in general LLC miss rate can provide fairly 

good prediction of how the target performance will change after migration, if the rest of the 

workload remains that same. However, because the absolute value of the total LLC miss rate 

does not correlate to the absolute target performance very well, it cannot be used to provide 

accurate guidance for power and performance tradeoffs.  

(3) Combining task migration with DVFS 

In Section 2.1.5, we showed how much energy can be saved from model directed DVFS. 

In the next experiment, we demonstrate how task migration can create potential for further  
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                (a) Overall performance of 2 critical tasks (scenario 1) 

 

           (b) Overall performance of 4 critical tasks (scenario 2) 

Figure 2-8.  Performance of model predictive task migration 

energy savings and more opportunities for DVFS.  Fourteen different workloads were created in 

this experiment consisting of randomly selected SPEC benchmarks. Each workload has 2 critical        

tasks and 1 idle task. Every 40 seconds new task mapping will be searched based on the 

performance predicated using the PPTM model. If the result is different from current mapping, 

task migration will be performed. Every 10 seconds the PPTM model will be used again to 

estimate the current performance of the critical tasks. This is done by setting both the Target and 

mTarget to be the same. Please note that, although PEFS model has higher accuracy in 

estimating performance under current task mapping, we choose to use PPTM model so that one 
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set of model needs to be trained and stored and the complexity of the approach could be reduced. 

We will increase (or decrease) one frequency step of the CPU if the performance is below (or 

above) the given threshold. 

Our reference systems have static mapping, however they also performs DVFS power 

management based on the performance information estimated using the PPTM model. Three 

different static mappings are adopted. The first static mapping tries to balance the LLC miss rate 

and pairs the tasks with the lowest LLC miss rate with the critical tasks. We refer to this system 

as “balanced”. The second static mapping works reversely. It pairs the tasks with the highest 

LLC miss rate with the critical tasks, and is referred as “unbalanced”. The third static mapping 

randomly pairs uncritical and critical tasks, and is referred as “random”. In the experiment, the 

average performance of 8 random mappings is reported. Please note that the LLC miss rate of an 

arbitrary process is unknown in a datacenter until the process has completed. Therefore, the 

“balanced” and “unbalanced” mappings are created simply for experimental purpose and the 

“random” mapping is the more realistic case. 

Two different thresholds of normalized performance are used for the critical tasks. Figure 

2-9 (a) and (c) report the performance of the worst critical task and the total system power 

consumption when the threshold is set to 0.25. Figure 2-9 (b) and (d) report the same information 

for the systems where the threshold is set to 0.35. The figure does not include the static power 

when the system is idle. 

 Table 2-5 gives the average of the minimum performance of the two critical tasks, the number of 

performance violations and the average power performance ratio of the four testing systems 

collected across the 14 workloads. Instead of energy, here we report the ratio between the system 
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power consumption and the average minimum performance of critical tasks. This is because due 

to different task mapping, it is difficult to make sure that all critical and noncritical tasks execute 

the same amount of instructions across different systems. Therefore, we use the ratio between 

power consumption and the average performance of the worst case critical tasks to represent 

power-performance tradeoffs. A smaller power performance ratio means higher energy 

efficiency.  

As we can see, in general all systems have more violations when performance threshold 

is tight (i.e. 35% of an ideal system), however our system has the least violation. This is because, 

although all systems perform the model based DVFS, our system is more flexible since it 

dynamically migrates tasks to better explore the opportunity of constraining the critical tasks’ 

performance above threshold. At the same time, our system has the lowest power-performance 

ration. This is because the migration reduces part of the stress of meeting performance constraint, 

so our system does not simply rely on overclocking the CPU to improve performance. Therefore 

its power consumption is also lower than other systems.   

 

 

(a) Performance for threshold 0.25 
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(b) Performance for threshold 0.35 

 

(c) Average power for threshold 0.25 

 

(d) Average power for threshold 0.35 

Figure 2-9 Model directed hierarchical power management 
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Table 2-5 Average performance, power and violations 

 Performance Number of Violations Power- performance ratio 

 Pth=0.25 Pth=0.35 Pth=0.25 Pth=0.35 Pth=0.25 Pth=0.35 

Our System 0.308 0.355 0 4 60 60 

Balanced 0.312 0.358 0 6 60 61 

Random 0.275 0.335 3 10 74 75 

Unbalanced 0.278 0.330 2 9 78 87 

 

2.1.6 Conclusions 

In this work, we demonstrate the importance of considering both resource contention and 

frequency scaling in system performance modeling. A model is constructed to dynamic quantify 

task performance degradation with the respect to a reference system, where the target process is 

executed alone at the highest frequency. The propose model is used to provide performance 

feedback to guide DVFS control. The model is further extended to predict the performance of the 

target process under a new task mapping. The improved model is used to provide performance 

prediction to guide the task migration. Experimental results show that the proposed models 

effectively controls the system performance and keeps it close to the given constraint, hence 

leads to lower power consumption with minimum performance violation. 

 

2.2 Learning Based DVFS and DPM for CPU and Peripheral devices 

2.2.1 Introduction 
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Robust power management must consider the uncertainty and variability that come from 

the environment, the application and the hardware. For example, the workload of a complex 

system is usually unpredictable as it strongly depends on the nature of the application, the input 

data and the user context. The workload variation changes the device usage pattern and has the 

most significant impact on the system speed and power consumption. The contention of shared 

resources such as buses or I/Os in an MPSoC also increases the variability of hardware response 

time for communication and computation. Furthermore, the process, voltage, and temperature 

(PVT) variation results in a large fluctuation in hardware performance and power consumption. 

Therefore, statically optimized resource and power management policies are not likely to achieve 

the best performance when the input characteristics change. The ability to observe, learn and 

adapt to different hardware systems and different working environments is essential for a power 

management controller. 

In this work, we present a novel approach for system level power management based on 

online reinforcement learning (RL). The proposed power manager learns a new power control 

policy dynamically at runtime from the information it receives. This is achieved by trying an 

action in a certain system state, and adjusting the action when this state is re-visited next time, 

based on the reward/cost received. This is a model-free approach as the power manager learns 

the policy directly. The technique does not require any prior information of the system or 

workload. However, if such knowledge is available, it can help to speed up the convergence of 

the learning algorithm and better track the performance (or power consumption) constraints.  

A reinforcement learning model consists of three basic elements: a state space that 

describes the environment status, an action space that defines the available control knobs and a 

cost function that evaluates the reward/cost of different actions in different states. How these 
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three elements should be defined is determined by the available environment information, the 

nature of the system under control, as well as the user objectives and constraints. Therefore, it 

varies from problem to problem.  

In this work, we investigate RL model construction for the power management of two 

most common types of devices in a computer, the peripheral device and the microprocessor. The 

peripheral device is an interactive system that processes the I/O requests generated by software 

applications. Its performance is measured by its response time (which is proportional to the 

average length of request waiting queue.) It assumes that each I/O request is an atomic task. For 

such peripheral device, its workload is captured by the distribution of idle intervals and the 

request generation rate. For the microprocessor, we focus on its power management during the 

time of batch processing. The performance is measured by the execution time, and the workload 

characteristic is captured by its CPU intensiveness. From the power management algorithm 

design perspective, a microprocessor in batch mode and a peripheral device differ in many ways.  

First of all, they have different power management control knobs. The power 

consumption of a peripheral device can be controlled by configuring the device into discrete 

power modes. For example, a wireless adaptor usually has 4 power modes: receiving, 

transmitting, idle and standby modes. However, the power consumption of a microprocessor 

performing batch processing is usually controlled by dynamic voltage and frequency scaling. For 

example, the AMD Opteron processor is implemented with 5 levels of voltage and frequencies. 

This leads to different action spaces in the Q-learning algorithm design.  

Secondly, their performances are measured by different criteria and affected by different 

factors. While the performance of a peripheral device is measured by its response time, which is 
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determined by the request incoming rate and processing speed; the performance of a 

microprocessor working on batch processing is measured by its execution time, which is affected 

by the CPU clock frequency and architectural events such as pipeline stalls. Therefore, the two 

devices should be modeled by different sets of parameters. This leads to different state 

classification methods in Q-learning model construction. 

Furthermore, their optimization objectives are different. The ultimate goal of power 

management is to minimize the energy dissipation under the given performance constraint. For 

peripheral devices, an infinite horizon is usually assumed. Therefore, minimizing energy 

dissipation is the same as minimizing the average power consumption over a long time. However, 

for a microprocessor working on batch processing, we usually focus on minimizing the energy 

dissipation over the execution time. While the average power consumption of a peripheral device 

is a monotonic decreasing function of its response time; such monotonic relation does not always 

exist between the total energy dissipation and execution time of a modern microprocessors. On 

one hand, although lowering the voltage and frequency of a CPU effectively reduces the 

dynamic energy, it also increases the leakage energy because the system has to be kept active for 

a longer time [25]; therefore, the total energy may not necessarily decrease. On the other hand, as 

the limited memory bandwidth has already become the performance bottleneck for some high 

performance computers, lowering CPU voltage and frequency to a certain extent may not have 

significant impact on performance, since the memory subsystem still works under a constant 

frequency [9][25][27]. As we can see, in addition to different objective functions, the relations 

between objectives and constraints are also different for the two power management problems. 

Hence, different cost function must be constructed. 
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Finally, other constraints sometimes are usually considered in microprocessor power 

management. For example, temperature has significant impact on the chip performance and 

reliability, and hence should be considered as another constraint. This requires a cost function 

design that is flexible enough to incorporate multiple constraints.  

Above discussions show that different Q-learning models (i.e. different environment state 

classification methods and different cost function formulations) are needed for peripheral device 

power management and microprocessor power management. These two power management 

problems are both interesting and are complementary to each other. It is important to discuss 

their Q-learning models separately. In this work, we focus on how these Q-learning models are 

constructed and how effective they will be. In addition to model construction, techniques are 

developed to enhance the performance of the RL based controller in a power managed system. 

Novel techniques are proposed that speed up the convergence of learning and better maintain the 

required performance (or power) constraint in a dynamic system. The following summarizes the 

main contribution of this work: 

1. We present a power manager that does not require any prior knowledge of the 

workload. It learns the policy online with real-time information and adjusts the policy 

accordingly. After a certain set-up time, the optimal policy can positively be found. 

2. We propose a set of enhancement techniques that utilize the partial knowledge of the 

system to accelerate the convergence speed and enable the runtime tracking of the performance 

(power consumption) constraint. 

3. We apply the RL based controller to perform power management of peripheral devices 

and microprocessors. Different model construction approaches are discussed for these two types 
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of devices.  The performance of the proposed power management controller is evaluated by 

either simulation or real measurement. 

Compared to the previous works in [29][43], this work has the following major 

contributions.  

1. In addition to the peripheral devices, we also apply the RL based power management 

to microprocessors. Model construction and cost function formulation are discussed. 

2. The RL model construction for peripheral devices is improved to handle real 

application scenarios with more diversified workload and practical constraints. For example, we 

improved the state partition techniques to cover workloads with large variations.  

3. While the traditional stochastic power management is able to satisfy the given 

constraints on long term average performance (or power consumption), they usually have large 

performance (or power consumption) variations during short period of time. In this work, a two 

level controller is proposed to find the weight factor that balances the power-performance 

tradeoff of the learning based power management policy so that it operates at a relatively 

constant performance (or power consumption) that is close to the given constraint.  

4. More experimental data are provided. In addition to traces collected from personal PCs, 

the proposed power management technique is evaluated using the HP hard disk traces that 

resemble the workload of large data centers. It is also implemented on a Dell Precision T3400 

workstation to control the runtime voltage and frequency scaling for simultaneous energy, 

performance and temperature management. 
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The rest of this section is organized as follows: Subsection 2.2.2 talks about the related 

work including the expert-based DPM algorithm, which will be used as a comparison with our 

algorithm. Subsection 2.2.3 introduces the general RL model for power management. 

Subsections 2.2.4 and 2.2.5 discuss model construction and enhancement techniques for the 

power management of peripheral devices and microprocessors, respectively. Subsection 2.2.6 

presents the experimental results. Finally 2.2.7 gives the conclusions. 

2.2.2 Related Works 

Based on when it is applied, system level low power techniques can be categorized into 

design time approaches and run time approaches. The former modifies and optimizes the system 

and component architecture during design time for a lower power consumption or to facilitate 

runtime power reduction[10][18][2][42];  while the latter performs online to dynamically control 

the power with the respect of performance constraints. Dynamic power management (DPM) and 

dynamic voltage frequency scaling (DVFS) belong to the second category. 

The simplest and most widely used DPM algorithm is the timeout policy which puts the 

device into low power mode after it has been idle for certain amount of time. Though it is easy to 

implement and relatively effective in many computer systems, the timeout policy is far from 

optimized because it wastes energy during the timeout period. Furthermore, the traditional 

timeout policy uses a fixed timeout value which cannot adapt to the change of workload or user 

context.  

In order to best adjust itself to the dynamic system, many DPM works on a system model 

that is learned from the history information. For example, the predictive DPM[21] predicts the 

next idle time based on previous idle time and makes power mode switching decision based on 
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the predicted value. The previous works in stochastic power management [38][39][44] model the 

system as a Markov decision process. The model construction requires offline learning. [48] 

proposed a user-based adaptive power management technique that considered user annoyance as 

a performance constraint. [3] converts the scheduling task on multiprocessor into a cooperative 

game theory problem to minimize the energy consumption and the makespan simultaneously, 

while maintaining deadline constraints.   

Many research works have been proposed to find the optimal DVFS scheduling for 

energy reduction. [9] uses runtime information on the statistics of the external memory access to 

perform CPU voltage and frequency scaling. Its goal is to minimize the energy consumption 

while translucently controlling the performance penalty. [45] first presents a workload prediction 

model for MPEG decoder and the predicted workload is further used to guide the voltage and 

frequency scaling. [11] considers processors as producers and consumers and tunes their 

frequencies in order to minimize the stalls of the request queue while reducing the processors’ 

energy.  

Multidimensional constraints sometimes are considered in power management. 

Performance and temperature are two typical constraints in designing a power management 

policy for microprocessors. [13][28] propose to use mathematical programming to solve voltage 

and frequency scheduling problem for energy optimization with temperature constraints. Both 

works assume that the workload is known in advance. [51][54] apply model predictive control 

(MPC) to find the best sequence of voltage and frequency settings for minimum energy under 

given temperature constraint over a finite horizon. A temperature model is required for the MPC 

controller to work effectively. [6] controls active memory modules and schedules workload 
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between CPU sockets to achieve balanced thermal distribution for energy management with 

temperature and performance constraints. 

All of the above works either assume given workload model or require offline model 

construction and policy optimization, therefore they cannot adapt to the workload changes in 

real-time. Online learning algorithms are natural choices for real-time adaptive power 

management. [7] presents a method that periodically adjusts the size of physical memory and the 

timeout value to turn off the hard disk to reduce the average energy consumption. The joint 

power management predicts the next hardware accesses frequency and idle interval based on 

previous information. [20] uses program counters to learn the access patterns of applications and 

predicts when an I/O device can be shut down to save energy. [52] uses a skewed striping pattern 

to adaptively change the number of powered disks according to the system load. They also 

enhanced the reliability of the storage system by limiting disk power cycles and using different 

RAID encoding schemes. [30] and [23] propose a machine learning approach for multicore 

resource management using on-chip hardware agents that are capable of learning, planning, and 

continuously adapting to changing demands. Those works also use the machine learning 

technique to perform DRAM bandwidth scheduling for a maximum throughput. In [16], the 

authors propose a learning algorithm that dynamically selects different experts to make power 

management decisions at runtime, where each expert is a predesigned power management policy. 

This approach leverages the fact that different experts outperform each other under different 

workloads and hardware characteristics. The similar approach is applied in [14] to perform 

power management with performance and temperature constraints. There is also a large body of 

works that learn workload/temperature model online for thermal management [4][15][53],  or 
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uses random policy with temperature aware adaptation [12]. However, these works do not 

consider energy (or power) minimization. 

Reinforcement learning has been applied to resource allocation and further extended to 

microprocessor power management in [46] and [47], respectively. Both works focus on the web 

application servers. The environment state is describe by the rate of the incoming request and the 

policy is optimize offline using the Sarsa(0) algorithm. In order for the offline trained policy to 

work effectively, the implied assumption is that the workload is highly repeatable. Our approach 

differs from these two works in that, we adopt different state classification; focus on general 

purpose computing applications and our policy is optimized online.  

2.2.3 General Architecture of Q-learning based Power Management  

In this chapter, we will first introduce the principle of Q-learning and then we will 

discuss how to extend the traditional Q-learning algorithm to solve the dynamic power 

management problem. 

 (1) Q-learning algorithm 

Reinforcement learning is a machine intelligence approach that has been applied in many 

different areas. It mimics one of the most common learning styles in natural life. The machine 

learns to achieve a goal by trial-and-error interaction within a dynamic environment.  

The general learning model consists of  

 An agent 

 A finite state space S 

 A set of available actions A for the agent 
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 A penalty function         

The goal of the agent is to minimize its average long-term penalty. It is achieved by 

learning a policy π, i.e. a mapping between the states and the actions.  

Q-learning is one of the most popular algorithms in reinforcement learning. At each step 

of interaction with the environment, the agent observes the environment and issues an action 

based on the system state. By performing the action, the system moves from one state to another. 

The new state gives the agent a penalty which indicates the value of the state transition. The 

agent keeps a value function   (   ) for each state-action pair, which represents the expected 

long-term penalty if the system starts from state s, taking action a, and thereafter following 

policy π. Based on this value function, the agent decides which action should be taken in current 

state to achieve the minimum long-term penalties. 

The core of the Q-learning algorithm is a value iteration update of the value function. The 

Q-value for each state-action pair is initially chosen by the designer and then it will be updated 

each time an action is issued and a penalty is received based on the following expression.   

 (     )   (     )⏟    
         

   (     )⏟      
             

 [     ⏟
       

  ⏟
               

     (      )⏟          
                

⏞                        
                           

  (     )⏞    
         

]          

(2.1) 

In the above expression, st , at and pt are  the state, action and penalty at time t 

respectively, and   (   )  (   ) is the learning rate. The discount factor γ is a value between 0 

and 1 which gives more weight to the penalties in the near future than the far future. The next 

time when state s is visited again, the action with the minimum Q-value will be chosen, i.e. 
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 ( )         (   ). The value of  (     ) is updated at the beginning of cycle t+1, i.e., the 

Q-value for the state-action pair of the previous cycle is updated at the beginning of current cycle. 

As a model-free learning algorithm, it is not necessary for the Q-learning agent to have 

any prior information about the system, such as the transition probability from one state to 

another. Thus, it is highly adaptive and flexible. 

(2)  Q-learning Model for Power Management  

Figure 2-10 shows the general architecture of a Q-learning based power management 

system. It consists of two parts, the environment and the controller. The environment can further 

be divided into hardware and software environments. The hardware environment could be any 

peripherals device such as hard disk and network card or the microprocessor. The software 

environment includes OS, application software, user inputs, etc. The controller continuously 

observes the environment and manages the control knobs (also denoted as the actuators in the 

figure). The environment information can be obtained through different channels. Some of the 

I/O requests and software activities can be observed through the operating system, the 

architecture event can be observed by reading the performance counters, and some of the device 

physical information (such as temperature) can be obtained by reading the embedded sensors. 

Based on the environment information, the current system state will be classified and the penalty 

of current state action pair will be calculated. This penalty information will be used to update the 

Q-values. The best action  (i.e. a setting of the control knobs) that has the lowest Q-value will be 

selected to control the states of the actuators. A discrete-time slotted model is used throughout 

this work, which means all the decision making and system state updating occur on a cycle basis. 
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A time slot n is defined as the time interval [nT, (n+1)T], and the power manager makes decision 

for this time slot at the beginning of this interval at time nT. 

 

 

 

 

Figure 2-10. Illustration of system under power management. 

To construct the Q-learning model for a given control problem, three questions need to be 

answered: 1. How to classify the environment status into different state space of the Q-learning 

model? 2. How to formulate cost function from the observed information? 3. Given the set of 

actuators, what controls are available? In the rest of the work, we will answer these questions to 

design a Q-learning model for the power management of peripheral devices and microprocessors. 

Although the objectives of the two problems are similar, because the performance and operation 

status of peripheral devices and microprocessor are usually characterized by different parameters 

and requires different control knobs, different Q-learning models must be constructed for these 

two power management problems. Detailed discussion in model construction will be provided in 

later sections. 

(3) Enhanced Q-learning 

Q-learning is originally designed to find the policy for a Markov Decision Process 

(MDP). It is proved that the Q-learning is able to find the optimal policy when the learning rate  

is reduced to 0 at an appropriate rate, given the condition that the environment is MDP. However, 
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it is important to point out that a computing system for power management is typically non-

Markovian. First of all, the workload of most computing system exhibits long range similarity 

[50] and hence the request pattern generated by the environment in our power management 

system is most likely to be non-Markovian. Furthermore, even if the underlying system is 

Markovian, what the power manager observes may not be Markovian due to the noise and 

disturbance, such as state aggregation, during the observation. As we mentioned earlier, the Q-

learning may not be able to find the optimal policy in a non-Markovian environment. 

Nevertheless we still choose Q-learning to solve this problem because of its simplicity and also 

because of its robustness to endure noise. 

Reinforcement learning in a non-Markovian environment is an open problem. Many 

research works have investigated the feasibility of applying the traditional RL algorithms to 

solve the decision problem in a non-Markovian environment or a partially observable Markovian 

environment [35][41]. The author of [35] applies five RL algorithms in a noisy and non-

Markovian environment and compared their performance and convergence speed. Their results 

show that the Q-learning exhibits the highest robustness at low noise level and medium 

robustness at high noise level. However, the convergence speed of Q-learning reduces the most 

drastically when the noise level increases. In [41] the similar results are reported. Q-learning is 

capable to achieve the same performance as the other two reference learning algorithms at the 

cost of slower convergence speed. Based on the study we conclude that the major limitation of 

Q-learning, when being applied in a non-Markovian environment, is its convergence speed.  

Traditional Q-learning assumes no prior information of the environment. However, in a 

power management system, the model of system can be pre-characterized. We know exactly how 

many power modes the system has and how it switches its power mode given a power 
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management command. In other words, we have partial information of the power management 

system. Based on this information, we are able to design an improved Q-learning algorithm with 

faster convergence speed. More details are provided in Section 2.2.4. 

2.2.4 Learning based Power Management for Peripheral Devices 

In this section, we will introduce the details of designing a Q-learning based power 

management algorithm to achieve the performance and power tradeoff for a peripheral device. 

The peripheral devices, also known as input/output devices, can be considered as a service 

provider (SP). The request to the device is buffered in a service request queue (SQ) maintained 

by the OS. The software application that accesses the device is considered as service requestor 

(SR).  

A peripheral device usually has several different working modes and low power modes. 

The state of SP can be partitioned based on its power modes. The time to transit from one state to 

another is hardware specific and is assumed to be known. The state of SR can be classified by its 

request generation rate, which is time varying. The transition rate from one SR state to another is 

usually unknown. Furthermore, such transitions are usually non-Markovian. SQ is a queuing 

model and its states are classified based on the number of waiting requests. Obviously, the state 

transition rate of the SQ is determined by the request generation rate and request processing rate, 

which can be derived from the status of SP and SR. Finally, the environment of the power 

management controller is modeled as the composition of the SP, SQ and SR. 

Figure 2-11 gives an example of SP, SR and SQ models. The SP has two power modes, 

active mode and sleep mode. They can switch to each other based on the power management 

command. The SR has three request generation mode, high speed, low speed and idle mode. 
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Figure 2-11. State transition diagram of SP, SR and SQ models. 

They can also transit to each other. The SQ can hold up to N requests and each time the number 

of requests can only increment or decrement by one. 

(1) State Partition and Penalty Calculation 

The observed power mode of SP can naturally be used to represent its state. SP has two 

types of states, stable state and transient state. During the stable state (e.g., active states and sleep 

states), the SP stays at a specific power mode. It processes the request at a certain speed (which 

could be as low as zero in sleep state). The learning agent observes the environment and issues 

power management command periodically. During the transient state, the SP switches from one 

power mode to another. It does not process any request. The learning agent halts during the 

transient state because the SP does not respond to any power management command. 

The state of SR is classified based on the rate of the incoming request. Due to the high 

variation of the workload, this value is a random variable distributed over a wide range and it can 

almost be considered as continuous. In order to reduce the state space, it is necessary to 

discretize the values into fewer states. In order to adapt to different workload intensities, we 

propose to partition the rate of incoming request based on its exponential moving average (EMA) 

[Hwang and Wu 2000]. The EMA of current cycle i is calculated as               

(   )     , where EMAi-1 is the exponential moving average request rate calculated in previous 
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cycle and sri is the observed incoming request rate of current cycle. Let N denote the total 

number of states of SR. The SR is in state 0 and N-1 when the incoming request rate is in the 

range [    ⌈   ⌉     ] and  [ ⌈   ⌉       ] respectively. The SR is in state i,       

  when the incoming request rate is in the range [  ⌈   ⌉        ⌈   ⌉        ]. The state of 

SQ is classified based on the length of the queue. State aggregation is also adopted to reduce 

state space. 

In order to find the best tradeoff between power and performance, we define a 

Lagrangian cost for each state and action pair (s, a) that combines the costs of power 

consumption (power(s, a)) and performance penalty (q(s,a)) : 

                                           (     )       (   )    (   )                                  (2.2) 

When SP is in a stable state, Power(s,a) and q(s,a) represent the system power 

consumption and the number of waiting request of current state.  When SP is in a transient state, 

because the Q-learning agent will be suspended as mentioned before, we are not able to update 

the cost until the end of the transient state. Therefore, the accumulated cost during the entire 

switching period should be calculated. Furthermore, many systems have non-symmetric penalty 

for switching into and switching out from a low power mode. Sometime turning off the device 

may be effortless, but we still need to anticipate the difficulty to turn it back on in the future. 

Based on these motivations, for a transient state s where SP switches from power mode A to 

power mode B, the power cost is calculated as the average of the energy dissipation to switch 

from A to B and from B to A, i.e.      (   )  (                   )  , where PA2B, 

PB2A are power consumptions during A to B and B to A switch respectively, and TA2B, TB2A are 

delays of those switches. The performance cost is calculated as the average accumulated request 
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delays during the time the SP switches from A to B and from B to A, i.e.  (   )  (     

              )  , where qA2B, qB2A is the average request incoming rate during the power 

mode switching along the history. To give an example, consider a hard disk drive. To transit this 

hard disk from sleep state to active state usually associates with long latency and high power 

consumption because we have to spin up the disk mechanically. During the transition, all the 

new incoming requests will be accumulated in SQ. This transition will not be necessary if the 

disk didn’t go to sleep state at all in previous decision. With this knowledge, we distribute the 

penalty evenly between the sleep to active and active to sleep transitions so that SP will not 

transit to sleep state (normally taking little effort) aggressively. Our experiment shows that such 

cost function calculation for the transient state leads to better result. 

Given the next state s’ and its Q values, the learning agent updates the Q-values of the 

state action pair (s, a) periodically using the following equation.  

            (     )  (   (   )) (     )   (   )( (     )        (       )      (2.3) 

The Q-value of state action pair (s, a) reflects the expected average power and request 

delay caused by the action a taken in state s. The new action     with minimum Q-value 

      (       ) will be issued at state   . 

(2) Accelerating the Speed of Convergence of Q-learning 

The convergence of the Q-learning relies on the recurrent visits of all possible state-

action pairs. Based on equation (2.3) we can see, each time a state s is visited and an action a is 

taken, a corresponding Q value Q(s, a) is updated. It is calculated as the weighted sum of itself 

and the best Q value of the next state s’, i.e. 
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 (   )  (   ) (   )   ( (   )    
  

 (     )). The frequency that state s’ occurs after 

state-action pair (s, a) reveals the information of the system transition probability. In traditional 

Q-learning, only the Q value corresponding to the actual visited state-action pair will be updated. 

This is because the controller has no information of the system dynamics, and it totally relies on 

the actual execution trace to find out the next state information for a given state-action pair. 

In contrast to conventional Q-learning systems, we do have some partial information of 

our target power management system. The state of a power management system is a composition 

of the states of SP, SR and SQ. Among these three, only SR has unknown behavior. The state 

space SP is the set of available power modes and its power consumption, processing speed and 

power mode transition overhead are known. We also know that SP and SR are independent to 

each other, and when SP and SR are given, the behavior of SQ is determined. 

Based on the available information on SP and SQ, we propose to update more than one Q 

values each cycle to speed up convergence. For each visited state-action pair ((sp, sr, sq), a) we 

will update the Q values for a set of state-action pairs {((sp’, sr, sq’), a’)|             

        }. These state actions pairs are referred as virtual states and actions, because we 

assume that the system has (virtually) visited these state action pairs and will update their Q 

values. Note that all virtual state has the same SR state which is the actual SR state that the 

system has recently visited. In order to update the Q values of a virtual state-action pair ((sp’, sr, 

sq’), a’), we need to know, starting from this state action pair, what the next system state will be 

even though it is not currently being visited. More specifically, given the information that the 

system was in state (spt, srt, sqt) and it switched to (spt+1, srt+1, sqt+1) after action a is taken, we 

would like to guess what the next state (spt+1’, srt+1’, sqt+1’) will be if the system is currently in a 

different state (spt’, srt, sqt’) and another action a’ is taken.  
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Given the current state spt’ and action a’, it is not difficult for us to find the next state 

spt+1’ as the SP model is pre-characterized. We also know that the SR works independently to the 

SP. Regardless of the state of SP, the requests are generated in the same way. Therefore, srt+1’ is 

the same as srt+1. The value of sqt+1’ (i.e. the number of waiting requests) depends on both the 

number of incoming requests and the number of requests that have been processed. The former is 

determined by the state of SR and can be measured from the actual system, while the later is 

determined by the processing speed of SP at current power mode spt’. Because SP has been pre-

characterized, this information can also be estimated fairly accurately. After the next state is 

determined, the Q values of the state-action pair ((spt’, srt, sqt’), a’) that has been virtually visited 

can easily be calculated. In the rest of the work, we refer to this technique as Virtual State 

Switching (VSS). 

Using VSS, the number of Q-values that would be updated in each cycle is           

   , where     ,      and     are the cardinality of the SP, SQ and A. The complexity of the 

constrained Q-learning is O(             ). The size of SP state space and action space is 

fixed for a given hardware. With a carefully controlled SQ state partition, this computation 

complexity is affordable. 

We further improve the convergence speed of the proposed Q-learning algorithm by 

adopting a variable learning rate. Compared to the traditional Q-learning, the learning rate  (   ) 

is not fixed in our algorithm. Instead, it is dependent on the frequency of the visit to the state-

action pair (   ) and is calculated as: 

                                                            (   )  
 

     (   )
                                              (2.4)                  
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where      (   ) is the number of times that the state-action pair (   ) has been visited, 

and   is a given constant. 

Figure 2-12 gives the pseudo code for the power management controller using enhanced 

Q-learning algorithm with VSS. The algorithm is executed at the beginning of each time slot. Its 

input is current environment state st, the previous environment state st-1, the action at-1 in last 

cycle, and the weight coefficient . Each time, it updates the Q values of the real state action pair 

(St-1, at-1) as well as all the virtual state action pairs (    
      

 ). 

It is important to point out that the more information we know about the system, the more 

accurate projection we can make about the virtual state switching. If we do not have enough 

information or cannot find solid reasoning to project the virtual state switching, we may apply 

VSS only to a small set of state-action pairs. 

(3) Power (Performance) Tracking using 2-level Controller  

             For general peripheral devices, power and performance are two metrics inversely 

proportional to each other in many computing systems. In general, a performance constrained 

system achieves the lowest power dissipation when delivering just enough performance as  

required (or vice versa for a power constrained system). The Lagrange cost function defined in 

equation (2.2) enables us to find tradeoff between power and performance by varying the 

parameter . However, what is the right value of  that exactly meets the power (or performance) 

constraint is difficult to find out. 

            It is known that when the value of  increases, the Q-learning algorithm will favor 

policies that have better performance and vice versa. By comparing the actual power  
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Q_Learning_Power_Manager(St, St-1, at-1, ) 

Input: Current state    (           ), last state       (                   ), action      , 

and weight coefficient  ；     

Calculate the cost  (            ) using Equation (2.2);  

Calculate the Q-value  (            ) using Equation (2.3);  

For each           { 

    For each           { 

        For each action         { 

            If (               ||                ||      
      ) { 

            / *Do not update the Q-value of the real state action pair twice*/ 

                    Given the virtual state action pair (    
      

 )  ((     
                )     

 ), find 

                          the projected next state      (                );   

             Calculate the cost  (              ) using Equation (2.2);  

             Calculate the Q-value  (              ) using Equation (2.3); 

               } /* end if*/ 

          } 

     } 

} /* end for */ 

 

Choose action     with      
 (        ); 

Figure 2-12. Pseudo code for Q-learning power manager using the VSS technique. 

consumption (or performance) to the power (or performance) constraint, we can adjust the value 

of  using a feedback control. However, without knowing the exact relation among power, 

performance and , the feedback control method will easily generate large overshoot or 

undershoot in measured output (i.e. power consumption or performance) and hence lead to an 

unstable system [1]. To limit the overshoot and undershoot, we propose to further confine the 

value of  in a predefined range. The upper bound and the lower bound of the range are 

estimated from the long term average workload characteristics and the given power (performance) 

constraints using a neural network. 

The above analysis leads to a 2-level control unit that tunes the value of  to keep the 

system aligning to the given constraint. The proposed 2-level constraint tracking unit has a 

neural network based coarse grained controller in the first level to set the upper and lower bound 



 

67 

 

of  based on the long term average workload. It also has a feedback controller in the second 

level to fine tune the value of  based on the instantaneous workload variations. 

Here we consider the problem of maximizing performance for a given power constraint 

as an example to illustrate the 2-level controller. Its dual problem, i.e. minimizing power 

consumption for a given performance constraint can be solved in a similar way.  

The concept of two level controllers has been successfully applied in many 

power/thermal management works. For example, [51] uses online model estimator to predict the 

workload and generate the desirable trajectory of reference power consumption at lower level 

and feedback control to keep the actual power consumption close to the trajectory. [5] performs 

core level proactive thermal management at lower level and socket level task scheduling at upper 

level. Here we need to point out that the controller in this section does not directly manage the 

control knobs. Instead, it controls the value of the Lagrange multiplier () which is used to 

realize power-performance tradeoff in the Q-learning algorithm.  

(a) Boundary Prediction using Neural Network Models (Level 1 Controller) 

The goal of the first level controller is to estimate the value of  that exactly meets the 

performance/power constraint considering only the long term average workload. The estimated 

value is denoted as  ̂. Using  ̂ as a reference, we set the upper and lower bound of the second 

level controller which fine tunes the value of  based on the instantaneous workload variation. 

We found from the experiments that it is difficult to construct a model that estimates  ̂ 

directly from power (performance) constraint. This is probably because our Q-learning algorithm 

has discrete behavior and it is very likely that slight change in   does not make difference in 
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control policy. In other words, the relation from the average power consumption (or performance) 

to  is a one to many mapping instead of a properly defined function, and hence it is difficult to 

obtain. Fortunately, power (or performance) of a peripheral device is a monotonic increasing (or 

decreasing) function of  . This means that we can use binary search to find the appropriate value 

of  ̂, if there is a model that predicts the average achieved power (performance) based on the 

given  . A neural network is used for such modeling purpose. 

The neural network model adopted in this work has an input layer, an output layer and a 

hidden layer as shown in Figure 2-13. The hidden layer consists of 5 neurons. For a given service 

provider, the neural network model predicts the average power consumption based on the 

selected tradeoff factor    and workload information.  

In our experiments we observed that, when controlled by the learning based power 

management unit, the average power consumption of the device has a log-linear relation with the 

tradeoff factor  . Figure 2-14 gives the relation of the simulated power consumption and the  

                  

Figure 2-13.  Level 1 neural network. 
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value of     of a hard drive whose read/write activities follows the HP Cello99 trace [40][34]. 

As we can see that their relation is approximately linear. To reduce the nonlinearity of the neural 

network model, we choose     instead of  as one of its inputs.  

What input variables should be selected for the neural network to represent the average 

workload characteristics is a nontrivial problem. For those peripheral devices where service 

speed is much faster than the request incoming speed, (for example, in general a hard disk drive 

can process all accumulated read/write request in very short time after the disk has been spun up), 

the input variables could be the probability distribution of the request inter-arrival time which 

reflects current workload pattern.  

The probability distribution of the request inter-arrival time is represented by a set of 

variables. The ith variable gives the probability that the inter-arrival time tint is greater than or 

equal to iT, where T is a user defined time period. Similar to many other estimation models, an 

accurate power estimator needs to have both good specificity and high sensitivity. Selecting too 

few input variables may lead to low sensitivity of the model as it misses much useful information. 

However, including too many input variables may cause low specificity because useful features 

will be covered by noises. We propose to use the greedy feature selection method [8] to select 

only those variables that give the most information to the prediction of average power 

consumption.  

In our experiment, a neural network is constructed to predict the power consumption of a 

hard disk drive under learning based power management. We select T as   ⁄    , where Tbe is 

the break-even time which is the minimum amount of time that a device must stay in low power 

mode for the energy saving to equal the overhead of power mode switching.  
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Table 2-6 gives the prediction error for different input selections for the HP Cello99 

workload. For more details of the hard disk drive model and the Cello99 workload, please refer 

to Section 2.2.5. As we can see, including too many features does not help to increase the 

accuracy of the model because this introduces more noise in the input and will actually decrease 

the specificity of the model. On the other hand, a model based on extremely few inputs is not 

accurate either because it does not have enough sensitivity to detect a workload change.   

Table 2-6. Input selection vs. prediction error. 

Input selection i = 1 i = 6 i = 12 i=1,2,3…15 i = 1, 6, 12 

Prediction error 27% 17% 30% 14% 8% 

 

Considering the fact that     is 4T for our experiment device, the selection of 

probabilities for idle intervals longer than T, 6T and 12T is reasonable as they represent the short 

idle, medium idle, and long idle intervals, thus form relatively complete spectrum of idle interval 

information of the workload.  

The training of the neural network relies on recorded operation information of the system. 

For better accuracy, different models may be constructed for different types of workload if they 

can be classified.  

With the neural network, we predict the tradeoff factor that exactly satisfies the given 

power (performance) constraint and denote the value as  ̂. We confine the range of the tradeoff 

factor to be( ̂  ⁄    ̂), where C is a constant that is greater than 1. Consequently, the value of 

    is confined to the range (   ̂       ̂   ).  
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(b) Fine Adjustment using Feedback Control (Level 2 Controller) 

In order to fine tune the value of  , we use a linear model to approximate the relation 

between      and the power consumption P for a given workload, i.e.       ( )   , where 

A and B are unknown coefficients. Such linear relationship has been observed in our experiment 

as shown in Figure 2-14. The values of A and B are assumed to be constant when workload does 

not change abruptly and  is confined to a limited range. Let Pcurr and curr be the current power 

consumption and current value of , also let Pgoal and goal be the power constraint and the  

 

Figure 2-14. Relation between power and lg   for a given workload. 

corresponding value of  that exactly achieves this power constraint. If curr and goal are not too 

far from each other, we will have equation (2.5) and (2.6): 

                                                                                                                             (2.5) 

                                                                                                                (2.6) 

Combining Equation (2.5) and (2.6), the goal value of  can be calculated as the 

following:  
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                                         (2.7) 

The value of A can be obtained by observing the average power consumption of the 

system under different ’s. Let P1 and P2 be the average power consumption of the system using 

1 and 2, A can be calculated using Equation (2.8).  

                                                 A  (     ) (         ⁄ ) .                                   (2.8)        

 

(c) Overall Flow 

Figure 2-15 gives the block diagram of the overall flow of the Q-learning power manager 

with constraint tracking. The function Q-learning_power_manager() is the basic Q-learning 

function shown in Figure 2-12. Both level 1 and level 2 controllers are triggered periodically. 

The level 2 controller is triggered at a higher frequency than the level 1 controller. In our 

experiment, the periods are set to 1000 and 200 cycles for level 1 and level 2 controllers 

respectively. When level 2 controller is triggered, A and       will be calculated using Equation 

(2.8) and (2.7). If          is out of the range (    ̂       ̂   ), it would be rounded to 

   ̂     or     ̂   . When level 1 controller is invoked, a new  ̂ will be predicted and the 

allowed range of  will be adjusted accordingly. The learning rate factor (i.e. Visit(s,a) in 

Equation (2.4) will be reset every time when level 1 or level 2 controller is triggered because a 

new tradeoff factor is found. 
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Figure 2-15. Block diagram of the power control flow of the Q-learning power manager. 

 

  

2.2.5 Learning based CPU Power Management 

As explained in Section 2.2.1, a microprocessor working in batch mode has very different 

characteristic compared to the peripheral devices and hence requires different Q-learning model. 

In this section, we discuss how to apply the Q-learning algorithm to the power management of 

such microprocessor. Our goal is to minimize the CPU energy dissipation for the batch 

processing under the given execution time constraint. In order to demonstrate the Q-learning’s 

capability of handling multidimensional constraints, we add the average die temperature as the 

second constraint. Please note that user may select any other measurement as the second 

constraint, because the construction of the Q-learning algorithm does not rely on any temperature 

mode or thermal analysis. The relationship of the CPU frequency and its energy, performance 

(i.e. inverse of the execution time), and temperature is qualitatively shown in Figure 2-16. The 

energy first decrease as the frequency reduces. If we further reduce the frequency, the energy 

will increase as the leakage power becomes dominant and power reduction is slower than the 
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runtime increase. The CPU frequency that gives the minimum energy dissipation is denoted as 

fE
*
.
 
The performance and temperature increases as the CPU frequency rises. However, since the 

clock speed for the memory subsystem does not change, the performance gain due to fast CPU 

will gradually slow down. Therefore, the performance is a concave function of CPU frequency. 

We use f and v to denote the scaling ratios of the CPU voltage and frequency. They are 

calculated as        ⁄  and        ⁄ , where      (     ) and V (F) represent the 

maximum voltage (frequency) and the scaled voltage (frequency) of the processor respectively. 

We assume that f and v have one to one correspondence, i.e. for each CPU frequency there is a 

matching supply voltage level. We use µ to represent the percentage of time the application is 

processed on CPU and cache. It is referred as CPU intensiveness. It is calculated as the following 

[16]:  

                                       
                                     

                      
                                  (2.9) 

where                     and                    are the number of cycles during 

which the CPU is stalled for instruction and data fetches. They can be recorded periodically in 

many commercial processors. Though there are other architectural events related to  , such as 

the cycle of stalls due to TLB miss, branch prediction miss and etc., they are less dominant than 

the cache miss event and usually cannot be monitored at the same time with the cache miss 

events. Hence, they will be ignored in this formula.  

The CPU intensiveness varies from application to applications or even inside the same 

application. Its value affects how the energy and execution time change with voltage and 

frequency scaling. When the value of µ reduces, the CPU spends more time waiting for the 

memory reads/writes. Less performance gain can be achieved by increasing the CPU frequency. 
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On the other hand, because most of the time is spent on memory subsystem, reducing the clock 

frequency will cause less increase of the execution time. Therefore, the energy optimal frequency 

  
 ( ) is lower. In this work, we assume that the CPU has been characterized so that for specific 

, the minimum energy frequency   
 ( ) is known. 

At the end of each time slot, three cost variables are updated, which include energy cost 

(CE), performance cost (CP) and temperature cost (CT). While the die temperature can be read 

from on-chip temperature, the other two cannot be obtained directly. This is because both of 

them depend on the execution time, which is unknown during the runtime as we assume no prior 

knowledge of the workload. To overcome this limitation, in this work we define the energy cost 

at cycle t as the normalized deviation from the energy minimum frequency of current workload 

(i.e.   
 (  )) to the energy cost, i.e.            

 (  ) (          )⁄  , where ft and    are 

frequency and CPU intensiveness during cycle t, fmax and fmin are the maximum and minimum 

frequency of the CPU. The similar energy cost definition is also used in [16]. We also define the 

performance as the normalized deviation from the maximum clock frequency, i.e.      

(       ) (         )⁄    . Finally, the temperature cost of cycle t is defined as the 

temperature increase from cycle t-1, i.e.    (       )                 ⁄  where 

                 is the maximum temperature change in two adjacent time intervals. It is about 

2℃ in our experiment system. 

We partition the environment state so that the cost functions remain relatively constant 

during the same state. Based on this criterion, the state is classified based on four parameters: (f, 

T, IPS, ). They represent the clock frequency, the temperature, the instructions per second (IPS) 

and the workload CPU intensiveness respectively. Let N be the total number of clock frequencies 
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supported by the processor, we use fi to denote the ith clock frequency, with f0 representing the 

minimum frequency. We discretize the possible range of temperature into M levels, with T0 

representing the ambient temperature and TM-1 representing the maximum temperature threshold.   

In section 2.2.4, we solve the performance constrained power optimization problem by 

dynamically adjusting the weight coefficient of the Lagrange cost function to find minimum 

power policy that exactly meets the performance constraint. The rationale of this approach is that 

power is a decreasing function of response time for the peripheral device. Such relation no longer 

exists between energy and performance for a batch mode CPU as shown in Figure 2-16. Multi- 

dimensional constraints make things even more complicated. For example, as shown in Figure 

2-16, assume the minimum frequency that satisfies the performance constraint is fP and the 

maximum frequency that satisfies the temperature constraint is fT. Our goal is to constrain the 

performance and temperature, while at the same time minimizing the energy. As we can see, it is 

not possible to find a frequency that satisfies both performance and temperature constraints 

exactly. Hence we have to modify the cost function of the Q-learning algorithm to decouple 

these two constraints. 

           We denote the performance and temperature constraints as conP and conT. We also use P, 

and T to represent the difference between the constraint and the actual average penalty during a 

history window for performance and temperature respectively. The value of  will be positive if 

the system outperforms the user constraint during the history window, otherwise it will be 

negative. Because we are interested in constraining only the average performance and average 

temperature, we consider the system to be performance and temperature bounded when    

        and           , otherwise, the system is unbounded. In this way, if the system 
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Figure 2-16. Qualitative illustration of the relation between CPU temperature, 

performance, energy and clock frequency. 

has been outperforming the user constraint during the past, it will be considered performance (or 

temperature) bounded even if the cost of the current cycle is a little higher than the constraint. 

The modified cost function considers 3 scenarios: 

  {

                                                

                                      

                                      

 

In the above equation,  is a large positive number. Based on the modified cost function, 

when the system is bounded in both performance and temperature, the Q-learning algorithm will 

search for policies that minimize the energy cost. As soon as the system becomes unbounded in 

either performance or temperature, the cost function will be modified and the Q-learning 

algorithm will put more emphasis on improving the performance or temperature that has violated 
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the constraint. It can be proved that as long as the performance and temperature constraints are 

feasible, they will not be violated at the same time.  

We need to point out that the proposed approach manages the voltage and frequency of a 

single CPU. For a multi-core system, this approach is viable if cores work independently to each 

other. It can be extended to manage multiple cores with interactions simultaneously by 

augmenting the state space of the Q-learning model to consider the joint state of different cores. 

2.2.6 Experimental results and analysis  

(1) Experimental Results for Peripheral Device Power Management 

(a) Experimental Setup 

In this section, we will present the simulation results of learning based power 

management for peripheral devices. The target SP in the experiment is a hard disk drive (HDD). 

Table 2-7 summaries the power and performance of the hard disk drive.  These parameters are 

obtained from real hard disk datasheet [49]. The Tbe value is round up to the nearest integer for 

the simplicity of calculation. In the table, the       and       are power and performance 

overhead of sleep to active transition. The active to sleep transition is not mentioned in the 

datasheet and hence will be ignored in the model. 

Table 2-7. Characteristics of Service Provider 

       ( )       ( )      ( )      ( )    ( ) Speed (MB/s) 

1.1 0.1 1.42 3 4 16.6 
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In order to evaluate the performance of our learning based power management policy, we 

developed a fast performance evaluation framework of the HDD using OMNeT++ [OMNeT+]. 

OMNeT++ is a discrete event simulation environment written in C++.  

The performance of the Q-learning based power management is compared with the expert 

based learning algorithm proposed in [16].  Table 2-8 lists five fixed timeout policies, an 

adaptive timeout policy, and an exponential predictive policy. These 7 heuristic policies form the 

set of experts for the expert-based learning algorithm. Hence, the expert-based learning 

algorithm overcomes the limitation of any of these single heuristics by dynamically selecting one 

of them to adapt with the changing workload. A control knob factor α is provided for power 

performance tradeoff [16]. 

(b)  Results for Synthetic Workload 

In this experiment, we use two synthetic workload to intuitively illustrate how the Q-

learning based power manager is able to adapt to the workload change. 

In Figure 2-17, the blue dots represent the state of SR. It is categorized into 2 states, with 

0 represents zero incoming rate and 1 represents non-zero incoming rate. We assume that when 

there are incoming request, they come in at a constant rate. The red solid line represents the state 

of SP, with 0 representing sleep mode and 1 representing active mode. The SP is controlled by a 

Q-learning based power manager. The synthetic workload trace we created shows a changing 

pattern during the time. At the beginning of the experiment, the SR’s idle time is always 2 

seconds, which is smaller than the system      , hence the system should not go to sleep during 

the idle interval. While later in the experiment, the SR’s idle time is increased to 8 seconds 

which is longer than     .From the behavior of the SP we can see that the power manager 
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Table 2-8. Characteristics of Different Reference Policies 

Policy Characteristics 

Fixed Timeout(1~5)                         Timeout = 1* Tbe ~ 5* Tbe 

Adaptive Timeout 
   Initial timeout = 3 * Tbe 

  Adjustment = +/-1 * Tbe 

Exponential Predictive 

 

         (   )          

 

Expert-based Learning       Uses the above seven policies as experts. 

 

undergoes 4 phases: 

Phase 1: The power manager learns the pattern of the workload. 

Phase 2: The pattern has been learnt and the power manager decides to keep the SP active           

during the short idle period. 

Phase 3: After the workload changed, the power manager start learning again.. 

Phase 4: The new pattern has been learnt and SP will go to sleep during long idle period. 

 

 

Figure 2-17. Response of Q-learning power manager to synthetic trace 1. 
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Figure 2-18. Response of Q-learning power manager to synthetic trace 2. 

Note in our system, the SP service rate is always much higher than the request incoming 

rate. The SP only takes a short time to process the accumulated requests after activated. 

In the second example shown in Figure 2-18, the SR has 2 different incoming rates, and 

hence overall 3 states. States 0, 1 and 2 represent idle, low incoming rate and high incoming rate 

respectively. The workload has a clear pattern which always starts with a long idle period 

followed by a long period of low incoming rate and then a short period of high incoming rate. 

After that the pattern repeats itself. As we can see in the Figure 2-18, during the learning phase 

(i.e. phase 1) the power manager tried different control policies by turning the SP on and off at 

different time. Eventually, it found that the best policy for this workload is to turn on the device 

in the middle of the low rate incoming period and turn it off immediately after the high incoming 

rate period is over. Note that none of the seven heuristic policies in Table 2-8 classifies SR into 

different states; hence they are not able to detect the workload pattern in this example.  

(c) Q-learning Power Management for Real Workload 

In this experiment, we evaluate the performance of the Q-learning based power manager 

using two different types of workloads:  
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      1) Workloads extracted from HP cello99 traces [40][34]. Cello99 trace records file system 

read write activities of HP data center. All the requests with the same PID within one 

microsecond are merged into one large request. One interesting observation we have found is 

that hourly request incoming rate has strong correlation to the time of a day. Figure 2-19 shows 

the hourly request incoming rate for 3 days. As we can see, the peak and bottom occurs at 

approximately the same time. This observation agrees with reference [40] and it indicates that 

similar applications are running at the same period of time on different days. Such property can 

be used to gather training data to construct the neural network based power (performance) 

prediction model presented in subsection 2.2.4. We extracted 3 workloads (i.e. HP-1,HP-2 and 

HP-3) at different time of the day.  

          2) Workloads collected from the desktop computer [43]. Using Windows Performance 

Monitor, we collected hard disk read/write request sequences from two different desktop 

workstations whose hard disk usage level differs significantly. We stopped collection when the 

generated file size reaches 5MB, which is equivalent to 70,000 read/write requests in the 

sequence. The first trace was collected in the afternoon when a set of applications were running 

simultaneously with high disk I/O activities, resulting in a short collection time (i.e., about 1000 

seconds). The other trace was collected at night when only two applications were running and it 

takes more than 20000 seconds to complete the collection.  

Table 2-9 summaries the characteristics of the HP and desktop workload traces that we 

use. 

Both Q-learning algorithm and expert-based algorithm can achieve different power-

performance tradeoff by controlling the tradeoff factors  and α respectively. By varying these  
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Figure 2-19. Three consecutive days' requests from HP hard disk traces. 

Table 2-9. Characteristics of Workload Traces. 

Trace name Duration(sec) No. of total requests  after merging No. of idle time     (4 sec) 

HP-1 14322 14994 1127 

HP-2 14375 44468 332 

HP-3 14387 151404 742 

Desktop-1 21634 18036 1166 

Desktop-2 1026 27782 43 

 

tradeoff factors, we generate multiple power management policies with different power/latency 

tradeoffs. Figure 2-20 shows these power latency tradeoff points for these two learning based 

power management algorithms tested using 5 real workload traces. The results for power 

management using the traditional Q-learning algorithm without VSS enhancement are also 

shown in those figures. To better show the trend of power/latency tradeoff, we use solid line to 

sequence the power/latency points following the decreasing order of the value of corresponding 
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tradeoff factors. Note in this set of experiment, learning rate  (   ) in Equation (2.4) is reset to 1 

periodically to adapt to the change of the workload patterns. 

From Figure 2-20, four observations can be obtained:  

1) Expert-based algorithm generally outperforms Q-learning algorithm for low-latency 

high performance scenario. This is because all the experts used in the expert-based algorithm are 

designed for high performance and they will turn on the device as soon as a request comes in. In 

contrast to the expert based algorithm, the Q-learning algorithm allows the device to buffer the 

requests.  

2) The Q-learning outperforms the expert based policy when the performance is relatively less 

important than the power consumption and it provides wider range of power-performance 

tradeoff. The tradeoff curve for Q-learning based power management is also much smoother than 

the curve for expert based power management. For Q-learning based management, power is a 

decreasing function of performance in all cases except the last one (i.e. desktop workload 2). 

While for expert-based power management, such monotonic relation is not obvious for several 

test cases (i.e. HP-1, HP-2, Desktop-1 and Desktop-2).  

3) For workload Desktop-2, the red curve moves forward and backward. This means the 

latency (and the power) of the device does not have a monotonic relation with the tradeoff factor. 

This is probably because the workload is very intensive and changes so rapidly, the traditional Q-

learning algorithm does not have enough time to find the best policy before the workload 

changes. Our enhanced Q-learning algorithm exhibit better monotonic relation between 

power/latency and the tradeoff factor, due to its fast convergence speed. 
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(a)                                                           (b) 

 
(c)                                                             (d) 

 
                                   (e) 

Figure 2-20. Power/Latency tradeoff curves for workload. (a)HP-1; (b)HP-2; (c)HP-

3; (d)Desktop-1; (e)Desktop-2 
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Figure 2-21. Q-value for observation-action pair(000,0). 

4) Our proposed VSS technique in Section 2.2.4 significantly improves the power latency 

tradeoff curves due to the faster speed of Q-learning convergence. Figure 2-21 compares their 

convergence speed.  

As we mentioned earlier, two enhancement techniques are used to speed up the 

convergence. First, the learning rate   is modified as an adaptive factor associated with the 

observation-action pair. Second, we update multiple Q-values instead of only one Q-value in 

each learning step using the VSS technique. Figure 2-21 shows the change of the Q-value of 

state-action pair (000, 0) for 3 different Q-learning algorithms: the traditional Q-learning 

(without variable learning rate and multiple Q-value update), the Q-learning algorithm with 

multiple Q-value update (but no variable learning rate), and our enhanced Q-learning algorithm. 

The state action pair (000, 0) represents the scenario when there are no incoming requests, no 

waiting requests in queue, and HDD is in sleep mode, and the power management command is to 

continue sleeping. As we can see, comparing to the other two learning algorithms, the changes of 
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Q-value for the proposed modified Q-learning is smoother. Moreover, it converges much faster 

to the stable state. The similar trend can be found with all other state action pairs. 

In terms of complexity, as we mentioned before, the enhanced Q-learning is O(     

        ), the expert-based algorithm is O(n) where n is the number of simple experts used, 

and the traditional Q-learning is O(1). 

(d) Adaptivity of the Learning based Power Management to Different Hardware 

In the third experiment, we consider power management of systems with special 

hardware that has a large penalty to go to sleep mode. The purpose of this experiment is to test 

the robustness of the Q-learning algorithm in working with different types of service provider. 

Different devices will have different power and transition characteristics. For example, the 

server’s hard disk or the CD-ROM will always have longer       than personal computer’s hard 

disk. 

In this experiment, we increase the     of the HDD from 4 seconds to 8 seconds by 

increasing the        and run the simulation again. Figure 2-22 shows the results for 3 HP 

workload traces and 2 desktop traces respectively. As we can see, the policies found by the 

expert-based algorithm do not give proper tradeoff between power and performance. When the 

latency increases, the power consumption of the system increases too. The policies found by the 

Q-learning based power management are still capable of trading performance for power 

reduction. This is because the expert-based algorithm is restricted by the selected experts, which 

are a set of time-out policies whose time out values are multiples of Tbe. When the value of Tbe 

gets larger, the flexibility of these time-out policies reduces. Compared to the idle intervals in the 

request pattern, these timeout values are either too small or too large. When the performance 
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requirement reduces, the power manager will put the device into sleep mode more frequently. 

However, without proper timeout threshold, there will be lots of mistakes and frequent on-off 

switches. Hence, not only latency, the power will also increase. This problem can be solved if 

more timeout polices with finer resolution of timeout threshold are added as experts. However, 

this means higher complexity. This experiment also shows that with different workload patterns 

and different hardware devices, the performance of expert-based algorithm depends highly on 

the right selection of different experts.  

In contrast to the expert based policy, the Q-learning power management algorithm not 

only learns and adapts to different workloads, but also adapt to different hardware, both of which 

are the requirements of a good power management algorithm [37]. 

(f) Tracking the Power (Latency) Constraint 

In this section, we will demonstrate the effectiveness of our proposed power (latency) constraint 

tracking algorithm. It is measured by the difference between the actual average power  

consumption (or latency) and the user specified constraint. The closer the actual value and the 

constraint are, the more effective the constraint tracking algorithm is. 

In the first set of experiments, we consider the problem of performance optimization with power 

constraint and show the effectiveness of level 1 and level 2 controllers. First we compare our Q-

learning algorithm with the same algorithm that has level 2 constraint tracking controller 

disabled (i.e. the value of  is set exactly equal to  ̂ predicted by the neural network). Please note 

that we divide each workload trace into 2 segments, a training sequence and a testing sequence. 

The neural network is trained using the training sequence, and then applied to the testing 

sequence to collect the comparison results. 
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(a) 

 

(b) 

Figure 2-22. Power/Latency tradeoff curves for (a) HP workloads (b) desktop 

workloads   when    = 8 seconds. 
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Figure 2-23. Relative average power deviation from user constraints. 

As we mentioned in Section 2.2.4, the function of level 2 controller is to keep the average 

power consumption close to the power constraint using feedback control. In this experiment, we 

focus on how much the average power consumption deviates from the power constraint. We vary 

the power constraint from 0.7 to 1. The average power over the entire simulation time is 

measured and the relative deviation of the average power is calculated which is the relative 

difference between actual average power and the power constraint. The comparison results are 

shown in  

Figure 2-23. As we can see, adding level-2 controllers can reduce the constraint tracking 

error from 4.58% to 2.15%, which stands for approximately 50% improvement. The capability of 

being able to stay close to the power constraint is very useful for systems powered by battery [19] 

or energy harvesting units [26], where the budget of available power is predefined. 

While using level-2 controller helps to keep the average power consumption close to the 

constraint, using level-1 controller helps to reduce the variation of the instantaneous power 

consumption. In next experiment, we compare out Q-learning algorithm with the same algorithm 

HP-1 HP-2 Desktop-1 HP-3 Desktop-2 
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that has level 1 controller disabled (i.e. the value of  is controlled only by the feedback 

controller.) The percentage mean square errors (MSE) between the instantaneous power 

consumption and the power constraint is calculated.  Here we use the average power 

consumption over 200 cycles to represent the instantaneous power. The comparison results are 

given in Figure 2-24. As we can see, including level-1controller reduces the variation of the 

power by 15.6% in average. 

The previous experiment shows that including a level 2 controller could reduce the 

average power deviation from 4.58% to 2.15%. Although this represents 50% relative 

improvement, the absolute improvement is only 2%, which is quite small. This is because our 

level 1 predictor is already accurate in predicting the average power for the given . Therefore, 

using level 1 control we can find the tradeoff factor close to the right value. However, level 2 

controller is especially important when we couldn’t construct a good model to predict  in level 

1. In the next set of experiments, we consider the problem of power minimization with 

performance constraint. 

 

Figure 2-24. Percentage MSE of instant power versus user constraints. 
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Because the rate of incoming request to a hard disk drive has very large variation, it is 

difficult to train a neural network model that could accurately predict the average latency. 

Therefore, the level 1 control can only provide a very loose bound and the search for the 

appropriate tradeoff factor largely depends on the level 2 controller. Instead of confining   

around  ̂  which is predicted by the neural network, we constrain it within the range 

(       ,         ) where       is value of     that have recently been used. By doing this, we  

 

Figure 2-25. Relative average latency deviation for latency constrained power management. 

prevent    from changing too abruptly and stabilize the latency change through the time.  

Figure 2-25 shows the percentage deviation of the average latency compared to the 

latency constraint. We vary the latency constraint from 1 to 4 for the three HP traces as well as 

Desktop-1. Note that a different set of latency constraints is used for trace Desktop-2. This is 

because it is extremely intensive and no power management policy except the “always on” 

policy can meet the same latency constraints as we use for the other 4 traces. The experimental 

results show that in average the Q-learning based power manager can maintain the system 

performance within about 10% of the given constraint. Furthermore, it is much easier to track a 

HP-1 HP-2 Desktop-1 HP-3 Desktop-2 
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loose performance constraint than a tight performance constraint. Note that the data shown in 

Figure 2-25 are relative deviation. When the latency constraint is tight, although the relative 

deviation is large, its absolute value is still small. 

(2) Q-learning Based Microprocessor Power Management  

In the second set of experiments, we evaluated our Q-learning algorithm for 

microprocessor power management. We implemented the Q-learning based DVFS controller on 

a Dell Precision T3400 workstation with Intel Core 2 Duo E8400 Processor [22]. The processor 

supports 4 frequency levels: 2GHz, 2.33GHZ, 2.67GHz, 3GHz. The Linux kernel we use is 

version 2.6.29.  

We used coretemp driver in the Linux kernel to read the temperature sensor of the 

processors. The default driver updates temperature readings once every second and we modified 

it to be every 10ms to achieve our required granularity. We used cpufreq driver in Linux based 

on Enhanced SpeedStep technology [17] of Intel Core 2 processor to adjust the processor’s 

frequency. We used Perform2 tool [36] to monitor performance events of the processors. We ran 

the experiments on one core and fixed the frequency of the other core to be the minimum. The 

Q-learning controller was triggered every 20ms. Empirically, this interval will not exert too 

much overhead to the processor while still capable of tracking the change of workload. The 

overhead of frequency change is only about 20us. We use the option “–print-interval=20” 

provided by pfmon to control its sampling period to also be 20ms. 

We use benchmarks from MiBench [32] and MediaBench [31] to form the workload of 

the evaluation system. Our goal is to generate workloads with changing CPU intensiveness. The 

benchmarks we selected are: bitcount_small, basicmath_small, qsort_large, tiff2rgba, mpeg4dec, 
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and jpeg200dec together with a simple custom application with only CPU busy loops. Their CPU 

intensiveness varies from 11% to almost 100% with an average of 82% according to our 

measurement. Each benchmark running a little more than 0.2s under minimum frequency is a 

running unit. We serialized 100 running units of different benchmarks in 4 different random 

orders to construct 4 different “workloads”. Every experiment result reported here is the average 

of the 4 “workloads”. We need to point out that MiBench is a benchmark mainly designed for 

embedded systems, while our experiment is done on a Core 2 Duo workstation. However, it is 

our goal is to test how well the power management controller adapts to different workload. Our 

objective in selecting the benchmark is to create a variety of workload with different CPU 

intensiveness. We found that the two programs from MediaBench (i.e. mpeg4dec and 

jpeg200dec) has relatively lower CPU intensiveness (in the range of 70% to 80%) while the 

program in MiBench has much higher CPU intensiveness which is above 95%. So the 

combination of MiBench and MediaBench gives us such variety. 

Since we have 4 frequency levels (i.e. f0~f3) on our platform, we partition the workload 

CPU intensiveness  into 4 states, so that fi is corresponding to the ideal frequency fE
*
 when  = 

µi, 0≤i≤3. Such partition enables us to measure the energy penalty using the deviations from the 

ideal frequency. The temperature and IPS are also empirically partitioned into 4 states. 

Table 2-10. Constraining performance and temperature. 

                            Performance                                                                     

Temperature 

 0.34 

(constraint) 

0.67 

(constraint) 

 1 

(constraint) 

0.34(constraint)                       0.33 

0.46 

                0.58 

0.34 

                    0.78 

0.30 

0.67(constraint)                       0.24 

0.58 

                    0.38 

0.51 

          0.62            

0.44 

1  (constraint)                       0.23 

0.61 

                     0.37 

0.55 

                      0.60 

0.43 
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As discussed in Section 2.2.5, the performance is measured by the deviation from the 

maximum frequency; the energy is measured by the deviation from the energy optimal frequency. 

The temperature is the average normalized temperature of the CPU observed by the temperature 

sensor.  

We run the Q-learning based power management for minimum energy under different 

performance and temperature constraints. The results are shown in Table 2-10. Each column in 

the table represents a performance constraint and each row represents a temperature constraint. 

Because our platform only supports 4 frequency levels and the frequency increases linearly at an 

equal step from level 0 to level 3, the corresponding normalized temperature and performance 

for those frequency levels should also change roughly at an equal step. To better show our results, 

we set the constraints to be 0.34, 0.67 and 1 as shown in the tables. Each entry gives the actual 

performance and temperature of the system under the power management. For example, the cell 

in row 1 and column 1 of Table 2-10 shows that the actual normalized temperature and 

performance of the system is 0.46 and 0.33 respectively when the performance and temperature 

constraint are both set to 0.34. The entries are shaded differently according to the energy 

dissipation of the system. The lighter the cell is, the lower energy dissipation we achieve.  As we 

can see, the upper left cell has the darkest color because it corresponds to the most stringent user 

constraints and hence leaves almost no room for the optimization of the 3
rd

 metrics. On the 

contrary, the bottom right cell has the lightest color because it corresponds to the most relaxed 

constraints. 

We can see that sometimes the Q-learning controller cannot find a policy that satisfies 

both user constraints. For example, the entry (0.34, 0.34) in Table 2-10 has constraint violation. 

Sometime, the controller finds policies that exactly satisfies one of the constraints and 
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outperforms the other (e.g. entry (0.34, 0.67) in Table 2-10). For the rest of times, the controller 

finds policies that outperform both user constraints. This clearly shows that the relation among T, 

P and E are not monotonic. We cannot optimize one metric by setting the other (one or two) 

metrics exactly to the given user constraints. For example, consider cell (0.67, 0.67) in Table 

2-10. The user set a loose performance and temperature constraint (conP=conT=0.67) in order to 

optimize the energy. However the result shows that the policy that minimizes the energy actually 

does not have to work so slowly and will not generate so much heat. Clearly in this test case, we 

have      
     for the average   of the workloads, where    

  is the energy optimal frequency, 

   and    are the frequencies that exactly satisfy the performance and temperature constraints 

respectively. However, we need to point out that the data reported here is the average of 4 

different workloads over 80 seconds simulation. Although in average the CPU intensiveness 

satisfies the condition      
    , the instantaneous value of    for each individual workload 

may not always satisfy this condition. That is why the entry (0.67, 0.67) has a darker shade than 

the cell (1.0, 1.0), which indicates a higher energy. The later, due to the extremely loose 

performance and temperature constraints, can always reach the energy optimal point   
 .  

The experimental results also show that, generally without the prior knowledge of 

hardware and software, our Q-learning based controller can correctly learn the tradeoff space and 

give effective control policies. The only information we need to know related to the hardware is 

the mapping of different workload CPU intensiveness to the ideal working frequency   
  for the 

energy optimization purpose. This requirement can be removed if the processor’s power 

consumption can be measured during the runtime. 

In order to compare the performance of the proposed learning algorithm with the state-of-art 

approach, we modified the expert-based algorithm in [16] for energy management with the 
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consideration of performance and temperature. In our modified expert based approach, we 

choose different voltage and frequency configurations as experts. The cost function is weighted 

sum of energy cost, performance cost and temperature cost defined in 2.2.5, i.e.       

       . The modified expert based approach is actually a reduced version of the expert 

based controller proposed in [14]. While their work considers energy and thermal management 

for multi-core system running interactive applications, our problem is a little different. If we 

remove some control knobs that are specific to multi-core system (e.g. task migration) and 

interactive applications (e.g. adaptive random and DPM) from their work, and also remove 

thermal gradient and thermal cycle from their cost function, then it will be reduced to the our 

modified expert based controller.  

      As we mentioned previously, because the energy and performance no longer have 

monotonic relation, and also because there are two constraints (i.e. performance and 

temperature), it is very difficult to find a set of weight factors that minimizes the energy while 

satisfying the given constraints. Therefore, we sweep the weight factors      and   to generate a 

set of power management policies that gives different energy/performance/temperature tradeoffs. 

Their corresponding energy, performance and temperature values are plotted in Figure 2-26, 

represented by the red dots. These policies do not try to meet any performance/temperature 

constraints. They provide the best effort to minimize the weighted sum of energy, performance 

and temperature costs. 

           Our modified expert based control is a reduced version of the controller proposed in [14], 

which is a comprehensive work on multi-core system energy and thermal management using 

expert based framework. The scope of their problem is a little different from ours. They  
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(a)                                                                     (b) 

Figure 2-26. Energy, temperature and performance results of Q-learning algorithm 

with constraints and expert-based algorithm without constrains: (a) energy versus 

performance; (b) temperature versus performance 

consider multi-core system running interactive applications (i.e. web server), while we consider 

single core management for CPU running batch processing. In addition to energy, performance 

and temperature, they also consider thermal gradient and thermal cycles in the optimization. If 

we remove those control knobs that are specific to multi-core system (e.g. task migration) and 

interactive applications (e.g. adaptive random and DPM) from their work, and also remove 

thermal gradient and thermal cycle from their cost function, then it will be reduced to the same 

modified expert based controller implemented in our experiment.  

From Table 2-10 we have already shown that our approach can meet the performance and 

temperature constraints. Figure 2-26 also shows that, for the same performance level, our 

approach results in the same or even less energy and similar temperature, compared to the expert 
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based approach, which does not guarantee the performance and temperature constraints. 

Therefore, the Q-learning based approach performs better for this problem. 

2.2.7 Conclusions 

In this work, we propose a general model solving the dynamic power management 

problem using Q-learning. The Q-learning power manager does not require any prior knowledge 

of the workload or the system model while it can learn the policy online with real-time incoming 

tasks and adjusts the policy accordingly. Convergence speed acceleration techniques are 

proposed that make the Q-learning algorithm more efficient in non-Markovian environment. A 

2-level power or performance control model is proposed to accurately keep the system at the 

given power (or performance) constraint, to achieve maximum performance (or minimum power 

consumption). Simulation results prove that our Q-learning power management algorithm is able 

to achieve better power performance tradeoff than the existing expert-based power management 

algorithm. 

The Q-learning algorithm is also extended for the CPU power management by controlling 

its DVFS settings. The control algorithm is capable to achieve minimum energy while meeting 

the user constraints in performance and temperature.  

2.3 Chapter Summary 

In this chapter, we presented two works targeting system level power management in PC 

and server environment.  

In the first work, we create a model that is used to dynamic quantify task performance 

degradation with the respect to a reference system, where the target process is executed stand 
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alone at the highest frequency. The propose model is used to provide performance feedback to 

guide DVFS control. The model is further improved to predict the performance of the target 

process under a new task mapping. The improved model is used to provide performance 

prediction to guide the task migration. Experimental results show that the proposed models 

effectively controls the system performance and keeps it close to the given constraint, hence 

leads to lower power consumption with minimum performance violation. 

In the second work, we propose a general model solving the dynamic power management 

problem using Q-learning. The Q-learning power manager does not require any prior knowledge 

of the workload or the system model while it can learn the policy online with real-time incoming 

tasks and adjusts the policy accordingly. The Q-learning algorithm is firstly applied to the HDD 

power management by putting HDD into sleep and waking it up. Simulation results show that 

can achieve good power performance tradeoff. Then it is also extended for the CPU power 

management by controlling its DVFS settings. The control algorithm is capable to achieve 

minimum energy while meeting the user constraints in performance and temperature. 
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Chapter 3 Adaptive Battery 

Management for Mobile Device 
 

3.1 Battery Aware Stochastic QoS Boosting in Mobile Computing 

Device         

3.1.1 Introduction  

Mobile computing has been weaved into everyday lives for communication, sensing, 

controlling and entertainment to a great extend. Many of the applications running on mobile 

devices can be configured into different levels of quality of service (QoS). For example, by 

increasing the synchronization frequency between the mobile device and the email server, an 

email application can receive incoming mails more promptly; by boosting the duty cycle of built-

in sensors such as GPS, more accurate environment information can be gathered. The increase of 

QoS of an application running on mobile computing device always associates with extra energy 

dissipation [120]. While the progress of battery technology still cannot keep up with the 

increasing energy demand of the computing devices, traditional energy management of mobile 

device aims at minimizing energy dissipation. The common practice is to adopt a conservative 

QoS configuration to trade for longer battery life.  

Compared to PC and server environment, the workload of mobile devices is more user 

dependent as different users use their mobile device in differently ways. For example, some users 

may have strong preference of certain applications and also, different users are likely to have 
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different interaction behaviors of the devices (e.g., some users would access the devices more 

frequently than others). On the one hand, the workload of a mobile device is context dependent. 

Such context includes time, location, battery status, quality of WiFi or cellular connection, and 

etc.   

The energy in a mobile computing device is not simply expenditure but rather a dynamic 

flow that has generation and consumption. For example, most users recharge their smartphones 

every night. Recent study shows that about 72% of smartphone users will recharge their phone 

before the battery is low. The advances in energy harvesting techniques also make it possible for 

future generation smartphones to scavenge ambient RF or solar energy from environment when 

they are available. Given that the energy is replenishable, it is not necessary to overemphasize on 

energy saving. A more challenging research topic is how to exploit the potential of future battery 

recharge to deliver higher QoS. User behavior and preference plays an important role in 

determining the availability of external energy resources [126]. It is clear that the amount of 

incoming energy is a stochastic process that is strongly influenced by user behavior.  

Smartphone usage and energy management have been considered in many previous 

researches. Authors of [122] conducted a thorough study on the diversity in smartphone usage 

and discovered immense diversity among users. These discoveries laid the basis of the user 

centric mobile device management. Authors of [119], [121], [123], [124] and [125] focus on 

context-aware mobile device power and performance management. Among these works, 

reference [119] is the most similar to ours as it assigns excessive energy to boost the 

performance. It considers the remaining battery energy at the time of battery charge as a random 

variable and predicts the lower bound of this value with required confidence. The predicted 
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remaining energy is considered as an extra and will then be redistributed to applications to 

increase their QoS proportionally.  

Both [124] and [121] showed that predicting the battery level of mobile device is difficult. 

The former achieves only 40% average accuracy in battery level prediction during one-day 

period, while the later predicts the battery charging opportunity at merely 37% accuracy in 

average and 84% accuracy at best when the model parameters are optimized empirically. 

Clustering users according to their charging preference can reduce the average prediction error 

from 60% to about 25% [124]. However, the peak error is still as high as 38% and it always 

coincides with the initiation of battery charge, which means poor prediction when the battery is 

low. The low accuracy can be explained by discoveries in [119] and [126], which shows that in 

terms of battery use and recharge behavior, significant variation exists not only across different 

users, but also within individual user across his/her own pattern.  

In this work, we investigate more sophisticated models based on neural network for 

battery prediction. Our results confirmed that deterministic prediction of battery level usually has 

low accuracy and hence not suitable to guide energy management. We then apply stochastic 

control to solve the energy management problem. Markov Decision Process (MDP) based and Q-

learning based management policies are evaluated and compared.  

The research in this work is enabled by the smartphone usage traces collected by the 

Livelab [118] project.  The traces record various information including battery change, charging 

time, application usage, IO statistics, Cell Tower ID, Wifi availability and etc. for 34 users over 

6~12 months. All of our analyses are carried out on this set of traces. 

3.1.2 Battery Level Prediction Using Neural Networks 
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In this section, we study the potential of predictive energy management. The basic idea is 

to periodically predict the remaining energy level at the time of battery charge and distribute this 

extra energy to boost the QoS of applications. The key of predictive energy management is the 

accuracy of battery energy prediction.  

We refer to remaining energy level at the beginning of battery charge as our target 

variable, because it is what we need to predict. Three neural networks with different input 

vectors are trained and tested to predict the next target variable. The first model makes the 

prediction simply based on current time and battery level and is referred as 2-input model. 

Compared to the first model, the second model has 24 more input variables that represent the 

battery level changes of past 24 hours. It is referred as 26-input model. Similarly, the last model, 

has 5 more input variables than the first model. These 5 variables give the battery level at the 

beginning of 5 recent battery charges, in other words it uses the 5 recent values of the target 

variable to predict the sixth one. The model is referred as 7-input model. All three models are 

trained using the first half of the collected data of different users and tested using the second half 

of the data. 

Figure 3-1 gives the prediction error for 34 users. The prediction is made every hour and 

the reported error is the average error of the testing set. As we can see, the 2-input and 26-input 

model have higher accuracy than the 7-input model. The prediction error of the former ranges 

from 15% to 22%, which is a little better than the results reported in [121] and [124]. However, 

there is no significant improvement. The 7-input model has the worst accuracy.  This indicates 

the lack of strong temporal correlation in the target variable.  
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Figure 3-2 plots the battery level at the beginning of 100 consecutive battery charges. The 

sequence has large temporal variations and is hard to be predicted based on its previous values. 

We also found that the prediction error reduces as the prediction time gets closer to the next 

battery charge. Figure 3-3 gives the relation between prediction error of the 2-input model and 

the time to next battery charge. As we can see, when predicted 2 hours ahead of next battery 

charge, the average absolute error is 15% of overall battery capacity and the relative error is 50%.  

 

Figure 3-1 Average prediction error. 

 

Figure 3-2 Battery level at the beginning of 100 battery charges 
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Figure 3-3 Prediction error vs. time to next battery charge 

 

These numbers increase to 25% and 250% if the prediction is made 17 hours ago. Unfortunately, 

prediction at earlier time is more important  as it provides higher reward. 

3.1.3 Stochastic Control for Smartphone Energy Management 

(1) State space 

Using real user usage statistics, [122] confirmed that the usage behavior of different users 

could be described as the same mathematical model, though probably with different parameters. 

From [126], we can also see that though very different from user to user, the distribution of 

recharging level for each user has certain fixed patterns. These findings motivate us to explore 

stochastic control for the smartphone energy and QoS management. We consider smartphone 

battery change as a Markov Decision Process (MDP) [116][128] and consider QoS settings of 

the phone as control actions. The objective is to maximize the average QoS level while keeping 

the possibility of battery depletion under given threshold. Different users have different 
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0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R
e

la
ti

ve
 E

rr
o

r 

Time to Next Charging (hour) 

Absolute Error (% battery) Relative Error

A
b

so
lu

te
 E

rr
o

r 
(%

 B
at

te
ry

) 



 

107 

 

battery level. Some other users (Type-B in [126]) charge the phone only when the battery is low. 

Such psychological effect is hard to model. In our work, we target at those users whose activities 

are relatively independent to the battery level. 

The first step of model construction is to identify the state space of the MDP. The MDP 

tracks the change of battery; therefore the first feature that we included is the current battery 

level itself.  Secondly, we found that time is highly correlated to the phone usage and user 

charging behavior. For the same user, the battery charging usually happens around the same time 

and the phone usage during the day is also quite stable. For example, Figure 3-4 gives the 

histogram of the battery change for two different users during 2~3am (Figure 3-4(a)) and 2-3pm 

(Figure 3-4(b)). The left most set of data in both figures gives the percentage of time that the 

smartphone is recharging. It is labeled as “rechg”. The next 11 sets of data give the percentage of 

time that the smartphone consumes 0~1%, 1~2%,…., 9~10%, and 10~100% of battery energy 

during the recorded time period. As we can see, both users have higher possibility to charge their 

phone during 2~3am than 2~3pm. The chance to have nonzero battery energy dissipation is 

higher during 2~3pm than 2~3am. We also see that User1 has more intensive smartphone usage 

than User2 and also charges more often as a consequence. 

Figure 3-4 further confirms the rationale of using stochastic model for smartphone energy 

management. 

In addition to time and battery level, we are also interested to find out if other features, 

such as battery change rate, current and previous location, phone sleep time, should be included 

in the state space.  We have found that they are all highly correlated to the time and battery level, 

thus do not provide much new information. 
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Figure 3-4 Battery change histogram 

 

Correlations between future phone usage and previous phone usage are also calculated. 

We use hourly battery change rate   ( ) and smartphone sleep time       ( ) to represent phone 

usage during time slot t. The duration of each time slot is set to 1 hour. Figure 3-5 gives the 

correlations between   ( )  and   (   ) , as well as the correlations between   ( )  and 

      (   ),      . As we can see, the battery change rate and phone sleep time in even 

one hour ago has low correlation with current battery change rate. And the correlation keeps on 

reducing when the distance in time increases. This indicates that the previous phone usage does 

not provide much help in predicting the future battery change either. Including it in the state 

space will not improve the model accuracy but add model complexity.  

We denote the state vector of the MDP as (t, B(t)), where t is the time at the beginning of 

current time slot and B(t) is the battery level at time t. A state i is a depletion state if B(t) = 0, 

which indicates the depletion of the battery. Associated to each state i, there is a set of K actions 

  
     ( ) = {  

 ,   
 ,   

 …,  
   }. Each action corresponds to a QoS level of the phone and we  
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Figure 3-5 Temporal correlation of phone usage. 

assume that the average power consumption of the phone at the kth QoS level is known. The 

reward of state i, denoted as  (    
 ), is set proportional to the chosen QoS level   

 . 

 (2) MDP training and solving 

By observing the history of smartphone activities, we train the MDP model for each user. 

The training process is to determine the transition probability (    (  
 )) from state i, to state j 

under action   
 and the reward  (    

 ).  

 

Figure 3-6 MDP training process 
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The detail of our MDP model training is shown in Figure 3-6. Each red circle in the 

figure represents a distinct state. The entire state space is divided into N groups. Each group 

corresponds to a specific time (i.e. t) in the state vector. With each group there are M states 

corresponding to M battery levels (i.e. B in the state vector). BM-1 is the battery depletion state 

which should be avoided. From a state in group Tn, the system will go to a state in group Tn+1. If 

n=N-1, then the system will go to a state in group T0.  The training sequence is collected from 

system without any QoS boost, in other words, only the action    is taken in the original training 

trace and the battery change ∆B under    is recorded. We assume 70% hourly battery increase 

rate during battery charging. Because we target only at users whose activities are independent to 

battery level, we assume the same usage activity happens regardless of the current status of 

battery. The recorded information ∆B reflects the workload activities, from which we can 

estimate the battery change for other QoS settings       . The amount of battery change 

decides which state the system will transit into. In this way, for every remaining battery state B 

belonging to the same group and every action a of this state, we can calculate the next battery 

state B’ and reward r. Then after training, the transition probability (    (  
 )) can easily be 

calculated and the reward  (    
 )  is calculated as the average of the rewards received under this 

state action pair. 

The optimal policy is found by solving the mathematical program as following [117]: 

                          ∑      ∑  (   ) (   )   ( )                                                             (3.1)        

subject to 

     ∑      ∑    ( )           ( )  (3.2)         ∑  (   )   ( )       (3.3) 
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                   (   )   ,   (3.4)                              ∑                  
    (3.5) 

where    is the stationary distribution for state i.  (   ) is the probability that an action   

is taken if the state of the system is   and it is the set of variables that we need to optimize.  (   ) 

is the reward received if action a is taken in state i.    ( ) is the transition probability from state 

i to state j, given that action a is taken at state i. S is the state space of the system. Equation (3.2) 

constraints the balance of the state probability and transition probability. Equation (3.3) specifies 

that probabilities of all actions taken in a state should add up to 1. The constraint (3.5) specifies 

that the overall probability of those depletion states should be less than L. L is a small number 

possibly given by the user based on their specific tolerance of battery depletion. Higher tolerance 

usually will lead to more performance boost opportunities. 

By introducing a set of new decision variables    ,        (   )        ( ), the 

above non-linear problem can be transformed into a linear one and solved.  

3.1.4 Implementation and Evaluation 

(1) Implementation  

We use the real user traces from the Livelab project [118] as we mentioned before. We 

use four-way cross-validation [129] in the experiments. Traces of every user are partitioned into 

4 equal sized subsets, 3 of which form the training set and 1 of which will be the testing set. The 

final result is the average of all tests. A simulator is implemented using C++ to evaluate the 

policy. If the user tolerance of battery depletion (i.e. L in constraint (5)) is too low, no feasible 

solution can be found.  A best effort solution will be used instead.  
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It is assumed that a phone has three QoS levels corresponding to 1x, 1.5x and 2x of the 

default setting. The energy dissipation of the phone is assumed to be proportional to its QoS 

level and the original energy dissipation when no boost was performed. This assumption is used 

only to simplify the experiment setup. How to adjust the QoS of different applications and what 

is the relationship between the QoS and power consumption are nontrivial problems outside the 

scope of this work [120].   

In addition to the MDP based approach, three reference approaches are also simulated. 

The first one is Q-learning based approach[127] which generally shares the same underlying 

model with MDP but is an online learning method. We refer to this method as ‘ML’ in our 

simulation. The second one is based on [119], which profiles the histogram distribution of the 

remaining energy at the time of battery recharge. The profiled information will be used to predict 

the lower bound of the remaining energy and the QoS of the phone will be raised proportionally 

based on the estimation. A confidence level is determined based on the profiled distribution that 

specifies the probability that the prediction is correct. We refer to this method as ‘HIST’ in our 

simulation. The profiling is performed on the training set and the policy is tested on the testing 

set. The third reference policy is prediction-based approach, which predicts the remaining energy 

using the 2-input neural network as described in Section 3.1.2. Similar to HIST, the QoS will be 

raised based on the prediction. We refer to this method as ‘Nnet’.  

(2) Evaluation Result 

Different level of user tolerance of battery depletion leads to different potential of QoS 

boost. For the MDP method, varying L in Equation (3.5) gives the indication of different 

tolerance of the battery depletion. For example, L=0.01 means that the user can tolerate 1% 
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chance of battery depletion during the entire smartphone usage in exchange for performance 

boost.  For HIST, the confidence level is set to be            . For ML method, the battery 

depletion tolerance is tracked using a feedback control method by dynamically changing the 

penalty of the battery depletion state. All the results following are based on four-way cross 

validation. 

For all the 34 users, we vary the depletion tolerance from 10% to 0.1% and recorded the 

amount of QoS boosts and actual battery depletion rate. The results are shown in Figure 3-7. 

Figure 3-7 (a)~(c) compares the actual battery depletion rate (Y-axis) with the depletion 

tolerance (X-axis) for all 34 users under different management algorithms. The performance of 

Nnet is not shown here, because there is no way to integrate the user depletion tolerance with the 

prediction based management. The black line in the figure represents the ideal cases where the 

actual depletion exactly meets the constraint. The points above the line correspond to systems 

that are under-constrained and have depletion violation while the ones below the line are systems 

over-constrained. Note that both X and Y axes are logarithmic, therefore the difference between 

the actual and the constraint is magnified when depletion tolerance is low. As shown in the 

figure, in most cases all 3 algorithms tend to over-constrain than under-constrain points. When 

depletion tolerance is high (i.e. loose constraint), HIST is more conservative than ML and MDP 

and all cases using HIST are over-constrained. The correlation between actual depletion and 

depletion tolerance is calculated and given in the figure. The higher correlation means more 

précised management. As we can see, the system using MDP management achieves the highest 

correlation ( i.e, 0.78). 
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(a) HIST (correlation: 0.7)                      (b) ML (correlation: 0.71) 

 

(c)  MDP (correlation: 0.78) 

Figure 3-7  actual depletion rate vs. depletion tolerance 

 
(a)                                                                (b) 

Figure 3-8 QoS Boosts vs. (a) depletion tolerance (b) actual depletion rate 
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Figure 3-9 . MDP violation percentage histogram 

Figure 3-8 (a) shows the percentage QoS boost under different depletion tolerance 

compared to nominal case without any QoS boost. The results reported here is the average of all 

34 users. As we can see, MDP gives the most QoS increase and the HIST gives the least. The 

low violation and low performance boost shows that the HIST is much more conservative than 

MDP and ML especially when the depletion tolerance is loose. Figure 3-8 (b) shows the relation 

between the QoS boosts and the actual battery depletion rate collected from simulations. In the 

figure, the curves at the upper left are better than the curves in the lower right. Again, the results 

reported here is the average of all 34 users. Note that this figure shows the tradeoff between QoS 

boost and the actual battery depletion rate. Those data points with similar X values might not 

correspond to the same depletion tolerance constraint. For Nnet, the tradeoff curve is obtained by 

varying the amount of energy that is distributed for QoS boosting as different portions of the 

predicted target variables. As we can see, the MDP method gives the highest QoS improvement 

than others with the same battery depletion, while the Nnet gives the lowest QoS improvement. 

It shows that the stochastic control method outperforms others as it achieves better QoS and 

energy reliability tradeoffs by better tracking different user’s battery usage and recharge patterns. 
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One of the concerns for the stochastic approaches is that they still have a few violations 

(under-constraints) when depletion tolerance is not very tight while the HIST has not violation at 

all as shown in Figure 3-7. The foremost reason is that setting confidence level of HIST to 

(           ) is very conservative and will prevent QoS boost. On the other hand, the phone 

usage and battery charging pattern for some users are not always consistent during all the time 

and it is hard to capture their behavior using simple MDP models as we did. Figure 3-9 shows 

the histogram distribution of average degree of violation for those 34 users under the MDP based 

energy management. The average degree of violation is calculated as 

       
                                  

                  
 . Please note that the degree of violation is defined as the 

relative increase of battery depletion compared to the tolerance. For example, if the depletion 

tolerance is 1% and the actual depletion is 2%, then the degree of violation is 100%. The X-axis 

in Figure 3-9 gives the range of average degree of violation, 0% stands for the range [0%, 10%].  

The Y-axis is the number of users whose average depletion rate falls in the corresponding range. 

For instance, among 34 users, there are 7 users whose average degree of violation is between 

0%~10% and 23 users whose degree of violation is less than 50%. As we can see, the majority of 

users have reasonable degree of violations, only some “inconsistent” users deteriorate the results 

greatly. For those users, more sophisticated models may need to be developed. 

3.1.5 Conclusions  

In this work, we aim at increasing the QoS of mobile devices considering the fact that 

many users recharge the battery before depletion. Neural network model that predicts the 

remaining energy at next battery charge is first investigated. The results show that accurate 

prediction is difficult. Then we present a stochastic framework for QoS boosting under the user 
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specified battery depletion tolerance. The model is trained using real user traces and the 

framework is simulated and compared with existing approaches. 

3.2 User-Aware Energy Efficient Streaming Strategy for Smartphone 

Based Video Playback Application 

3.2.1 Introduction 

Battery life has continuously been one of the critical factors for smartphone user 

satisfaction. The increasing complexity of hardware and applications in the smartphones 

outpaces today’s battery technology [106]. Although the percentage of power consumption of 

different components (e.g., processor, LCD, WiFi card, cellular interface) varies in different 

applications and different system settings, the cellular interface will soon become the most 

dominant energy consumer, which consumes more than 50 percent of total power consumption 

of the smartphone, when it is used as the network interface [107]. 

Video downloading and playback is one of the most common activities on the 

smartphone that has high energy consumption. When a user starts to watch a video, how long he 

(or she) is going to continue is unknown. Many traditional video players (application programs) 

try to download as many video data to the memory as possible during the time the user is 

watching in order to reduce glitches. Such buffering strategy may download more data than the 

user is going to watch if the user quits the video at an early time. It is shown that in Youtube, 60% 

videos are only being watched for less than 20% of their duration due to various reasons [109]. 

So a lot of downloaded data is useless as a result. On the other hand, to avoid excessive 

downloading, some video players buffer small amount of data periodically as a burst. Whether 
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the next chunk of data will be downloaded is based on the user’s watching progress. However, 

such downloading strategy will either keep the network interface active all the time or keep on 

switching it back to active from low power mode. In both cases, there will be energy wastes due 

to idle power consumption and the switching overhead of the network interface. Although such 

overhead is negligible for today’s WiFi interface with the efficient implementation of power 

saving mode [108], it is still quite substantial for the cellular interface. 

Downloading just enough video that the user is going to watch in a burst is the most 

energy efficient strategy, however, it is not possible to accurately predict the real playback length 

as it is a random variable that has strong dependency on the user behavior and the video contents. 

The problem is very similar to a stochastic inventory system [114] in operation research where 

user demands follows stochastic distributions and the supply over-stocking and shortage are 

associated with costs. 

We analyze video watching activities of different smartphone users and propose a 

stochastic model to capture the distribution of the real playback length. Based on the model the 

amount of data to be buffered is determined so that the expected energy waste on the cellular 

interface is minimized. As the video progresses, the estimated distribution of the remaining 

demands is dynamically updated and consequently affects the amount of data to be downloaded 

in the next burst. To the best of the authors’ knowledge, this is the first work aiming at finding 

the best buffering strategy during video playback for energy saving in the network interface. The 

main technical contributions of this work are summarized as the following: (1) A Gaussian 

Mixture Model (GMM) is proposed to capture the distribution of the video playback length for 

different users. (2) Based on the GMM generated, we apply stochastic inventory theory to find 

the best buffering strategy (i.e. how much video data should be buffered in each burst) for 
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minimum energy wastes on the cellular network interface. (3) An Android application is 

developed to collect real video playback activities. The proposed model and buffering strategy 

are evaluated using the real data. 

3.2.2 Background  

(1) Power consumption of cellular interface 

The cellular interface is in general far less energy efficient than the WiFi interface. Its 

transmission energy per bit is usually much higher and varies with the signal strength [111]. It 

also has ramp energy and long tail energy state when no useful data is transferred [107][110], 

therefore putting cellular interface into lower power idle state and bringing it back when needed 

always associate with a non-negligible energy waste. Figure 3-10 shows the state machine of the 

3G cellular interface [107][110]. As soon as the 3G interface receives a transmission request, it 

leaves the low power mode and enters the CELL_FACH (Forwarded Access Channel) state, 

which has very low throughput (less than 15kbps). If the amount of data to be sent or received is 

greater than the threshold, it will soon enter the CELL_DCH (Dedicated Channel) state, which 

has high throughput and energy consumption. When downloading is completed, the 3G interface 

will enter CELL_FACH state again after Inactivity Timer 2 has expired, and later switches to the 

low power IDLE state after the Inactivity Timer 1 has expired. Our measurement found that the 

Inactivity Timer 1 is about 4 seconds while the Inactivity Timer 2 is about 7 seconds. Please note 

that this information is vendor specific and it changes for different phones using different cellular 

networks ([110]). 
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Figure 3-10. The radio resource state machine of 3G interface 

 

 

 

 

 

   

Figure 3-11. Power trace and network activities during YouTube playback 

(2)  Existing buffering strategy in YouTube 

Very little information about the downloading strategy used by YouTube can be found in 

published works. We tried our best to test it and found that it’s quite different from phone to 

phone and potentially place to place. Typically the YouTube software always pre-buffers certain 

amount of video data ahead of user’s current watching progress. If the signal strength is high and 

data can be transferred quickly, then the cellular interface will go to low power idle state when 

‘enough’ data has been downloaded. Otherwise the cellular interface will keep buffering video 

data to keep up with the user watching progress. Our study shows that the amount of pre-
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buffering is a fixed value for a particular phone, although it varies over different phones. Based 

on the data provided by PCWorld, the average 3G data download speed is around 2 Mbps 

(Megabits per second) [115]. This is much faster than the data rate of a regular quality YouTube 

video, which is measured to be around 300 kbps. As we can see, if each pre-buffer process 

provides enough data to support the playback for a time that is longer than the count down period 

of Timer 1 and 2, it creates an opportunity for the cellular interface to go to low power state. 

Figure 3-11 shows the measured power trace of a Nexus S smartphone with AT&T 3G 

network during the time YouTube is playing. The amount of packages received and transmitted 

is also shown in the figure. As we can see, the power consumption of the phone is periodically 

reduced to about 50% of its peak value when there is no transmission and receiving activities. 

This is because the 3G interface enters low power mode. We can also see that there is a visible 

delay from the time that transmission and receiving activity stops to the time that the power 

reduces. This timeout period is the overhead of turning off the 3G interface as discussed in 

Section 3.2.2. 

The goal of this work is to model different users’ watching behavior (i.e., length of video 

playback) and then try to find the best strategy of streaming (i.e. the optimal size of pre-buffering) 

to minimize the energy wastes on cellular interface. 

3.2.3 User Behavior Modeling and Downloading Strategy Optimization 

(1) GMM based playback duration modeling 

The actual length of video playback is a random variable that is affected by user habits 

and the content of video clips. Although it cannot be accurately predicted in advance, its 

distribution can be learned through user behavior analysis of the past. Such model must be user 
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specific, because different users watch videos clips with largely different average length [109]. 

Even for a single user, the length of video playback will have large variations. A user may have 

different video watch behavior (i.e. the watch time) toward different genres of clips. For example 

he or she may watch a music show for a very short time while spend longer time on a movie. 

There are different classes of scenarios of video watch (e.g., music show, movie and etc.); some 

of these scenarios probably even cannot be clearly identified. For each scenario, the video 

playback length is a random variable that has relatively small variance, while overall video 

playback length is a mixture of these random variables. 

Based on the above discussion, we propose to model the distribution of playback length 

using a Gaussian Mixture Model (GMM) [113]. A GMM is a weighted sum of M component 

Gaussian densities given by the following equation:  ( )  ∑    (       
 
   ), where x is a D-

dimensional feature vector, wi, i=1, …M are weights, and  (       ), i = 1, …M, are the 

component Gaussian densities with mean vector    and variance vector   . In our problem, the 

feature vector has one element, that is, the length of playback. The values of M,    and    are 

learned from training set, which is collected from past user behavior. 

(2) Energy efficient streaming strategy 

(a) Deciding pre-buffering size 

In the next, we will present our energy efficient streaming strategy, which determines the 

amount of data to be pre-buffered at minimum energy waste. We model the streaming process as 

a stochastic inventory system [114]. Deciding how much data to be pre-buffered for a video 

player is analogous to finding how much inventory to replenish for a company. An inventory 

system has two cost components [114]: holding cost which is the cost associated with the storage 
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of the inventory until it is consumed and shortage cost which is the cost when the amount of the 

commodity demanded exceeds the available stock. In our video buffering system, the holding 

cost is the energy wasted for downloading those excessive video data that are not used, while the 

shortage cost is the energy wasted to wake up a cellular interface in order to download more data 

when the user tries to watch beyond current buffering point. Please note that both holding cost 

and shortage cost are wasted energy. We do not consider the energy required to download the 

video data as cost, as long as these data are actually used.  

We use D to denote the amount of video data that is actually watched by user (i.e. 

demand). D is a random variable. We use y to denote the decision on the size of pre-buffering 

(i.e. inventory). Both D and y are measured by the length of video playback time in seconds. The 

holding cost  (   ) is defined using Equation (3.6): 

                                                                                                                                         (3.6) 

,where constant parameter    gives the energy needed to download one second of video 

data. Based on the definition, if the amount of data pre-buffered is less than the demand, then 

there is no holding cost. Otherwise, holding cost will be the amount of energy needed to 

download the extra data.  

If there is a shortage, the cellular interface will be turned on in the future to download 

more data. The more shortage we have, the more frequent the cellular interface will be turned on 

and hence more switching overhead. Therefore the shortage cost is defined as (3.7): 

                                                                                                                                         (3.7) 

 (   )  {
                             

(   )              
                                

  (   )  {
(   )                    
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, where constant parameter     is the energy overhead to switch off and wake up the 

cellular interface. The parameter  represents the expected downloading size in the future. 

Therefore, (   )   gives the expected times that the cellular interface will be turned on. 

Obviously, the real value of  is unknown at the time when the shortage cost is calculated. In our 

experiment, we learn this parameter from the analysis of the training set. We denote the ratio of 

    and  as es,         . Based on the definition, if the pre-buffered data is more than the 

demand, then there is no shortage cost. Otherwise, the more shortage we have, the more 

frequently the cellular interface will be turned on to fill in the data, hence the shortage cost is 

proportional to the size of shortage.  

The overall cost is the sum of holding cost and shortage cost given by Equation (3.8): 

                                                                                                                                         (3.8) 

If we use   ( )  to represent the probability density function (PDF) of D, then the 

following equation gives the expected cost C(y): 

 ( )     (   ) = ∫ (   )    ( )  
 

 
 +∫ (   )    ( )  

 

 
                            (3.9) 

The maximum and minimum value of C(y) can be found by solving the equation:       

                                                                                                                                       (3.10)                                         

We can also prove that:  

                                                                                                                                       (3.11) 

Therefore, the minimum value exists. 

 (   )   (   )   (   ) 

   ( )  (     )  ( )           

  ( )                   
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Theorem 1 ([114]). The optimal size (y
0
) of video data to be pre-buffered with minimum 

energy waste satisfies the following equation: 

                                                                                                                                       (3.12) 

where  𝛷 is the cumulative density function (CDF) of the playback length D. Because all 

CDF are monotonically increasing functions, the value of  y
0 

can be found easily using binary 

search. 

(b) Adaptive streaming strategy 

As mentioned in Section 3.2.3, we use GMM model to capture the distribution of 

playback length. The model is learned from the usage history of the specific user, and its CDF is 

denoted as  𝐺( ). D is an estimation of playback time without any prior knowledge. As the 

playback process goes on, we gather more information about D. For example, if the video has 

played for A seconds and it is still going on, we know that    . Therefore, the distribution 

model of D should be updated to reflect this information. As shown in Figure 3-12, let g(D) be 

the original PDF of the D. After knowing that D is greater than A, we can set the PDF to be 0 for 

any D less than A. In order for the remainder of the PDF to have an integration of 1, the area of 

the blue shaded part will be redistributed to the rest of the g(D), and we get an updated PDF 

 ′(     ) as the following: 

 ′(     )  {
                                          

 ( ) (  𝐺( ))⁄          
                                                           (3.13) 

where G(A) is the CDF of g(D) at point A, in other words, the area of the blue shaded part 

in Figure 3-12. Note that G(A) is known after the model is given. The updated CDF 𝐺′(    

 ) can be calculated as: 

𝛷(  )     (     )       
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𝐺 ′(     )  ∫  ′(     )  
 

 
  𝐺( )  𝐺( )    𝐺( ) ⁄                                          (3.14) 

 

Figure 3-12 Adjusting the PDF based on obtained usage information 

 

After that, the optimal size of data to be pre-buffered next is determined based on the 

updated CDF G’(D|D>A). This procedure will continue as the video watching activity goes on. 

3.2.4 Experimental Results 

(1) User behavior model evaluation 

We developed a lightweight Android application that monitors and collects the users’ 

YouTube video playback activities. We take advantage of the Android ‘logcat’ tool, which 

shows the debug messages ejected from both operating system and applications. Our study 

shows that each time a new video in YouTube starts, a “WatchActivity” intent of YouTube will 

be written in the log buffer. Whenever the video stops playing because the user quits or pauses 

the video, an audio hardware sleep message is ejected. Similarly, whenever the video starts 

playing because the user starts a new video or resumes an old one, an audio hardware wakeup 

message is ejected. Combining the audio hardware message and “WatchActivity” information, 

we are able to detect those time when the video is paused and remove it from the playback length. 
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Our application doesn’t require root privilege and we installed it to five Android phones 

belonging to five different users. The application is running as a background service. The users 

are encouraged to watch YouTube videos as usual. The application records the history of their 

video playback length in a log file. After one and a half months of experiment, the log file is 

collected. In order to collect enough data, we recorded YouTube playback activities no matter 

the user uses WiFi or cellular access. We assume that the user behavior does not change 

significantly in both cases.  

We use the first half of the collected traces as training samples and apply Matlab function 

“gmdistribution.fit” to learn the GMMs for each user. The function performs maximum 

likelihood estimation. We kept on increasing the number of Gaussian components until there is 

no significant improvement of the log-likelihood of the training sequence. For the purpose of 

comparison, we also model the training samples using normal distribution and exponential 

distribution. After constructing the model, we use the second half of the collected traces to test 

our model and calculate RLH (root likelihood) of each model. 

     Table 3-1. Comparison of user behavior models 

Users 1 2 3 4 5 

Means of Gaussian Components {107,724, 2004} {59,294,  2193} {61, 1808} {45, 361} {43, 327} 

RLH(GMM) 0.0009 0.0020 0.0039 0.0022 0.0061 

RLH(Exp) 0.0009 0.0010 0.0016 0.0019 0.0049 

RLH(Norm) 0.0003 0.0004 0.0004 0.0013 0.0022 
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Table 3-1 shows the comparison results. Each column represents different user. The 

second row gives the means of the Gaussian components in the GMM model for each user. As 

we can see, there are noticeable differences from user to user in terms of the distribution of their 

YouTube watching time. For users 1 and 2, their GMM models contain 3 Gaussian components; 

while for the other users there are only 2 Gaussian components. The mean of these Gaussian 

components also varies significantly. We believe that such difference is mainly due to the 

different watching interests of various users. The third, fourth and fifth rows in Table 3-1 give 

the RLH (root likelihood) of the testing sequence for GMM, exponential distribution and normal 

distribution models respectively. As we can see, the RLH of GMM model is 1.6 times and 4.4 

times of the RLH  for exponential and normal distribution models respectively. This indicates 

that the GMM is more suitable to describe the distribution of playback time. 

(2) Comparison of energy savings 

In the second set of experiment, we compare inventory theory based streaming strategy 

with heuristic strategy, which buffers fixed amount of data each time. For the inventory theory 

based approach, different user behavior models, including GMM, exponential, and normal 

distribution models, are tested to show the impact of good user behavior modeling. In order to 

demonstrate the effectiveness of the inventory theory based streaming strategy without worrying 

about the accuracy of user behavioral model, we created a synthetic testing trace that follows 

ideal GMM distribution. It has three Gaussian components whose means are (50, 500, 2000).  

As mentioned in Section 3.2.3, in this work, we focus on reducing the energy wastes due 

to either excessive downloading or frequent on-off switches. The power consumption on cellular 

interface varies from phone to phone and from time to time on the same phone because of 
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different signal strength. To have a simple comparison, we use the amount of wasted video data 

to represent energy waste and it is measured by the length of playback time in seconds. Based on 

the definition of stocking cost, we know that eh is equivalent to 1 second (of wasted video data). 

Using Monsoon power monitor[112] we measured the energy dissipation of a Nexus S 

smartphone with AT&T 3G network. Our data show that, with moderate wireless signal strength, 

the energy overhead to switch the cellular interface off (i.e. the energy dissipation in the timeout 

period) is approximately equal to the energy that is needed to download 16 seconds video data 

for YouTube. Therefore, esw in Equation (3.7) is set to 16. 

Two static streaming strategies that have constant pre-buffering size are implemented. 

The first one buffers 100 seconds video data each time and is referred as Static(100s). We then 

sweep the pre-buffering size and test it using the training set of each user. The one that gives the 

minimum energy waste is selected and be applied to the testing sequence. We refer this approach 

as Static(best). 

Figure 3-13 compares the wasted seconds (as the measurement of wasted energy) for 

different users and different buffering strategies. For the synthetic trace, the inventory theory 

based strategy reduces about 38% energy waste compared to the static strategies. We can also 

see that, the downloading strategy based on GMM model has 52% and 36% lower wasted energy 

that the strategies based on normal and exponential distribution models respectively. This 

indicates the importance of having accurate model.  

However, for the testing traces from real users, the inventory theorem based strategy 

using GMM model has only 10% and 20% reduction of wasted energy in average compared to 

the Static(best) and Static(100s). And compared to the strategies based on normal and 
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Figure 3-13 Comparison of wasted seconds for different users and different buffering 

strategies 

exponential distribution models, our model has 31% and 5% less energy waste in average. The 

relative efficiency of our strategy reduces for real trace partly because the GMM based user 

behavior model is not perfectly trained probably due to insufficient training data. On the other 

hand, exponential distribution is not a bad model to characterize the statistics of playback time, 

because there is much less probability that a user watches a long video than he/she watches a 

short video. Therefore, streaming strategy using exponential model also gives good energy 

reduction compared to others. 

In order to show how the proposed streaming strategy works, we performed a detailed 

analysis for trace collected from user1. Figure 3-14 shows the buffering points determined based 

on the proposed streaming strategy. We can observe that the buffering points are generally 

around the means of the Gaussian components (107, 724, 2004). Furthermore, the points are 

sparse before 2000 and then become very dense after that. The streaming strategy algorithm tries 

to determine when the user will most likely to stop the video and it will set the buffer point to 
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around that time. For example, after watching the video for 200 seconds, the user usually will not 

stop for another 300 seconds. So the next buffer point will be set to a little over 500 second and 

more than 300 seconds of video data will be downloaded to reduce the switching overhead. After 

the user watches for 2000 seconds, the video could end at anytime. Therefore, very few data will 

be downloaded each time to avoid waste.  

 

Figure 3-14 Buffering points of user 1 by the GMM approach 

3.2.5 Conclusions 

In this work, we use GMM to model different user’s YouTube playback time and then 

apply Inventory Theory to find out the optimal buffering points during the video playback that 

minimizes energy waste on the cellular interface. Our evaluation based on real field study and 

simulation demonstrates that our approach can save about 10% more energy than the best static 

buffering method. 

3.3 Chapter Summary 

In this chapter, we presented two works targeting system level power management in the 

context rich mobile environment.  

In the first work, we aim at increasing the QoS of mobile devices considering the fact that 

many users recharge the battery before depletion. We present a stochastic framework for QoS 
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boosting under the user specified battery depletion tolerance. The model is trained using real user 

traces and the framework is simulated and compared with existing approaches. 

In the second work, we use GMM to model different user’s YouTube playback time and 

then apply Inventory Theory to find out the optimal buffering points during the video playback 

that minimizes energy waste on the cellular interface. Our evaluation based on real field study 

and simulation demonstrates that our approach can save about 10% more energy than the best 

static buffering method. 
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Chapter 4 An FPGA-based 

Distributed Computing System 

with Power and Thermal 

Management Capabilities 
4.1 Introduction 

High power consumption and high working temperature have become a major issue in 

the design of today’s embedded systems. They increase cooling cost, degrade the system 

reliability and also reduce the battery cycle time in portable devices. Recently, research in 

Dynamic Power Management (DPM) and Dynamic Thermal Management (DTM) has attracted 

substantial interests. The DPM controller dynamically slows down or turns off the computing 

device when it is idle or under-utilized to reduce the system power consumption [103]. The 

similar actions are taken by the DTM controller when the die is (or is predicted to be) over 

heated [104]. The effectiveness of DTM and DPM relies heavily on the workload pattern of the 

computing device, which is determined by task scheduling and ordering policies, the nature of 

applications running in the system as well as user input activities. Furthermore, the impact from 

the OS, such as the overhead of context switch and power mode switch, also affects the 

efficiency of DTM and DPM. 

In this work, we present an FPGA-based distributed computing platform designed to 

support the research in distributed embedded computing with power/thermal management 

capabilities. The system consists of multiple FPGAs connecting through Ethernet links with each 
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FPGA configured as a multi-core system. Hardware and software supports are provided to carry 

out basic power/thermal management actions including inter-core and inter-FPGA 

communications, runtime temperature monitoring and dynamic frequency scaling. In the 

experiments, we evaluated the inter-FPGA and inter-core communication delay, tested the 

function of the distributed computing system using a case study of parallel matrix multiplication, 

and evaluated the function of dynamic frequency scaling and temperature sensing by measuring 

the temperature change of the CPU when it is running at different frequencies.  

Compared to software simulation, an FPGA-based evaluation platform provides fast 

emulation speed which enables us to test the performance of power/thermal management 

techniques with real-life applications and OS. Compared to computer clusters, an FPGA-based 

platform has the flexibility to be configured to any hardware architecture and network topology. 

Hardware based sniffers for performance monitoring and traffic analysis can also easily be added.  

Many works have been performed to emulate or develop multiprocessor distributed 

system using FPGA. Reference [1] gives a good overview of FPGA-based multiprocessor 

systems. References [85][86] aim at creating an FPGA-based multiprocessor or distributed 

platforms for teaching purpose. References [87][88] focus on the memory and synchronization 

problems in an FPGA-based multi-processor system. The authors of [89][90][91] propose 

different architectures for FPGA-based multiprocessor or distributed system  for video 

applications. 

There are also works focusing on FPGA-based multi-processor or distributed system 

emulator for power and thermal optimization. For example, the authors of [92] present a 

hardware and software co-systhesis framework for FPGA-based distributed embedded system in 
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order to achieve low power design. Reference [93] uses FPGA to emulate the power 

consumption of a multiprocessor system in order to guide task migration. Reference [84] 

presents the HW/SW of an FPGA-based emulation framework that enables the rapid extraction 

of a large range of statistics, including thermal modeling, at different architectural levels of 

MPSoC designs. Both [93] and [84] demonstrate that the FPGA-based HW/SW emulation 

achieves much faster speed than the software simulation. 

Our work differs from all the previous works as we created a generic distributed platform 

using FPGA where power and thermal managements are possible.  The main contributions of 

this work are: 

1. We created a multi-core distributed computing platform using Nios II Embedded 

Evaluation Kit (NEEK). The platform consists of multiple FPGAs with each FPGA configured 

as a multi-core system. The processors on the same FPGA communicate with each other 

through shared memory and different FPGAs communicate with each other through Ethernet 

links using the TCP/IP stack. 

2. Each core is on a separate clock domain and has the dynamic frequency scaling 

capability.  

3. Each core has its own temperature sensor that mapped to its local address space.   

4. Software supports for inter-core and inter-FPGA communication, dynamic 

frequency scaling and temperature monitoring are provided. Their latency and overhead are 

analyzed. 

5. A case study is provided that shows how to do distributed matrix multiplication 

using the proposed platform.  
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The rest of the work is organized as follows: Section 4.2 briefly introduces the software 

and hardware resources on Altera Nios II Embedded Evaluation Kit, which is the base device of 

our distributed computing platform. Section 4.3 presents the details of the system architecture 

and Section 4.4 talks about the design of frequency scaling and temperature monitoring modules. 

Section 4.5 gives the experimental results and analysis. Section 4.6 is the conclusion. 

4.2 Altera Nios II Embedded Evaluation Kit (NEEK)    

Although the proposed distributed computing platform can be implemented on any major 

FPGA, its architecture selection is more or less affected by the hardware and software resources 

on the FPGA that is chosen for this project. In this section, we give a brief introduction of the 

resources on the Altera Nios II Embedded Evaluation Kit (NEEK). We will only focus on those 

resources that will be used in our work.  

The Altera NEEK Cyclone III edition has one Cyclone III EP3C25F324 FPGA with 

25,000 Logic Elements and 594 Kbits embedded memory, 32 MB DDR SDRAM, 1MB SRAM, 

16 MB Intel P30/P33 Flash, 800 X 480 touch-screen LCD, Ethernet 10/100 Mbps, and PS2 and 

RS-232 connector,. The Nios II is a soft IP core of the embedded processor designed specifically 

for Altera FPGA. In this work, we choose the MicroC/OS-II RTOS [94] whose full ANSI C 

source code is included in the Nios II Embedded Design Suite. The MicroC/OS-II is a 

multitasking operating system that supports maximally 64 tasks with distinct task priorities 

(ranging from 1 to 64). It supports preemptive scheduling, and always runs the highest priority 

task that is ready. 

The full ANSI C source code of NicheStack TCP/IP Network Stack (Nios II Edition) is 

also distributed by Altera as part of the design suite.  The network stack can be used with the 
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10/100 Mbps Ethernet Controller (PHY) provided by Altera to establish socket communication 

via Ethernet links. 

4.3 System Architecture 

The proposed distributed computing platform has hie-rarchical architecture, which is 

shown in Figure 1. The system consists of multiple FPGAs connecting via Ethernet links. Each 

FPGA is further configured as a multi-core system. The cores on the same FPGA communicate 

via shared memory, while different FPGAs communicate via Ethernet Links. 

 

Figure 4-1. Hierarchical architecture 

4.3.1 Single FPGA multi-core system 

There are multiple Nios II subsystems on a single FPGA. Figure 4-2 shows the block 

diagram of one of the Nios II subsystem including its memory and some basic peripherals.  The 

JTAG UART provides the debugging port interface. A High Resolution Timer is included to 

measure the program execution time. The parallel I/O (PIO) provides control and monitoring to 

clock generation block and the temperature sensor, which will be discussed in Section 4.4.  

One or multiple shared memories are connected to each Nios II subsystem. These shared 

memories are configured as hardware mailbox for communications among processors on the 
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same FPGA. Among all the Nios II subsystems on the same FPGA, there is one that has Ethernet 

interface module. The Ethernet interface module consists of a DMA Controller, a Descriptor 

Memory and the Ethernet MAC. The Nios II subsystem that has the Ethernet interface acts as a 

gateway for inter-FPGA communications in the distributed computing system. All peripherals 

are connected to the Nios II processor via Avalon memory mapped interface [105]. The Avalon 

streaming interface [105] is used to connect the DMA to the Ethernet controller. 

 

Figure 4-2. Processor configuration 

The on-chip inter-processor communication is achieved using the mailbox [95]. Figure 

4-3 shows an example of the topology of connections among 4 on-chip processors. Between any 

two processors that communicate to each other, a shared memory is inserted. The shared memory 

is configured into 2 mailboxes. One of them stores outgoing messages and the other stores 

incoming messages. The mailbox core contains hardware mutexes to ensure the mutually 

exclusiveness during communication through the shared memory where the actual messages are 

stored. In Figure 4-3, MB12 is used to store the messages sent from P1 to P2 while MB21 is for 

those sent from P2 to P1. Both MB12 and MB21 are attached to the same on-chip memory block 

that connects to both processors. Note that Figure 4-3 shows only a simplified system where the 

communication can only happen between P1 and other 3 processors. The system can be 

Mailbox

Processor Cache
CPU 

Timer

PIO

Timer JTAG, UART

DDR SDRAM 

(main memory)

DMA Controller, 
Descriptor Memory 
and Ethernet MAC

Only needed in 

specific processor



 

139 

 

configured to implement different topologies of inter-processor communication network, such as 

a ring or a mesh. 

 

Figure 4-3. Topology of on-chip inter-processor connections 

To post a message to an outgoing mailbox, the Mailbox API function 

altera_avalon_mailbox_post() must be used. The Mailbox API function 

altera_avalon_mailbox_pend() can be used to read a message from an incoming mailbox. The 

altera_avalon_mailbox_pend() function provides blocking wait for a message in the specified 

mailbox. In a multi-tasking OS such as MicroC/OS-II, if the mailbox is empty when the function 

is called, the process will be blocked and switched to be inactive. The process will be switched to 

the ready list when the mailbox is no longer empty.  

It is necessary to point out that although the mailbox core and its supporting API provide 

a convenient way to achieve inter-processor communication, its speed is relatively slow for large 

data communication as we will show in the experimental results. This is because the mailbox 

API allows the processor to read or write only one 32 bit message each time. For high speed 

inter-processor communication of large amount of data, hardware mutex core [96] with shared 

memory should be used.  
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4.3.2   Multi-FPGA distributed system 

The overall distributed computing platform consists of multiple FPGAs connecting via 

Ethernet links. We use the notation KiPj to represents the jth processor on the ith NEEK. All 

NEEKs are connected through their Ethernet port, which is connected to the first processor of the 

kit. Therefore, the KiP1, 1≤i≤4 acts as the communication gateway. The gateway processor 

establishes the socket TCP/IP connections with all other gateway processor in the distributed 

system. For each TCP/IP socket, a receiving process is created that performs blocking wait for 

the incoming data. To send data from KiPx to KjPy, where i≠j and x, y ≠ 1, the processor KiPx first 

sends the data to the gateway processor KiP1 via the mailbox, the data is then transmitted from 

KiP1 to KjP1 through TCP/IP socket, and finally the data is sent from KjP1 to KjPy via the 

mailbox. 

As we can see from the above analysis that, in addition to the user applications, each 

processor must maintain a set of receiving processes waiting for the incoming data from either 

the mailboxes or the socket interfaces. We use semaphores to coordinate the execution of 

different processes. For example, in the matrix multiplication example that will be discussed in 

Section 4.5, the calculation process will wait on a semaphore which will be released by the 

receiving process when all data for the calculation are ready. 

4.4 Frequency Scaling and Temperature Monitoring 

Each Nios II subsystem has a hardware clock generation and selection block and a 

temperature sensor that provides the processor with dynamic frequency scaling and temperature 

monitoring capabilities.  
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4.4.1 Glitch free clock switching 

One way to achieve dynamic clock frequency scaling is to reconfigure the Phase-Locked 

Loop (PLL) during the runtime. The Altera Phase-Locked Loop Reconfiguration Megafunction 

[98] can be used for this purpose. However, to reconfigure the Altera PLL [99] during runtime 

takes several microseconds, which is quite large performance overhead. Furthermore, the 

Reconfiguration Megafunction consumes lots of reconfigurable logic resources as well as on-

chip memories, and it requires complicated control.  

The second way to achieve dynamic frequency scaling is to switch among a set of clocks 

running at discrete frequency levels. Each Altera PLL generates up to 5 different output clocks, 

which is the same as the number of frequency levels supported by an XScale processor. The 

biggest challenge in designing a clock selection module is how to avoid the clock glitch during 

the transition period.  

Figure 4-4 shows the glitch free clock generation and selection module implemented in 

our system. Based on the 4 bit control signal (i.e. control[3:0]) , it performs 4-to-1 selection from 

the output clocks generated by the PLL. In this design, the ALTPLL block is the Altera PLL 

Megafunction; the ALTCLKCTRL block is the Altera Clock Control Megafunction which 

performs clock enable/disable and clock selection [100]; and the LPM_MUX is a normal 

multiplexer. The DFF0~DFF3 are D-flip flops. They introduce delays during certain clock 

transitions to prevent glitch.  More details about their function will be discussed later. 
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Figure 4-4.Clock generation block 

 

 

Figure 4-5. Simulation result of clock transition process 
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glitch-free switchover implementation” option of the ALTCLKCTRL must be enabled. At 

anytime, at most one ALTCLKCTRL is active. 

The Quartus II software does not support concatenation of clock controllers. That is why 

a normal multiplexer is used to select the outputs of the 2 ALTCLKCTRL blocks. In Quartus II 

Analysis & Synthesis settings, we enable the “Clock Mux Protection” option. This option 

ensures that the multiplexers in the clock network to be decomposed to 2-to-1 multiplexers, each 

of which will be synthesized to one LUT and hence be glitch free [97].  

A clock generation/selection module is associated to each Nios II subsystem. Its control 

signals (control[3:0])are connected to the parallel I/O of the Nios II subsystem. The  processor 

changes its frequency by writing to the corresponding parallel I/O ports. Because at most one 

ATLCLKCTRL is enabled at anytime, the value of control[3] and control[2] cannot be 1 at the 

same time. 

Figure 4-5 illustrates the simulated waveform of an example of clock switching. Assume 

that the PLL clocks c0, c1, c2 and c3 are running at frequency 25MHz, 50MHz , 75 MHz  , and 

100MHz. The input clock of PLL is 50MHz. Also assume that the control[3:0] is initially “0100”.  

The ALTCLKCTR1 controller is disabled and gives constantly low output while the 

ALTCLKCTR0 controller is enabled. 

The output clock is connected to PLL output c0 through LPM_MUX and ALTCLKCTR0. 

After the processor write “0110” to control[3:0], the ALTCLKCTRL switches from c0 to c1. 

There is no glitch in the output clock because the switching occurs in the Altera glitch free clock 

control block. In the next, the processor writes “1001” to control[3:0]. This command will 

eventually turn off the ALTCLKCTR0 and switch the LPM_MUX from ALTCLKCTR0 to 
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ALTCLKCTR1. Although the LPM_MUX made the switch immediately after the control signal 

changed its value, the ALTCLKCTR1 is still disabled at this time because its enable signal is 

delayed by 2 clock cycles. The output clock will stop for a very short period of time during 

transition and resume afterwards. In this way, glitch on the clock is prevented. 

The waveform shows that our clock selection unit takes only about 50 nanoseconds for 

clock transition. Compare to the PLL Reconfiguration Megafunction which has several 

microseconds delay, the clock selection unit has much lower performance overhead and needs 

much less hardware resource. 

Since the processor’s frequency will be changed at runtime and other components (e.g., 

memory and other peripherals) work under a fixed clock frequency, we need to bridge the gaps 

between processor’s clock domain and other components clock domain. Avalon Memory 

Mapped Clock Crossing Bridge [101] is inserted between the processor and memory while 

Avalon Memory Mapped Pipeline Bridge [101] is inserted between the processor and peripherals. 

4.4.2 Monitor the processor’s temperature  

In order to provide our system with the thermal awareness, an on-chip temperature sensor 

built up-on the programmable logic resources are implemented and attached to each Nios II 

subsystem.  

We adopted the architecture of the temperature sensor described in [102]. The 

temperature sensor uses a delay line whose delay increases with the increasing of the temperature 

around it so that the delay time can be a good measurement of the temperature.  In order to 

monitor the temperature change of a processor, we implemented this sensor and put it inside the 

corresponding processor using the chip planar in Quartus II. The resource used for the sensor is 
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very little. Only a little more than 200 logic elements are needed to implement the temperature 

sensor in our system. 

The simplified schematic of the sensor is shown in Figure 4-6. After writing to the 

‘START’ signal at the very beginning, the processor can continuously read the temperature value 

from the sensor via the PIO interface. 

 

Figure 4-6. Temperature sensor and processor 

4.5 Experiments  

We used Quartus II and SOPC builder to create the hardware prototype configured in the 

FPGA and then used the Nios II Software Build Tools (SBT) to develop the user applications 

and to port them with the hardware abstraction layer (HAL) and operating system to the FPGA 

board. Our distributed computing platform consists of 4 NEEKs and each NEEK is configured 
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each other and each mailbox between 2 processors is 256 byte large. By default, the CPUs are 

running at 66.5 MHz. Standard Nios II cores are used with 1 KB instruction cache. 

Three experiments have been carried out. The first experiment characterizes the latencies 

of inter-FPGA communication and inter-processor communications. The second experiment 

verifies the function of the distributed computing platform using a parallel matrix multiplication 

program. Finally, the third experiment evaluates the function of the clock selection module and 

the temperature sensor, by measuring core temperature while changing the core clock frequency. 

4.5.1 Characterization of communication latency 

Communication latency is an important characteristic of a distributed computing system. 

This information is usually required by task scheduling and mapping algorithms for power and 

performance optimization. In the first experiment, we measured the latency of inter-FPGA and 

inter-processor communications.   

The communication latency between KiPx and KjPy (1≤i, j≤4 and 1≤x, y≤4) is defined as 

the duration starting from the time when KiPx begins to send the data till the time when KjPy 

receives all the data. KiPx and KjPy are asynchronous to each other. We cannot find a common 

time reference to measure the time between events on these two systems. Therefore, once KjPy 

receives the packet, it will immediately send back the same packet to KiPx. We measure the 

round trip latency of the packet and divide it by 2 to calculate the one-way latency. This 

measurement is applicable because our system is homogenous and symmetrical. 

Figure 4-7 shows the communication latency between KiP1 and KjP1, where 1≤i, j≤4 and 

i≠j. As both processors are gateway on different NEEKs, this communication involves only the 
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Ethernet Links.  As we can see that the latency is almost a linear function to the transmission size. 

It takes about 8 milliseconds to send 5 KB data.   

Figure 4-8 shows the communication latency between KiPx and KiPy, where 1≤i≤4, 1≤x, 

y≤4 and x≠y. Both of the processors are on the same FPGA and their communication involves 

only the mailbox links. Again, the communication latency is a linear function of the transmission 

size. As we mentioned earlier, the mailbox based communication is relatively slow for large size  

 

Figure 4-7. Inter-FPGA communication latency 

 

Figure 4-8. Inter-processor communication latency 
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of data because each time only one 32 bit message can be sent or received. 

The communication latency between non-gateway processors on different FPGAs 

consists of the time spent on the 2 mailbox links and one Ethernet links. For example, if we want 

to transfer 4KB data from K2P2 to K1P2, from Figure 4-7 and Figure 4-8 , the overall transfer 

time will be  2*(transferring 4KB data time through mailbox)+1*(transferring 4KB data time 

through Ethernet)  (2*70.5+6.9) = 147.9 ms. The measured communication latency is roughly 

148.3 ms which is very close to our estimation. 

4.5.2 Parallel matrix multiplication 

In this experiment we test the function of the distributed computing platform using a 

parallel matrix multiplication program.  

Given three NxN matrices A, B and C. Let     . If we equally divided each matrix 

into M rows and M columns, then we create MxM sub-matrices from the original matrix. Denote 

those sub-matrix using their row and  column index, we will have matrices, Ai,j, Bi,j and Ci,j, 1≤i, 

j≤M. It can be proved that      ∑         
 
   . The matrix multiplication can be rewritten as the 

following: 
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Based on such decomposition method, we designed the parallel matrix multiplication  
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Figure 4-9. Overall task execution time for processors with and without embedded 

multipliers 

 

Figure 4-10. Computation and communication time for processors with embedded 

multipliers 
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the result matrix Cx,y back to K1P1. Based on the algorithm, the computation is distributed onto 

M
2
 processors. 

Figure 4-9 shows the overall task execution time of those 4 scenarios where M varies 

from 1 to 4 and the number of CPUs involved in the computing varies from 1 to 16. The 

execution time for processors with or without hardware multipliers are both presented. Figure 

4-10 shows the communication and computation time break down for processors with embedded 

multipliers. As we can see, with the processor number increasing, the overall task execution time 

decreases almost linearly. The embedded multipliers can significantly reduce the execution time 

because the computation accounts for the major part of the execution time. And when we 

increase the number of processors involved in the computation, the communication time 

increases and becomes comparable to the computation time since more data need to be 

transferred while every processor performs less computation. 

4.5.3 Evaluation of the temperature sensor and clock selection module 

In the third experiment, we dynamically switches the processor’s working frequency 

from 1MHz to 10MHz, 50 MHz , and 100MHz  and evaluate the thermal impact of the frequency 

scaling. During the entire experiment, the processor is executing the floating point matrix 

multiplication program discussed in previous subsection. A separate process is created which 

reads the temperature sensor every 2 minutes. The processor stays at each frequency level for 10 

minutes. Therefore, 5 temperature data are collected for each clock frequency levels.  

When all frequency levels have been tested, the processor stays idle at 100MHz for 10 

minutes and go back to execute the matrix multiplication program at 1MHz. And the previous 

procedure repeats.  
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Figure 4-11 shows the trace of temperature changes in the above mentioned procedure. 

As we can see, the reading of the temperature sensor increases when the processor is running at a 

higher frequency. And at the same time, when processor is idle, thought the working frequency 

doesn’t change, the temperature goes down as we expected. However, because the Nios II 

subsystem is not clock gated, even though no instruction is executed in the processor, the clock is 

still toggling and there is still switching activities. Therefore, the temperature of the idling 100 

MHz processor is still higher than the temperature of an active 10 MHz processor. 

In average, the temperature sensor reading is 8670 when the CPU is running at 1MHz and 

8730 when the CPU is running at 100 MHz. As in Figure 4-6, we use 150 logic elements to build 

the delay line and the circulation times is 4096. Based on this and according to [102], 1 unit 

difference in sensor reading corresponds to about 0.03C temperature difference. Therefore, 

running the CPU at 100 MHz and 1MHz generates about 1.8C temperature difference. The 

temperature change is much smaller than that can be generated in a general purpose CPU 

because the Nios II processor is a soft core processor and hence has larger area and lower power 

density.  

 

Figure 4-11 .Processor’s temperature change under different working frequency 
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4.6 Conclusion 

In this chapter, we proposed an FPGA-based distributed computing platform using Altera 

Nios II soft-core processors. The system consists of multiple FPGAs with each FPGA configured 

as a multi-core system. Each core has its own temperature sensor and has the dynamic frequency 

scaling capability. The platform is designed to support research in dynamic power/thermal 

management. Our experiment verifies the correct functionality of the distributed computing 

platform and evaluated the communication latency between cores and between FPGAs. It shows 

almost linear performance improvements as the number of cores increases. 
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Chapter 5 Conclusions  

In this dissertation, we have studied several learning based dynamic power management 

techniques where the learning agent monitors the system dynamic and taking appropriate power 

management actions intelligently. We targeted on different platforms, i.e.,  (1)personal computer 

and server; (2)mobile devices and (3)FPGA. 

We firstly presented two works targeting system level power management in PC and 

server environment. Our first work created a model that is used to dynamic quantify task 

performance degradation with the respect to a reference system, where the target process is 

executed stand alone at the highest frequency. The proposed model is used to provide 

performance feedback to guide DVFS control. The model is further improved to predict the 

performance of the target process under a new task mapping. The improved model is used to 

provide performance prediction to guide the task migration. Experimental results show that the 

proposed models effectively controls the system performance and keeps it close to the given 

constraint, hence leads to lower power consumption with minimum performance violation. The 

second work proposed a general model solving the dynamic power management problem using 

Q-learning. The Q-learning power manager does not require any prior knowledge of the 

workload or the system model while it can learn the policy online with real-time incoming tasks 

and adjusts the policy accordingly. The Q-learning algorithm is firstly applied to the HDD power 

management by putting HDD into sleep and waking it up. Simulation results show that can 

achieve good power performance tradeoff. Then it is also extended for the CPU power 
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management by controlling its DVFS settings. The control algorithm is capable to achieve 

minimum energy while meeting the user constraints in performance and temperature. 

In the second part, for mobile devices environment, we also presented two works 

targeting system level power management in the context rich mobile environment. The first work 

aimed at increasing the QoS of mobile devices considering the fact that many users recharge the 

battery before depletion. We present a stochastic framework for QoS boosting under the user 

specified battery depletion tolerance. The model is trained using real user traces and the 

framework is simulated and compared with existing approaches. The second work used GMM to 

model different user’s YouTube playback time and then applied Inventory Theory to find out the 

optimal buffering points during the video playback that minimizes energy waste on the cellular 

interface. Our evaluation based on real field study and simulation demonstrates that our approach 

can save about 10% more energy than the best static buffering method. 

In last part of the dissertation, we proposed an FPGA-based distributed computing 

platform using Altera Nios II soft-core processors. The system consists of multiple FPGAs with 

each FPGA configured as a multi-core system. Each core has its own temperature sensor and has 

the dynamic frequency scaling capability. The platform is designed to support research in 

dynamic power/thermal management. Our experiment verifies the correct functionality of the 

distributed computing platform and evaluated the communication latency between cores and 

between FPGAs. It shows almost linear performance improvements as the number of cores 

increases. 
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