51 research outputs found

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    Survey of energy efficient tracking and localization techniques in buildings using optical and wireless communication media

    Get PDF
    This paper presents a survey of beamforming, beamsteering and mobile tracking techniques. The survey was made in the context of the SOWICI project. The aim of this project is to reduce power consumption of data exchanging devices within houses. An optical fiber network is used for data transport to and from rooms whereas wireless transceivers communicate with appliances within the rooms. Using this approach, the aim is to reduce power consumption and exposure to electromagnetic radiation. To realize this, beamforming will be used to only radiate energy in, and receive signals from, the direction of interest. Because appliances within households can move, some of them even relatively fast, the pointing direction of the beam should be steerable. The pointing direction can be deduced from the communication link (beamsteering) or via separate mobile tracking techniques

    Experimental Investigations of Millimeter Wave Beamforming

    Get PDF
    The millimeter wave (mmW) band, commonly referred to as the frequency band between 30 GHz and 300 GHz, is seen as a possible candidate to increase achievable rates for mobile applications due to the existence of free spectrum. However, the high path loss necessitates the use of highly directional antennas. Furthermore, impairments and power constraints make it difficult to provide full digital beamforming systems. In this thesis, we approach this problem by proposing effective beam alignment and beam tracking algorithms for low-complex analog beamforming (ABF) systems, showing their applicability by experimental demonstration. After taking a closer look at particular features of the mmW channel properties and introducing the beamforming as a spatial filter, we begin our investigations with the application of detection theory for the non-convex beam alignment problem. Based on an M-ary hypothesis test, we derive algorithms for defining the length of the training signal efficiently. Using the concept of black-box optimization algorithms, which allow optimization of non-convex algorithms, we propose a beam alignment algorithm for codebook-based ABF based systems, which is shown to reduce the training overhead significantly. As a low-complex alternative, we propose a two-staged gradient-based beam alignment algorithm that uses convex optimization strategies after finding a subregion of the beam alignment function in which the function can be regarded convex. This algorithm is implemented in a real-time prototype system and shows its superiority over the exhaustive search approach in simulations and experiments. Finally, we propose a beam tracking algorithm for supporting mobility. Experiments and comparisons with a ray-tracing channel model show that it can be used efficiently in line of sight (LoS) and non line of sight (NLoS) scenarios for walking-speed movements

    Transmit-Receive Beamforming for 60 GHz Indoor Wireless Communications

    Get PDF
    The vast unlicensed bandwidth available in the 60 GHz band is an attractive solution to provide multi-gigabit bit-rates over short distances in indoor environments. One of the crucial problems of the 60 GHz band is the limited link budget. In order to improve the link budget, antenna beam-forming techniques are employed at least at one end of the transceiver system. This thesis studies the topic of transmit-receive (Tx-Rx) beam-forming, investigating the impact of the array size and the nature of the channel (LOS/NLOS) on the system performance. The scope of the investigation is limited to uniform rectangular arrays (URA) and to analog beam-forming with one scalar weight per antenna. In order to evaluate the Tx-Rx system, a multiple-input multiple-output (MIMO) Semi-Deterministic Channel Model (SDCM) is introduced, based on a combination of ray-tracing and the well-known Saleh-Valenzuela statistical model. The MIMO channel is then applied to a beam-forming system based on beam-switching. With this technique, the Tx-Rx beam-vector pair that maximizes the average output SNR is selected within a codebook of pre-defined orthogonal beam-vectors spanning the whole 3-D space. The system performance is evaluated in terms of beam-forming gain, coherence bandwidth of the beam-formed channel, and average spectral efficiency in a band of 2 GHz. The simulation results show that the beam-switching technique improves the system performance; the improvement is proportional to the array size and is observed both in LOS and NLOS cases (where the LOS path is obstructed). The average spectral efficiency is compared to that of an optimal beam-forming scheme, showing an acceptable performance penalty. Finally, alternative analog beam-forming techniques are investigated and compared against the beam-switching method. The investigation shows that within the class of analog beam-forming, and for the considered channel, beam-switching is a valid cost-performance trade-off

    Enhancing wireless local area networks by leveraging diverse frequency resources

    Get PDF
    In this thesis, signal propagation variations that are experience over the frequency resources of IEEE 802.11 Wireless Local Area Networks (WLANs) are studied. It is found that exploitation of these variations can improve several aspects of wireless communication systems. To this aim, frequency varying behavior is addressed at two different levels. First, the intra-channel scale is considered, i.e. variations over the continuous frequency block that a device uses for a cohesive transmission. Variations at this level are well known but current wireless systems restrict to basic equalization techniques to balance the received signal. In contrast, this work shows that more fine grained adaptation to these differences can accomplish throughput and connection range gains. Second, multi-frequency band enabled devices that access widely differing frequency resources in the millimeter wave range as well as in the microwave range are analyzed. These devices that are expected to follow the IEEE 802.11ad specification experience intense propagation variations over their frequency resources. Thus, a part of this thesis revises, the theoretical specification of the IEEE 802.11ad standard and complements it by a measurement study of first generation millimeter wave devices. This study reveals deficiencies of first generation millimeter wave systems, whose improvement will pose new challenges to the protocol design of future generation systems. These challenges are than addressed by novel methods that leverage from frequency varying propagation characteristics. The first method, improves the beam training process of millimeter wave networks, that need highly directional, though electronically steered, transmissions to overcome increased free space attenuation. By leveraging from omni-directional signal propagation at the microwave bands, efficient direction interference is utilized to provide information to millimeter wave interfaces and replace brute force direction testing. Second, deafness effects at the millimeter wave band, which impact IEEE 802.11 channel access methods are addressed. As directional communication on these bands complicates sensing the medium to be busy or idle, inefficiencies and unfairness are implied. By using coordination message exchange on the legacyWi-Fi frequencies with omnidirectional communication properties, these effects are countered. The millimeter wave bands can thus unfold their full potential, being exclusively used for high speed data frame transmission.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Ralf Steinmetz.- Secretario: Albert Banchs Roca.- Vocal: Kyle Jamieso

    Algorithm design for scheduling and medium access control in heterogeneous mobile networks

    Get PDF
    Mención Internacional en el título de doctorThe rapid growth of wireless mobile devices has led to saturation and congestion of wireless channels – a well-known fact. In the recent years, this issue is further exacerbated by the ever-increasing demand for traffic intensed multimedia content applications, which include but are not limited to social media, news and video streaming applications. Therefore the development of highly efficient content distribution technologies is of utmost importance, specifically to cope with the scarcity and the high cost of wireless resources. To this aim, this thesis investigates the challenges and the considerations required to design efficient techniques to improve the performance of wireless networks. Since wireless signals are prone to fluctuations and mobile users are, with high likelihood, have difference channel qualities, we particularly focus on the scenarios with heterogeneous user distribution. Further, this dissertation considers two main techniques to cope with mobile users demand and the limitation of wireless resources. Firstly, we propose an opportunistic multicast scheduling to efficiently distribute or disseminate data to all users with low delay. Secondly, we exploit the Millimeter-Wave (mm-Wave) frequency band that has a high potential of meeting the high bandwidth demand. In particular, we propose a channel access mechanism and a scheduling algorithm that take into account the limitation of the high frequency band (i.e., high path loss). Multicast scheduling has emerged as one of the most promising techniques for multicast applications when multiple users require the same content from the base station. Unlike a unicast scheduler which sequentially serves the individual users, a multicast scheduler efficiently utilizes the wireless resources by simultaneously transmitting to multiple users. Precisely, it multiplies the gain in terms of the system throughput compared to unicast transmissions. In spite of the fact that multicast schedulers are more efficient than unicast schedulers, scheduling for multicast transmission is a challenging task. In particular, base station can only chose one rate to transmit to all users. While determining the rate for users with a similar instantaneous channel quality is straight forward, it is non-trivial when users have different instantaneous channel qualities, i.e., when the channel is heterogeneous. In such a scenario, on one hand, transmitting at a low rate results in low throughput. On the other hand, transmitting at a high rate causes some users to fail to receive the transmitted packet while others successfully receive it but with a rate lower than their maximum rate. The most common and simplest multicasting technique, i.e., broadcasting, transmits to all receivers using the maximum rate that is supported by the worst receiver. In recent years, opportunistic schedulers have been considered for multicasting. Opportunistic multicast schedulers maximize instantaneous throughput and transmit at a higher rate to serve only a subset of the multicast users. While broadcasting suffers from high delay for all users due to low transmission rate, the latter causes a long delay for the users with worse channel quality as they always favor users with better channel quality. To address these problems, we designed an opportunistic multicast scheduling mechanism that aims to achieve high throughput as well as low delay. Precisely, we are solving the finite horizon problem for multicasting. Our goal is that all multicast users receive the same amount of data within the shortest amount of time. Although our proposed opportunistic multicast scheduling mechanism improves the system throughput and reduces delay, a common problem in multicast scheduling is that its throughput performance is limited by the worst user in the system. To overcome this problem, transmit beamforming can be used to adjust antenna gains to the different receivers. This allows improving the SNR of the receiver with the worst channel SNR at the expense of worsening the SNR of the better channel receivers. In the first part of this thesis, two different versions of the finite horizon problem are considered: (i) opportunistic multicast scheduling and (ii) opportunistic multicast beamforming. In recent years, many researchers venture into the potential of communication over mm-Wave band as it potentially solves the existing network capacity problem. Since beamforming is capable to concentrate the transmit energy in the direction of interest, this technique is particularly beneficial to improve signal quality of the highly attenuated mm-Wave signal. Although directional beamforming in mm-Wave offers multi-gigabit-per-second data rates, directional communication severely deteriorates the channel sensing capability of a user. For instance, when a user is not within the transmission coverage or range of the communicating users, it is unable to identify the state of the channel (i.e., busy or free). As a result, this leads to a problem commonly known as the deafness problem. This calls for rethinking of the legacy medium access control and scheduling mechanisms for mm-Wave communication. Further, without omni-directional transmission, disseminating or broadcasting global information also becomes complex. To cope with these issues, we propose two techniques in the second part of this thesis. First, leveraging that recent mobile devices have multiple wireless interface, we present a dual-band solution. This solution exploits the omni-directional capable lower frequency bands (i.e., 2.4 and 5 GHz) to transmit control messages and the mm-Wave band for high speed data transmission. Second, we develop a decentralized scheduling technique which copes with the deafness problem in mm-Wave through a learning mechanism. In a nutshell, this thesis explores solutions which (i) improve the utilization of the network resources through multicasting and (ii) meet the mobile user demand with the abundant channel resources available at high frequency bands.This work has been supported by IMDEA Networks Institute.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Ralf Steinmetz.- Secretario: Carlos Jesús Bernardos Cano.- Vocal: Jordi Domingo Pascua

    Improving Location Accuracy And Network Capacity In Mobile Networks

    Get PDF
    Todays mobile computing must support a wide variety of applications such as location-based services, navigation, HD media streaming and augmented reality. Providing such services requires large network bandwidth and precise localization mechanisms, which face significant challenges. First, new (real-time) localization mechanisms are needed to locate neighboring devices/objects with high accuracy under tight environment constraints, e.g. without infrastructure support. Second, mobile networks need to deliver orders of magnitude more bandwidth to support the exponentially increasing traffic demand, and adapt resource usage to user mobility.In this dissertation, we build effective and practical solutions to address these challenges. Our first research area is to develop new localization mechanisms that utilize the rich set of sensors on smartphones to implement accurate localization systems. We propose two designs. The first system tracks distance to nearby devices with centimeter accuracy by transmitting acoustic signals between the devices. We design robust and efficient signal processing algorithms that measure distances accurately on the fly, thus enabling real-time user motion tracking. Our second system locates a transmitting device in real-time using commodity smart- phones. Driving by the insight that rotating a wireless receiver (smartphone) around a users body can effectively emulate the sensitivity and functionality of a directional antenna, we design a rotation-based measurement algorithm that can accurately predict the direction of the target transmitter and locate the transmitter with a few measurements.Our second research area is to develop next generation mobile networks to significantly boost network capacity. We propose a drastically new outdoor picocell design that leverages millimeter wave 60GHz transmissions to provide multi-Gbps bandwidth for mobile users. Using extensive measurements on off-the-shelf 60GHz radios, we explore the feasibility of 60GHz picocells by characterizing range, attenuation due to reflections, sensitivity to movement and blockage, and interference in typical urban environments. Our results dispel some common myths on 60GHz, and show that 60GHz outdoor picocells are indeed a feasible approach for delivering orders of magnitude increase in network capacity.Finally, we seek to capture and understand user mobility patterns which are essential in mobile network design and deployment. While traditional methods of collecting human mobility traces are expensive and not scalable, we explore a new direction that extracts large-scale mobility traces through widely available geosocial datasets, e.g. Foursquare "check-in" datasets. By comparing raw GPS traces against Foursquare checkins, we analyze the value of using geosocial datasets as representative traces of human mobility. We then develop techniques to both "sanitize" and "repopulate" geosocial traces, thus producing detailed mobility traces more indicative of actual human movement and suitable for mobile network design
    corecore