
UNIVERSIDAD CARLOS III DE MADRID

TESIS DOCTORAL

ALGORITHM DESIGN FOR SCHEDULING AND MEDIUM ACCESS

CONTROL IN HETEROGENEOUS MOBILE NETWORKS

Autor: Gek Hong Sim, IMDEA Networks Institute, University Carlos III of Madrid
Director: Joerg Widmer, IMDEA Networks Institute

Tutor: Ruben Cuevas Rumin, University Carlos III of Madrid

DEPARTAMENTO DE INGENIERÍA TELEMÁTICA
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Abstract

The rapid growth of wireless mobile devices has led to saturation and congestion of wireless

channels – a well-known fact. In the recent years, this issue is further exacerbated by the ever-

increasing demand for traffic intensed multimedia content applications, which include but are

not limited to social media, news and video streaming applications. Therefore the development

of highly efficient content distribution technologies is of utmost importance, specifically to cope

with the scarcity and the high cost of wireless resources. To this aim, this thesis investigates the

challenges and the considerations required to design efficient techniques to improve the perfor-

mance of wireless networks. Since wireless signals are prone to fluctuations and mobile users

are, with high likelihood, have difference channel qualities, we particularly focus on the scenarios

with heterogeneous user distribution. Further, this dissertation considers two main techniques to

cope with mobile users demand and the limitation of wireless resources. Firstly, we propose an

opportunistic multicast scheduling to efficiently distribute or disseminate data to all users with

low delay. Secondly, we exploit the Millimeter-Wave (mm-Wave) frequency band that has a high

potential of meeting the high bandwidth demand. In particular, we propose a channel access

mechanism and a scheduling algorithm that take into account the limitation of the high frequency

band (i.e., high path loss).

Multicast scheduling has emerged as one of the most promising techniques for multicast ap-

plications when multiple users require the same content from the base station. Unlike a unicast

scheduler which sequentially serves the individual users, a multicast scheduler efficiently utilizes

the wireless resources by simultaneously transmitting to multiple users. Precisely, it multiplies

the gain in terms of the system throughput compared to unicast transmissions. In spite of the

fact that multicast schedulers are more efficient than unicast schedulers, scheduling for multicast

transmission is a challenging task. In particular, base station can only chose one rate to transmit

to all users. While determining the rate for users with a similar instantaneous channel quality is

straight forward, it is non-trivial when users have different instantaneous channel qualities, i.e.,

when the channel is heterogeneous. In such a scenario, on one hand, transmitting at a low rate

results in low throughput. On the other hand, transmitting at a high rate causes some users to

fail to receive the transmitted packet while others successfully receive it but with a rate lower

than their maximum rate. The most common and simplest multicasting technique, i.e., broad-

casting, transmits to all receivers using the maximum rate that is supported by the worst receiver.
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In recent years, opportunistic schedulers have been considered for multicasting. Opportunistic

multicast schedulers maximize instantaneous throughput and transmit at a higher rate to serve

only a subset of the multicast users. While broadcasting suffers from high delay for all users due

to low transmission rate, the latter causes a long delay for the users with worse channel quality

as they always favor users with better channel quality. To address these problems, we designed

an opportunistic multicast scheduling mechanism that aims to achieve high throughput as well as

low delay. Precisely, we are solving the finite horizon problem for multicasting. Our goal is that

all multicast users receive the same amount of data within the shortest amount of time.

Although our proposed opportunistic multicast scheduling mechanism improves the system

throughput and reduces delay, a common problem in multicast scheduling is that its throughput

performance is limited by the worst user in the system. To overcome this problem, transmit

beamforming can be used to adjust antenna gains to the different receivers. This allows improving

the SNR of the receiver with the worst channel SNR at the expense of worsening the SNR of the

better channel receivers. In the first part of this thesis, two different versions of the finite horizon

problem are considered: (i) opportunistic multicast scheduling and (ii) opportunistic multicast

beamforming.

In recent years, many researchers venture into the potential of communication over mm-Wave

band as it potentially solves the existing network capacity problem. Since beamforming is capable

to concentrate the transmit energy in the direction of interest, this technique is particularly ben-

eficial to improve signal quality of the highly attenuated mm-Wave signal. Although directional

beamforming in mm-Wave offers multi-gigabit-per-second data rates, directional communication

severely deteriorates the channel sensing capability of a user. For instance, when a user is not

within the transmission coverage or range of the communicating users, it is unable to identify the

state of the channel (i.e., busy or free). As a result, this leads to a problem commonly known as

the deafness problem. This calls for rethinking of the legacy medium access control and schedul-

ing mechanisms for mm-Wave communication. Further, without omni-directional transmission,

disseminating or broadcasting global information also becomes complex. To cope with these is-

sues, we propose two techniques in the second part of this thesis. First, leveraging that recent

mobile devices have multiple wireless interface, we present a dual-band solution. This solution

exploits the omni-directional capable lower frequency bands (i.e., 2.4 and 5 GHz) to transmit

control messages and the mm-Wave band for high speed data transmission. Second, we develop a

decentralized scheduling technique which copes with the deafness problem in mm-Wave through

a learning mechanism.

In a nutshell, this thesis explores solutions which (i) improve the utilization of the network

resources through multicasting and (ii) meet the mobile user demand with the abundant channel

resources available at high frequency bands.
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Chapter 1

Introduction

With the rapid growth in the evolution of wireless technologies, billions of users shifted their

dependency from conventional wired devices (i.e., personal computer, fixed phone) to more con-

venient wireless devices such as tablet computers, and smartphones. Recent years observe a

tremendous increase towards the demand for high bandwidth applications such as video stream-

ing and news updates as well as high data exchange applications. As a result, these applications

are driving an insatiable demand for wireless capacity. Further, the evolution of the fifth gen-

eration wireless systems (5G) is expected to support multi-gigabit-per-second data transmission

rates. However, the scarcity of wireless resources has become a main problem for reliable and

efficient communications. Thus, this calls for the development of enhanced resource allocation

techniques which ensure high spectral efficiency. This thesis is dedicated to investigate such

techniques to meet the ever-increasing requirement for the scarce and costly wireless resources.

One of the main challenges towards achieving efficient communication is the unpredictable

variation of the wireless channel. This challenge can be addressed with adaptive resource allo-

cation mechanisms. Indeed, the design of efficient resource allocation schemes that can counter

channel variations is an ongoing effort for decades now. The main resource allocation schemes for

enhancing the efficiency of the wireless channel utilization are opportunistic schedulers [4]. Op-

portunistic schedulers have been proven beneficial for unicast communication when users share

the same channel and sequentially receive data via the corresponding unicast flow from the base

station. In this case, the central scheduler of the base station will, upon knowing the channel

quality of the users, transmit to the user that has the most favorable channel condition to optimize

a given utility function.

Within the past decades, opportunistic scheduling has already been considered for multicast-

ing. This is due to the capability of multicasting, which efficiently utilizes the channel resources

by means of transmitting the same content to multiple receivers simultaneously. Although apply-

ing opportunistic scheduling may seem trivial, it may not necessarily complement multicasting

and might not meet the expected performance improvement and objective of a wireless system.

Unlike a unicast scheduler, which chooses a transmit rate based on a single user, a base station

3
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with a multicast scheduler must account for the channel quality of multiple users and transmits the

same frame to them with the same rate. This issue becomes more challenging in the presence of

heterogenous channel conditions since both instantaneous and average channel qualities became

important decision parameters. In short, multicast scheduling is inherently much more complex

than unicast scheduling.

Since multicast rates are often constrained by the channel condition of the worst user, we also

consider beamforming techniques. Beamforming is capable to adjust the antenna gain depending

on the direction of interest. This allows improving the channel quality of the receivers with worst

receive rates at the expense of worsening the channel quality of the receivers with better receive

rate. The first part of this thesis addresses the complexity of designing an optimal opportunistic

scheduler for multicasting in various scenarios. We design such a scheduler for both a system

with and without beamforming.

Further, beamforming techniques are also used in technologies operating at frequencies be-

yond tens of gigahertz (i.e., mm-Wave communication) to achieve multi-gigabits-per-second data

rates. Indeed, mm-Wave communication is the future for both legacy LTE and WiFi technologies

as it offers a large swath of frequency spectrum. In addition, it potentially solve the limited capac-

ity problem in meeting the ever-growing demand for wireless resources. However, the physical

characteristics of wireless channels at such high frequencies demand for specialized scheduling

algorithms. The conventional schedulers in LTE and WiFi for sub-5-GHz bands leverage broad-

cast channels to exchange synchronization and signalling information. However, mm-Wave lacks

such benefit since signal at such a high frequency band experience severe attenuation and path

loss. Therefore, directional transmission is required at least at one communicating end. Fur-

ther, omnidirectional transmission is unreliable at such frequencies. This issue severely impairs

the carrier sensing capability. Thus, the most commonly used contention-based channel access

techniques from legacy WiFi communications are unsuitable for mm-Wave communication. As

a result, mm-Wave communication requires channel access and scheduling schemes that operate

independent of legacy carrier sensing schemes. The second part of this thesis addresses this prob-

lem and studies the underlying challenges in mm-Wave communications. Based on these insights,

we then present a novel channel access control and scheduling mechanism.

1.1. Motivations

The dominant challenge in multicast scheduling roots from the mismatch of the channel qual-

ities and the achievable data rate at each individual user within a multicast group. A Base Sta-

tion (BS) transmitting at a higher rate than the maximum rate of a user causes a decoding failure.

Conversely, a lower rate leads to inefficient channel utilization. Given that all users in a multi-

cast group must be served with a single transmission in a given time slot, determining this rate

is indeed challenging. The most basic wireless multicasting is broadcasting. Here the BS si-

multaneously transmits to all users at the rate determined by the worst user. As compared to
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broadcasting, Opportunistic Multicast Scheduling (OMS) exploits channel diversity to improve

overall throughput by transmitting at a rate higher than the broadcast rate. With OMS, the key

decisions are twofold: (i) which users to transmit to, and (ii) at what rate should the BS transmits

to the multicast group. The objective is to transmit to as many users as possible while ensuring

high throughput. Since this problem is suboptimal when tackled in a disjoint manner, the design

of an optimal multicast scheduler must ideally trade off between these decisions to achieve low

delay, high throughput, and high fairness. Precisely, these are the objectives of solving a finite

horizon problem – one of the main problem we solve in this thesis.

Regardless of the algorithm used, wireless multicasting suffers from the problem that the

transmit rate is usually determined by the receiver with the worst channel quality. To overcome

this problem, we can exploit composite or adaptive beamforming techniques to improve the chan-

nel quality of the worst user. A common solution for wireless multicast with beamforming is

to select the pattern that maximizes the minimum rate among all receivers for a given transmit

power. This technique works well in homogeneous channel conditions that is, when the long term

throughput fairness is of interest. On the other hand, in heterogeneous channel conditions, users

with better channel quality are served before the rest of the users. As expected, such aggres-

sive discrimination towards users with lower channel quality leads to extremely low short term

fairness. Since the transmission rate is determined by the channel quality of the selected users,

the root of the problem lies in the selection of the users such that both short-term and long-term

fairness are achievable. This is precisely the objective of a finite horizon problem.

Beamforming is crucial to enhance multicast throughput as it boosts the SNR at a specific

direction of interest. This feature is particularly important for mm-Wave communications because

radio signals at such high frequencies experience high attenuation and transmission losses. In

particular, directional beamforming is used to further enhance the signal quality as well as the

propagation distance. While directional transmission benefits throughput, its directional beam

only covers a specific area. This leads to a problem where users fail to overhear the ongoing

transmission when they are located outside of the coverage area. This problem is commonly

known as deafness problem. Further, the weak omnidirectional sensing of mm-Wave impedes

carrier sensing. This is particularly detrimental for the CSMA/CA access method since failure in

overhearing the ongoing transmission causes collisions, which consequently impacts efficiency.

This results in erratic deferral behavior and increased collisions, which lead to reduced fairness in

terms of channel access and channel utilization. Therefore, it is vital to rethink the channel access

protocol in order to fully exploit the abundant spectrum at extremely high frequencies.

In addition to a tailored random channel access method, mm-Wave communication also re-

quires redesigning of its scheduling mechanism in order to circumvent the deafness problem

caused by directional transmissions. This is because, without omnidirectional capability, dissem-

inating global scheduling information using narrow beamwidth in a sequential manner (i.e., sector

by sector) introduces excessive delay, potential disruption in communication, and low Quality-of-

Service (QoS). Therefore, the design of quasi- or fully-distributed scheduling mechanisms for
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mm-Wave that are independent of carrier sensing or sequential beamforming is of high relevance.

1.2. Contributions

This thesis proposes solutions which enhance the utilization of wireless network resources to

cope with high bandwidth demand.

Firstly, in Chapter 3, we present opportunistic scheduling for erasure-coded finite horizon

multicasting. The objective is to design an algorithm which ensures high throughput and low

delay, as well as high fairness. To achieve these objectives, the main contributions in this chapter

are as follows:

1. To obtained the optimal solution, we first formulate the finite horizon OMS problem as a

Dynamic Programming(Dyn-Prog) problem. This solution optimally adapts the Modula-

tion and Coding Scheme (MCS) to minimize the completion time, that is the time at which

all receivers have successfully received the required amount of data.

2. The high complexity of Dyn-Prog (i.e., the complexity increase exponential with the num-

ber of users and channel instances) renders this approach unsuitable for many practical sce-

narios. However, it serves as an intuitive baseline for the development of a heuristic method.

We thus propose a simple state-based heuristic that selects the MCS that maximizes the in-

stantaneous throughput of the receiver with the lowest number of packets received so far,

which we called Max-Min.

3. Due to the suboptimality of Max-Min as a result of not considering the channel states, we

further design a more complex adaptive algorithm. This algorithm selects the MCS that

results in the expected future system state that has the lowest expected completion time.

4. To deal with imperfect state information, we further include in the above heuristic design

an estimation algorithm called Weighted-CTe. This algorithm estimates the distribution

of the current channel state based on outdated past feedback information and predicts the

evolution of receiver states.

5. Additionally, we implement an energy model for wireless multicasting to evaluate and an-

alyze the energy efficiency of the different algorithms.

Since beamforming improves multicast rate by distributing more energy towards the weaker

users in the system, Chapter 4 presents an opportunistic beamforming mechanism for finite hori-

zon multicasting that minimizes the completion time. The main contributions are:

1. We first formulate the problem as a dynamic programming problem. This allows us to

study the characteristics and tradeoffs that should be taken into account to obtain the op-

timal beamforming pattern. In particular, this formulation allows us to study the impact
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of receiver state, instantaneous channel conditions, and average channels on the optimum

receiver set to transmit to.

2. We then conduct a study of the tradeoffs in a toy scenario with two users. We use the

insights that we get from this toy scenario to design a low complexity heuristic algorithm

called FH-OMB that captures the main characteristics of the optimum solution.

3. However, the complexity of FH-OMB increases with the number of users. To cope with sce-

narios where larger receiver sets exist, the receivers are grouped according to their channel

state and relative quality of the instantaneous channel. In order to further reduce the num-

ber of combinations, a group can only be scheduled if all groups that have better relative

channel quality and at the same time have lower or equal receiver state are also scheduled.

4. To ensure practicability, we investigate the impact of imperfect feedback on the perfor-

mance of our algorithms. To improve performance when feedback is infrequent, we also

present algorithms to estimate the channel and receiver state.

In Chapter 6, we introduce a multi-band approach. We aim to solve the deafness problem

in directional communications and achieve a fair and efficient contention-based access in IEEE

802.11ad mm-Wave networks. The main contributions are as follows:

1. As an initial step, we identify and analyze the impact of deafness on CSMA/CA in the

60 GHz band.

2. To address unreliable carrier sensing in the 60 GHz band, we propose a dual-band solu-

tion that couples the wireless interface on the 60 GHz band with the interface for legacy

WiFi frequencies. This shifts the exchange of control messages onto a legacy IEEE 802.11

channel with lower bandwidth but wider coverage. This frees up channel time for high

throughput transmission on 60 GHz.

3. Further, the proposed dual-band solution solves the deafness problem and increases MAC

efficiency by exploiting omni-directional transmissions using legacy WiFi.

Lastly, in Chapter 7, we propose a self-organized scheduling approach for a multi-hop 60 GHz

networks. Independent of other frequency band, this efficient scheduling algorithm copes with the

deafness problem and learns the scheduling through the channel access events. The contributions

are as follows:

1. We first identify the learning aspects that trigger conflict-free directional transmissions.

This allows us to the maximize the airtime usage among neighbors.

2. To design a flexible scheduler that deals with network dynamics, due to traffic and channel

variation, we introduce operations in an unslotted channel in which each slot comprises

multiple micro-slots rather than a fixed length slot. In comparison to the slotted approach,
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using an unslotted channel enables an allocation that perfectly fit the required channel time.

Precisely, each user is allocated with a different channel time based on its traffic demands

as well as the data rate of the link.

3. Although using an unslotted channel does cope with the network dynamics, it fails to min-

imize the idle time between transmission. To ensure efficient scheduling, a transmitter

initiates a backward probing procedure upon a successful transmission. As a result, we

achieve a scheduler with minimal inter-transmission idle time.

4. Lastly, we present a binary search mechanism to further reduce the idle transmission time

between adjacent allocations.
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Opportunistic Multicast Scheduling
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Chapter 2

Introduction to Multicast and Finite
Horizon Problem

2.1. Multicast

Multicast is a technique to distribute information from a single source to multiple destina-

tions simultaneously. In recent years, multicasting data to mobile users (e.g., for the purpose

of video streaming, video conferencing, Internet Protocol Television (IPTV), distribution of news

and alerts, or application and operating system updates) has gained in importance. As an example,

the most recent mobile network architecture, LTE, includes the Evolved Multimedia Broadcast

Multicast Service (eMBMS) specifically for the purpose of distributing data and mobile TV con-

tent in a cellular network. Since the amount of such traffic in cellular networks is increasing

rapidly and wireless resources are scarce and costly, improving the efficiency of wireless multi-

cast is of high practical relevance.

The simplest and most common method for wireless multicasting is broadcasting. The BS

transmits at some fixed low rate or the rate supported by the worst receiver to ensure that all re-

ceivers are able to receive the multicast transmission. This exploits the wireless broadcast gain,

allowing a single transmission to simultaneously serve all receivers. Opportunistic Multicast

Scheduling (OMS) is later introduced, and it improves over plain broadcast by exploiting mul-

tiuser diversity [49]. Having the BS transmits at a rate higher than the broadcast rate to the subset

of receivers that can receive at this rate may improve overall throughput and minimize broadcast

delay [39]. The intuition is that in an environment with variable channels, receivers that are not

served in one slot due to bad channel conditions will be served in later slots when their condi-

tions improve, and thus over time all receivers will eventually receive all the data. This method

is commonly known as a method that maximizes the multiuser diversity gain. Hence, there is a

tradeoff between multicast gain (serving all the receivers) and multiuser diversity gain (serving

only the receivers which maximizes the instantaneous throughput). Specifically, whenever the

BS transmits a packet, it is necessary to select a suitable transmit rate, i.e., MCS. Based on the

11
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channel state of the receiver’s link, the transmit MCS determines the amount of data transmitted

per time slot as well as the packet loss probability. More robust MCSs transport less data and are

more likely to be decodable.

Selecting the transmission rate and thus the subset of receivers to multicast to is a complex

problem that has been the focus of a range of OMS algorithms [1]. To simplify the scheduling

problem and improve performance when multicasting data, such algorithms often use erasure

codes to ensure that with high probability, each packet received by a receiver is useful (unless the

receiver already decoded all data) [35], i.e., the identity of the received packets is unimportant.

Fixed rate Low-Density Parity Check (LDPC) [59] or rateless Luby Transform (LT) or Raptor

codes [60] are examples of such erasure codes that work well in practice.

2.2. Finite Horizon Problem

In practice, multicasting data with a size on the order of only hundreds or several thousands

of packets is much more common, particularly for mobile networks. For example, mobile appli-

cations, news, and operating system updates often have a size of hundreds of kilobytes to several

megabytes. Also, when streaming video, it is common to apply erasure coding to blocks consist-

ing of one or several Groups of Pictures (GOP) [17]. A GOP usually comprises a few hundred

packets, depending on the video rate. Such block sizes are a suitable tradeoff between coding effi-

ciency and playout delay (caused by the decoding delay). In the following two chapters, we focus

on seeking the method to solve this tradeoff such that all users receive similar and fair quality of

service. This problem is commonly known as the finite horizon problem.

The main objective of a finite horizon multicast problem is to minimize the completion time,

i.e., the time needed for all receivers to receive enough data to decode the current block. The

relevant optimization criterion is thus the throughput achieved over the duration of a block, rather

than the long-term average throughput which is considered for the infinite horizon problem. This

makes finite horizon multicast problem inherently more complex than the infinite horizon coun-

terpart. When multicasting an infinite amount of data among a homogeneous group of receivers

(i.e., with the same average channel conditions), the optimum tradeoff between multiuser diversity

and multicast gain only depends on the number of receivers and their current channel conditions.

In expectation, differences in the amount of data received by the different receivers will even out

over time and therefore do not have to be taken into account. As a result, it is possible to exploit

opportunistic gain (multiuser diversity gain) very aggressively, since lagging receivers have an

infinite amount of time to catch up.

In contrast, the optimum decision in the finite horizon case depends on the amount of data

received thus far. More accurately, it depends on the amount of data each receiver still needs to

obtain in order to decode the full block of data and thus complete the reception. Intuitively, in case

a receiver lags behind in the reception when many other receivers are also still far from completing

the block, the lagging receiver may catch up by itself and jointly maximizing throughput for all
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receivers may be the optimum decision. If, however, all other receivers are close to completion,

optimizing the MCS only for the lagging receiver may be the optimum choice to minimize overall

completion time, as all other receivers are likely to complete before the lagging receiver in any

case. Precisely, the decision when to exploit opportunistic gain and when to favor lagging users

very much depends on the state of the receivers (i.e., the amount of data received thus far and

therefore how close the receivers are to finishing). In addition, the higher the number of users,

the higher the multi-user diversity and therefore the potential for opportunistic gain. Exploiting

opportunistic gain aggressively leads to higher average rates in the short term, but at the same

time may lead to some users finishing early, thus reducing potential future opportunistic gain.

In summary, having to take into consideration the receiver state in the optimization substantially

changes the problem compared to the infinite horizon problem. Further, it also makes it much

more challenging to find optimal solutions for the finite-horizon multicasting problem.

In the following chapters (Chapter 3 and Chapter 4), we design scheduling algorithm focus-

ing on solving the finite horizon problem for multicast scheduling and multicast beamforming,

respectively. Similar to prior work (e.g., [35]) we assume erasure coding of transmitted data,

which is highly beneficial in wireless multicast scenarios and ensures that each packet received

by a receiver is, with high probability, useful.
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Chapter 3

Opportunistic Scheduling for Finite
Horizon Multicasting

3.1. Introduction

Most of the existing OMS algorithms [35,38,39,49,50,75] consider the infinite-horizon mul-

ticast problem, where the sender has an infinite number of packets to send. The goal of the

optimization is thus to maximize the long-term throughput to all receivers. This setting is a good

approximation for the case of multicasting very large files [71]. In the infinite-horizon problem,

the average channel quality seen by an individual receiver is likely to be close to the actual average

of the channel distribution (law of large numbers). Therefore, it is unlikely to see large differences

in the number of received packets among the receivers (over a sufficiently large amount of time)

and the state of the system in terms of the number of received packets can be neglected. Never-

theless, as explained before, this is only true for the case where the receivers are homogeneous

(having the similar average channel). Otherwise, it is not optimal even when it is evaluated over

a long time interval.

In a nutshell, depending on the scenario, algorithms that are optimal for the infinite-horizon

problem may be far from optimal for the finite-horizon case.

The main contributions of this chapter are as follows:

1. We formalize the finite horizon OMS problem and propose a Dynamic Programming based

solution that optimally adapts the MCS to minimize the completion time, the time at which

all receivers have successfully received the required amount of data.

2. The high complexity of Dyn-Prog renders this approach unsuitable for many practical sce-

narios. We thus propose a very simple state-based heuristic that selects the MCS that max-

imizes the instantaneous throughput of the receiver with the lowest number of packets re-

ceived so far (called Max-Min).

3. We further design a more complex adaptive algorithm that selects the MCS that results
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in the expected future system state that has the lowest expected completion time. We es-

timate completion time using a weighted Euclidean distance metric. The corresponding

Weighted-CT algorithm measures the distance between the different possible future states

and the final state where all receivers completed, with weights based on average through-

put estimates of the receivers. To deal with imperfect state information, we further design

an estimation-based version of the algorithm, Weighted-CTe. It estimates the distribution

of the current channel state based on outdated past feedback information and predicts the

evolution of receiver states.

4. We compare the performance of our low-complexity heuristics to the optimal Dyn-Prog

solution as well as to existing approaches that greedily maximize the throughput for all

receivers and a broadcasting scheme that always transmits to all receivers. We analyze sce-

narios with homogeneous and heterogeneous receiver sets under a basic multi-state channel

model as well as Rayleigh fading. Under Rayleigh fading and with up to 16 users, the Max-

Min algorithm provides a performance gain of 95% over the broadcasting scheme and a gain

of 15% over the throughput maximization scheme. At a slight increase in complexity, the

Weighted-CT heuristic performs very close to the optimal Dyn-Prog strategy, with perfor-

mance gains of 120% and 30% over the broadcast and throughput maximization schemes,

respectively. For scenarios with more than 16 users the achieved gains are even higher.

In scenarios with imperfect information, Weighted-CTe achieves gains of up to 130% and

60% over the prior schemes in homogeneous and heterogeneous scenarios, respectively.

We further implement an energy model for wireless multicasting and analyze the energy

efficiency of the different algorithms.

This chapter is organized as follows. Section 3.2 reviews prior work. In Section 3.3 we dis-

cuss our system model, including the channel model and the MCS dependent packet loss model.

In Section 3.4, we provide the dynamic programming-based optimal scheduling algorithm, to-

gether with a basic example to provide some intuition into how the algorithm trades off receiver

throughput depending on the system state. To address the problem of state space explosion and

high complexity of the dynamic programming solution, we propose two low-complexity heuris-

tics in Section 3.5. Simulation results that compare the different algorithms in terms of comple-

tion time and energy consumption are presented in Section 3.6. Finally Section 3.7 concludes this

chapter.

3.2. Related Work

The idea of OMS was pioneered by Gopala and Gamal [49] who studied the tradeoff between

multiuser diversity and multicast gain. They analyzed the performance of three different schedul-

ing mechanisms that adapt the transmit rate to the user with the best channel, the worst channel,

and the median channel, respectively. In their follow-up work [50], they investigated the perfor-
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mance achieved by serving a fixed fraction of users. This restriction is relaxed in [20] and [35].

In [20], Ge et al. initiate a transmission if the multicast threshold is satisfied. As the threshold

is pre-determined, the transmission rate at each slot is fixed. This limits achievable throughput

in case all the receivers have good channel conditions in a slot and higher rate could be used.

Kozat et al. show that dynamic selection ratios that select more than 50% of the users can achieve

higher throughput [35]. They also present an algorithm where the user selection ratio depends on

the channels of the receivers. Both works presented in [20] and [35] exploit erasure coding for

reliable transmission.

The authors of [38] propose algorithms with a static selection ratio (fixed for all transmissions)

and a dynamic selection ratio (adapted to the instantaneous channels for each transmission) that

maximize overall throughput. In [39], the authors extend their work of [38] from homogeneous

to heterogeneous scenarios, composed of different groups of homogeneous users. A similar opti-

mization algorithm for multicast throughput maximization is proposed in [75]. While all of these

works target the infinite horizon case, in [41] the authors consider scenarios with a finite num-

ber of multicast packets. Using extreme value theory, they derive the optimal selection ratio for

each transmission that minimizes completion time. In contrast to our work, their optimization

algorithm does not consider the state of the receivers in terms of the number of received packets.

Wang et al. [73] consider both channel and receiver state for the finite horizon problem using a

disjoint formulation technique in which, in a slot, the MCS is chosen to serve the user or users

with the highest priority, which is determined based on instantaneous throughput and remaining

packets. However, the objective of this work is to improve the fairness between the users rather

than optimizing for throughput or completion time.

All of the above literatures use a simple outage based channel model, where packet errors are

deterministic. Receivers with channel conditions better than some threshold receive the packet

and all other receivers lose the packet. In real wireless systems, packet errors are much more

random and depend on noise and interference. In our model, we explicitly take the relationship

between the channel conditions, the chosen MCS, and the probability of error into account. Also

Ho et al. [26] take the probability of error into account in their formulation for maximizing the

opportunistic multicasting gain. However, their schemes is a simple instantaneous throughput

maximization and is thus not suitable for the finite horizon problem. In summary, all of the

above algorithms – except those of [41] and [73] – focus on the infinite-horizon scenario and are

sub-optimal for the finite-horizon case we consider in this chapter.

The problem of minimizing the overall delay for all users to receive a certain number of

packets is studied in [74] through a dynamic programming approach. This work does not consider

erasure coding over a larger block of data, but repeatedly multicasts a single packet until each

receiver has obtained it. The BS then multicasts the next packet in the same manner, and so

on. The goal of the optimization algorithm is therefore to minimize the number of transmissions

required to multicast a single packet to all receivers, and the state of the system is the number of

receivers that did not yet receive the packet. The algorithm adapts its decision to the changes in
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the set of users that still need to receive the packet and maximizes the throughput for those users.

The approach is mainly suitable for a single homogeneous group of users, since its complexity

increases exponentially with the number of user groups in heterogeneous scenarios. The method

of multicasting a single packet repeatedly is also much less efficient than multicasting blocks of

erasure coded packets as is done above.

The most basic scheme against which we compare our proposed algorithms is the Broadcast

algorithm (called Least Channel Gain (LCG) user rate in [1]), where the transmission rate is

limited by the receiver that currently has the worst channel. This scheme ensures successful

transmission to all receivers, but may sacrifice a lot of throughput when channels are highly

variable. We further compare against a scheme called Greedy that optimizes the selection ratio

at each transmission opportunistically based on the current channel states of all receivers so as to

maximize total throughput. This mechanism has a performance that is indicative of the different

selection ratio based throughput maximization algorithms above.

Opportunistic multicast algorithm highly depends on the availability of the instantaneous

channel information from the users. The impact of limited feedback is examined in [26] and [29].

In [26], the MCS decision is made based on the average SNR. This assumption is too conservative

since a realistic channel is also characterized by the path loss, Rayleigh fading and shadowing.

Huang et al. [29] determine the transmission rate for the opportunistic multicast scheduling in [41]

based on the recent channel conditions instead of the average SNR. Recent channels, however,

do not always accurately reflect the instantaneous channel and it highly depends on the feedback

interval, which is not explicitly defined.

In summary, our main contribution over prior work is the optimization of completion time for

finite horizon multicasting. We further model the packet error rate rather than just considering

outage, and evaluate the proposed algorithms under multipath Rayleigh fading. Lastly, we also

propose an estimation based algorithm that accounts for imperfect receiver and channel state

information.

3.3. System Model

We model the system as a time-slotted broadcast system with a single BS and N mobile users

within the coverage area of the BS. Each user must receive a block of data of B bits, called the

block size. We assume that due to erasure coding, each packet transmitted by the BS and received

by a user is useful if the user has received less than B bits. In case multiple blocks of data are to

be transmitted in succession, the BS will start transmitting the next data block only after all the

receivers received the current block.

A time slot is of fixed duration. Thus, the BS broadcasts a fixed number of symbols per slot,

which – depending on the MCS – corresponds to a variable number of bits. We assume that the

BS can select one of the M MCSs, indexed by m = 1, . . . ,M . The number of bits per slot that

can be transmitted using MCS m is denoted by Rm.
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Perfect Channel State Information (CSI) and knowledge of the number of bits a user has

successfully received is assumed to be available at the base station prior to the transmission in each

time slot. The users see independent channel instances hi[k] at each time slot k. The discrete-time

channel model for the received signal srx
i [k] at user i is given by:

srx
i [k] = hi[k]s

tx[k] + ni[k], (3.1)

where stx[k] is the signal broadcast from the BS at time slot k, and ni[k] is additive white Gaussian

noise term with power spectral density N0.

For the analysis, and in particular for dynamic programming solution, we assume a discrete

set of C possible channel realizations Hi for user i. However, the heuristics we develop also

work with continuous channels. The probability of user i seeing channel coefficient hi ∈ Hi

in slot k is αi(hi), i.e., αi(hi) = P(hi[k] = hi). The corresponding SNR is denoted by γhi
.

The vector of channels of all users, also referred to as the channel combination, is denoted by

h = {hi, i = 1 . . . , N}. We denote by H the set of all possible channel combinations, and by

α(h) =
∏N

i=1 αi(hi), the probability of a channel combination h ∈ H. Note that the total number

of channel combinations is CN .

In contrast to prior work, we do not assume deterministic channel outage but use the PER for

a given channel quality and MCS from [42]. For a channel instance hi ∈ Hi, the PER for user

i under MCS m is represented by pmi (hi), and the corresponding Packet Success Rate (PSR) is

qmi (hi) = 1− pmi (hi).

In this chapter, we use the following terms: (1) A strategy g specifies the MCS g(h) for each

channel combination h ∈ H. Hence, the total number of strategies is S = MCN
. We denote

by G, the set of all possible strategies. (2) The state consists of the vector of the number of bits

received by each user i, denoted by x = {xi, i = 1, . . . , N}. The state space X consists of all

states where the number of bits received by all users is positive and less than or equal to B.1 The

initial state where none of the users have any information is x0 and the end state where all the

users have received B bits is denoted by xB . (3) A policy μ maps any given state x ∈ X to the

strategy gμx to be used in that state. (4) The expected completion time Dμ(x) is the mean time

required to get from state x to the end state xB under policy μ.

3.4. Optimization Problem

In this section, we consider the case of memoryless channels and formulate the problem as

a stochastic shortest path problem [7] with cost per stage equal to 1 (the time needed per slot

is fixed, τ = 1) and no terminal cost. We assume that the probability of successfully receiving

1Note that to reduce the state space, we can use a normalized block size that is measured in units of the greatest

common divisor of the MCS rates instead of in bits together with a corresponding normalized rate. As an example, for

a block size of B = 1800kbits, M = 2 and MCSs with rates of 6Mbps and 9Mbps, the normalized block size is B =
600 and the normalized rate is R1 = 2 and R2 = 3, respectively.
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a packet is non-zero for every combination of MCS and channel condition, though it might be

extremely low for some combinations.

3.4.1. Dynamic programming solution (Dyn-Prog)

Let E =
{
e
∣∣ |e| = N, ei ∈ {0, 1}} be the set of all vectors of size N whose components take

values 0 or 1. The transition probability from state x ∈ X to state y ∈ X when MCS m is used

under channel combination h is given by:

ρmh (x,y) =
∑

min(x+Rme,B)=y
e∈E

(
N∏
i=1

pmi (hi)
eiqmi (hi)

1−ei

)
, (3.2)

where the above minimization is defined element-wise. Note that in case every user experiences

an erasure, the state remains unchanged.

The state space is finite, and there clearly exists a finite integer K such that there is a positive

probability of terminating after K steps irrespective of the policy. Thus, the optimal policy μ∗

satisfies Bellman’s equations for every state x:

Dμ∗(x) = min
g∈G

⎛
⎝τ +

∑
h∈H

α(h)
∑
y∈X

ρ
g(h)
h (x,y)Dμ∗(y)

⎞
⎠ , (3.3)

and the optimal strategy in state x is given by

gμ
∗
(x) = argmin

g∈G

⎛
⎝∑

h∈H
α(h)

∑
y∈X

ρ
g(h)
h (x,y)Dμ∗(y)

⎞
⎠ . (3.4)

Since the state space is finite, there are several options to solve for the optimal policy as well as

the minimum expected completion time. We choose a simple value iteration approach. Starting

from the end state xB , we use Bellmann’s equation Eq. 3.3 to determine the completion times of

the states that only depend on the end state (for which the completion time is known to be 0). We

then proceed in the same manner to determine the expected completion times of states that only

depend on states for which the completion time is already known, until the completion times for

all states are computed. This process also yields the optimum policies from Eq. 4.5.

3.4.2. A simple two user example

Consider a scenario with two users (N = 2), with identically distributed channels. Let H1 =

H2 = {L,H}, and H = {HH,HL,LH,LL}, where L and H denote channels with low and

high channel quality, respectively. The base station can choose one of three MCSs in each slot.

The probability of packet error when MCS m is used is denoted by pm(L) and pm(H) for both
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users under the low and high channel, respectively. A strategy is defined by specifying the MCS

to be used for each vector channel in H.

Here, Bellman’s equation at state {x1, x2} is:

Dμ∗({x1, x2}) =
τ +min

g∈G

∑
h∈H

α(h)
(
pg(h)(h1)p

g(h)(h2)Dμ∗({x1, x2})

+pg(h)(h1)q
g(h)(h2)Dμ∗({x1,min(x2 +Rg(h), B)})

+qg(h)(h1)p
g(h)(h2)Dμ∗({min(x1 +Rg(h), B), x2)})

+qg(h)(h1)q
g(h)(h2)Dμ∗({min(x1 +Rg(h), B),min(x2 +Rg(h), B)})

)
.

We evaluate the optimal policy in a scenario where the H and L channels for the users are

H1 = H2 = {5dB, 28dB}. The probabilities of L and H are α1(L) = α2(L) = 0.75 and

α1(H) = α2(H) = 0.25. We choose such a highly variable channel, since it makes it easier to

demonstrate the tradeoffs that the algorithm makes in the different regions of the state space. The

probability of each channel combination in H can be easily obtained by multiplying the respective

channel probabilities. For simplicity, we use M = 3 MCSs with normalized rates of R1 = 1,

R2 = 4 and R3 = 9. The PER for each MCS and channel instance is listed in Table 3.1.

Table 3.1: PER for different MCS and SNR value pairs

pmi (hi) m = 1 m = 2 m = 3

γH = 28dB 0 0 0.08

γL = 5dB 0.23 0.97 1

In Fig. 3.1, a drift vector (arrow) reflects the optimal policy at that state. It shows the expected

future state, given the optimum MCSs chosen for the different channel combinations. Hence, the

length of a vector indicates the throughput obtained by the corresponding policy. (Note that for

better readability, we only plot policy vectors for a subset of states and increase their lengths.)

We set the normalized block size B = 200. At the initial state x0 = {0, 0} the optimal policy

is g(h) = {1, 3, 3, 3}, i.e., MCS m = 1 is used for channel combination LL and MCS m = 3

is used for channel combinations LH , HL, and HH . This particular policy is a greedy policy

which gives the maximum throughput to both users. This policy is also used in almost all states

up to x = {140, 140}. Closer to the boundaries of the state space, the policy changes from greedy

to increasingly favoring the user that is lagging behind. This accounts for the fact that the leading

user is likely to finish before the trailing user, even if MCS decisions are optimized for the trailing

user. It aims to prevent the loss of multiuser diversity caused by one user finishing early. For

{140 < x1 ≤ 160, x2 < 140} and {x1 < 140, 140 < x2 ≤ 160}, the predominant policies

are g(h) = {1, 3, 2, 3} and g(h) = {1, 2, 3, 3}, respectively, where a more conservative MCS

is chosen when the trailing user has a low channel quality. This policy sacrifices throughput to

prevent the trailing user from falling further behind. Even closer to the boundaries, the policies
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are g(h) = {1, 3, 1, 3} and g(h) = {1, 1, 3, 3}, further trading off overall throughput for a higher

packet reception probability for the trailing user. When both users received a similar number

of bits and are close to the end state xB , the algorithm also chooses a more conservative MCS

indicated by a shorter arrow length to avoid overshooting (i.e., unnecessarily delivering more than

B bits to both users).

While solving the stochastic shortest path problem minimizes average completion time and

provides the optimal policy, the size of the state space and the computational complexity increase

exponentially with N , the number of users. Therefore, the above approach is not practical for

actual implementation in a network.
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Figure 3.1: Policy given by the

(Dyn-Prog) algorithm
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Figure 3.2: Policy given by the

Max-Min algorithm
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Figure 3.3: Policy given by the

Weighted-CT algorithm

3.5. State-Aware Heuristics

Due to the high complexity of the Dyn-Prog algorithm introduced in the previous section, we

propose two low-complexity heuristics that mimic its behavior.

3.5.1. Maximize minimum throughput (Max-Min) for the trailing user

This heuristic is based only on the current state and the current channel conditions. At each

slot, the user with the least number of received bits is identified as the worst user, who is most

likely to require the highest number of slots to receive all data. Note that this is indeed the

case when the users are homogeneous and have an identical channel distributions. In the case

of heterogeneous users, the users that have channel conditions that are worse (on average) are

more likely to be the trailing users and thus most likely to finish last. In each slot, the algorithm

uses the MCS that maximizes the throughput for the trailing user. If both users have the same

number of bits, the algorithm greedily maximizes sum throughput for both. Note that since the

algorithm ignores by how much the worst user is trailing, it may react too conservatively in case

the difference between users is small.

Fig. 3.2 depicts the average drift resulting from such a policy in a scenario with the same

parameter setting as explained in Section 3.4.2 for homogeneous users. There are two pre-



3.5 State-Aware Heuristics 23

dominant strategies that are used for all states off the diagonal. As Max-Min sacrifices overall

throughput in favor of the trailing user as soon as a user falls behind. The resulting strategies

are g(h) = {1, 3, 1, 3} and g(h) = {1, 1, 3, 3}. On the diagonal, Max-Min’s sum throughput

maximization leads to the same strategy as in the Dyn-Prog solution, except for the last states

before finishing. Since in contrast to Dyn-Prog, Max-Min does not explicitly take expected

completion time into account, it does not switch to more conservative symmetric strategies of

g(h) = {1, 2, 2, 2} and g(h) = {1, 1, 1, 1}, respectively. The latter would deliver (with a lower

packet loss probability) just the required number of bits to finish, compared to using the highest

MCS m = 3, which may deliver more bits than necessary or result in packet loss.

Overall, we note that compared to the optimal Dyn-Prog algorithm, Max-Min is more conser-

vative and ensures that the progression of state is with high probability along the diagonal where

both users have the same number of bits.

3.5.2. Weighted completion time (Weighted-CT)

In many cases, favoring the trailing user is overly conservative. In particular, when the num-

ber of pending bits is large for all users and the relative lag is small, the probability that the

currently trailing user actually finishes last may be small. We now present a heuristic that more

closely models the decisions taken by the Dyn-Prog algorithm to achieve a better tradeoff between

instantaneous sum throughput and balancing the number of pending bits (i.e., the state) for the

different users.

At a given slot k, with state x and channel h, we evaluate the average drift and determine the

expected next state, ym, when using MCS m as:

ymi = xi + qmi (hi[k])Rm, i = 1, . . . , N (3.5)

Note that the expected state may be real valued. We then estimate the additional time required,

on average, for all users to receive B bits given that they are in state ym. Since computing

the actual estimated remaining completion time is computationally intensive as discussed in the

previous section, we use a weighted Euclidean distance metric instead. The distance is taken as

the bits required for completion, divided by a weight that reflects the average rate at which a user

progresses through the state space. The estimated completion time τym is thus:

τym =

√√√√ N∑
i=1

(
B − ymi

wi

)2

(3.6)

and the chosen optimum MCS is m∗ = argminm τym .

We choose weight wi that is proportional to the average throughput achieved by the user under
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a hypothetical policy that chooses the MCS that maximizes the rate of each channel:

wi =
∑

hi∈Hi

max
m

αi(hi)q
m
i (hi)Rm . (3.7)

As the actual choice of MCSs in the algorithm in turn depends on the policy (and thus on the

states as well as the channels of the other users), it is hard to determine the true average rate.

At the same time, it is not necessary to estimate this rate very accurately; it is only necessary to

obtain approximately the right relative differences in user’s completion time estimates that lead to

the correct choice of MCS m∗. The hypothetical policy to determine the weights above is a very

simple but effective method to capture these approximate relative throughput differences among

the users.

In practical scenarios, the channel distribution of individual users may not be known in ad-

vance. Further, the channel statistics of a mobile user may change over time. In such settings, we

use an exponentially weighted moving average to track the user’s weight. Given an instantaneous

channel instance hi[k] at slot k, the estimated weight of user i, ŵi[k], is given by:

ŵi[k] = (1− β)ŵi[k − 1] + β
M∑

m=1

qmi (hi[k])Rm , (3.8)

where β is a sufficiently small constant.

Fig. 3.3 shows the drifts for the Weighted-CT algorithm. Our choice of weights indeed cap-

tures well the relative desirability of the different states. While the set of strategies is not as rich

as with the Dyn-Prog approach – in particular at the transition between the greedy throughput

maximization strategy and the more conservative border strategies – the strategies in most of the

state space are almost the same. Most importantly, this is true for states around the diagonal which

are much more likely to occur in reality than states far off the diagonal where the number of bits

for the two users differs a lot.

3.5.3. Weighted-CT with rate estimation (Weighted-CTe)

In the previous sections, we assumed that perfect channel and state information is available

at the BS. In practice, however, feedback from receivers is delayed and reporting channel and

receiver states information incurs overhead and can thus only be done periodically. To deal with

such imperfect and outdated information, we design an estimation-based version of the algorithm,

Weighted-CTe. It estimates the probability distribution of the current channel state based on the

outdated past feedback and predicts the evolution of receiver states.

Assume that σ is the delay between the actual channel measurement at user i and the use of

that information at the sender. The sender can now estimate the probability of the current channel
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hi[k] having the channel state hi, given the outdated channel information hi[k − σ], as

α̂k
i (hi) = P (hi[k] = hi ∈ Hi | hi[k − σ]) . (3.9)

The estimated reception probability of user i when MCS m is used is:

q̂mi (hi[k − σ]) =
∑

hi∈Hi

α̂k
i (hi)q

m
i (hi), (3.10)

With this, Eq. 3.5, Eq. 3.7 and Eq. 3.8 can be rewritten, replacing the actual reception probability

for a known channel qmi (hi[k]) with the estimated reception probability q̂mi (hi[k − σ]).

3.6. Results

In this section, we evaluate the performance of our proposed algorithms in homogeneous and

heterogeneous user scenarios and compare them to the existing Broadcast and Greedy schemes

discussed in Section 3.2. For simple scenarios (N = 2 and C = 2), we also compare our results

to the optimal Dyn-Prog solution. We start with simple scenarios to provide an intuition for

the algorithms that helps to better understand the more complex scenarios. We then study the

impact of block size B and the number of users N on the performance of the algorithms under

multipath Rayleigh fading channels with the ITU Pedestrian B path loss model [54]. The Doppler

frequency is 10 Hz and the coherence time is tc = 40 ms. Given that multicast traffic will be

sent concurrently with other unicast data traffic, only some of the slots of an LTE frame can be

used for multicast. In the simulations with Rayleigh fading, we use two out of the ten slots (or

sub-frames) of a frame for multicast. Each slot has a duration of 1 ms and thus the Transmission

Time Interval (TTI) is equivalent to 5 ms. Finally, we analyze the performance in a more practical

scenario with limited and imperfect feedback from the users.

The algorithms are evaluated with two performance metrics: the system completion time D

(in all scenarios) and the energy consumption (in the multipath Rayleigh fading scenarios). The

completion time D corresponds to the time required for all of the users in the system to receive

the whole block of data. It is measured in slots of 1 ms. The energy consumption is measured in

Joule.

In all of the simulations, we consider three modulation schemes: Quadrature Phase Shift

Keying (QPSK), 16-Quadrature Amplitude Keying (QAM), and 64-QAM, with channel coding

and data rates that are corresponding to Channel Quality Indicator (CQI)=3 to CQI=15 in [42].

The MCS determines the number of transmitted bits and the PER for the instantaneous channel

quality in a slot. The block size B used throughout this section is 6400kbits unless otherwise

specified. This block size roughly corresponds to the size of a GOP for a video with Digital

Versatile Disc (DVD) quality [16].
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3.6.1. Completion time comparison to the optimal Dyn-Prog solution in simple sce-
narios

In this section, we first analyze the performance of the different algorithms in a simple N = 2

user scenario with C = 2 channel instances and M = 13 MCSs (CQI = 3 to CQI = 15 in [42]).

In such a simple scenario, it is possible to obtain the optimum Dyn-Prog solution. The system

model that we use here is the one described in Section 3.4.2. We analyze both homogeneous and

heterogeneous user scenarios. In these scenarios, we set the stationary channel probabilities for

the H and L channel to α(H) = 0.25 and α(L) = 0.75, respectively.

3.6.1.1. Homogeneous network

In the homogeneous scenario, both users have the same channel statistics but independent

channel instances. We present the results of increasing the channel variability δ, where δ is

the SNR difference between the H and L channel of each user. Here, the lowest δ is 0.7dB

(γH = 9.0dB and γL = 8.3dB) and the highest δ is 20.0dB (γH = 21.0dB and γL = 1.0dB). The

H and L channel pair of a user is picked such that the average throughput the user would obtain

in a single-user scenario does not change. As δ increases, the SNR of the H channel increases

and the SNR of the L channel decreases.

Fig. 3.4 shows how channel variation impacts the performance of the algorithms in a homo-

geneous scenario. In this scenario, both Greedy and Weighted-CT perform close to the optimal

Dyn-Prog solution. As the users have the same channel distribution, exploiting opportunistic gain

and maximizing the instantaneous throughput as Greedy does is a good strategy. The low com-

plexity heuristic, Weighted-CT, weighs the homogeneous users equally according to Eq. 3.7 and

transmits with the MCS that leads to the expected future state with the lowest completion time

using Eq. 3.5 and Eq. 3.6. Weighted-CT trades off the instantaneous opportunistic throughput

and the homogeneity of the receiver states to minimize the completion time in a manner similar

to Dyn-Prog. It thus performs slightly closer to Dyn-Prog than Greedy. In contrast to Greedy,

Weighted-CT exploits opportunistic multicast less aggressively in case this leads to one of the

users trailing too far behind. However, since the users are homogeneous, this does not happen

often and therefore the performance differences are small.

Broadcast performs worse than the other schemes because its transmission rate is limited by

the lowest instantaneous channel. The impact is more pronounced when δ is larger since the

SNR of the L channel is lower. Generally, Max-Min performs worse than the other schemes but

Broadcast. In case the trailing user has a better instantaneous channel than the other user, Max-

Min transmits at a higher rate than Broadcast, which is beneficial in a homogeneous scenario

since exploiting opportunistic gain is a good strategy. However, when the trailing user has a

worse instantaneous channel, Max-Min may send at the broadcast rate, and thus performs worse

than Dyn-Prog, Weighted-CT, and Greedy. For δ = 3.7dB, transmitting at the broadcast rate is

the right decision. Here, all schemes transmit at the broadcast rate except for Max-Min, which
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thus performs worse.

Note that the completion time of Greedy, Weighted-CT and Dyn-Prog is not constant – it first

increases, then slightly decreases – although the hypothetical single user throughput would be

equal for the different δ, as described in the setup above. This change is due to the fact that the

algorithms select the transmit rate depending on the channel instances of both users and thus the

distribution of transmit rates is different from the single-user case.2
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Figure 3.4: Homogeneous network with increasing channel variability δ for N = 2 and B =
6400kbits.

3.6.1.2. Heterogeneous network

In a heterogeneous channel scenario, the good user (g) has a better average channel than the

bad user (b). In Fig. 3.5, we evaluate the completion time when increasing the average SNR

of the good user γ̄g from 2.8dB to 22.8dB and fixing the average SNR of the bad user γ̄b at

2.8dB. Higher average SNR results in a higher rate, thus as an overall trend the completion time

decreases. Here, the difference between each the H and L channels of both users is always

δ = 12.4dB.

On the left extreme of Fig. 3.5 (at γ̄g = 2.8dB), the users are homogeneous and the relative

performance of the algorithms is as discussed in Section 3.6.1.1. Weighted-CT performs close

to the optimal Dyn-Prog for all γ̄g. This confirms that also for heterogeneous scenarios, the

computation of ymi and τmy based on the average rate estimate wi leads to MCS decisions almost

identical to those of Dyn-Prog. When γ̄g is low (users are homogeneous), it maximizes aggregate

user throughput, whereas when γ̄g is high (users are heterogeneous), it is more conservative

towards the bad user.

2For example, in the single-user case, H = {H,L} and the probability to transmit at the rate that corresponds to

H is α(H) = 0.25 and α(L) = 0.75 for L. In the two-user case, H = {HH,HL,LH,LL}. Here, maximizing the

opportunistic gain is optimal and the probability to transmit at the rate for H is α(H) = α(HH)+α(HL)+α(LH) =
0.44 and at the one for L is α(L) = α(LL) = 0.56.
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When the difference between the good and the bad user is sufficiently large (at γ̄g = 8.8dB),

Greedy’s completion time increases drastically and for higher γ̄g it performs worse than the other

algorithms. For these high channel differences, serving the good user alone provides a higher sum

throughput than serving both users. Therefore Greedy serves users sequentially – first the good

user at a high rate until the user finishes and only then the bad user. In contrast, Broadcast and

Max-Min schemes which always favor the trailing user outperform the Greedy scheme. Broadcast

is the best strategy when it is optimal to only serve the user with the worst channel (for γ̄g ≥
14.8dB). At γ̄g = 12.8dB, Max-Min performs slightly worse than Broadcast because with some

small probability the good user may still trail, causing the algorithm to transmit at a too high

rate resulting in a very low PSR at the bad user. Max-Min experiences an increase in D for

γ̄g = 4.8dB for the same reason.

To further analyze the algorithms, we show the instantaneous sum throughput at each time

slot, averaged over 200 simulation runs. Instantaneous sum throughput is the total throughput

of the users remaining in the system in a given slot. Fig. 3.6 shows a homogeneous scenario,

corresponding to γ̄g = 2.8dB in Fig. 3.5. Fig. 3.7 shows a heterogeneous scenario, corresponding

to γ̄g = 12.8dB in Fig. 3.5. Note that the user throughput is zero for a user that has already

received all the data.
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Figure 3.5: Heterogeneous network with increasing heterogeneity for N = 2 and B = 6400kbits.

It is optimal to exploit opportunistic gain and serve the better user when the users are ho-

mogeneous. Therefore, Fig. 3.6 shows that Broadcast achieves a lower sum throughput than the

other schemes because its rate is limited by the worst instantaneous channel. Consequently, the

users finish later than the other schemes (taking between 500 to 600 slots). Max-Min transmits at

a higher rate when the trailing user has a better channel and thus achieves higher sum throughput

than Broadcast. As discussed before, the performance of Weighted-CT and Greedy is close to the

Dyn-Prog scheme, which is also evident in the sum throughput curves.

Fig. 3.7 shows the sum throughput of the schemes when users are heterogeneous. At time

slots ≤ 100, Greedy has the highest sum throughput because it first transmits at a high rate to
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the good user only, to maximize opportunistic gain. The good user can be served at around

three times the rate of the bad user. Consequently the sum throughput drops significantly in time

slot ≈ 100 slots when the good user finishes, leaving only the bad user in the system. Clearly,

in this scenario serving primarily the bad user is the better strategy, since also the good user will

receive those data.
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Figure 3.6: Instantaneous sum throughput

for a homogeneous network.
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Figure 3.7: Instantaneous sum throughput

for a heterogeneous network.

In contrast to Greedy, with Dyn-Prog, Broadcast, and Weighted-CT the users finish relatively

close together, since the algorithms serve both users simultaneously. However, Dyn-Prog has a

higher sum throughput than Max-Min, Broadcast, and Weighted-CT for time slots ≤ 100 slots.

The optimum strategy is to opportunistically favor the good user as long as both users have a

small difference in terms of the amount of received data. This effect is depicted in Fig. 3.8 where

the state space visited by the Dyn-Prog algorithm is shown. The darker the square, the more often

the corresponding states are visited. The good user receives more data than the bad user at the

beginning of the transmission (i.e., when the bad user has 2000kbits, the good user usually has

≈ 3000kbits, but may have as few as 2000kbits). For time slots ≥ 100 slots in Fig. 3.7, Dyn-Prog

transmits at the rate of the trailing bad user to ensure that the bad user catches up. Since a scheme

that transmits at the rate of the bad user sometimes serves only the bad user, Dyn-Prog yields a

lower sum throughput than Broadcast, Max-Min, and Weighted-CT for time slots ≥ 100 slots.

Fig. 3.8 reflects the characteristic of Dyn-Prog serving the bad user for xbad ≥ 1500kbits and

xgood ≥ 2500kbits where the progress along the x-axis (bad user) is larger than that for the good

user.

Weighted-CT has a lower sum throughput than Dyn-Prog (see Fig. 3.7) for time

slots ≤ 100 slots because the computation of the expected completion time is sub-optimal – it

does not take into account all of the (exponential number of) strategies that the optimal Dyn-Prog

algorithm explores. From Fig. 3.9, we see that the sub-optimality of Weighted-CT causes it to be

more conservative at the beginning of the transmission, and in turn achieves a slightly higher rate
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later on since the states of the good and bad user are closer together. Nonetheless, Weighted-CT

performs very close to Dyn-Prog compared to the other algorithms for all γ̄g since Dyn-Prog’s

slightly more aggressive initial behavior only provides a marginal reduction in completion time.
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Figure 3.8: State space visits for Dyn-Prog
at γ̄g = 12.8dB.
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Figure 3.9: State space visits for

Weighted-CT at γ̄g = 12.8dB.

3.6.2. Completion time comparison in multipath Rayleigh fading networks

In the following, we use the flat multipath Rayleigh fading model with path loss (ITU-R

Pedestrian B [54]) and evaluate the performance in both homogeneous and heterogeneous scenar-

ios for different numbers of users N (see Section 3.6.2.1) and block sizes B (see Section 3.6.2.2).

From this section onwards, due to the complexity of Dyn-Prog mentioned in Section 3.5, we only

evaluate the performance of Weighted-CT, Greedy, Max-Min and Broadcast.

In a homogeneous scenario, we place the users equidistant from the BS while in the heteroge-

neous scenario, the users are randomly distributed within the cell coverage area of radius 250m.

The multipath Rayleigh channel distributions of the users are independent and identically dis-

tributed (i.i.d.). The transmit power is set such that the edge user is still able to receive data with

some probability of success at the lowest MCS. Note that since we use the pedestrian channel

model, the rate of change in channel SNR is rather low.

3.6.2.1. Impact of increasing the number of users N

Here, we observe the impact of increasing N exponentially from 2 to 64 and fixing B at

6400kbits. Fig. 3.10 and Fig. 3.11 show this impact for a homogeneous and heterogeneous sce-

nario, respectively. The completion time increases with N because a higher N increases the

probability that there is a user with a low SNR channel. To make it easier to compare the rela-

tive performance of the schemes, we also include a graph that shows the relative increase of the

completion time for each scheme compared to the best scheme, for each scenario.
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Homogeneous scenario. The channel variation (i.e., the difference between the best and the

worst channel instance) of the Rayleigh fading channel is high and thus we can observe similar

relative performance between the schemes in Fig. 3.10 and Fig. 3.4 (a homogeneous 2 user sce-

nario in Section 3.6.1.1) for δ ≥ 10dB. As mentioned, the optimal scheme for homogeneous

scenario is the one that exploits opportunism and transmits at a higher rate to achieve maximum

throughput at each time instant. Therefore Weighted-CT and Greedy achieve a lower D compared

to the other schemes. As N increases, which user is the trailing user changes more often and

the trailing user may be a user with a better channel. Since it is better to opportunistically serve

users with better channel in a homogeneous scenario, Max-Min performs better than Broadcast.

Broadcast performs worst and its completion time increases with N because the probability that

there exist a user with a very low SNR in a given slot is higher for higher N .
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Figure 3.10: Impact of increasing N for homogeneous multipath Rayleigh fading scenario for

B = 6400kbits.

Heterogeneous scenario. In Fig. 3.11, the heterogeneity (i.e., the difference of the average

channels) between a user and its nearest neighbor is higher when the number of users in the

system is small. Therefore, we observe that the relative performance of the schemes in a Rayleigh

fading channel (see Fig. 3.11) for small N is similar to the performance of the heterogeneous

2 user scenario (see Fig. 3.5 in Section 3.6.1.2) for higher γ̄g. According to the explanation in

Section 3.6.1.2, Broadcast performs close to optimal and Greedy that optimizes for opportunistic

gain performs worst when there is one clearly worst user. As N increases, the user’s density

increases and thus the users that are close to each other have a very small difference in terms of

the average channels. This resembles a homogeneous scenario. In such a scenario, transmitting at

the broadcast rate and conservatively serving all users results in higher D than using opportunistic

gain among the users that are near each other. Therefore Greedy performs better than Broadcast

for higher N . For high N , the multicast rate is highly affected by the users located at the edge of

a cell (i.e., edge users). Since the trailing user is normally an edge user, Max-Min may by chance

serve the correct users. Therefore, it outperforms Greedy for serving the important users and
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Broadcast since it is less conservative. As before, Weighted-CT outperforms all other schemes

since it exploits the users’ weight and optimizes the rates at which the edge users are served.
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Figure 3.11: Impact of increasing N for heterogeneous multipath Rayleigh fading scenario for

B = 6400kbits.

3.6.2.2. Impact of increasing the block size B

Here, we fix N to 16 and examine the impact of increasing B exponentially from 50kbits

to 25600kbits. For ease of the comparison, the results are presented in terms of normalized

completion time, Dn = D/B. Fig. 3.12 and Fig. 3.13 illustrate the impact of increasing B on

Dn. When B is small, a scheme requires very few slots to receive a block and thus the number of

the channel samples is small. Due to this, the average SNR of the channel samples and the average

SNR of the channel distribution may differ significantly. Note that D is determined by the worst

users in the system. If the average SNR of the channel samples of some of the users is lower

than the average SNR of the channel distribution, this causes a higher D. This impact reduces for

larger B. According to the law of large numbers, for larger B, the average SNR obtained from

the larger number of channel samples is closer to that of the distribution. The larger D allows the

system to stay in steady state (where all users are still far from finishing) for a longer period of

time. As a consequence, Dn becomes flatter (i.e., the increase in D is approximately linear with

B).

Homogeneous scenario. When B is small (e.g., B = 50kbits), the users with a better instan-

taneous channel are more likely to finish very early (within very few slots) and the users with a

worse instantaneous channel remain in the system. In such a scenario, an algorithm performs best

if it serves all the users at the rate of those with the worse channel instances. Therefore Broadcast

performs well. Weighted-CT performs best since it is more conservative towards the users with a

worse instantaneous channel. In contrast, Greedy performs worst because it at first serves users

with a better instantaneous channel and only serves the users with worse instantaneous channel

later. Max-Min selects a user among the trailing users randomly when more than one user has the

lowest amount of received data. When this randomly selected trailing user is not the user with the
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worst instantaneous channel, it yields a higher instantaneous throughput but this causes longer D

in the future. For larger B, the performance difference is as explained in Section 3.6.2.1 for the

homogeneous scenario when N = 16.
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Figure 3.12: Impact of increasing B for homogeneous multipath Rayleigh fading scenario for

N = 16.

Heterogeneous scenario. In a heterogeneous scenario, the reason for the performance dif-

ference between Greedy, Max-Min, and Broadcast in Fig. 3.13 for small B is similar to that

explained for Fig. 3.12. Greedy performs worst regardless of B since it always favor the better

users (refer to Section 3.6.1.2 for a detailed explanation). Since serving the worse users is im-

portant in this scenario, Max-Min always performs better than Greedy because the trailing user is

one of the worse users. Weighted-CT performs slightly worse than Broadcast for B = 50kbits

because for a very short completion time, there is a discrepancy between the estimated rate (com-

puted using Eq. 3.8) of the channel samples and that of the channel distribution. This incorrect

rate estimation causes Weighted-CT to make the wrong decisions (i.e., choosing a wrong MCS).

For larger B, higher number of channel samples allows Weighted-CT to estimate the users’ rate

and completion time more accurately and thus it performs better than the other schemes.

3.6.3. Evaluation of the energy consumption

This section presents the energy consumption of the experimented schemes in the homoge-

neous and heterogenous multipath Rayleigh fading scenarios with perfect feedback.

At slot k, a user is either in the on state or in the idle state. A user is in the on state if it

is scheduled for reception and idle state otherwise. The parameters for computing the energy

consumption are listed in Table 3.23.

As expected, the energy consumption is proportional to the completion time. This can be seen

in the homogeneous scenario where a scheme with the lowest completion time (Weighted-CT) in

Fig. 3.10 (see Section 3.6.2.1) has the lowest energy consumption in Fig. 3.14.

3 The energy consumption in LTE system is presented in [28] and [5]. We ignore the energy consumed by the wake

up operation since it is less than 5% of the energy consume in an idle state [28].
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Figure 3.13: Impact of increasing B for heterogeneous multipath Rayleigh fading scenario for

N = 16.

Table 3.2: LTE power model parameters

Symbol Description Value

ξon on’s state base power 1210.7± 85.6 (mW)

ξidle idle’s state base power 594.3± 8.7 (mW)

θdl Power per Mbps 51.97 (mW/Mbps)
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Figure 3.14: Average energy consumed

in homogeneous multipath Rayleigh fading

scenario for B = 6400kbits.
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Figure 3.15: Average energy consumed in

heterogeneous multipath Rayleigh fading

scenario for B = 6400kbits.

Although Weighted-CT has lower completion time than Greedy in Fig. 3.11, its average en-

ergy consumption is higher (see Fig. 3.15). The energy consumption is not only affected by the

completion time but it is also affected by the number of slots a user stays in the on state. Table 3.2

shows that a user in the on state consumes more than twice the amount of base energy than it does

in the idle state. In a heterogeneous scenario, Weighted-CT consumes higher average energy than

Greedy because it tries to serve more users and transmits at a lower rate than Greedy. Transmit-

ting at lower rate causes the better users to stay in the on state for more slots. In contrast, Greedy

first transmits at a high rate and reduces the number of slots the better users stay in the on state.
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As a result, its average energy consumption is lower. Increasing N does not decrease the rates at

which users are served hence the average energy consumption of Greedy remains the same as N

increases. In contrast, for Weighted-CT, a higher N causes more users to stay in the system for a

longer time and thus its average energy consumption increases with N in Fig. 3.15.

In summary, the average energy consumption depends on two main factors: the completion

time and the percentage of the slots the users stay in the system (especially in the on state).

3.6.4. Impact of imperfect and limited state information

The schemes presented in this chapter need either the channel state or the receiver state in-

formation or both to select an MCS. In wireless networks, frequent feedback of the state in-

formation substantially increases system overhead and thus reduces system throughput. In this

section, we examine the impact of imperfect feedback information on all schemes. We also in-

clude Weighted-CTe that estimates the probability distribution of the current channel state based

on the outdated past feedback (see Section 3.5.3). First, we analyze the impact of increasing the

feedback interval (i.e., reducing the frequency of feedback) of the state information. We then

study the effect of limiting the number of users that periodically feed back their state information

to the BS.

3.6.4.1. Impact of the feedback interval

As mentioned above, transmitting feedback at each slot is costly. Here, we model a feedback

system where users only send feedback every λ slots. We then analyze the impact of the feedback

interval λ on the completion time D. The feedback slot (the slot at which a user reports) is

asynchronous, but λ is the same for all users.

We choose λ ∈ {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} (these are the common periodic

feedback intervals in an LTE system [57]), such that we can observe the impact of λ when it

is less than or greater than tc = 40ms. For λ ≤ tc, the current channel state and the one

reported in the last feedback (i.e., the last available channel state) are correlated, otherwise, they

are uncorrelated. When feedback is unavailable, the BS updates the receiver state assuming that

the amount of data received in the current slot is equivalent to that reported in the last available

feedback packet. When feedback is available, the BS updates the receiver state to the current

receiver state.

Fig. 3.16 and Fig. 3.17 depict the impact of different feedback intervals λ on D in the homoge-

neous and the heterogeneous scenarios, respectively. D increases with λ because the correlation

between the current channel state and the last available channel state decreases and thus the un-

certainty about the channel state increases. As mentioned, the receiver state is updated regardless

of the availability of feedback information. The difference between the current and the estimated

receiver state is usually small and thus has a minimal impact on the chosen MCS. Hence, delayed

channel state has a much higher impact than the receiver state on the completion time.
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Figure 3.16: Impact of increasing λ for

a homogeneous multipath Rayleigh fading

scenario, B = 6400kbits, N = 16.
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Figure 3.17: Impact of increasing λ for

a heterogeneous multipath Rayleigh fading

scenario, B = 6400kbits, N = 16.

Fig. 3.16 and Fig. 3.17 show that D continuously increases with λ. For λ > tc, the last

available channel state is only useful up to time tc. From time tc until the next feedback is

received, the current and the last available channel state are uncorrelated. Therefore, increasing

λ beyond tc increases the fraction of time where the current and the last available channel state

are uncorrelated. When comparing the impact of λ on D in the homogeneous (see Fig. 3.16) and

the heterogeneous (see Fig. 3.17) scenarios, the impact is greater in the latter. In a homogeneous

scenario (with a sufficiently large N), the difference between the chosen MCS based on the last

available channel state and the one that would be chosen based on the current channel state is

usually small. In contrast, in a heterogeneous scenario, an outdated channel state may cause an

algorithm to select a very different MCS compared to the MCS that would be selected based on

the current channel state since the MCS largely depends on the channel state of a small subset of

users. Choosing either a too low or too high MCS increases D. As a result, the impact of delayed

state information is higher in the heterogeneous scenario than in the homogeneous scenario. For

λ > tc, although Weighted-CT may make the wrong MCS choice due to outdated last feedback,

it performs as good as or better than the other schemes except for Weighted-CTe.

Weighted-CTe outperforms the other schemes in all scenarios, especially for higher λ. The

MCS that is chosen for an outdated channel is the one that is optimal for the distribution of the

estimated channel (since little is know about the channel). As a result, Weighted-CTe that picks the

MCS using channel estimation significantly outperforms all the other schemes especially for high

λ. With channel estimation, the completion time of Weighted-CTe improves over Weighted-CT by

17.5% and 30% in homogeneous and heterogeneous scenarios, respectively. As mentioned, the

difference of the selected MCS between the current channel state and the last available channel

state is larger in the heterogeneous scenario therefore the impact of channel estimation is more

evident in this scenario.

We also investigate the performance of Broadcast, Max-Min, and Greedy when channel es-

timation similar to Weighted-CTe is applied. Due to space limitation, we exclude the graphs.
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With channel estimation, Max-Min and Greedy achieve improvements of up to 29% and 21%,

respectively in terms of D compared to Max-Min and Greedy without channel estimation. In

contrast, Broadcast with channel estimation performs worse than all the other schemes, includ-

ing the Broadcast scheme without channel estimation. This is because the estimated channel of

Broadcast is the worst channel in the channel distribution.

3.6.4.2. Impact of interval feedback from fewer users

In this sub-section, the feedback load is further decreased by reducing the number of reporting

users (Nrep). We examine the minimum Nrep for each scheme that achieves the same D as that

when all users give feedback. We first elaborate the method on the selection of the reporting users.

We then present the minimum Nrep for N = {2, 4, 8, 16, 32} for a feedback interval λ = 20ms.

Regardless of N , Broadcast decides its transmit rate based on the worst instantaneous chan-

nel. Max-Min decides based on the channel of the trailing user. Therefore, the minimum Nrep

for Broadcast and Max-Min is one. Since Weighted-CT and Weighted-CTe favor the users with

lower receiver state (these users require longer time to receive B), these users are selected as the

reporting users. Greedy maximizes throughput and it highly depends on the complete instanta-

neous channel statistic to achieve an opportunistic gain, thus it performs better for higher Nrep.

For Greedy, the reporting users are selected randomly.

In Fig. 3.18 and Fig. 3.19, we show the minimum Nrep required by each scheme for different

N . Note that we do not show the completion time here. The completion time is similar to that

depicted in Fig. 3.10 (for a homogeneous scenario) and Fig. 3.11 (for a heterogeneous scenario)

since for λ = 20ms the current channel state and the last available channel state are still cor-

related. In Fig. 3.10, Greedy performs close to Weighted-CT but the required Nrep is more than

twice as large as that of Weighted-CT (see Fig. 3.18), and consequently has higher overhead than

Weighted-CT.
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Figure 3.18: Nrep in a homogeneous multi-

path Rayleigh fading scenario, λ = 20ms.
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Figure 3.19: Nrep in a heterogeneous multi-

path Rayleigh fading scenario, λ = 20ms.

As depicted in Fig. 3.18 and Fig. 3.19, Nrep increases with N for Weighted-CTe, Weighted-CT,

and Greedy because more users are needed to reflect the channel statistics of the important users
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for each scheme. For Greedy to realize the opportunistic gain, the feedback from one user is as

important as any other users in the system and thus a higher Nrep is required.

In Fig. 3.18, it is interesting to note that the minimum Nrep of Weighted-CTe is lower than

that of Weighted-CT in the homogeneous scenario. As explained in the previous section (Sec-

tion 3.6.4.1), a high λ reduces the number of MCS choices when channel estimation is used.

Therefore, only a small Nrep is needed for Weighted-CTe. On the other hand, Weighted-CT has

a wider range of MCS choices thus including more users results in smaller D. As discussed in

Section 3.6.4.1, in the heterogeneous scenario, it is important to select the edge users since the

completion time is determined by those users. The number of the edge users increases with N and

thus Nrep is larger for larger N . Weighted-CT and Weighted-CTe have the same Nrep in Fig. 3.19

except for N = 16. This small difference is caused by the number of MCS choices as explained

above.

To recap, the minimum number of reporting users Nrep depends on the network scenario.

Since users are usually randomly distributed in actual mobile networks, they are heterogeneous.

As shown in our result (see Fig. 3.19), the BS (for any algorithm it uses) can achieve its best

performance with low overhead because it only needs feedback from a small fraction of users in

the system to achieve the minimum completion time for each scheme.

3.7. Conclusions

In this chapter, we investigated the finite horizon opportunistic multicast scheduling problem,

where a wireless base station transmits a fixed amount of erasure coded data to a set of receivers.

We designed an algorithm based on dynamic programming that to the best of our knowledge, is

the first to explicitly take into account the system state in terms of the received amount of data

at each receiver for the selection of the optimum modulation and coding scheme. In addition to

the well known tradeoff between broadcast gain and multi-user diversity gain that is inherent to

opportunistic multicast scheduling, the finite horizon nature of our problem introduces an inter-

esting further tradeoff, namely that of equalizing the completion times of the users versus the

total system throughput. This tradeoff is state dependent. Intuitively, throughput maximization

is a reasonable strategy as long as users are far from finishing, whereas the closer users are to

finishing, the more important it becomes to allow lagging users to catch up rather than optimizing

throughput for all. Based on these insights, we designed two simple and practical heuristics that

perform close to the more complex dynamic programming solution and that outperform existing

approaches that do not consider the receiver state.

We performed an extensive range of simulations for homogeneous as well as heteroge-

neous user scenarios and show that our heuristics outperform the existing Greedy and Broadcast

schemes by as much as 30% and 120%, respectively, in Rayleigh fading scenarios. Since reducing

the system overhead improves the system throughput. We also present results on the impact of

increasing the feedback interval and reducing the number of users that give feedback on the pro-
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posed schemes. In particular, we extend our heuristic to estimate the current channel state based

on outdated last feedback. This extension further improves performance by 17.5% and 30% in

homogeneous and heterogeneous scenarios, respectively.
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Chapter 4

Opportunistic Beamforming for Finite
Horizon Multicasting

4.1. Introduction

Wireless multicast is an efficient technique to disseminate multimedia data to groups of users.

Using the broadcast nature of the wireless medium allows data to be served to multiple users

simultaneously, but at the same time this constrains the transmit rate to the rate that can be sup-

ported by the receiver with the worst channel conditions. If, however, there are some receivers

that on average have worse channels than the rest, exploiting multiuser diversity and transmitting

preferentially to the users with better channels by giving to the good receivers is detrimental to

performance. Here, the overall rates are still limited by the worst receivers.

To overcome this problem, transmit beamforming can be used to adjust antenna gains to the

different receivers. This allows improving the SNR of receivers with bad instantaneous chan-

nels at the expense of worsening those of receivers with better instantaneous channels. There are

two main techniques for multi-user beamforming: (i) composite beamforming [67] and (ii) adap-

tive beamforming [3]. A composite beam is composed of multiple pre-determined single-lobe

beam patterns. In contrast, adaptive beamforming calculates antenna weights directly based on

the measured channels to the different receivers. While composite beamforming has lower com-

plexity, adaptive beamforming may achieve better performance in multi-path rich environments.

Similar to opportunistic multicast, the main challenge when designing multi-user beamforming

mechanisms is the tradeoff between high gain beamforming to few receivers versus lower gain

beamforming to a larger receiver set [56, 67, 78].

Most of the prior work solving the multicast beamforming problem aims at maximizing the

rates of the receivers, which is optimal for the infinite horizon problem (i.e., where an infinite

amount of data is to be sent). In contrast, we analyze the more realistic finite horizon problem

where the BS sends a block of data of a certain size to all receivers.

We first model the problem and obtain the optimum solution via dynamic programming. This

41
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allows us to study the impact of receiver state, instantaneous channel conditions, and average

channels on the optimum receiver set to transmit to, and hence the optimum beamforming pat-

terns. First, we study these tradeoffs in toy scenarios with two users. These insights allow us to

design a low complexity heuristic algorithm that captures the main characteristics of the optimum

solution and at the same time can run in real-time in practical wireless scenarios.

We then present a range of simulation results for larger scenarios with homogeneous and het-

erogeneous receiver sets and Rayleigh fading channels. While the complexity of the dynamic

programming solution prevents us from solving those larger problem instances optimally, we

see that our proposed heuristic provides significantly better performance than solutions based on

broadcasting or greedily maximizing rates. Note that both the broadcast and greedy mechanisms

use beamforming and take the instantaneous channel conditions into account. The greedy mecha-

nism is thus optimal for the infinite horizon case (or problem instances with very large block sizes)

in homogeneous scenarios as shown in [40]. The broadcast mechanism makes use of beamform-

ing to maximize the minimum rate and hence does not suffer from receivers with bad channel

conditions as much as conventional OMS. It corresponds to the solution in [78] that is optimal

for scenarios with fixed channels but may be too conservative in case of variable channels. It is

also optimal for scenarios with variable channels where the receiver set is highly heterogeneous

and one receiver has a significantly worse average channel than the other receivers.

In practice, feedback arrives with a certain delay and the feedback frequency has to be set

sufficiently low so as not to create excessive feedback overhead. We investigate the impact of

imperfect feedback on the performance of the algorithms and extend our heuristic algorithm to

make decisions based on partial information and estimated channel and receiver state.

Similar to prior work mentioned above, we assume erasure coding of transmitted data, which

is highly beneficial in wireless multicast scenarios and ensures that each packet received by a

receiver is useful (with high probability).

This chapter is structured as follows. A review of state-of-the-art for opportunistic multicast

and multicast beamforming is given in Section 4.2. In Section 4.3, we model the finite horizon op-

portunistic multicast beamforming problem and provide an optimum solution based on dynamic

programming. We design a low complexity heuristic, FH-OMB, in Section 4.4, and in Section 4.5

we compare its performance to the optimum solution and the greedy and broadcast schemes pro-

posed in prior work for both perfect and imperfect feedback scenarios. Section 4.6 concludes the

chapter and provides an outlook on future work.

4.2. Related Work

Opportunistic Multicasting: Opportunistic multicasting has been well studied for both the

infinite horizon problem [35, 38, 39, 50, 75] as well as the finite horizon problem [41, 62, 63].

Among the first ideas to address the infinite horizon problem for homogeneous scenarios was to

split the receivers into two groups according to their instantaneous channels and serve the group
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with the better channel quality. As the composition of the group changes from slot to slot, all

users have equal chances to be served [20,49,50]. This work was extended in [35] by optimizing

the selection ratio, i.e., the size of the receiver set to transmit to. As a single pre-computed

selection ratio is not always optimal, [39] and [41] propose a dynamic user selection mechanism

that depends on the instantaneous channel at each transmission.

The authors of [41] solve the user selection problem for the finite horizon case using extreme

value theory to minimize completion time. However, the user selection is only based on the

instantaneous channel but not on the user state (i.e., the amount of data received by users). In

wireless systems with packet loss, this is suboptimal since users may have received a different

number of packets. The problem is addressed in [62, 63], where it is shown that the optimal

solution for the finite horizon problem needs to take receiver state into account.

The main challenge of opportunistic multicasting is to cope efficiently with receivers with

bad channel conditions. In this context, transmit beamforming can be used to balance the users’

SNRs.

Multicast Beamforming: Multicast beamforming provides a trade off between multicast gain

and beamforming gain. Beamforming to receivers with poor channel conditions improves the

SNR at these receivers (but at the same time lowers SNR at other receivers). The basic algorithm

proposed in [56] first transmits omnidirectionally to the receivers that have a high SNR and then

beamforms sequentially to the remaining weak receivers. Better performance can be achieved

by selecting the beamforming vector that maximizes the minimum SNR among all multicast

receivers [13, 61]. In [67], receivers are partitioned into groups that are scheduled sequentially,

which may outperform mechanisms that always beamform to all receivers. The work proposes

two multicast beamforming mechanisms, one that splits power equally among all beams and

one that allows for asymmetric power allocation. Both mechanisms use composite beamforming,

where a multi-lobe beam pattern that serves multiple receivers is composed of multiple single-lobe

beam patterns. In [78], the authors improve upon this work and provide an optimal solution for

the equal power split and two different heuristics for the (NP-hard) asymmetric power allocation

mechanism. Both [67] and [78] consider the finite horizon problem but do not take channel

variations and opportunistic scheduling into account.

The same problem is addressed in [3] using adaptive beamforming rather than composite

beamforming. Adaptive beamforming may provide better antenna gains than composite beam-

forming, in particular in multipath environments, but at the same time determining the optimum

beamforming pattern is more complex.

Opportunistic Multicast Beamforming: There is very little existing work that jointly takes op-

portunistic multicast scheduling and multicast beamforming into account. A theoretical analysis

of the optimum user selection ratio for opportunistic multicast beamforming using extreme value

theory is provided in [40]. Once the user group is determined, the optimal beamforming pattern

is the one that maximizes the minimum SNR among the users that are served. The algorithm

is designed for independent and identically distributed users (i.e., homogeneous scenarios) for
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the infinite horizon multicast problem. A similar work in [21] also focuses on the same infinite

horizon problem and proposes an instantaneous throughput maximization algorithm. We show

that these approaches are not suitable for the finite horizon multicast problem, especially for het-

erogeneous user distributions. Other relevant works presented in [11, 18, 58] improve throughput

by exploiting the Multiple-Input and Multiple-Output (MIMO) capability, which are a different

mechanism that is not the focus of this work.

This chapter differs from prior work in that it addresses finite horizon opportunistic multi-

cast beamforming in homogeneous and heterogeneous scenarios and explicitly takes into account

receiver state (i.e., the amount of data already received) to minimized delay.

4.3. System Model

We consider a wireless network with a single BS (or access point) and a set T of multicast

receivers, with |T | = N . We assume the channels between the BS and the receivers are indepen-

dent discrete memoryless channels.1 Let G denote the set of all possible vector channels from the

BS to the receivers. The probability that at a given time instant the channel vector C has channel

gains g ∈ G is given by P (C = g). Let Ci, gi, and Gi denote the corresponding channel instance,

gain, and set of possible channels for receiver i. As is common for opportunistic scheduling, we

assume that the BS has perfect knowledge of the current channel instances, but for any future

channel instances only the channel distribution is known.

The BS uses composite beamforming. The antenna array has K antenna patterns that are

optimized to produce one strong single-lobe beam that covers a sector of approximately 3600

K and

that together cover the whole azimuth of 3600. A composite beam is a multi-lobe beam pattern

composed of several single-lobe beams that are transmitted simultaneously [67]. Each single-lobe

beam k has a certain beam weight αk. This weight corresponds to the fraction of the total transmit

power allocated to that beam, and thus determines the SNR at the receivers covered by the beam.

To ensure that the total radiated power remains unchanged, we have the constraint
∑

k αk = 1.

Let k∗i be the strongest single-lobe beam that covers receiver i and let γi,SLB
gi denote the SNR at

that receiver when using that single-lobe beam when the channel gain is gi. Then the SNR of that

receiver for a multi-lobe beam is

γigi = αk∗i γ
i,SLB
gi .

We consider a time-slotted model. In each time slot the BS transmits data to the receivers us-

ing a certain modulation and coding scheme (MCS) and beamforming pattern. For MCS m ∈ M ,

the number of bits transmitted in a slot is Rm and the corresponding packet reception probabil-

ity for an SNR of γ is pm(γ). Note that we assume that receiver i will only be served when a

multi-lobe beam is used with αk∗i �= 0.

1Note that our heuristic works for continuous channels and we provide simulation results for Rayleigh fading

channels in Section 4.5.
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4.3.1. Problem formulation

The BS has a block of data of size B (in bits) to transmit to all receivers. An erasure code is

applied to the data before transmission, so that each data packet is useful for each receiver that

receives it, as long as that receiver has obtained less than B bits so far.

The optimization problem is thus for the BS to select at each time slot the multi-lobe beam

pattern with corresponding weights as well as the MCS that minimizes the expected completion

time. Optimal choice of beam pattern and MCS depend on the current instantaneous channel, the

probability distributions of the channels, and the amount of data received by the receivers so far.

When beamforming to a subset of receivers T ′ ⊆ T , the highest expected rate to those re-

ceivers is obtained by selecting beam weights α∗
k that maximize the minimum SNR at the re-

ceivers. Let T ′
k = {i ∈ T ′ : k∗i = k} ⊆ T ′ be the subset of receivers served by beam k. The

minimum SNR of receivers in T ′
k for a single-lobe beam pattern and a given channel g is

γSLB
g (T ′

k) = min
i∈T ′

k

γi,SLB
gi (4.1)

and, as shown in [78], the optimum weights for the multi-lobe beam pattern are thus given by

α∗
k =

⎧⎨
⎩
(
γSLB
g (T ′

k)
∑K

j=1,T ′
j �=∅

1
γSLB
g (T ′

j)

)−1
, ifT ′

k �= ∅
0, otherwise

(4.2)

This results in the same minimum SNRs for all lobes of the multi-lobe beam. Hence, all receivers

in T ′ are served with the MCS that provides the highest expected rate

m∗ = argmax
m

Rmpm(α∗
kγ

SLB
g (T ′

k)) . (4.3)

Thus, rather than optimizing over all possible beam weights, it is sufficient to optimize over

all possible subsets of receivers.

Note that the algorithm in [78] always serves all receivers associated with a given beam, while

this is no longer optimal for opportunistic multicast. Consider a scenario where all receivers are

located in the same beam. This is the conventional OMS scenario for which it is well known that

broadcasting to all users is not always optimal [35].

4.3.2. Dynamic programming solution for multicast beamforming

With this we can formulate the problem as a stochastic shortest path problem and solve it

through dynamic programming [7]. The state is given by the amount of data received by the

receivers so far s = [s1 ... sN ], 0 ≤ si ≤ B and we denote the state space by S .2 As all time slots

have the same duration, the cost per slot is 1.

2Given that there is a discrete set of rates Rm, many states cannot be reached and we remove these states from the

state space to speed up the computation.
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When multicasting to a subset T ′ of receivers with an instantaneous channel of g, the transi-

tion probability from state s to state s′ is

ρT
′

g (s, s′) =

∑
min(s+Rm∗e,B)=s′

e∈E

(
N∏
i=1

pm∗(γigi)
ei(1− pm∗(γigi))

1−ei

)
(4.4)

where the vector minimization above is element-wise. E =
{
e ∈ {0, 1}N}

is the set of binary

vectors of size N and ei is the ith element of e, indicating whether receiver i received the packet or

not. The MCS m∗ is calculated according to Eq. 4.3. Eq. 4.4 takes into account all combinations

of which receivers receive the packet and ensures that the state of receivers with si = B does not

change.

A policy μs : G �→ ⋃
T ′⊆T T ′ specifies the best subset of receivers to transmit to for any

instantaneous channel g when in state s. Let M bet the set of all possible mappings. Since the

probability of terminating after a finite number of steps is positive, we can use Bellman’s equation

to find the optimal policy

μ∗
s = argmin

μs∈M

⎛
⎝∑

g∈G
P (C = g)

∑
s′∈S

ρ
μs(g)
g (s, s′)D∗(s′)

⎞
⎠ . (4.5)

The corresponding optimal expected completion time is

D∗(s) = min
μs∈M

⎛
⎝∑

g∈G
P (C = g)

∑
s′∈S

ρ
μs(g)
g (s, s′)D∗(s′)

⎞
⎠ . (4.6)

Given that the state space is finite we can solve the dynamic program through value iteration,

starting from the final state sB . This optimization problem is hard and even a much simpler

version of it with fixed channels (i.e., no opportunistic scheduling), as well as guaranteed packet

delivery without errors is NP-hard [78].

The dynamic program has double exponential complexity. The state space has size BN and

for each state there are 2N
|G|

policies that map each of the channel states in G to one of the 2N

possible multi-lobe patterns. Also |G| itself is exponential in N . Clearly, the dynamic program

can only be solved for very small problem instances. For this reason, in the next section we design

a lower complexity heuristic.

4.4. Heuristic Algorithm for Multicast Beamforming

Our proposed Finite-Horizon Opportunistic Multicast Beamforming (FH-OMB) heuristic has

two main parts: 1) given the current instantaneous channel, computing the next states the system
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could move to using the different multi-beam lobes that correspond to multicasting to the different

subsets of receivers, and 2) estimating the expected completion times from those new states. The

decision taken by the heuristic is then to beamform to the subset of receivers that results in moving

to the state with the lowest expected completion time.

4.4.1. Instantaneous beamforming decision

Let the current state be s and the current instantaneous channel be g. Assume the estimated

completion times D(s′) for all future states are known. When beamforming to T ′ ⊆ T we can

calculate γSLB
g (T ′

k), α
∗
k, and the resulting optimum MCS m∗ using Equations (4.1)–(4.3). The

expected future state s′(T ′) is given by

s′i(T
′) = min

(
si +Rm∗pm∗(γigi), B

) ∀i (4.7)

and the optimum subset of receivers T ∗ to beamform to is thus

T ∗ = argmin
T ′⊆T

D(s′(T ′)) . (4.8)

In contrast to the dynamic programming formulation we compute expected average future state

rather than looking at all combinations of possible future states based on packet loss events. Note

that this still requires minimization over a number of completion times that is exponential in the

number of receivers, which can be done exhaustively for small receivers sets.

For larger receiver sets, we cluster receivers according to their state si and relative quality

of the instantaneous channel. The rate receiver i would obtain with the current channel gi for a

single-lobe pattern is R(i) = maxmRmpm(γi,SLB
gi ), and the average rate that is obtained under

all possible channels is

R̄(i) =
∑
gi∈Gi

P (Ci = gi)max
m

(
Rmpm(γi,SLB

gi )
)
. (4.9)

The relative channel quality is R(i)/R̄(i). Let 0 = ξ1 < ξ2 < ... < ξU = B be a set of state

thresholds and 0 = θ1 < θ2 < ... < θV = ∞ be a set of relative channel quality thresholds. We

then group all receivers with

Tuv =
{
i ∈ T : ξu ≤ si < ξu+1, θv ≤ R(i)/R̄(i) < θv+1

}
where the total number of groups is UV . In Eq. 4.8, we now optimize over subsets T ′ ⊆ T that

include whole receiver groups (i.e., if one of the receivers in a group is included, the whole group

must be included). We set the thresholds so that the receivers are distributed relatively evenly

among the groups. In order to further reduce the number of combinations, a group can only be

scheduled if all groups that have better relative channel quality and at the same time have lower
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or equal receiver state are also scheduled. Fig. 4.1 shows an example of a 3-by-3 grouping of

receivers, with the x and y-axis showing receiver state and relative channel quality, respectively.

Scheduling a darker color block marked “Scheduled” requires that all blocks with lighter color

marked “Required” also have to be scheduled.

Re
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 ch
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l 

Receiver state 

Figure 4.1: Sample for 3-by-3 user grouping. The scheduled receivers (Required) are scheduled

because of the scheduled receivers (Darker block)

With this, the maximum number of combinations and thus the complexity of FH-OMB is

O

(
(V + U − 1)!

U !(V − 1)!

)
. (4.10)

The number of beamforming patterns is fixed for fixed values U and V.3

4.4.2. Estimating the expected completion time

The main complexity of the dynamic programming solution lies in the calculation of the

expected completion time. Hence, this is what the heuristic primarily addresses. As only the

instantaneous channel is known at the BS, we base the expected completion time of a future state

on the average channel of the receivers. Due to the shape of the rate function, simply averaging

the channel would overestimate the receive rate. Hence we first calculate the average single-lobe

rate of receiver i, R̄(i), as given by Eq. 4.17 and then set the receiver’s average SNR γ̄i,SLB
g such

that

max
m

(
Rmpm(γ̄i,SLB

g ))
)
= R̄(i) . (4.11)

For fixed SNRs and a continuous rate function, according to [78] the maximum rate when

multicasting to a receiver set is obtained for a multi-lobe beam pattern that encompasses the

whole receiver set. Analogous to Equations (4.1) and (4.2), for a receiver subset T ′ we can derive

γ̄SLB
g (T ′

k) as well as ᾱ∗
k based on the average SNRs γ̄i,SLB

g calculated above. The corresponding

hypothetical average rate is given by

R̄(T ′) = R̄(T ′
k) = max

m
Rmpm(ᾱ∗

kγ̄
SLB
g (T ′

k)) . (4.12)

We have R̄(T ′) = R̄(T ′
k) for any non-empty lobe k, since all lobes have the same minimum rate.

3From the simulations we find that a reasonably low value for U and V (i.e., U = V = 4) suffices in practice,

leading to a fixed number of subsets to consider for the optimization.
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With this, we can now approximate the expected completion time as follows. For a given

state s, let T ′
1 = {i ∈ T : s′i < B} be the set of receivers that still require further packets and let

s
′(1)
max = maxi∈T ′

1
s′i be the state of the receiver(s) closest to completing. When multicasting to this

receiver set at rate R̄(T ′
1) given by Eq. 4.12, one or more of the receivers would complete after

a time τ1 = (B − s
′(1)
max)/R̄(T ′

1). Determine the set of remaining receivers T ′
2 = {i ∈ T ′

1 : s′i <
s
′(1)
max} and set s

′(2)
max = maxi∈T ′

2
s′i to calculate τ2, etc. In general,

τj = (B − s
′(j)
max)/R̄(T ′

j) . (4.13)

In other words, the estimation algorithm proceeds diagonally through the state space until hitting

a boundary with si = B for one of the dimensions, then proceeds diagonally along that boundary

until hitting the next one, and so on, until reaching the final state. The algorithm terminates after

at most N steps. The expected completion time is given by

D(s′) =
∑
j

τj . (4.14)

Accounting for opportunistic gain: When determining τj above, we assume that receivers in T ′
1

are served first, then receivers in T ′
2, etc. This ignores that receiver sets will be selected based

(also) on their instantaneous channels. As a consequence, R̄(T ′) is a conservative estimate of the

actual rate at which this receiver group is served, since they are more likely to be served when

their channel is good. We refine Eq. 4.13 to take into account opportunistic gain as follows.

We assume that receivers in groups T ′
1 and T ′

2 are served during τ1 + τ2. If the channels of the

receivers in T ′
1 \ T ′

2 are good, group T ′
1 will be served, otherwise group T ′

2 will be served. Hence,

receivers in T ′
1 see better average channels (since some of the beam weight α that was required

for receivers in T ′
1 \T ′

2 can now be used for other beams) whereas there is no change for receivers

in T ′
2. We remove the worst fraction τ2/(τ1 + τ2) of channel combinations of the receivers in

T ′
1 \ T ′

2 and update their average channels accordingly. We then recompute Equations (4.12) and

(4.13) and obtain a new τ ′1. Similarly, the calculation of τ ′2 is based on receiver groups T ′
2 and

T ′
3, and so on. The completion time is then calculated as D(s′) =

∑
j τ

′
j . Note that this is still a

conservative estimate of the opportunistic gain.

Example and discussion:

To provide an intuition for the completion time estimation, we discuss an example for a two-

receiver case in Fig. 4.2. In a two-user scenario, there are only three possible beamforming

patterns serving receiver sets {1}, {2}, or both {1, 2}. For {1} and {2}, single-lobe beam patterns

with maximum array gain to the respective receiver are used, whereas for {1, 2} the multi-lobe

beam that equalizes the SNRs of the receivers is chosen. In the latter case, both receivers are

served at the same rate and have the same packet loss probability. For each of the average future

states s′({1}), s′({2}), and s′({1, 2}) we compute the expected completion time. Consider, for
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Figure 4.2: Completion time estimation with the FH-OMB heuristic.

example, s′({2}). Since both users have not yet finished, we calculate the number of time slots τ1

required for the first receiver to have B bits. In the example this is receiver 2. We then compute τ2

required for the second user to complete, based on the single-lobe pattern to that user only. Using

τ2, we can recompute the first segment to obtain τ ′1 that partially accounts for opportunistic gain.

τ ′2 = τ2 since there is no opportunistic gain for a single receiver. The actual path that is taken

through the state space (shown with a dotted line) depends on the actual instantaneous channel

conditions at future states and is generally shorter than the sum of the estimated path segments.

An important observation is that determining the exact completion time is not important.

What is important is to have approximately the right relative differences among completion times

of nearby states (in this case s′({1}), s′({2}), and s′({1, 2})), such that the right instantaneous

beamforming decisions are taken. As a consequence, it is possible to use average channels instead

of all possible channel combinations, without incurring a substantial drop in performance.

4.4.3. Estimation algorithms

In the previous sections we assumed perfect information for the instantaneous channel and

receiver states upon which the BS bases the decision which subset of receivers to scheduled. In

practice, however, feedback always comes with a delay (at least the delay for the preparation and

transmission of the feedback frame), and often even such delayed feedback may not be available

for all receivers. For example, to reduce feedback overhead, feedback for a receiver may be sent

only once each so-called “feedback interval”, rather than in each slot. We further assume that the

receivers transmit their feedback asynchronously to the BS, i.e., feedback information of different

receivers is outdated by a different degree. In such cases, it is essential that the algorithm takes into

account the inaccuracy of the state information, rather than directly using the feedback. To this

end, we design algorithms to estimate the receiver and channel states and refine the computation

of the expected completion time in Eq. 4.14 to take into account imperfect feedback.

It is important to note that the estimation of the instantaneous beam pattern (based on the
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estimated channel) and that of the future beam patterns (based on the average rate) are different.

To estimate the instantaneous beam pattern, the BS must first estimate the instantaneous channel

based on the last known channel information and the time elapsed since this channel information

was received. In contrast, to estimate the future beam pattern, it is important to estimate the

average rate at which the receivers progress. However, simply averaging the estimated channels

and assuming that the future rates are given by the MCS that maximizes the rate for this average

estimated channel is a poor estimator of the future rate. We therefore design more sophisticated

estimation algorithms that use the distribution of the estimated channels to determine the future

rate and thus obtain a more precise expected completion time. The following subsections discuss

the algorithms in more detail.

4.4.3.1. Receiver state estimation

Receiver state estimation is highly important to schedule the right subset of receivers, but also

relatively straightforward. We estimate the expected amount of received data when up-to-date

receiver state information is unavailable as follows. When a node is scheduled, it receives Rmpm

packets on average, where pm is the receive probability. Rm is determined from the beamforming

pattern based on the estimated channel state, which will be explained next. In each slot, the BS

assumes that a receiver receives Rmpm more packets if it is scheduled, and zero packets otherwise.

Whenever the BS receives a feedback frame, it updates the receiver state with the reported correct

receiver state.

4.4.3.2. Channel state estimation

Using outdated channel knowledge when the instantaneous channel information is unavailable

results in inaccurate beam weights α∗
k in Eq. 4.2. Consequently, a system may wrongly boost the

SNR of better receivers and vice versa. This impacts the system’s performance and the problem

escalates when the erroneous beam pattern causes a wrong selection of the receiver subset. In

what follows, we describe an algorithm to estimate the channel in the absence of instantaneous

channel information.

At a time slot t, assume that the outdated channel gain of receiver i which was reported λ slots

ago (delayed by λ ms) is gi[t− λ] ∈ Gi. The probability that a channel Ci has a gain gi given the

outdated channel is expressed as follows:

P (gi) = P (Ci = gi, gi ∈ Gi | gi[t− λ]) . (4.15)

Obtaining P (gi) for all gi ∈ Gi gives the probability distribution of the current channel when the

feedback frame is delayed by λ. The resulting estimated channel gain is

ĝi =
∑

gi,gi∈Gi

P (gi) gi ∀λ = [0, λmax]. (4.16)
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The corresponding estimated channel instance, channel gain vector and SNR when using a single

lobe beam are Ĉi, Ĝi, and γi,SLB
ĝi

, respectively. Note that after feedback is received, it ages in

subsequent slots, until new feedback becomes available. It is therefore important to determine the

channel distributions for all possible delays λ. Fig. 4.3 shows that a larger λ contributes to a wider

distribution of the expected channel because a longer delay causes higher channel uncertainty.
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Figure 4.3: The distribution of the estimated channel SNR for different λ.

Once the γi,SLB
ĝi

for all receivers are obtained, we compute the optimum weights for the multi-

lobe beam pattern in Eq. 4.2 by replacing γi,SLB
gi in Eq. 4.1 with γi,SLB

ĝi
.

4.4.3.3. Completion time

Section 4.4.2 explains the computation of expected completion time taking into account op-

portunistic gain when perfect feedback is available. If, however, channel information is outdated,

exploiting opportunistic gain becomes more difficult (i.e., the higher the channel uncertainty, the

more likely it is that the perceived ‘opportunity’ in fact no longer exists and exploiting it would

be detrimental to performance). We take this effect into account when calculating estimated com-

pletion time.

As mentioned earlier, obtaining the beam pattern to compute the expected completion time is

different than that to obtain the instantaneous beam pattern. Since the distribution of the future

channels is determined by the estimated channels (for different λ), the future beam pattern (which

determine the progress of the receivers) is also influenced by the distribution of the received rate

given by the distribution of the estimated channels. Consequently, the computation of the average

future rate and the beam patterns associated with it is more complex than that in Eq. 4.12, where

instantaneous feedback is available.

Computing the expected completion time requires the average rate of the receivers. To obtain

the average rate, we first estimate the average channel of the receivers and then compute the beam

weight that gives the average rate. However, as explained in Section 4.4.2, due to the shape of

the rate function, the average estimated channel should be derived from the average rate. This
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is because simply averaging the estimated channels would results in an overestimation of the

average channel thus gives an inaccurate average rate.

On that account, we first compute the average estimated rate based on the distribution of the

estimated channel Ĝi from Eq. 4.16 and its corresponding MCS which maximizes the rates of

each estimated channel as follows:

R̂(i) =
1

λmax

λmax∑
λ=0

⎛
⎝∑

ĝi∈Ĝi

P(Ĉi = ĝi)max
m

(
Rmpm(γi,SLB

ĝi
)
)⎞⎠ (4.17)

To take delayed feedback into account, Eq. 4.17 includes equally distributed λ since the BS ex-

periences an increasing delay of up to λ = λmax before it receives the feedback where λ = 0 and

this is repeated until the receiver has received all the intended data.

The corresponding average estimated channel γ̄i,SLB
ĝi

based on R̂(i) that is used to determine

the beam weight is then derived as follows:

max
m

(
Rmpm(γ̄i,SLB

ĝi
))
)
= R̂(i) . (4.18)

The average estimated rate for a receiver subset T ′ is obtained by replacing γ̄SLB
g in Eq. 4.12

with γ̄SLB
ĝ from Eq. 4.18. Lastly, the expected completion time is computed based on the average

estimated rate in Eq. 4.18 instead of R̄(T ′) in Eq. 4.12.

4.5. Results

In this section, we present simulation results to analyze the performance of the algorithms.

We first investigate a simple scenario with two receivers and a two-state channel to compare the

optimal dynamic programming solution (Dyn-Prog) and the finite horizon opportunistic multicast

beamforming heuristic (FH-OMB) and gain insights into the optimum strategy and fundamental

tradeoffs. We then investigate more realistic scenarios with multi-path Rayleigh fading channels,

larger number of receivers, and larger block sizes. For these, we do not provide dynamic pro-

gramming results as the run time is prohibitive due to the algorithm’s complexity. The multi-path

Rayleigh fading channel corresponds to the ITU Pedestrian B path loss model in [54]. For all

the scenarios, we use a subset of 13MCSs given in the LTE specification for the 20MHz LTE

downlink model (with modulation schemes QPSK, 16-QAM, and 64-QAM, and code rates from

0.1885 to 0.9258). The corresponding transmit rates range from 5Mbps to 95Mbps. A time slot

has a duration of 1ms. The main performance metric is completion time, i.e., the number of time

slots needed for all receivers to receive B kbits.

We compare the performance of Dyn-Prog and the FH-OMB heuristic with two alternative

mechanisms:

1) Broadcast Algorithm: Broadcast uses a multi-lobe beam pattern that covers all receivers i with

si < B, maximizes the minimum SNR across all lobes, and serves the receivers with the optimum
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MCS m∗ for that SNR as given in Equations (4.1)–(4.3). This scheme is presented in [78] and it

is shown to be optimal for constant channels with fixed SNR.

2) Greedy Algorithm: For Greedy, we sort the receivers with si < B according to their instanta-

neous channel quality, given by the single-lobe SNR γi,SLB
gi . Let T1 be the receiver set that includes

the receiver with the best channel (that hasn’t finished yet), T2 be the set of the two receivers with

the two best channels, etc. The algorithm then determines the receiver set to beamform to as

T ∗ = argmax
Tj

∑
i∈Tj

Rm∗pm∗(γi,SLB
gi ) .

The optimum receiver set is the one with the highest overall sum rate for all receivers that have

not yet finished. This algorithm corresponds to the one proposed in [40] and works well for

homogeneous receiver sets.

4.5.1. Simple scenario

In this section, we present the results for a simple scenario with N = 2 receivers and block

size B = 1000kbits. Each receiver i has two possible instantaneous channels (gi = {Hi, Li}
where H and L represents the channel with a higher and lower SNR, respectively), such that

G = {H1H2, H1L2, L1H2, L1L2} with P (Ci = Hi) = P (Ci = Li) = 0.5 ∀i. We analyze a

homogeneous scenario and a heterogeneous scenario.

4.5.1.1. Homogeneous scenario

In this scenario receivers have the same set of channels (H = H1 = H2, L = L1 = L2). We

investigate the impact of channel variability, σ = γSLB
H −γSLB

L , i.e., the difference between the high

gain channel and the low gain one. (For example, the left most point of Fig. 4.4 has γSLB
H = 10dB,

γSLB
L = 9dB, σ = 1dB and the right most point has γSLB

H = 18dB, γSLB
L = −4.7dB, σ = 22.7dB).

γSLB
H and γSLB

L values are chosen such that with single-lobe beamforming the receivers would

achieve the same average rate and hence we can compare relative rate changes as the variability

increases.

As shown in Fig. 4.4, both Greedy and the FH-OMB heuristic perform almost as good as the

optimal Dyn-Prog. As both receivers have the same channel distribution, differences in receiver

state are likely to cancel out over time and maximizing the instantaneous sum rate as Greedy does

is a good strategy. Only when one receiver is close to finishing and the other receiver is lagging

further behind may it be beneficial to favor the lagging receiver instead. Note that the graph also

shows 95% confidence intervals but due to the large number of simulation runs they are very

small.

For small channel variability (σ < 3dB), the maximum sum rate is achieved by serving both

receivers for any of the channel combinations, hence Broadcast and Greedy have the same per-

formance. Once the channel variability is increased beyond this point, beamforming only to the
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Figure 4.4: Completion time in a homo-

geneous scenario with increasing channel

variability.
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Figure 4.5: Average throughput over time

for a homogeneous scenario with channel

variability σ = 11.5dB.

receiver with a good channel when the other receiver has a bad channel (H1L2, L1H2) provides

higher throughput than beamforming to both receivers. Hence, Broadcast is unnecessarily con-

servative by always serving both receivers and its completion time increases substantially as the

channels become more variable.

Since in such a homogeneous scenario maximizing sum throughput is almost always the right

strategy, Greedy even slightly outperforms FH-OMB for higher channel variability. Due to this

variability, receiver states may differ enough so that FH-OMB’s conservative completion time

estimate prevents it from opportunistically exploiting good channels as aggressively as Greedy.

This can be seen in more detail in Fig. 4.5, which shows average system throughput per time slot

(averaged over all simulation runs and over both receivers, where receivers that finished have 0

throughput) for the scenario with channel variability σ = 11.5dB. Throughput of FH-OMB starts

out the same as that of Dyn-Prog and Greedy, but drops off slightly once receiver states becomes

more heterogeneous and one receiver is close to finishing. Fig. 4.6 shows the completion time

estimates for the dynamic programming algorithm (left) and the FH-OMB heuristic (right) for

the same scenario (i.e., σ = 11.5dB). FH-OMB’s completion time estimate based on average

channels underestimates completion time when the channel is more variable, but the relative

differences in estimated completion time for the different states for the two algorithms are very

similar. FH-OMB’s completion time estimation algorithm thus leads to the right beam-forming

decisions in most cases. The performance gap is due to the fact that FH-OMB’s completion time

estimate is slightly less “round” than the true estimate, making it appear more beneficial to stay

close to the diagonal where both receivers have the same state.

It is interesting to note that the completion time increases for 1dB ≤ σ ≤ 11.5dB and then

decreases again. When channel variation is low, both receivers are likely to finish at approximately

the same time. The higher σ , the more likely it becomes that one receiver finishes earlier than

the other, which increases completion time given by the maximum of the individual completion

times. When increasing σ even further, completion times reduce since with a good channel, only
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Figure 4.6: Expected completion time for Dyn-Prog (left) and FH-OMB (right) for σ = 11.5dB.

very few time slots are needed to complete. There is a significant probability that one of the

receivers will finish very early, and the system can then serve the remaining receiver at a higher

rate with the corresponding single-lobe beam.

4.5.1.2. Heterogeneous scenario

For the heterogeneous scenario, we fix the γSLB
H1

= 11dB and γSLB
L1

= −1.4dB of the first re-

ceiver. For the second receiver, we vary γSLB
H2

between 11dB and 31dB and γSLB
L2

between −1.4dB

and 18.6dB, so that the two receivers become more and more heterogeneous as the channel values

for the second receiver increase.
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Figure 4.7: Completion time in a hetero-

geneous scenario with increasing average

SNR of the better receiver γ̄SLB
2 (i.e., re-

ceiver 2).
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Figure 4.8: Average throughput over time

for a heterogeneous scenario γ̄SLB
2 =

14.2dB.

As the γSLB
H2

and γSLB
L2

increase, completion time decreases for all algorithms. Greedy performs

close to optimal for the first three data points where receivers are sufficiently homogeneous and

the optimum strategy is to beamform to the receiver with high channel gain when one receiver

has high channel gain and the other receiver has low channel gain. Here, Broadcast is again
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too conservative. The jump in Greedy’s completion for the next data point is due to the fact

that from this point on the good channel of the better receiver is so good that Greedy favors the

receiver exclusively in that case and only serves both receivers when the good receiver has a low

channel gain. In contrast, Broadcast’s strategy to balance the rates and forego opportunistic gain

becomes closer and closer to optimal as the scenario becomes more heterogeneous and from an

average SNR of γ̄SLB
2 ≥ 17dB on is the optimal strategy. The weak performance of Greedy can be

explained from Fig. 4.8, where Greedy achieves high throughput until the first receiver finishes at

less than approximately 18 time slots. The second receiver is still far from finishing as evidenced

by the throughput curve flattening out around 30 time slots. FH-OMB performs close but is sub-

optimal compared to Dyn-Prog, since the expected completion time is slightly inaccurate. The

comparison in Fig. 4.9 shows that the expected completion time of FH-OMB algorithm (right) is

less “round” than that of Dyn-Prog (left). Thus FH-OMB is more conservative and it sacrifices

higher instantaneous rates to ensure that the relative difference in receiver state does not diverge

too much.
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Figure 4.9: Expected completion time for Dyn-Prog (left) and FH-OMB (right) for γ̄SLB
2 =

14.2dB.

To provide further insights into the behavior of the algorithms we show the state space visits in

Fig. 4.10–4.13. As expected Broadcast keeps the two receivers very close to the diagonal where

both receivers have the same amount of data, and slight deviations from the diagonal are only

due to packet loss. Greedy in contrast makes quick progress until the second receiver finishes and

for the remaining time only has the first receiver to serve. In fact, the steps with which the good

receiver makes progress with Greedy can clearly be seen in Fig. 4.11. FH-OMB serves receivers

similar to Dyn-Prog early on but then becomes too conservative as the good receiver progresses

and beamforms more to the lagging receiver to balance receiver states.

In this section, we show simulation results for a flat multipath Rayleigh fading channel, where

the channel does not change within a time slot. The Doppler shift for the Rayleigh channel is set

to 10Hz, corresponding to a slow fading channel for receivers moving at walking speed. Receivers

are randomly distributed within the coverage area. The BS transmit power is set to 43dBm. With
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Figure 4.11: State space visits for Greedy at

γ̄SLB
2 = 14.2dB.
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Figure 4.12: State space visits for Dyn-Prog
at γ̄SLB

2 = 14.2dB.
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Figure 4.13: State space visits for FH-OMB
at γ̄SLB

2 = 14.2dB.

this, a cell edge receiver that is 250m from the BS is able to receive a packet with the lowest MCS

with an average probability of 30%. The block size B is set to 6400kbits.

We study the impact of increasing the number of receivers N from 2 to 64 with different num-

ber of beamforming lobes (i.e., K = {2, 4, 8, 16}), again for a heterogeneous and a homogeneous

scenario. Note that due to the high complexity of Dyn-Prog, we only compare the performance

of the FH-OMB heuristic with that of Broadcast and Greedy.

4.5.1.3. Random receiver distribution

We first discuss a heterogeneous scenario, where N = {2, 4, 8, 16, 32, 64} receivers are ran-

domly distributed within the cell area of radius 250m and for K = 8 beamforming lobes. The

performance depends significantly on the specific receiver distribution, in particular for smaller

numbers of receivers. For up to 16 receivers, Broadcast performs almost as good as FH-OMB

since there is a high probability that there is one receiver with a significantly worse channel than

the others (see Fig. 4.14). As the number of receivers increases, a higher number of receivers
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Figure 4.14: Random receiver distribution,

K = 8.
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Figure 4.15: Random receiver distribution,

N = 32.

see similar channel conditions and as in the previous two-channel scenario, the performance of

Broadcast degrades since it does not exploit opportunistic gain. However, in this heterogeneous

scenario this effect occurs mainly for N > 32 receivers, where Broadcast’s performance is sig-

nificantly worse than that of Greedy and FH-OMB. Greedy performs worse than Broadcast for

small N for the same reason as above. The scenario is so small that the receivers are all very

heterogeneous. As homogeneity increases for higher network densities, exploiting opportunistic

gain becomes more important and Greedy outperforms Broadcast. FH-OMB performs well for

all sizes of the receiver set. Its state-based completion time estimation results in the right tradeoff

between opportunistic gain and multicasting gain and provides the lowest completion times of

all approaches. It consistently outperforms Greedy by 9% to 29%. The performance gain over

Broadcast ranges from 1% to 76%.

Next, we look at the impact of varying K for a fixed N = 32. When increasing the number

of beamforming lobes K, the array gain of the single lobe beam increases as well. In the specific

antenna configuration that is chosen for our simulation, the array gains for K = {2, 4, 8, 16} are

1.9, 3.4, 6.6 and 11.4, respectively. (Note that the array gain is not linear in K.) Therefore, as

observed from Fig. 4.15, completion time decreases with increasing K with respect to the achiev-

able gain. FH-OMB outperforms both Greedy and Broadcast for all K. However, increasing K

has a more significant impact on the completion time of Broadcast than on Greedy and FH-OMB.

For low K and a wider beamwidth, Broadcast is limited by the receiver with the lowest SNR

in each beam. (Also, a significant amount of the radiated energy does not cover any receiver.)

As K increases, fewer and fewer receivers are covered by a beam and in the extreme case of a

single beam per receiver, Broadcast manages to perfectly balance the SNRs at the receivers (i.e,

no energy is wasted by having a higher than necessary SNR at any receiver). Hence, Broadcast’s

performance becomes closer and closer to FH-OMB. In contrast, Greedy may still beamform to a

few receivers with high SNRs so that those finish first, before serving receivers with lower SNRs.

In short, in heterogeneous scenarios with sufficient K, Broadcast that favors the weaker receivers

by multicasting to all the receivers performs better than Greedy that capitalizes in maximizing
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opportunistic gain.

To shed more light on the behavior of the algorithm, we show the CDF of completion time

for the simulation runs for K = 8 and with N = 16 and N = 64 receivers in Fig. 4.16 and

Fig. 4.17, respectively. In Fig. 4.16, Broadcast and Greedy have relatively similar completion

time as FH-OMB in 10% of the simulation runs. This happens in scenarios where all receivers

are distributed quite close to the BS and thus all receivers have a relatively homogeneous good

average channel quality. When receivers are distributed sparsely within the cell radius, with high

probability they have different average channel qualities. Under this scenario, Greedy performs

badly since it opportunistically serves the better receivers first and therefore results in higher com-

pletion times than both FH-OMB and Broadcast. Here, FH-OMB receivers finish at 465 slots for

the worst scenarios, whereas Greedy and Broadcast both require 570 and 840 slots, respectively.

When the number of receivers increases, Fig. 4.17 shows that Broadcast no longer has most of its

completion time close to FH-OMB in most of the simulation runs. In fact, around 20% of Broad-

cast’s completion time is similar to Greedy due to the limited number of beamforming lobes

(K = 8), which leads to low multi-lobe beam’s SNR. Broadcast is particularly bad in scenarios

where many of the receivers are relatively far from the BS (and thus more homogeneous). The

worst case completion time of FH-OMB is at 675 slots, while Greedy and Broadcast require 810

and 2400 slots, respectively.
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Figure 4.16: CDF of the completion time

for random receiver distribution. N = 16.
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Figure 4.17: CDF of the completion time

for random receiver distribution. N = 64.

4.5.1.4. Cell edge receiver distribution

In this scenario, receivers are all distributed close to the cell edge in the range of 190m to

220m and thus form a relatively homogeneous group. While such a scenario is less realistic

than the one presented in Section 4.5.1.3, it is included to illustrate the performance degradation

of the Broadcast algorithm in more homogeneous scenarios. Note that this performance is also

indicative of the performance in heterogeneous scenarios with very high user densities, where

many receivers are at the cell edge (see Fig. 4.14).

Here, the performance differences are much more drastic and Broadcast performs worse than



4.5 Results 61

the other schemes already for N > 8 (see Fig. 4.18). For 32 receivers, FH-OMB outperforms

Broadcast by 59%. Although maximizing instantaneous throughput is the right strategy for homo-

geneous scenario, FH-OMB still manages to slightly outperform the Greedy algorithm by about

1 − 10%. Despite the homogeneity of the scenario, the slight differences among the receivers

require a more sophisticated mechanism that does take states into account. Similar to the sce-

nario with heterogeneous receiver distribution in Section 4.5.1.3, completion time improves with

increasing K (see Fig. 4.19) due to the higher effective SNR for each beam.
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Figure 4.18: Cell edge receiver distribution,

K = 8.
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Figure 4.19: Cell edge receiver distribution,

N = 32.

4.5.2. Fairness of the algorithms.

The fairness criteria that we use is the completion time of the receivers and it is computed

based on Jain’s fairness index [32]. Given the completion time of each receiver Di, fairness β is

β =

(∑N
i Di

)2

N
∑N

i (Di)
2
. (4.19)

Fig. 4.20 and Fig. 4.21 depict the fairness of the schemes when increasing the number of re-

ceivers N and beamforming lobes K, respectively. Broadcast schedules all receivers and serves

them with equal rate and thus it achieves the highest fairness in both settings. Unlike Broad-

cast, Greedy maximizes instantaneous rate, allowing receivers with better channels to complete

receiving the data block before those with worse channels. This introduces a large difference in

the individual completion times between the receivers and yields the lowest fairness among all

schemes. FH-OMB achieves a much higher fairness than Greedy and limits the completion time

differences between the receivers. However, FH-OMB yields slightly lower fairness than Broad-

cast since it jointly optimizes for instantaneous rate and completion time by serving a smaller

subset of receivers than that of Broadcast which may cause a greater difference in the completion

times.

For a fixed number of beamforming lobes, K = 8 (see Fig. 4.20), increasing N increases the

density and the diversity of the receivers. For a throughput maximization scheme like Greedy, this
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Figure 4.20: Random receiver distribution,

K = 8.
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Figure 4.21: Random receiver distribution,

N = 32.

increases the number of receiver groups to be served. By serving them sequentially (from the best

to the worst channel group), Greedy creates a difference in completion time between the groups,

particularly between the first and the last groups and thus yields a low fairness. FH-OMB trades

off between multiuser diversity and multicast gain, thus it achieves better fairness than Greedy,

but with more receivers, the larger variation of completion time among the receivers also reduces

fairness.

Increasing the number of beamforming lobes K increases the single lobe array gain and re-

ceivers achieve a higher channel gain (see Fig. 4.21). For instance, two receivers (one better and

one worse) that are located in the same beam may now be served with two individual beams when

K increases. This then increases the chance of both receivers to be served simultaneously with-

out causing throughput loss. Both Greedy and FH-OMB benefit from this and they thus achieve a

significant fairness improvement as the number of beamforming lobes increases.

In summary, although FH-OMB sacrifices up to 15% in terms of fairness, but in turn needs

half the completion time of Broadcast as shown in Fig. 4.19.

4.5.3. Impact of imperfect feedback

To examine the impact of imperfect feedback, we introduce different intervals at which the

feedback frames are sent: λ = {5, 10, 20, 40, 80, 160} ms.4 Since the coherence time of the

multipath Rayleigh fading channel is τ = 40 ms, the actual channel state information and the one

reported in the last feedback frame (for simplificity, we call it last state information) are correlated

for up to τ ms and uncorrelated otherwise. For instance, when λ ≥ τ ms, the current and the last

state information is only correlated for τ ms after the feedback was received and is uncorrelated

for the remaining (λ − τ) ms. Note that, although all receivers send the feedback frame every

λ ms, the slot at which the feedback frame is sent is asynchronous among the receivers. 5

In this section, we also include the corresponding schemes for Broadcast, Greedy, and

4λ = 5 ms means that the BS receives a feedback frame from a receiver every 5 ms.
5For instance, when λ = 160 ms, the current and the last state information is uncorrelated for λ − τ = 120 ms

after time t.
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FH-OMB in which the estimation algorithms explained in Section 4.4.3 are applied. We call

these schemes eBroadcast, eGreedy, and eFH-OMB, respectively. While eFH-OMB operates

as described in Section 4.4.3, eBroadcast and eGreedy inherit their own mechanism for their

decisions but use the estimated channels as explained in Section 4.4.3 instead of the last state

information.

Impact of λ on completion time: Fig. 4.22 depicts the impact of increasing λ on the completion

time of the abovementioned schemes (with and without estimation). As λ increases, the correla-

tion between the current and last state information decreases, which causes a scheme to select an

inaccurate weight for the beamforming pattern. A too high beam weight wastes resources and a

too low one reduces reception probability. This is observed through Fig. 4.22 where increasing λ

cause increase in the completion time for all schemes.
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Figure 4.22: Impact of delay on completion time for random receiver distribution, K = 8, N =
32.

The impact of increasing λ on Broadcast is less severe compared to that of Greedy and

FH-OMB because Broadcast is conservative. It always beamforms towards all receivers and

transmits at a lower rate, thus reducing the magnitude of the error made. While Broadcast al-

ways schedules the receivers that have not received a complete data block (the subset of the

scheduled receivers is fixed), Greedy and FH-OMB have a higher diversity of receiver subsets.

Therefore, inaccurate state information causes Greedy and FH-OMB to not only make an error

in the beam weights (like Broadcast) but also in the subset of scheduled receivers. These errors

cause a more pronounced impact of λ on the completion time of Greedy and FH-OMB than on

Broadcast. Although FH-OMB performs similarly to Broadcast at λ = 160ms, it happens for

different reasons. When feedback is largely outdated (i.e., the correlation between the actual and

last state information is very low) but FH-OMB assumes feedback is perfect, this causes errors

in the computation of the expectation completion time (see Section 4.4.3 for further explanation).

Consequently, FH-OMB chooses the wrong subset of receivers to be served and they are served

with a wrong MCS, which leads to high completion time for larger λ. Greedy performs worst
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since it highly depends on the instantaneous channel knowledge to exploit the opportunistic gain.

Without instantaneous channel knowledge, a beamforming pattern selected based on the last state

information is no longer throughput-optimal.

As shown in Fig. 4.22, with the estimation algorithms detailed in Section 4.4.3, eFH-OMB,

eGreedy, and eBroadcast achieve a substantial improvement over their corresponding schemes

where estimation is not applied. For λ < 20 ms, eFH-OMB and eGreedy outperform eBroadcast

since they can still exploit the opportunism because the actual and the last state information are

correlated. When λ is large, the variation of the actual channel is large and thus the estimated

channel approaches the average channel (see Section 4.4.3 and Fig. 4.3 for more details). In this

case, opportunistic gain can no longer be exploited and the best strategy is to equally serve all

the receivers. Therefore, we observe good performance of eBroadcast at λ = 160ms in Fig. 4.22

since serving at a wrong rate (low MCS) has minimal to no impact on the better receivers within

the same beam lobe. eFH-OMB performs close to eBroadcast since the expected completion

time restricts the opportunistic gain (as detailed in Section 4.4.3) and thus eFH-OMB is more

conservative and schedules more receivers as eBroadcast does.

Impact of λ on the number of successful receivers: To further understand the characteristics of

the schemes, Fig. 4.23 shows the impact of increasing the feedback interval on the average number

of receivers that successfully receive the transmitted data block from the BS (which we termed

as successful receivers) for all time slots over 100 randomly distributed scenarios. Intuitively, a

larger λ causes a higher error, thus reducing the average number of successful receivers as shown

in Fig. 4.23. Schemes with estimation generally outperform those without since they improve

the accuracy of the state information using the estimation algorithm. It improves the number of

successful receivers for eBroadcast, eGreedy, and eFH-OMB by 17.65%, 25.00%, and 83.33%,

respectively, compared to the respective schemes without estimation (i.e, Broadcast, Greedy, and

FH-OMB). As FH-OMB highly depends on the accuracy of state information to make its optimal

decision, estimation algorithm is of high relevance. Therefore, we observe eFH-OMB (FH-OMB

with estimation algorithms) achieves the highest improvement over FH-OMB as compared to

the other schemes when compare against their corresponding scheme without estimation. It is

important to note that a higher number of successful receivers do not indicate better completion

time. For instance, eBroadcast and Broadcast achieve a higher number of successful receivers

than eFH-OMB and FH-OMB, respectively, due to the nature of the algorithm which serves all

the remaining receivers, but they have a higher completion time due to the low transmission

rate. In contrast, eGreedy and Greedy yield the lowest successful number of receivers since

they serve a different group (receivers that maximizes the instantaneous throughput) of receivers

sequentially. eFH-OMB serves the receivers based on both instantaneous and future progress

(completion time) by serving as many receivers as possible without compromising the completion

time, thus it achieves a reasonably high number of successful receivers but maintaining a low

completion time (see Fig. 4.22).

Impact of λ on the distribution of MCS: As the chosen rate for the receiver served at each



4.5 Results 65

5 10 20 40 80 160
0

5

10

15

20

25

30

Feedback interval, λ [ms]

A
ve

ra
ge

 n
um

be
r 

of
 s

uc
ce

ss
fu

l r
ec

ei
ve

rs

 

 
Broadcast eBroadcast
Greedy eGreedy
FH−OMB eFH−OMB

Figure 4.23: Average number of successful receivers for random receiver distribution, K = 8,

N = 32.

slot determines the performance of the algorithm, we take a further look into the distribution of

the MCSs used by each scheme for increasing λ as shown in Fig. 4.24. Note that there exists a

correlation between the average number of successful receivers and the MCS distribution: when

more of the higher MCSs are used (i.e., serving a smaller subset of better receivers), the average

number of successful receivers is lower and vice versa. As depicted in Fig. 4.24, Broadcast and

eBroadcast that serve more receivers mostly use the lower MCS and Greedy and eGreedy uses

higher MCSs which serve fewer receivers. In general, the distribution of MCSs is impacted by the

remaining receivers in the system as well as the distribution of the estimated channel (for schemes

with estimation algorithm).
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Figure 4.24: Distribution of MCSs for random receiver distribution, K = 8, N = 32.

For Broadcast, we observe a slight increase in the number of the higher MCSs when increas-

ing λ. A higher λ causes an error in the computation of the beam weight, thus some receivers

lose the data packet and are served at a later time. At this later time, fewer receivers remain in

the system and the BS has to beamform in fewer directions. This leads to higher gains for the

beams and thus on average higher MCSs are used. With estimation, eBroadcast serves the re-

ceiver at the rate close to the average channel rate of the worst receivers at each beam lobe as λ
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increases. Therefore, we observe an increasing number of intermediate MCSs (that are suitable

for the estimated channels) as λ increases.

For Greedy, better receivers leave the system earlier, even for higher λ. Here, a wrong MCS

choice has minimal impact on these receivers since they progress quickly once they are success-

fully served (even if a slightly lower MCS is used). However, the remaining (worse) receivers can

only be served using the lower MCSs and wrong usage of MCSs causes more tries to successfully

serve the subset of receivers which (based on the last received feedback) maximizes throughput.

Since the number of attempts to serve the remaining receivers is higher than that to serve the

receivers with excellent channels, more lower MCSs usage is seen from Fig. 4.24 for Greedy as

λ increases. Although based on the same distribution of estimated channels, eGreedy has a dif-

ferent MCS distribution (more higher MCSs) than eBroadcast due to the opportunistic nature of

the algorithm. The frequency of higher MCSs reduces with increasing λ since the opportunism is

limited by the estimated channels.

We also observe an increasing number of higher MCSs for FH-OMB as λ increases. For

higher λ, the correlation between the actual and the last state information is reduced and FH-OMB

can no longer compute its tradeoff correctly. The impact is twofold: (i) it requires more tries to

serve a chosen receiver group, (ii) some receivers receive the data block at a much later time.

Since FH-OMB is neither biased towards the worse nor the better receivers, it uses MCSs that are

suitable for the receiver group, which in this case are the MCSs greater than MCS5. Therefore,

when more tries are required, an increase in these MCSs is observed. With estimation, the number

of intermediate MCSs of eFH-OMB increases with λ. This is however not usually due to the

increased number of tries, but due to the distribution of the estimated channels (refer Section 4.4.3

for more details) which limits the opportunistic gain. As a result, eFH-OMB conservatively serves

the receiver as eBroadcast does, therefore they have a similar MCS distribution, particularly for

λ = 160ms.

4.6. Conclusion

In this chapter, we studied opportunistic multicast beamforming for the finite horizon prob-

lem, where a base station has a fixed amount of erasure-coded data to transmit to multiple re-

ceivers. We modeled the problem as a dynamic programming problem to obtain the optimal

solution. Due the high complexity of this approach, we designed a heuristic algorithm, FH-OMB,

that captures the characteristics of the optimal solution and provides a performance that is very

close to it. We evaluated FH-OMB’s performance both for a discrete channel model as well as

multipath Rayleigh fading.

We observed that in the more realistic Rayleigh fading scenario, the performance gains of

our FH-OMB heuristic are much more pronounced than that in the simple scenarios with two

receivers and two channel states. It outperforms other schemes based on maximizing the mini-

mum SNR and broadcasting to all receivers (Broadcast), as well as greedily maximizing sum rate
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(Greedy). Compare to Broadcast, FH-OMB’s gain increases as the number of receivers increases

since Broadcast does not exploit opportunistic gain. Also, FH-OMB is particularly beneficial

over Greedy in heterogenous receiver scenarios because it trades off between multi-user diversity

and multicast gain results in lower completion times. It improves performance by up to 76% over

Broadcast and up to 29% over Greedy for heterogeneous scenarios with Rayleigh fading. For ho-

mogeneous scenarios, these gains are up to 122% and 10%, respectively. Similar (though slightly

lower) gains are obtained for the simpler scenarios with a discrete channel model. This chapter

additionally addressed the impact of imperfect feedback and estimation algorithms are designed

to counter the performance degradation due to this impact. With estimation, our proposed scheme

(eFH-OMB) outperforms eGreedy and eBroadcast with estimation by up to 46.14% and 34.62%,

respectively.
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Chapter 5

Introduction to Millimeter-Wave
Communications

Communication in the mm-Wave band (i.e., 30 to 300 GHz) is a promising next step for

the evaluation of high speed WiFi and is considered a key technology for 5G networks. Beside

the vast amount of available spectrum. For instance, there is 7 GHz available bandwidth for

unlicensed use in the 60 GHz band. In addition, its potential for high spatial reuse of frequency

resources makes it very attractive for future dense networks.

mm-Wave systems use directional antennas for communication to cope with high attenuation

and transmission losses. At mm-Wave frequencies electronically steerable phased antenna arrays

can be implemented with a very small footprint. Thus it is possible to align the beams of trans-

mitter and receiver accurately, which provides the high directional antenna gain to overcome the

high attenuation at mm-Wave frequencies. This shift to directional communication raises new

challenges for the MAC layer design of WiFi systems. Firstly, this requires accurate alignment of

the transmitter and receiver beams. Secondly, the unavailability of reliable omni-directional com-

munication requires significant changes to the system design. Thirdly, stations that are located

outside of the transmitter antenna’s boresight cannot overhear or sense the transmission, leading

to a problem commonly known as the deafness problem. Consequently, one of the big draw-

backs is that CSMA/CA mechanisms suffer impairments through to directional communication,

impacting efficiency and fairness.

Above figures illustrate the problem encountered by a mm-Wave system. The figure on the

left depicts an RTS collision caused by two stations being deaf towards each other given their

beams directed towards the AP. In the figure on the right, an RTS is lost because the Access

Point (AP) focuses its receive beam away from the deaf station, towards a data transmission. The

IEEE 802.11ad amendment for 60 GHz WiFi [30] addresses these challenges by defining a hybrid

medium access mechanism. This includes polling and Time Division Multiple Access (TDMA)

as well as the well known IEEE 802.11 CSMA/CA [46]. However, polling introduces overhead

at all stations independent of whether they are communicating or not. Also, TDMA requires ad-
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RTS collision due directional transmit focus

on AP.

Missed RTS due to receive sector misalign-

ment.

ditional coordination and communication to determine the schedule. In contrast, CSMA/CA is

very efficient in handling unpredictable burst traffic, such as the request/response type traffic gen-

erated by web browsing. Hence, adaptation of the CSMA/CA scheme to the constraints imposed

by mm-Wave communication is of high interest. Hereby, especially frequencies at the 60 GHz

band have recently come into focus as the band was released for unlicensed use.

In its basic form, CSMA/CA suffers from several drawbacks when applied to directional

communication systems, the main challenge being incomplete carrier sensing. Further, erratic

deferral behavior and increased collisions lead to reduced fairness in terms of channel access.

While long term fairness is still achieved, a group of active nodes may dominate the channel

whereas long time inactive users have a low probability of successfully accessing the medium.

The following chapters (Chapter 6 and Chapter 7) aim to address the aforementioned issues

and propose a MAC-layer protocols and scheduling algorithm, respectively.

5.1. Background: IEEE 802.11ad Millimeter-Wave WiFi

IEEE 802.11ad brings WiFi communication to mm-Wave frequencies. This amendment to

the IEEE 802.11 standard was ratified in late 2012 and defines significant changes to 802.11 to

adapt it to the new frequency band. In this section we highlight relevant changes necessary to

enable communication on mm-Wave frequencies.

5.1.1. Beamforming training

Due to the increased attenuation at the mm-Wave band, directional signal transmission is

required to achieve reasonable communication ranges of up to a few tens of meters. This requires

adjusting the antenna beam direction to focus the signal energy on a direct or a strongly reflected

path between two transceivers. To this aim, IEEE 802.11ad proposes a two level beam training

protocol to set up a directional link between two stations [46]. Omni-directional communication

range at mm-Wave frequencies is very limited and the antenna gain resulting from beamforming
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is required at least at either the receiver or the sender (and ideally at both). Thus, an initial

connection is established by applying a directional sector sweep from a station, while the other

pairing station uses a quasi-omni-directional antenna pattern. This happens during the Sector

Level Sweep (SLS) phase which is followed by a Beam Refinement Phase (BRP). During the

BRP, directional antenna configurations on the receiver and transmitter side are tested against

each other to also configure a receive antenna pattern and fine tune the previously selected antenna

configurations.

5.1.2. Hybrid medium access control (MAC)

To cope with the challenges imposed by directional medium access, IEEE 802.11ad defines

a hybrid MAC layer. This ensures that also delay critical applications as for example wireless

displays can be supported. Besides the WiFi-typical CSMA/CA access scheme, a TDMA scheme

as well as polling based access are supported. The AP schedules contention free service peri-

ods (SP) dedicated to a specific pair of stations and Contention Based Access Periods (CBAP)

throughout the data transmission phase. In this chapter, we primarily focus on channel access

in CBAPs, which follows CSMA/CA as described in the following section. Medium access be-

tween beacons can follow multiple access schemes, but an AP can also dedicate the entire data

transmission time to contention based access. Contention based access is relatively simple, well

understood, and particularly suitable for bursty and unpredictable traffic, where the complexity of

adaptive TDMA scheduling and the overhead of polling are undesirable.

5.1.3. Contention based access

The IEEE 802.11ad contention based access follows a standard CSMA/CA approach. In

general, stations start (or resume) a random back off counter a DCF Inter-Frame Space (DIFS)

interval after the end of the acknowledgment of a data frame. The backoff counter decreases

at each slot which equals 5μs. Once a backoff counter reaches zero, the corresponding station

wins a Transmit Opportunity (TXOP), where it can exclusively transmit one or more frames to

another station. Stations overhearing an ongoing frame, track its duration to maintain a Network

Allocation Vector (NAV) and defer from decreasing their backoff counter. This process is also

referred to as virtual carrier sensing. If a station senses the channel to be busy (either by virtual

or physical sensing) or a frame transmission fails, it doubles its contention window until the

maximum contention window size of 1023 slots is reached. After successfully accessing the

channel, a station resets its contention window to the minimum of 15 slots.

IEEE 802.11ad adapts its CSMA/CA mechanism to directional medium usage. Idle stations

generally listen with a quasi-omni-directional receive pattern as the direction of the next incom-

ing transmission is unknown. Thus, directional antenna gain is only achieved at the transmitter

side, requiring a robust modulation coding scheme. Therefore, the first frames exchanged are

a directional RTS/CTS pair at the most robust coding modulation scheme. The RTS/CTS ex-
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change further increases the chance of main interferers within the antenna’s boresight to sense the

ongoing transmission and refrain from interfering.

Further, IEEE 802.11ad enables spatial sharing during CBAPs by modifying the deferral be-

havior. Instead of deferring whenever a frame is overheard, a station might still initiate transmis-

sion when the receiver is known to be idle. This leads to multiple transmissions at the same time.

However, in a pure uplink scenario only one transmission between a station and the AP takes

place at the same time.

5.1.4. Fast session transfer (FST)

Wireless links at mm-Wave frequencies are less robust compared to communication at legacy

WiFi frequencies at 2.4 or 5 GHz. The main reason is the severe attenuation by blockage that

easily interrupts mm-Wave links. This can happen due to one of the transceivers moving behind

an obstacle, or, in case of stationary transmitters, due to human blockage [66]. A further drawback

for mm-Wave links is the limited range, caused by increased free space attenuation and transmit

power regulations.

To overcome these impairments and provide a user experience better than or at least compa-

rable to legacy IEEE 802.11 networks, IEEE 802.11ad supports multi-band communication in the

form of a Fast Session Transfer (FST) protocol. The FST mechanism allows a pair of devices to

connect over multiple network interfaces at different frequency bands or channels. This is real-

ized either by presenting two different interfaces to the higher protocol layers or in a transparent

way, using a single interface with the same MAC address for both physical links. The FST mech-

anism switches communication seamlessly between high throughput mm-Wave bands and more

reliable communication at lower bands for range extension and robustness, i.e., it switches to the

lower band whenever the mm-Wave link breaks. Also simultaneous usage of multiple interfaces

is supported by the FST protocol.
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Multi-Band IEEE802.11ad
Millimeter-Wave Networks

6.1. Introduction

Many works have addressed deafness in Wireless Local Area Network (WLAN) and Wireless

Personal Area Network (WPAN) presented in [76], however, most solutions are designed for

lower frequency communication where omni-directional transmission and reception is feasible

and can be used for coordination purposes. At mm-Wave frequencies, however, increased at-

tenuation requires directional antennas at least at one side of a communication link. The most

suitable adaptations of CSMA/CA for mm-Wave frequencies are proposed by the IEEE 802.11ad

amendment [30] and work by Gong et al. [23]. IEEE 802.11ad modifies the CSMA/CA mecha-

nism to protect a data exchange between two nodes with a directional RTS/CTS exchange, which

prevents stations with an antenna beam aligned with the transmissions from creating interference.

However, as messages are likely to not be overheard by deaf nodes with antenna beams in other

directions, these do not defer during ongoing transmissions but unsuccessfully try to access the

channel and then excessively increase their contention window. This leads to a fairness problem

as station that successfully access the channel have a substantially higher chance to subsequently

win the contention again.

A different approach is proposed in [23], where CTS messages are broadcasted by a central

controller. To achieve sufficient link budget to receive the omni-directional CTS messages, every

station by default directs its receive beam towards the AP. Unfortunately, this approach still

suffers from colliding directional RTS messages, which lowers the effectiveness of the deferral

process and results in reduced fairness.

Efficiency and fair channel access, i.e., low per packet delay and high throughput, are the

major factors that determine the user experience in wireless networks. In this chapter, we address

the deafness problem, which deteriorates fairness and efficiency for uplink channels, using a

multi-band approach. Use of multiple bands in high speed mm-Wave WiFi is common, due to

75
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easily blocked directional links and limited range, requiring a fall back mechanisms to more

resilient lower frequency communication. For example, the IEEE 802.11ad standard specifies

so-called Fast Session Transfer functionality to transition between multiple bands [30]. As a

consequence, we expect most devices following IEEE 802.11ad and other upcoming mm-Wave

WiFi standards to be compatible with our approach.

Our solution maintains high fairness through a combination of 60 GHz communication with

control messages on legacy WiFi frequencies. When contending for the channel, stations ex-

change omni-directional RTS/CTS messages on the lower frequency band to set up a data trans-

mission. The source and destination stations then exchange data frames on the 60 GHz band.

The advantage of our approach is twofold. First, control message exchange on frequencies of

2.4 or 5 GHz is highly reliable over the typically short IEEE 802.11ad communication distances.

Thus, every station overhears the control messages, and can correctly defer, avoiding the IEEE

802.11ad unfairness problem. Second, by parallelizing control and data transmission, we free

resources on the 60 GHz band for high speed data transmission. Also note that, in contrast to

lower frequency networks, RTS/CTS control messages are used by default on the 60 GHz band.

Those are no longer necessary with our approach. Thus, the dual frequency approach enhances

throughput and MAC efficiency.

The contributions of this chapter are summarized as follows:

1. We analyze the deafness problem in 60 GHz CSMA/CA networks and propose a dual-band

solution that couples interfaces on the 60 GHz band with legacy WiFi frequencies.

2. Our mechanism shifts control messages onto a legacy IEEE 802.11 channel with lower

bandwidth, freeing up channel time for high throughput transmissions on 60 GHz. By this,

we achieve a throughput increase of up to 65.3% over IEEE 802.11ad CSMA/CA

3. By exploiting omni-directional transmissions on legacy WiFi frequencies we solve the deaf-

ness problem and increase MAC fairness by up to 42.8% compared to IEEE 802.11ad.

To the best of our knowledge, this work is the first to address the fairness problem of

CSMA/CA in directional mm-Wave networks.

This chapter is organized as follows. In Section 6.2 we discuss past proposals to solve the

deafness problem. Section 6.3 gives describe the impairments towards CSMA/CA due to the

deafness problem caused by directional transmission. Our dual-band CSMA/CA solution is de-

scribed in Section 6.4. Section 6.5 provides the channel and transmission model we use for the

performance evaluation. Simulation results are shown in Section 6.6 and Section 6.7 concludes

the chapter.

6.2. Related Work

Directional antennas are also used in microwave communication, e.g., the 2.4 GHz and

5 GHz frequency bands, to improve throughput and reduce interference. Also here, the di-
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rectionality of the communication can cause deafness. Solutions to this problem are discussed

in [2, 24, 33, 34, 45, 51, 68, 72]. [33] and [45] solve the deafness problem for CSMA/CA systems

by omni-directionally transmitting control messages (i.e., RTS and CTS). However, by doing

so, all overhearing nodes will defer their transmission, preventing spatial reuse which is particu-

larly important in a directional transmission system. In the same vein, Takai et al. [68] propose

directional frame transmission while listening omni-directionally. This only partially solves the

deafness problem as frames might not reach all receivers due to directionality of the transmission.

Korakis et al. [34] propose a directional system that emulates omni-directional RTS transmission

by sweeping transmit directions, i.e., transmitting an RTS in each possible direction. While this

technique effectively deals with deaf stations, it has high overhead, especially for systems with

many narrow directional sectors. The works in [2, 24] address the deafness problem by omni-

directionally transmitting control messages but they require additional mechanisms to prevent

interfering transmissions. Arora et al. [2] use separate channels to reduce collisions by adjusting

the transmit power such that interference at the receiver is avoided. In [24], an additional GPS

receiver is used to provide location information to create a coordination map to avoid interference.

From the above-mentioned works, it becomes clear that even for the microwave band miti-

gating the deafness problem of directional transmission is not easy, but the availability of omni-

directional communication helps significantly. Due to increased attenuation, in general this is not

feasible in the 60 GHz band. Given the currently achievable receiver sensitivity and the regula-

tory transmit power limitations of IEEE 802.11ad, the gain resulting from a directional antenna is

needed at least at one side of the wireless link. Therefore, the aforementioned methods that rely

on fully omni-directional communication usually do not work for 60 GHz networks.

Only few works address the deafness problem while taking this additional challenge into con-

sideration. Gong et al. [22, 23] use the Personal Network Coordinator (PNC) in a WPAN (i.e.,

similar to an AP in WLAN) to coordinate each transmission. Instead of exchanging RTS and

CTS messages between the communicating devices, the source device transmits a directional

RTS to the PNC. In response, the PNC broadcast the CTS message omni-directionally. All

devices focus their receive antenna in the direction of the PNC and can thus receive the trans-

mission. In case of an uplink channel, this results in a directional RTS transmitted by the station

and the PNC broadcasting an omni-directional CTS. This technique partially solves the deafness

problem (RTS messages can still collide), but may create a bottleneck at the central PNC. In

addition, this technique also prevent spatial reuse since a busy PNC cannot coordinate new trans-

missions. [44,64,65] highlight the importance of solving the deafness problem to avoid collisions

in directional 60 GHz networks. However, their approach involves a learning mechanism that

resorts to a TDMA-like scheduling. The solution is thus not suitable for the contention based

access systems we focus on in this chapter.

The IEEE 802.11ad amendment itself proposes a directional MAC layer mechanism but does

not address the deafness problem that leads to a critical fairness issue. We discuss the details of

this mechanism in and Section 6.3. Similar to our approach, [47, 48, 52] exploit the coexistence
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of a microwave interface. However, there the dual-band approach is used for neighbor discovery,

as a fall-back mechanism for range extension, and for beam forming training optimization rather

than solving the deafness problem.

6.3. Fairness Impairments in Directional CSMA/CA

This section describes the impact of deafness on the two most relevant CSMA/CA mech-

anisms for directional networks, IEEE 802.11ad and the centralized approaches proposed in

[22, 23].

6.3.1. IEEE 802.11ad CSMA/CA

The deafness problem entails that in many cases other stations will neither overhear frames

nor sense that the carrier is busy when two stations are communicating. This causes two important

performance impairments described in detail below.

Excessive Backoff. Due to limited (or lacking) carrier sensing, the frame collision probability

during contention increases. Especially in dense networks, this significantly increases the aver-

age contention window. Furthermore, as frames (including RTS/CTS exchanges) are transmitted

directionally, stations outside the transmit beam will not overhear the ongoing communications

and thus will not defer. Instead, a deaf station may try to transmit to an already communicating

station, which has its receive antenna beam steered into another direction. While may not disrupt

the ongoing communication, the deaf station will assume a failed transmission and increase its

contention window. Fig. 6.1 depicts this excessive backoff problem. Stations two and three ini-

tially collide with their RTS messages, resulting in an increased contention windows compared to

station 1. Both have reduced chances to ‘hit’ the following contention windows. Their next RTS

messages will be lost as the AP directs its receive beam away from them due to an ongoing data

transmission. Stations two and three further increase their backoff and station one dominates the

medium access.

Figure 6.1: Excessive backoff behavior of CSMA/CA in IEEE802.11ad

Unbalanced Contention. Stations suffering excessive back-off have a low probability to win

contention, which favors recently active stations with smaller contention windows. While this

effect is also present in conventional IEEE 802.11, in IEEE 802.11ad it is vastly exacerbated by
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the fact that contending stations do not know when an ongoing frame ends, i.e., when to resume

contention. This in turn increases the probability that the same active station transmits a high

number of frames consecutively, before other stations happen to win the contention for medium

access. This effect primarily impacts short term fairness and over longer time scales, the identity

of the active station changes sufficiently often to achieve some level of fairness.

6.3.2. Centralized CSMA/CA

The centralized CSMA/CA schemes [22, 23] partially solves the aforementioned problems

through an omni-directional CTS sent by the AP.

However, an omni-directional CTS only ensures correct deferral of overhearing stations in

the subsequent data transmission phase. The increased RTS collisions rate due to lack of carrier

sensing and the resulting long backoff times remain.

As the duration of an RTS comprises 2 slots, chances for collision are very high especially at

network initialization when stations use the minimum contention window of 15 slots. Even for

moderate network densities, it is not uncommon that multiple RTS messages collide, resulting in

more than two stations increasing their backoff windows in the same contention phase. Interest-

ingly, here IEEE 802.11ad benefits from a significantly lower RTS to RTS collision rate, since

RTS messages are often uselessly sent during an ongoing data transmission rather than during the

contention phase.

The high RTS collision probability may lead to a rapid increase of the contention windows

after network initialization. At the same time, in a highly loaded network, the contention period is

relatively small (drawn from the 15 slot minimum contention window). As all stations freeze their

contention timer during deferral, a high back off counter needs a significant amount of contention

periods to reach zero. This again gives an unfair advantage to currently active nodes with small

contention windows to win channel contention. As for networks with deaf stations, it is likely

that a small set of active nodes alternately uses the channel, while other stations remain in long

periods of repeated maximum backoff. The effect is shown in Fig. 6.2.

Figure 6.2: Excessive deferral with colliding RTS messages in CSMA/CA with broadcast CTS

Due to an overlapping RTS collision, three stations will increase their contention windows.

During the following data transmission the collided stations correctly defer. As a result, their large

backoff time is reduced only slowly over the coming short contention intervals (the active station
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draws its backoff time from the minimum contention window). The active station thus dominates

the channel access for a long period. This effect is more pronounced than for IEEE 802.11ad, as

with IEEE 802.11ad even stations with a small contention window are likely to uselessly transmit

an RTS during an ongoing data phase and then increase their contention window.

6.4. Dual-Band CSMA/CA

In this section, we propose a dual-band CSMA/CA scheme that mitigates the deafness prob-

lem for uplink communication while achieving low overhead and high fairness. Our approach

leverages omni-directional transmissions on legacy WiFi frequencies to coordinate high through-

put transmissions in the 60 GHz band. As control messages are received by all stations, our

approach ensures correct deferral behavior and a low frame collision probability.

We assume an IEEE 802.11ad compatible transceiver design and an infrastructure based net-

work architecture with AP. Further, we require all stations to be able to communicate over a

60 GHz interface as well as over a legacy WiFi interface. This type of transceiver architecture

is very likely, as IEEE 802.11ad makes use of a multi-band fast session transfer (compare Chap-

ter 5.1.4) for range extension and seamless failover in case of link breaks. Thus, we expect typ-

ical IEEE 802.11ad devices to be compliant with the requirements of our dual-band CSMA/CA

scheme. For simplicity we omit details about beam training on the directional 60 GHz inter-

face and assume pre-trained directional links for all stations to the AP. In general, this assump-

tion is satisfied by the association beam training process described in Chapter 5.1.1. Dual-band

CSMA/CA access can then be enabled as an addition to the IEEE 802.11ad hybrid MAC archi-

tecture of Chapter 5.1.2.

6.4.1. Dual-Band CSMA/CA protocol

Our dual band CSMA/CA protocol follows the random backoff and deferral mechanism, as

well as RTS/CTS exchanges as defined for IEEE 802.11ad (compare Chapter 5.1.3). However,

the contention mechanism together with the RTS/CTS exchange occur on omni-directional legacy

WiFi bands. The IEEE 802.11ad interface of the dual-band devices is exclusively used for data

transmission (and acknowledgments).

When applying the contention mechanism on legacy WiFi interfaces, only one message can

be exchanged at a time. Thus, for our approach, it is essential to have data frame sizes that exceed

the duration of the RTS/CTS exchange consumes on the lower frequency. Otherwise, the data

transmission would be delayed by the exchange of control frames. This is especially important

considering that lower frequency IEEE 802.11 has longer frame duration of RTS/CTS control

messages compared to the 60 GHz band. In addition, since the duration of a data frame is known,

it is possible to use in-band RTS/CTS as in conventional IEEE 802.11ad for small data frames for

which dual-band RTS/CTS creates too much overhead.
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When frames are transmitted according to the dual-band mechanism, stations need to sense

the lower frequency band to be idle for at least a DIFS time before starting the contention mech-

anism. The transmitted RTS frame will reference the end of the latest known transmission on

the 60 GHz band plus a Short Inter-Frame Space (SIFS) interval. Receiving RTS and CTS mes-

sages omni-directionally ensures that the latest transmission is known to everybody. Note that the

RTS/CTS exchange can already occur during the transmission of some previous data frame on

the 60 GHz band to avoid unnecessary delay.

Fig. 6.3 shows an example frame flow for our dual-band approach. Three stations (distin-

guishable by the subscript in frame descriptions) intend to transmit a frame to the AP at the same

time. In contrast to deaf IEEE 802.11ad CSMA/CA, backoff happens on the legacy frequency

band and the RTS/CTS messages are overheard. As can be seen from frames Data1 and RTS2,

data frame transmission and backoff procedure happen in parallel on two bands.

Figure 6.3: Channel access mechanism of the Dual-band approach.

6.4.2. Improvements to millimeter-wave CSMA/CA

A fundamental advantage of our dual-band approach is that all stations can overhear the

RTS/CTS exchange on lower omni-directional frequencies, thus solving the deafness problem.

As a result, dual-band CSMA/CA does not suffer from the impairments described in Section 6.3.

Our approach achieves a flawless deferral behavior, avoids excessive contention windows, and

increases the fairness of medium access.

A second benefit results from the parallelization of RTS/CTS exchanges and data transmis-

sions on two separate frequency bands. This removes idle time and RTS/CTS transmissions from

the 60 GHz frequency band. As RTS/CTS exchanges are transmitted with the most robust and

thus lowest rate coding and modulation scheme, inefficient use of the 60 GHz channel is avoided.

Instead, all available channel time with only a SIFS interval between data frames (and acknowl-

edgements) can be utilized for very high throughput transmissions on the 60 GHz channel. Sac-

rificing transmission time on the legacy WiFi band for control traffic improves efficiency as the

band supports much lower transmit rates compared to the 60 GHz band.

Finally, frame collisions due to receive and transmit beam pattern disparity is reduced by

the proposed dual-band approach. One of the practical challenges for millimeter wave commu-

nication is the generation of undistorted and uniform beam patterns [27]. As a consequence,

differences in receive and transmit patterns can lead to a device suffering deafness into certain
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directions that are still covered by its transmit beam. The result are frame collisions and disrup-

tion of the CSMA/CA protocol flow. For the targeted uplink scenario, the dual-band approach

resolves this problem as perfect carrier sensing of the RTS/CTS frames on lower frequencies is

provided.

6.5. Simulation Models

This section elaborates the simulation models that are used to produce the numerical results

in Section 6.6. We consider an indoor wireless network with a single AP and a set of S non-AP

stations that are randomly distributed within a cell area. The total number of stations is |S| = Ns.

Let {s, d} represent a transmission pair. We denote the source station as s and the destination

station as d.

Channel model. The received power at d when receiving from s is

Pr(s, d)(dBm) = Pt(dBm) + Gs(dBi) + Gd(dBi)− PL(ls,d), (6.1)

where Gs and Gd are the antenna gains at station s and station d, respectively. The path loss

PL(ls,d) including oxygen absorption of stations that are ls,d apart is

PL(ls,d) = 20 log10
4πls,d(m)

λ
+ αls,d (dB)

as presented by Zhu et al. [79]. The oxygen absorption is α = 0.02dB/m and the wavelength λ at

60 GHz frequency band is 5mm. Pt is the transmit power and ranges from 10dBm to 27dBm, the

maximum value specified by IEEE 802.11ad. The maximum Equivalent Isotropically Radiated

Power (EIRP) permitted by the Federal Communications Commission (FCC) for IEEE 802.11ad

is 40dBm hence Gs ≤ EIRP − Pt.

Interference model. Fig. 6.4 illustrates the interference scenario in a directional transmission

network. A station can only interfere with a receiving station if it is located within the antenna

boresight of the receiving station. For instance, when the AP is receiving data from STA1 in

Fig. 6.4 and thus beamforms to STA1, only STA2 is as a potential interferer (if it fails to overhear

any previous messages) but not STA3 (as it is not in the boresight of the AP).

Figure 6.4: Interference in a directional transmission network.
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In the presence of interference, the total interference power Pint(s, d) at the a receiving station

d is

Pint(s, d) =
∑

n∈{S∪AP,n �=d,n �=s}
Pr(n, d). (6.2)

As mentioned, not all interference causes packet loss. A packet is only lost if the interference

signal causes the resulting Signal-to-Interference-plus-Noise Ratio (SINR) degrades below the

threshold needed to decode a message coded with a certain coding and modulation scheme. The

corresponding thresholds are obtained from [30].

6.6. Results

This section evaluates the performance of our Dual-band scheme. We investigate the impact

of the number of stations (Ns), time interval τ over which fairness is measured (called “fairness

interval”), and frame size (f ).

We consider an uplink scenario, where all stations contend for the channel to transmit data

frames to the AP. Since all stations are attempting to transmit to the AP, their beams are always

directed towards the AP. However, only one station at a time can win a transmit opportunity

(TXOP) with the AP. Upon winning a TXOP, a station uses it to transmits a maximally sized data

frame that fits the TXOP before recontending for the channel.

Network topology and configuration. In the simulation, stations are randomly distributed

within a cell area with a radius of 23m. This range is the same as the maximum range we mea-

sured on first generation mm-Wave devices, a Dell 6430u laptop and D5000 docking system with

13◦ sector width. The fairness intervals τ over which fairness is evaluated are chosen to reflect

short term (τ = 5ms) and long term fairness (τ = 80ms), respectively. We also use differ-

ent frame sizes f = {1.5, 15, 30, 45, 60, 75}KB to study the impact of different levels of frame

aggregation on performance. For data frame transmission at 60 GHz, we consider the 12 sin-

gle carrier MCSs defined in IEEE 802.11ad [30]. The corresponding transmit rate ranges from

389Mbps to 4620Mbps. Table 6.1 shows the control message transmission rate for 802.11ad and

802.11ac respectively as well as simulation settings.

Table 6.1: Parameters in 60 GHz and 5 GHz frequency bands.

Item
IEEE 802.11ad IEEE 802.11ac

60 GHz 5 GHz, 80MHz bandwidth

aDIFSTime 13μs 34μs

aSIFSTime 3μs 3μs

aSlotTime 5μs 9μs

MCS0 27.5Mbps 32.5Mbps

aRTSTime = aCTSTime 8.19μs 7.30μs

Performance metrics. Our main performance metrics are throughput, fairness, and delay.
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Throughput is the total amount of data bits successfully received at the destination station over the

transmission time. To ensure fair comparison, we take the throughput loss on the lower frequency

band that our scheme incurs into account. To this aim, we scale the lower frequency band’s

throughput rate by the amount of channel time not used for RTS/CTS exchanges, and add this to

the total rate achieved at mm-Wave frequencies. For non dual-band scheems the full data rate of

the lower frequency bands is added, which is fixed to 433Mbps, the maximum rate supported by

IEEE 802.11ac without MIMO. Lastly, fairness is computed based on Jain’s fairness index [32].

Performance comparison. We compare the performance of the proposed approach against two

other schemes. The first approach, IEEE 802.11ad, implements the IEEE 802.11ad standard [30]

where all messages are transmitted directionally between the source and the destination stations.

The second scheme is the one proposed by Gong et al. in [23], where an RTS message is trans-

mitted directionally from a source station to the central controller (i.e., AP), which replies with

a broadcast CTS message to all stations in the system.1 We denote this centrally coordinated

scheme as Central.

6.6.1. Homogeneous scenario

Our analysis of the proposed Dual-band approach and the comparison to existing methods is

threefold. First we evaluate the throughput of the different methods before analyzing fairness and

lastly the impact of frame size.

Throughput. Figures 6.5 and 6.6 illustrate the impact of increasing the number of stations

Ns on the system throughput and frame collision rate, respectively. Both simulations have a fixed

fairness interval of τ = 80ms and frame size of f = 15KB. Further, Fig. 6.7 presents the duration

for data transmission, MAC overhead, collision time and idle time.
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Figure 6.5: Throughput comparison
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Figure 6.6: RTS-RTS collisions

In general, Fig. 6.6 shows that increasing Ns also increases the probability of RTS frame

1Note that this is in contrast to IEEE 802.11ad operation which only permits quasi-omni directional reception, but

not transmission at the AP.



6.6 Results 85

collision. While Central avoids collisions with data frames due to broadcasted CTS messages by

the AP, directional RTS frames during the contention phase still can collide since the directional

RTS is not overhead by any other stations. Further, it can be observed that Central with higher

CWmin has a lower number of RTS collisions. The collision rates for IEEE 802.11ad are presented

twofold. The plain IEEE 802.11ad curve only considers collosions between RTS frames, while

IEEE 802.11ad(All collision) also depicts collisions with CTS and Data frames. The plain RTS-

RTS collision rate is comparable to the centralized scheme, however the overall collision rate

of IEEE 802.11ad is found to be much higher. In fact, the majority of the collisions in IEEE

802.11ad occur due to the transmission of RTS messages from the deaf stations with an ongoing

data transmission. Dual-band in contrast has the lowest RTS-RTS collision rate since RTS are

transmitted omni-directionally and thus stations defer upon overhearing them. Thus, collisions

only occur if two RTS messages are transmitted in the exact same slot.

From Fig. 6.5, throughput increases with Ns. This results from the fact that time between two

consecutive transmissions is reduced as more stations result in higher probability of a station end-

ing backoff early in the contention phase. Further, increasing the minimum contention window

CWmin reduces the probability of collision but also causes high throughput loss for small Ns as

stations backoff unnecessarily. This effect can be seen for the three different CWmin configura-

tions evaluated for throughput and collision rate. According to a detailed analysis on contention

based access by Bianchi in [8], increasing CWmin bears no significant improvement for systems

using the RTS/CTS mechanism. This reflects in the throughput performance in Fig. 6.5 for Cen-

tral where all three configurations different perform equal for Ns ≥ 8.
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Figure 6.7: Time proportion for data transmission, MAC overhead, idle time and collision time

for Ns = {1, 4, 16} in the homogeneous sector scenario.

From Fig. 6.7, it can further be seen that the Central scheme with a higher CWmin incurs

more idle time than that with a lower CWmin. This shows again, that a higher CWmin causes

unnecessarily long backoff intervals. In addition, Fig. 6.7 shows that Dual-band achieves reduced

idle time between frames, which coincides with negative gain for Ns = 1. This is due to higher

DIFS and slot time on the lower frequency band as shown in Table 6.1. Therefore, the backoff

interval time is 80% longer than that for IEEE 802.11ad and Central. Note that disabling Dual-
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band in case it is not beneficial is a trivial extension. For higher numbers of stations, the benefits

of Dual-band and its ability to mitigate the deafness problem outweigh increased inter-frame and

slot times.

This analysis shows that Dual-band performs best for Ns > 1 and it achieves a throughput

gain of up to 65.3% compared to IEEE 802.11ad and 57.9% compared to Central.

Fairness. Fig. 6.8 and Fig. 6.9 show the fairness of the schemes for short term fairnes (τ = 5ms)

and long term fairness (τ = 80ms). For both, the frame size is fixed to f = 15KB and the number

of stations Ns is varied between 1 and 32. Further, Fig. 6.10 and Fig. 6.11 show the histogram of

the maximum per frame delay for Ns = 4 and Ns = 16, respectively from 200 simulation runs.

The shown delay duration is the time difference between the current data frame and the next data

frame of a station (given that all stations are backlogged). The frame size for these simulations is

fixed to f = 15KB with a simulation interval of τ = 80ms.
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Figure 6.8: Short term fairness.
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Figure 6.9: Long term fairness.

In general, fairness is found to be higher for smaller Ns. This is because fewer stations

have a higher chance to contend for the channel within the simulated fairness interval. Further,

Fig. 6.8 and 6.9 show that Central and IEEE 802.11ad have significantly lower fairness than

Dual-band. This results from the fact that for the first two schemes, increased RTS collisions

lead to longer contention windows. Thus, stations that experience collisions have lower chances

of contending for the channel within the fairness interval. In particular, when many stations

contend for the channel (larger Ns), most stations excessively increase their backoff interval as

the successful contending station repeatedly wins TXOPs with its minimum contention window.

The unsuccessful stations defer excessively as their backoff counter needs a long time to reach

zero for the contention periods are short (see Fig. 6.2).

Also, IEEE 802.11ad suffers from longer idle time as shown in Fig. 6.7, especially when Ns

is large. This results from excessively long backoff times due to the deafness problem. However,

IEEE 802.11ad performs almost as well as Central. This is due to the fact that deaf stations con-

tinue reducing their backoff timer during ongoing packet transmissions. They thus have a chance

to access the channel upon the expiry of the backoff time in a random manner, even when their
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initial backoff time was very large. Also, it is found that for both simulation durations, the size of

the initial contention windows for Central impacts fairness. Smaller minimum windows result in

reduced fairness, as nodes recontend after successful transmission with smaller contention times.

For the long term analysis, increased fairness is found for all schemes, since the chances for

the stations with larger backoff interval to contend for the channel are higher. Fig. 6.9 further

reveals that IEEE 802.11ad outperforms Central for Ns ≥ 32. This is because all stations defer

access when a CTS is received in Central, but only those within the boresight of the AP (that

overhear the CTS) will defer backoff in IEEE 802.11ad. Thus, deaf stations in IEEE 802.11ad

continue to reduce their backoff counter instead of deferring. With many deaf stations in a net-

work, thus the chances increase that one of them randomly hits a contention period and interrupts

the active station that repeatedly operates on the minimum CW.

These effects also reflect in our frame delay simulation. From Fig. 6.10 for simulations with

four stations, it can be seen that IEEE 802.11ad has a higher number of frames with a long

per frame delay than Central. However, for higher number of stations, Fig. 6.11 shows that the

distribution of delay duration of IEEE 802.11ad and Central becomes similar. As explained, this

is due to the excessively long deferral time of a station with failed RTS transmission in Central,

while random RTS transmissions of deaf IEEE 802.11ad nodes actually increase fairness for high

Ns.

Our fairness analysis reveals that our proposed Dual-band approach achieves significantly

higher fairness for arbitrary network sizes because of reduced RTS collisions.
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Figure 6.10: Maximum per frame delay for

Ns = 4.
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Figure 6.11: Maximum per frame delay

Ns = 16.

Impact of Frame Size. We further examine the impact of frame size on fairness. Fig. 6.12

and Fig. 6.13 depict the impact of frame size for short term fairness (τ = 5ms) and long term

fairness (τ = 80ms), respectively. The number of stations for both simulation runs is fixed to

Ns = 16. For the fairness of all three schemes, a reduction with increasing frame size is found.

For IEEE 802.11ad, this results from the fact that larger frame size entails longer transmission

time and multiple unanswered RTS of the same station can occur during one data frame. Thus,

some stations excessively increase their backoff intervals and have a lower chance to transmit

within the simulated fairness interval. Similarly, for Central with increasing frame length, stations
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Figure 6.12: Impact of frame size on short

term fairness (τ = 5ms)
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Figure 6.13: Impact of frame size on long

term fairness (τ = 5ms)

defer for longer durations and thus some stations may not be able to transmit within the simulated

interval. For Dual-band, a degradation in fairness with increasing frame size is also found. This

results from reduced chances to contend for the channel for longer frame durations as stations are

likely to draw a larger (random) backoff times. This effect is less pronounced for shorter fairness

intervals in Fig. 6.12. Nevertheless, Dual-band performs best for both τ = 5ms and τ = 80ms

since it neither has excessive deferral time nor backoff time due to a high RTS collision rate.

Next it is found that for all frame sizes the fairness of the schemes improves for a longer

simulation interval τ = 80ms. This is due to the fact that stations that are deferring or backing

off for extended periods are more likely to win a TXOP throughout the larger simulation interval.

Also, IEEE 802.11ad and Central perform almost equal in Fig. 6.13 as with longer simulation

interval, stations that back off have almost an equal chance to transmit as the stations that defer in

Central. The fairness differences between Central schemes with different minimum contention

windows result from the same reasons described in the subsection before. Overall, it is found

that longer frame durations reduce fairness, with the dual-band approach achieving substantial

improvements over IEEE 802.11ad and Central. This is because the latter two methods suffer

excessive back off and deferral.

6.6.2. Heterogeneous scenario

We also simulate a heterogeneous scenario where stations have different sector widths, se-

lected at random from the set {13◦, 15◦, 20◦, 30◦, 40◦, 50◦, 60◦, 90◦, 120◦}. Since the perfor-

mance is very similar to that shown in Section 6.6.1, we omit the discussion of the results for

brevity.
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6.7. Conclusion

In this chapter, we address the deafness problem that affects throughput and fairness for direc-

tional 60 GHz transmissions with CSMA/CA channel access. To the best of our knowledge, our

work is the first to design and analyze a dual frequency system to mitigate the deafness problem.

Our approach takes advantage of a coexisting 5 GHz band to coordinate the data transmission at

60 GHz. This is beneficial in two ways. First, due to omni-directional transmission on 5 GHz

the deafness problem is solved, preventing fairness impairments. Second, moving robust low rate

control messages to 5 GHz allows to use the 60 GHz band exclusively for high throughput data

transmission.

We analyze throughput and fairness of our proposed scheme through extensive simulations to

compare it against IEEE 802.11ad and an alternative scheme that broadcasts CTS messages from

a central controller. In terms of fairness, we improve by up to 42.8% over IEEE 802.11ad and

34.5% over the centralized scheme. Despite using air time on the 5 GHz band due to broadcasting

of control messages, our approach still achieves significant overall throughput gain. Considering

both bands jointly, we gain 65.3% and 61.8% over IEEE 802.11ad, respectively the centralized

scheme.
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Chapter 7

Efficient Decentralized Scheduling for
60 GHz Mesh Networks

7.1. Introduction

In view of the significant mobile data traffic growth currently anticipated [10], millimeter-

wave (mm-Wave) frequency bands are being explored as a candidate solution to tackle the ca-

pacity shortage faced by mobile broadband networks. The very wide (hundreds of MHz to GHz)

channels and underutilized spectral resources in these bands open up the possibility of enhanc-

ing the capacity of indoor and outdoor wireless deployments and implementing high throughput

wireless backhauling. At the same time, mm-Wave bands have high path loss, primarily due

to carrier-frequency-dependent attenuation and, secondarily, due to oxygen absorption [79]. To

overcome this problem (high path loss), stations employ high gain directional communication,

for example through small phased antenna arrays, which allows to confine the emitted energy to

narrow beams. This also reduces interference substantially and boosts spatial reuse [69].

Such directional communication, however, introduces terminal deafness in the absence of

appropriate beam steering and scheduling mechanisms. Therefore medium access solutions

previously designed for 802.11 Wireless LANs operating in legacy bands are inappropriate for

mm-Wave networks. Beam steering has been addressed in the context of 60 GHz networks that

follow the IEEE 802.11ad standard [31], e.g., through out-of-band angle of arrival estimation [47],

to reduce throughput degradation associated with transceivers’ beams misalignment.

In addition to identifying the right antenna sector or beam direction, scheduling, i.e., when

to establish a directional link with the intended receiver, is essential to network performance. A

simple example scenario is illustrated in Fig. 7.1, where station 2 forwards traffic from 3 and

4 towards station 1. In the absence of appropriate scheduling, station 2 may loose packets of

either station 3 or 4 when it communicates with station 1. While simple centralized single-hop

scheduling techniques (e.g., the service period based scheduling mechanisms specified by the

IEEE 802.11ad standard [31]) may be sufficient for this basic example, they do not scale to more

91
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Figure 7.1: Simple example of a multi-hop 60 GHz network. Station 2 forwards traffic originating

at 3 and 4, towards the gateway (node 1).

complex multi-hop relay networks. The reason is that stations need to rapidly and precisely

decide which neighbor to beam-steer towards for transmission and reception. Finding a single

schedule that suits the entire multi-hop network is a complex problem that typically involves

global knowledge and coordination.

Medium access control tailored to 60 GHz mesh networks was only considered recently [64],

though early efforts fail to capture important practical aspects, including multi-rate operation (due

to different link signal-to-noise ratios) and frame aggregation. Precisely, in realistic network set-

tings where links are stable but stations are located at different distances from each other, schedul-

ing over fixed size slots is suboptimal – transmission slots of short duration only allow limited

frame aggregation or even require that longer packets are split over multiple slots, whereas long

slots are frequently underutilized. In addition, this approach requires alignment of slot boundaries

across all stations in the network, which imposes tight synchronization.

In this chapter, we tackle the problem of efficient scheduling in multi-hop 60 GHz networks

through a self-organized approach, DLMAC. DLMAC enables stations to learn in a decentralized

fashion when to trigger conflict-free directional transmissions, without unnecessarily consuming

additional channel resources. With this mechanism, stations operate in an unslotted channel that

they divide into cycles of fixed length, comprising a number of micro-slots. Stations explore

randomly chosen micro-slots within an exponentially increasing access window and upon suc-

cess, the communicating pair reserves the same time interval for directional packet exchanges in

subsequent cycles. After that, the transmitter initiates a backward probing procedure to reduce

the idle periods in between adjacent allocations (inter-transmission idle time) and improve ef-

ficiency. In addition, we propose a micro-slot binary search enhancement, BinDLMAC, which

further reduces the inter-transmission idle periods to boost performance.

We demonstrate by means of extensive simulations that our proposal substantially outper-

forms recent history-based solutions for mm-Wave mesh networks [64] in multi-rate and variable

packet size scenarios, which makes it particularly suitable for indoor high-speed access networks,

in-band backhauling and multi-hop relaying. The simulation results show that our approach

achieves throughput gains of up to a factor of 8 in single-hop networks and end-to-end throughput

gains of up to a factor of 1.6 in multi-hop topologies.
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The rest of the chapter is organized as follows. We overview the related work in Section 7.2.

We present our proposal in Section 7.3 and evaluate its performance in Section 7.4. Then we

conclude the article with some final remarks in Section 7.5.

7.2. Related Work

Recent work provide first-hand practical evidence of the 60 GHz frequency band’s capability

of multi-Gbps communications [53, 79] and characterize the highly directional mm-Wave wire-

less links as having some pseudo-wired like characteristics [65]. However, due to the deafness

introduced by the highly directional antenna patterns, carrier sensing is infeasible and thus legacy

MAC protocols, e.g., the traditional 802.11 operating in the 2.4 and 5 GHz bands, are unsuitable

for 60 GHz links.

Learning-based Scheduling in Wireless Networks: Learning was applied previously in the

context of traditional wireless networks to achieve TDMA-like scheduling [6,9,19,25,37,43,55,

70, 77]. However, carrier sensing enables these earlier schemes to find collision-free slots and

determine the schedule length, which is infeasible in mm-Wave networks without more complex

and high overhead exchange of global information. In contrast, our proposal employs decen-

tralized scheduling for multi-hop 60 GHz networks, overcoming terminal deafness without any

information exchange.

Multi-hop 802.11 Scheduling Solutions: Scheduling methods designed for the legacy 802.11

multi-hop networks cannot be applied to 60 GHz systems due to fundamental differences that

arise with the use of narrow beams. For instance, Choudhury et al. propose a directional MAC

protocol that employs multi-hop RTS, while CTS, DATA, and ACK are transmitted over a single

hop [15]. The approach relies on directional carrier sensing, which cannot be applied on very

narrow beams. Laufer et al. propose XPRESS, a back-pressure mesh architecture [36], in which

a central controller schedules all mesh access points, requiring complex cross-layer information

and synchronous operation between the network and link layers. In contrast, DLMAC does not

rely on carrier-sensing, tight synchronization, or complex cross-layer interactions.

60 GHz MAC Designs: Given the unique PHY properties of mm-Wave bands, the focus in

the design of new MAC protocols is shifted from interference management towards overcoming

terminal deafness [44]. In single-hop networks, Chandra et al. propose to adapt beam widths

in mm-Wave contention-based access [12] to increase throughput, while legacy 2.4/5 GHz bands

are employed in [47] to aid mm-Wave technology with beam steering to establish multi-Gbps

links. These approaches improve 802.11ad protocol efficiency, but do not address the scheduling

problem in the context of deafness.

Chen et al. make a step forward and propose a directional cooperative protocol [14], which

enables the access point to transform low-SNR single-hop links into multi-hop relayed connec-

tions. The solution, however, is centralized and thus has limited scalability in applications such

as mm-Wave in-band backhauling. To tackle this problem, Singh et al. propose MDMAC, a
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Figure 7.2: Two DLMAC stations accessing the channel: schedule, micro-slots and transmission

procedure using an exponentially increasing access window upon failed transmissions.

memory-guided scheduling algorithm that works distributively in directional 60 GHz mesh net-

works [64]. However, MDMAC addresses scheduling efficiency only to some extent, as the pro-

tocol does not capture multi-rate operation and variable packet lengths – it determines a fixed slot

size for all transmissions a priori. Further, it involves periodic probabilistic resets of the system

state, which further degrades performance. In addition, MDMAC’s operation requires synchro-

nization among nodes, which is not trivial in multi-hop topologies. Our proposal tackles these

limitations as it does not involve synchronization and is not tied to a fixed slot length. Instead

we employ quasi-unslotted access and exploit an effective packing mechanism to improve chan-

nel utilization. Consequently, we achieve efficient scheduling in 60 GHz networks under steady

channel conditions, but with variable link rates.

7.3. Decentralized Learning MAC Protocol (DLMAC) for 60 GHz
Networks

We propose DLMAC, a decentralized learning scheme for scheduling transmissions in

60 GHz networks. Stations running DLMAC decide when to transmit based on the outcome

of the previous attempts, with the goal of: i) finding conflict-free channel allocations, and ii)

minimizing inter-transmission idle time. In addition, we specify BinDLMAC, which extends

DLMAC through a Micro-slot Binary Search Procedure (in Section 7.3.5) to further improve

channel utilization.

7.3.1. Protocol overview

Our protocol builds upon the recently approved IEEE 802.11ad standard for 60 GHz net-

works [31], which mandates that idle nodes listen in quasi-omnidirectional mode and only switch
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to directional communication upon a transmission request. This however introduces terminal

deafness, i.e. an intended receiver would fail to engage with a transmitter, if already communi-

cating with a different station. To overcome this problem, DLMAC clients independently divide

time into cycles of fixed length (schedules) comprised of a number of micro-slots of very small

duration and seek to identify non-conflicting sets of micro-slots that can accommodate their trans-

missions. Stations follow the same cycle length, without requiring to be synchronized and thus

the beginning of a cycle can be different for each node.

A node attempting transmission initially picks a set of consecutive micro-slots at random (out

of those in the schedule that, to its knowledge, are free) to transmit. If the transmission is success-

ful, the same set of micro-slots will be reserved for future message exchanges in the following

schedules at both the transmitter and the receiver. Consequently, both nodes will beam-steer to-

wards each other during the allocated time interval. In case the transmission is unsuccessful,

the sender repeats the procedure by choosing at random a different set of micro-slots within an

exponentially increasing access window that follows the previous failed transmission attempt.

To improve channel utilization, nodes with established channel allocations probabilistically

probe the channel to transmit at an earlier time, with the goal of moving their transmissions

closer to other allocations, thereby attempting to cluster packet transmissions together and, thus,

prolonging idle intervals to better accommodate future allocations. More specifically, a node

will seek to transmit right before its current allocation, such that if the probing is unsuccessful,

previously reserved micro-slots can still be used. Figs. 7.2–7.3 summarize DLMAC’s operation,

which we further detail next.

7.3.2. Scheduling

In contrast to legacy IEEE 802.11, the lack of carrier sensing due to directional communi-

cation prevents nodes from inferring the boundaries of other transmissions, which questions the

applicability of slotted channel access schemes to 60 GHz networks. Further, mm-Wave pro-

tocols where a station maintains synchronization and transmissions are confined to fixed length

slots (e.g. [64]) perform sub-optimally with varying packet lengths and PHY bit rates – slots are

either underutilized or too small to accommodate large payloads.

To address this issue we propose an asynchronous mechanism whereby nodes divide time into

schedules that comprise a fixed number of micro-slots, and select a set of these for communica-

tion, as depicted in Fig. 7.2. This approach provides variable-sized allocations to different nodes,

allowing DLMAC to adapt better to heterogeneous scenarios with different packet lengths and/or

data rates.

We consider the schedule length to be sufficiently long so as to accommodate transmissions in

the largest neighborhood and allow for multiple transmissions by the same station in the schedule.

Note that a given station may hold multiple allocations within the same schedule, if a suitable set

of micro-slots is found for each transmission. In this case, once a node observes that its schedule

would not allow for a new station to transmit, it will locally decide to either deallocate one of its
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transmissions or a reception (by not sending ACKs).

7.3.3. Reception procedure

A node not participating in any communication listens in quasi-omnidirectional mode, so

that it can receive requests for communication from its neighbors. If an RTS is received from a

particular neighbor during this phase, the node will first assess whether there is enough time to

complete the full exchange of CTS, data packet, and ACK, by checking the time left before its next

scheduled transmission or reception. In case the full packet exchange can be completed, it will

reply with a CTS and upon reception of the data packet, the node will consider this as a scheduled

transmission for the next cycle. This is depicted in Fig. 7.2, where successful allocations in

Schedule 1 are maintained in Schedule 2. Right before a scheduled transmission, nodes involved

in the communication switch to directional beams and point these towards each other.

7.3.4. Transmission procedure

We now describe how stations transmit (summarized in Algorithm 1). This involves an initial

random channel access followed by packing using RTS probing.

7.3.4.1. Initial channel access

A node with a queued packet first sends an RTS in a micro-slot j ∈ c(s) selected uniformly

at random, where c(s) denotes the set of idle micro-slots at schedule s ∈ Z+. We assume s has

sufficient consecutive idle slots to accommodate the transmission1 (see lines 3–4 in Algorithm

1). If the transmission is successful, i.e., both CTS and ACK are received, the node will consider

this attempt as the first successful allocation. The following frames in subsequent schedules are

exchanged using the basic access mode (without an RTS/CTS handshake).

If the transmission is unsuccessful, the node infers that the failure may be caused by the

receiver being in communication with another station. The node retries in a time slot se-

lected at random from an exponentially increasing access window (see Fig. 7.2). To this end,

the station draws a random number a in the range [0,Wi], where i is the number of unsuc-

cessful attempts experienced by that packet and Wi is the corresponding access window. The

gap between the transmission attempts will be j + �trtscts/γ� + a micro slots, where trtscts =

aRTSTime + aSIFSTime + aCTSTimeoutTime, and γ denotes the duration of a micro-slot (lines

13–15). If the attempt is unsuccessful, the station increases the access window and draws ran-

domly a new micro-slot (lines 20–21). This procedure is repeated until a successful transmission

occurs.

Note, this design speeds up convergence by backing off rather than waiting for the next sched-

ule. While it would be possible to access the channel more aggressively by continuously sending

1Recall that a complete transmission comprises the RTS, CTS, data, and ACK frames, which are separated by short

inter-frame spacing times (SIFS).
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Algorithm 1 DLMAC - Transmission Procedure

Input:
1: j ∈ c(s), s ∈ Z+,Wi, trtscts,Wmax = 128, prts = 1.

Output: j,Wi

2: initialize: i = 0,Wi = 2i,m = 0.

3: choose slot j randomly in c(s)
4: access slot j
5: if successful then
6: prts = 1
7: Procedure RTS probing

8: else
9: Procedure Exponential access

10: end if
11:
12: procedure EXPONENTIAL ACCESS

13: increase the access window: i = i+ 1,Wi = 2i

14: access range: a ∈ [0,min{Wi,Wmax}]
15: access at j + 
trtscts/γ + a�
16: if successful then
17: prts = 1
18: Procedure RTS probing

19: else
20: update j; j = j + 
trtscts/γ + a�
21: Procedure Exponential access

22: end if
23: end procedure
24:
25: procedure RTS PROBING

26: if rand(1) < prts then
27: access at j − 
trtscts/γ�
28: if successful then
29: update j; j = j − 
trtscts/γ�
30: if m < S/trtscts then
31: m = m+ 1, prts = 1
32: else
33: m = 0, prts = min{prtspred, pmin}
34: end if
35: else
36: k = j − 
trtscts/γ�
37: m = 0, prts = min{prtspred, pmin}
38: Procedure Micro-slot binary Search

39: end if
40: end if
41: Procedure RTS probing

42: end procedure
43:
44: procedure MICRO-SLOT BINARY SEARCH [BINDLMAC]

45: access at k + 
(j − k)/2�
46: while �j − k
 > 0 do
47: if successful then
48: update j; j = k + 
(j − k)/2�
49: else
50: update k; k = k + 
(j − k)/2�
51: Procedure Micro-slot binary search

52: end if
53: end while
54: end procedure

RTSs until transmission is successful, our approach reduces the possibility that transmitter’s side

lobes may disrupt existing directional links [47].
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7.3.4.2. Packing transmissions via RTS probing

To reduce the idle periods between transmissions, nodes try to move their allocations closer

to other transmissions in the schedule. To this end, once successful, a node starts RTS probing

(initially with probability prts = 1) in subsequent schedules. The station sends an RTS in micro-

slot �trtscts/γ� earlier (line 27 in Algorithm 1), allowing enough time for an RTS/CTS exchange

before the original transmission is scheduled. If a CTS is received, the transmission is moved back

this many microslots, otherwise the existing allocation is retained. This procedure is repeated until

no CTS is received, thus packing the transmission closer to earlier allocations in the schedule.

This procedure is illustrated in Fig. 7.3. In the example shown, Node B moves its previous

allocation successfully in Schedule 2 using the RTS probing mechanism. In Schedule 3, the

probing is unsuccessful and as a result the station keeps its previous successful allocation (lines

36–37 in Algorithm 1).

Node B

Node A

Idle slots < 1 allocation
AP

j (Last successful slot)

j (Last successful slot)

fail

Schedule 2

Schedule 3

When RTS probing fails, the node transmits at 
the last successful slot 

Success

Node B

Schedule 2/3

Schedule 2/3

 

k  
k (Last fail slot)

Figure 7.3: RTS probing procedure: attempting to move an allocation �trtscts/γ� micro-slots ear-

lier in the schedule.

Initially, RTS probing is limited to a maximum of S/trtscts times, where S denotes the length

of the schedule in seconds (line 31). After this, RTS probing is probabilistically used to address

potential gaps caused by nodes leaving the network, while limiting the amount of probing when

conditions are more stable. For the initial transmissions, we use prts = 1 (lines 6 and 17).

After a failure in RTS probing (line 37) or when reaching the maximum number of attempts

(line 33), a station updates prts to max{prtspred, pmin}, where pred is a reduction factor to prts to

gradually lower the RTS probing probability and pmin is a minimum probing probability to ensure

the frequency of RTS probing does not become too low. This ensures that when nodes release

allocations, arising gaps will be packed quickly. pred and pmin are configurable parameters and

we provide suitable values in Section 7.4.
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Figure 7.4: Micro-slot binary search phase: attempting to transmit at an earlier slot and cluster

allocations.

7.3.5. Micro-slot binary search

Finally, we define a micro-slot binary search mechanism as an extension to DLMAC, referred

to as BinDLMAC, to further improve efficiency by minimizing the inter-transmission idle periods.

The refinement is motivated by the observation that DLMAC may leave idle time of a duration up

to trtscts between consecutive transmissions. In the micro-slot binary search depicted in Fig. 7.4, a

node considers j (its currently allocated micro-slot) and k = j−�trtscts/γ� (the point at which the

last RTS probing failed). In the next schedule, the node attempts moving its allocated transmission

to k + �trtscts/2�. Then, upon failure, the node updates k to the new failure point (see line 50 in

Algorithm 1) and upon success, it updates j to the new successfully allocated micro-slot (see line

48). The next micro-slot, at which to attempt transmission, will be k + �(j − k)/2�. The search

finishes when �(j − k)� = 0.

7.4. Performance Evaluation

In what follows, we evaluate the performance of DLMAC and BinDLMAC by conducting

extensive simulations over different single- and multi-hop mm-Wave network scenarios. We

compare our proposals with MDMAC [64], a recent link scheduling protocol for 60 GHz net-

works. Specifically, we measure the aggregate network throughput, when stations operate with

the proposed schemes and respectively with different MDMAC versions2, and transmit frames

with varying payload sizes, under both homogeneous and heterogeneous data rates.

2By design, MDMAC works with a fixed slot size, optimized for a single payload. For a fair comparison, we

examine the protocol’s behavior with different slot sizes. We further discuss MDMAC’s operation in Section 7.2.
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For the evaluation, we implement the aforementioned schemes in a Matlab-based, event-

driven simulator. We use the signal propagation model given in [79], with the following pa-

rameters: oxygen absorption coefficient α = 0.02dB/m, carrier wavelength λ = 5mm, and

transmit power P = 10dBm. In all the simulations, we configure DLMAC with pred = 0.2 and

pmin = 0.01.

All protocols comply with the inter-frame and control message durations specified by the

IEEE 802.11ad standard, as given in Table 7.1. We assume that the link data rates remain constant

during simulation runtime. This assumption is supported by experimental results we obtained in

our testbed, using a Dell 6430u laptop and a D5000 wireless docking system equipped with

60 GHz transceivers. These experiments confirm that MCS selection is consistent over 7-minutes

tests, as illustrated in Fig. 7.5.

For all simulations, we give averages and 95% confidence intervals for the aggregate through-

put, over 50 runs.
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Figure 7.5: Experimental testbed results for the MCS selected by a laptop transmitting to a wire-

less docking station over the 60 GHz band for TX–RX distances of 2, 8, and 14 meters.

Table 7.1: IEEE 802.11ad [31] timing parameters.

Parameters Values

aRTSTime 8.19μs

aCTSTime 8.19μs

aACKTime 6.45μs

aSIFSTime 3μs

aCTSTimeoutTime 15μs
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7.4.1. Star and random topologies

We first consider two single-hop topologies with ten stations. In the first scenario, nodes

transmit to the same AP (star topology), while in the second each station transmits to a randomly

selected neighbor (random topology). All stations operate under saturation conditions (i.e., al-

ways have packets queued for transmission). Therefore, stations aim to perform multiple alloca-

tions within the same schedule. However, a node only attempts to find a new allocation once it

successfully completed a packet exchange with an intended receiver. A station will refrain from

allocating more transmissions within the same schedule once, to its knowledge, insufficient idle

time remains to accommodate other stations.

We investigate scenarios where all stations transmit at a fixed data rate (1.925 Gbps), and

respectively where each link operates with a randomly selected bit rate, ranging from 385 Mbps

to 4.62 Gbps, corresponding to the 12 single carrier modulation and coding schemes (MCSs)

defined by the IEEE 802.11ad standard [31]. We examine the performance of the protocols for

different payload sizes F = {1.5, 3, 6, 12, 24}KB.

7.4.1.1. Star topology, homogeneous data rates

First we evaluate the throughput attained by DLMAC and BinDLMAC under homogeneous

link conditions for different payload sizes and compare it to the performance of MDMAC config-

ured with different slot sizes. We depict the results in Fig. 7.6. In line with our intuition, slotted

channel access operating with a fixed slot size only works well when the payload fits the slot size

perfectly. More specifically, (i) a small slot size leads to packet fragmentation, which may require

multiple slots for a single transmission and thus incurs additional overhead (e.g. MDMAC-20μs,

F ≥ 3KB); (ii) when the slot size is large, a fraction of the slot remains idle, which reduces

protocol efficiency and thus the overall throughput (e.g. MDMAC-160μs, ∀F ).

In contrast, the aggregate throughput of DLMAC increases monotonically with the payload

size and approaches the maximum achievable value in all scenarios. This is due to the fact that

DLMAC is inherently more flexible and assigns allocations dynamically.

We note however, that DLMAC attains lower throughput than MDMAC, when the payload

exactly matches the slot size. For instance, a F = 1.5KB payload requires 19μs for transmission,

leaving only 1μs idle time if the slot size is 20μs (MDMAC-20μs). This observation motivates

the design of our BinDLMAC refinement, which seeks to further reduce the inter-transmission

idle periods experienced by DLMAC.

Through the micro-slot binary search procedure, BinDLMAC successfully clusters transmis-

sions, which leads to nearly optimal throughput performance. As seen in Fig. 7.6, by this pro-

cedure BinDLMAC achieves up to 25% more throughput than DLMAC and outperforms or per-

forms very close to MDMAC in most settings.

To give further insight into the observed throughput difference, in Fig. 7.7 we plot the distri-

bution of the inter-transmission idle time when DLMAC and BinDLMAC are used with 1.5 and
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Figure 7.6: Throughput comparison between the proposed schemes (DLMAC and BinDLMAC)

and slotted channel MDMAC with different slot sizes, for a star topology with N = 10 stations

transmitting at 1.925Gbps.

6KB payloads. We observe that BinDLMAC does not eliminate large idle times completely, since

the probabilistic probing we implement may create inter-cluster gaps. Despite this, BinDLMAC

almost triples the number of very short idle intervals (0-5μs), while reducing the number of larger

ones, which translates into the throughput gains illustrated in Fig. 7.6.
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Figure 7.7: Inter-transmission idle time distributions for DLMAC and BinDLMAC, for 1.5KB

(left) and 6KB (right) payloads.

We also examine DLMAC and BinDLMAC’s convergence properties in the above scenario.

For this purpose, in Fig. 7.8 we show the evolution of the aggregate throughput for both our



7.4 Performance Evaluation 103

approaches and MDMAC. By design, MDMAC stabilizes quickly as all slots are allocated for

transmission. In contrast, DLMAC takes slightly longer to converge due to the probing proce-

dure employed to decrease the inter-transmission idle time. Since BinDLMAC further reduces

these and improves channel utilization, it requires additional time to converge to a conflict free

allocation. Nevertheless, we observe from Fig. 7.8 that both approaches settle in less than 1

(and respectively 4) second(s) when the payload size is 1.5KB (and respectively 6KB), which we

consider acceptable for practical scenarios.
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Figure 7.8: Evolution of aggregated throughput in a star topology (N = 10 nodes) for DLMAC

and BinDLMAC, as well as MDMAC variants for comparison.

7.4.1.2. Star topology, heterogeneous data rates

Next, we demonstrate that our proposals achieve further performance gains over fixed slot

size scheduling mechanisms when links operate with different data rates. We use the same star

topology with N = 10 transmitters but with link data rates for the different stations chosen

randomly from the set of 12 MCSs defined by the standard.

We illustrate the results in Fig. 7.9, where we plot the aggregate throughput of DLMAC,

BinDLMAC, and the different MDMAC variants, as we vary the payload size. Observe that

in this case, computing an optimal slot size that accommodates a frame perfectly is no longer

feasible. As a consequence, all MDMAC variants perform poorly, as the payload size exceeds

1.5KB. In contrast, by employing unslotted channel access and allocating air time adaptively,

DLMAC’s performance is superior – our approach allocates transmission time individually, de-

pending on both payload size and link rate; this overcomes underutilization of longer slots, as well

as the increased overhead associated with short fixed slots. In addition, by reducing the duration

of inter-transmission idle time, BinDLMAC further improves network throughput. Specifically,

BinDLMAC achieves up to 100% more throughput than MDMAC-20μs and up to five times the
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Figure 7.9: Throughput comparison between the proposed schemes DLMAC and BinDLMAC as

well as the slotted channel MDMAC variants for different payload sizes, for a star topology with

N = 10 stations with different data rates.

performance of MDMAC-160μs.

To verify that the observed performance gains are due to MDMAC experiencing high over-

head (small slots) or leaving unnecessarily long idle periods within (long) slots, in Fig. 7.10 we

show the percentage of air time for payload transmission (black), overhead (gray), and idle time

(white), for both our schemes and the MDMAC variants. Indeed, DLMAC and BinDLMAC con-

sistently utilize a higher fraction of time for payload transmission, while overhead decreases with

payload size. In addition, idle time is reduced and protocol efficiency is further enhanced through

our micro-slot binary search procedure.

We conclude that no unique slot size exists, such that the performance of slotted access

schemes is maximized in all circumstances. By performing adaptive channel time allocation and

clustering transmissions, DLMAC and BinDLMAC achieve superior throughput performance and

substantially outperform the recently proposed MDMAC scheme.

7.4.1.3. Random topology

Next, we examine a scenario where transmitters do not share the same receiver. More specif-

ically, we consider a 60 GHz network with N = 10 stations, where each node chooses a destina-

tion randomly, in both homogeneous and heterogeneous link rate scenarios. We demonstrate that

in such topologies, the aggregate throughput gains of DLMAC and BinDLMAC over MDMAC

variants are even higher. To this end, we plot again the network throughput as a function of the

payload size when links operate with the same data rate (Fig. 7.11a) and for randomly chosen

data rates among the set of allowed MCSs (Fig. 7.11b), respectively.

From Fig. 7.11 we conclude that in the random topologies evaluated, DLMAC achieves up to
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Figure 7.10: Fraction of time spent for payload transmission, packet overhead, as well as idle

time, for DLMAC, BinDLMAC and the MDMAC variants for a star topology with N = 10
stations for different payload sizes and heterogeneous link rates.

8 times higher throughput than MDMAC. The BinDLMAC refinement succeeds in better packing

transmissions, which results in further throughput improvements of up to 10% above DLMAC.
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Figure 7.11: Throughput comparison between the proposed schemes DLMAC and BinDLMAC

as well as the MDMAC variants for a random single-hop topology with N = 10 stations with data

rates of 1.925 Gbps (left) and rates ranging between 385Mbps and 4.62Gbps (right) for different

payload sizes.
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7.4.2. Multi-hop topologies

In what follows, we evaluate the performance of the proposed protocols in more complex

network scenarios. Specifically, we consider a multi-hop network topology with 20 stations dis-

tributed across a 50mx50m area, as depicted in Fig. 7.12. We compute the corresponding data

rate of each link based on the distance between communicating pairs and the propagation model

specified by Zhu et al. [79], as described above. The antenna sector width of a station is 13◦ and

the maximum distance between two communicating nodes is 23m (which follows the insights

gained from our experiments in a real testbed). Although we do not capture the neighbor discov-

ery phase, we note that this could be achieved through beam sweeping [31], or via omnidirectional

transmissions in a lower frequency band, as suggested in [47].
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Figure 7.12: Multi-hop topologies considered for evaluation, with links labeled with their corre-

sponding MCS index (the corresponding data rate is shown in the Table 7.2) for a pure uplink

scenario with all flows terminating at the gateway G (left) and a mixed uplink and downlink

scenario (right).

Table 7.2: Mapping of MCS index to data rate as specified in [31].

MCS index Data rate [Gbps]

2 0.7700

4 1.1550

6 1.5400

7 1.9250

8 2.3100

9 2.5025

In these simulations, we add further practical considerations, as well as complexity, by as-

suming flows operate with different payload sizes. Precisely, each flow randomly selects from

a set of payloads F = {1.5, 3, 6, 12, 24}KB. We consider two distinct cases: (i) multiple flows
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originate at different nodes and terminate at the gateway, as indicated by the labels in the bottom

right corner of Fig. 7.12a; and (ii) several uplink and downlink flows coexist in the multi-hop

topology, as indicated by the arrows and labels depicted in Fig. 7.12b.

In these scenarios, we measure the end-to-end throughput attained by all flows, and compute

the average sum of the individual throughputs over 20 simulation runs, for DLMAC, BinDLMAC,

and MDMAC with different slot sizes (between 20−160μs). The results of these experiments are

shown in Fig. 7.13, where we observe that also in these multi-hop topologies, as in the single-hop

case, DLMAC and BinDLMAC attain substantially higher end-to-end throughput compared to

MDMAC.

We conclude that, in multi-hop topologies with heterogeneous link rates and frame sizes, by

employing unslotted channel access and clustering transmissions, BinDLMAC achieves between

20% and 160% throughput gains over MDMAC.
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Figure 7.13: Comparison of the average sum of end-to-end throughputs attained by the flows

shown in Fig. 7.12, when the stations operate with the proposed schemes and MDMAC variants.

7.5. Conclusions

Scheduling solutions for wireless networks mainly target scenarios in which carrier sensing

is feasible. However, due to directional transmission used (to cope with critical path loss so as to

achieve high throughput) in mm-Wave communications, nodes cannot rely on carrier sensing to

assess the channel status. In this article, we tackled efficient scheduling for mm-Wave networks

by applying a decentralized learning approach. In contrast to earlier works, we considered hetero-

geneous conditions in terms of link data rates and traffic demand across the network. By adopting

a quasi-unslotted approach and finding allocations that result in successful transmissions while,

at the same time, packing transmissions together to increase efficiency, the proposed protocols

achieve 1.6 times the end-to-end throughput of existing approaches in heterogeneous multi-hop

topologies, and even higher gains in single-hop scenarios. Moreover, our proposals do not re-
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quire probabilistically resetting the protocol state to accommodate new transmissions, but instead

ensure there is sufficient slack in the schedule to capture network dynamics. The proposed pro-

tocols neither require tight synchronization nor information exchange to build and maintain the

schedule.



Chapter 8

Summary

This thesis explores the challenges in designing scheduling and medium access control

schemes for wireless networks. In particular, we focus on problem arises due to the heterogeneity

of the users due to the variability of wireless channels.

First of all, we identify that an optimal design for multicasting requires a precise tradeoff

between multicast gain (i.e., the aim to transmit to as many users as possible) and multiuser di-

versity gain (i.e., the aim to achieve high throughput). Hence, we explicitly take into account two

system parameters: (i) the channel quality, and (ii) the amount of data received at the users. This

consideration further leads to another interesting tradeoff, which is completion time minimiza-

tion versus throughput maximization at a given state for the decision made. The analysis of the

optimal dynamic programming scheme reveals that throughput maximization is beneficial if all

users still need to receive considerably large amounts of data from the base station. Otherwise,

the lagging users are to be prioritized over the users that progress faster. Due to the complexity

of dynamic programming, we design two simple and practical heuristics. Extensive simulations

show that they perform close to the optimal solution. In more realistic scenarios with multipath

Rayleigh fading and limited feedback message, they also achieve high gain as compared to the

simple broadcast and opportunistic schemes.

Leveraging beamforming, we can improve the rate limitation of multicast scheduling when

some users experience bad channel conditions. We first formulate the problem as a dynamic

programming problem to obtain the optimal solution. Due to its complex nature, we design a

heuristic algorithm that allows us to capture the characteristics of the solution in terms of selecting

the optimal group of users to select. The evaluation of our heuristic algorithm in a discrete channel

shows that it performs close to the optimal solution. The algorithm is additionally tested in a

scenario with multipath Rayleigh fading as well as imperfect channel state information. Results

show that our proposed scheme improves the completion time by up to 46.14% with respect to

the benchmarked schemes (i.e., greedy and broadcast schemes) that only optimize for throughput

and broadcast gain.

Next, we address the deafness problem in mm-Wave communications caused by directional
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beamforming is used. Our research reveals that the deafness problem leads to excessive back-

off and channel under-utilization. To mitigate this problem, we leverage omnidirectional trans-

missions at a lower frequency band. This allows us to dedicate the extremely high throughput

mm-Wave band exclusively for data transmission. Results show that this dual-band approach

solves the deafness problem, prevents fairness impairments and achieves much higher through-

put.

Last but not least, we investigate the impact of the deafness problem for scheduling coordina-

tion in 60 GHz mesh networks. A self-organized scheduling mechanism is vital in these networks

because carrier sensing is unreliable and central distribution of global messages is either difficult

or infeasible. In contrast to previous work, we consider the heterogeneity of the network and pro-

pose a decentralized learning mechanism that enables scheduling independent of carrier sensing

and global information.

8.1. Future work

In a nutshell, this thesis shows the important considerations to be taken into account when

designing a scheduler as well as the MAC layer protocol for heterogeneous mobile networks.

This thesis has explored (i) the advantages of multicasting techniques and (ii) the underlying

problems and their potential solutions in mm-Wave communications. One interesting future topic

of research is to investigate the feasibilities and challenges of multicasting in mm-Wave com-

munications. Since the omni-directional transmission of mm-Wave transmission is weak, the

multicasting capability in the mm-Wave band may be significantly lower than in the lower fre-

quency bands (i.e., 2.4 or 5 GHz). In what follows, we present a more specific future work for

each chapter in this thesis.

We evaluate our work on the optimization for finite horizon multicasting in Chapter 3 and

Chapter 4 in extensive and diverse simulation scenarios. Since the simulation results of the al-

gorithm are promising, experimental implementation and evaluation are valuable extensions to

this work. Further, an actual implementation would also potentially reveal further challenges and

network aspects that do not become evident in simulation.

Chapter 6 and Chapter 7 focus on solving the critical deafness problem faced by the highly

attenuated signal in the millimeter-wave networks. In Chapter 6, we solve this problem by exploit-

ing the multiple interfaces existing in mobile devices. We take advantage of the omni-directional

capability of the legacy frequency band (i.e., 2.4 or 5 GHz) to exchange control messages between

nodes. This ensures that the neighboring nodes are aware of ongoing transmissions. As a result,

this solves the deafness problem faced by the directional link of mm-Wave communications. De-

spite the encouraging performance gains in terms of fairness and throughput, the information

hand-over among frequency bands and the impact on traffic in the legacy band remains an open

research issue. It is also worth to further investigate the additional implementation complexity

and overhead needed to control the switching between the frequency bands.
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Our proposal in Chapter 7.1 focuses on the design of a scheduler for a 60 GHz mesh network

without modifying the standardized frame structure. We also avoid the above dependency on the

legacy frequency band. Rather than listening to ongoing communications, a transmitter finds its

allocation by learning from past communication events. While our evaluation results show that

this scheduler works well in a static and quasi-static network environments, it would be interesting

to explore its performance in scenarios with dynamic traffic as well as non-backlogged scenarios.
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