969 research outputs found

    Video-Rate Fluorescence Molecular Tomography for Hand-held and Multimodal Molecular Imaging

    Get PDF
    In the United States, cancer is the second leading cause of death following heart disease. Although, a variety of treatment regimens are available, cancer management is complicated by the complexity of the disease and the variability, between people, of disease progression and response to therapy. Therefore, advancements in the methods and technologies for cancer diagnosis, prognosis and therapeutic monitoring are critical to improving the treatment of cancer patients. The development of improved imaging methods for early diagnosis of cancer and of near real-time monitoring of tumor response to therapy may improve outcomes as well as the quality of life of cancer patients. In the last decade, imaging methods including ultrasound, computed tomography: CT), magnetic resonance imaging: MRI), single photon emission computed tomography: SPECT), and positron emission tomography: PET), have revolutionized oncology. More recently optical techniques, that have access to unique molecular reporting strategies and functional contrasts, show promise for oncologic imaging This dissertation focuses on the development and optimization of a fiber-based, video-rate fluorescence molecular tomography: FMT) instrument. Concurrent acquisition of fluorescence and reference signals allowed the efficient generation of ratio-metric data for 3D image reconstruction. Accurate depth localization and high sensitivity to fluorescent targets were established to depths of \u3e10 mm. In vivo accumulation of indocyanine green dye was imaged in the region of the sentinel lymph node: SLN) following intradermal injection into the forepaw of rats. These results suggest that video-rate FMT has potential as a clinical tool for noninvasive mapping of SLN. Spatial and temporal co-registration of nuclear and optical images can enable the fusion of the information from these complementary molecular imaging modalities. A critical challenge is in integrating the optical and nuclear imaging hardware. Flexible fiber-based FMT systems provide a viable solution. The various imaging bore sizes of small animal nuclear imaging systems can potentially accommodate the FMT fiber imaging arrays. In addition FMT imaging facilitates co-registering the nuclear and optical contrasts in time. In this dissertation, the feasibility of integrating the fiber-based, video-rate FMT system with a commercial preclinical NanoSPECT/CT platform was established. Feasibility of in vivo imaging is demonstrated by tracking a monomolecular multimodal-imaging agent: MOMIA) during transport from the forepaw to the axillary lymph nodes region of a rat. These co-registered FMT/SPECT/CT imaging results with MOMIAs may facilitate the development of the next generation preclinical and clinical multimodal optical-nuclear platforms for a broad array of imaging applications, and help elucidate the underlying biological processes relevant to cancer diagnosis and therapy monitoring. Finally, I demonstrated that video-rate FMT is sufficiently fast to enable imaging of cardiac, respiratory and pharmacokinetic induced dynamic fluorescent signals. From these measurements, the image-derived input function and the real-time uptake of injected agents can be deduced for pharmacokinetic analysis of fluorescing agents. In a study comparing normal mice against mice liver disease, we developed anatomically guided dynamic FMT in conjunction with tracer kinetic modeling to quantify uptake rates of fluorescing agents. This work establishes fiber-based, video-rate FMT system as a practical and powerful tool that is well suited to a broad array of potential imaging applications, ranging from early disease detection, quantifying physiology and monitoring progression of disease and therapies

    Video-rate fluorescence diffuse optical tomography for in vivo sentinel lymph node imaging

    Get PDF
    We have developed a fiber-based, video-rate fluorescence diffuse optical tomography (DOT) system for noninvasive in vivo sentinel lymph node (SLN) mapping. Concurrent acquisition of fluorescence and reference signals allowed the efficient generation of ratio-metric data for 3D image reconstruction. Accurate depth localization and high sensitivity to fluorescent targets were established in to depths of >10 mm. In vivo accumulation of indocyanine green (ICG) dye was imaged in the region of the SLN following intradermal injection into the forepaw of rats. These results suggest that video-rate fluorescence DOT has significant potential as a clinical tool for noninvasive mapping of SLN

    Multi-Modality Diffuse Fluorescence Imaging Applied to Preclinical Imaging in Mice

    Get PDF
    RÉSUMÉ Cette thèse vise à explorer l'information anatomique et fonctionnelle en développant de nouveaux systèmes d'imagerie de fluorescence macroscopiques à base de multi-modalité. L‘ajout de l‘imagerie anatomique à des modalités fonctionnelles telles que la fluorescence permet une meilleure visualisation et la récupération quantitative des images de fluorescence, ce qui en retour permet d'améliorer le suivi et l'évaluation des paramètres biologiques dans les tissus. Sur la base de cette motivation, la fluorescence a été combinée avec l‘imagerie ultrasonore (US) d'abord et ensuite l'imagerie par résonance magnétique (IRM). Dans les deux cas, les performances du système ont été caractérisées et la reconstruction a été évaluée par des simulations et des expérimentations sur des fantômes. Finalement, ils ont été utilisés pour des expériences d'imagerie moléculaire in vivo dans des modèles de cancer et d‘athérosclérose chez la souris. Les résultats ont été présentés dans trois articles, qui sont inclus dans cette thèse et décrits brièvement ci-dessous. Un premier article présente un système d'imagerie bimodalité combinant fluorescence à onde continue avec l‘imagerie à trois dimensions (3D) US. A l‘aide de stages X-Y motorisés, le système d'imagerie a été en mesure de recueillir l‘émission fluorescente et les échos acoustiques délimitant la surface 3D et la position des inclusions fluorescentes dans l'échantillon. Une validation sur fantômes, a montré que l'utilisation des priors anatomiques provenant des US améliorait la qualité de la reconstruction fluorescente. En outre, un étude pilote in-vivo en utilisant une souris Apo-E a évalué la faisabilité de cette approche d'imagerie double modalité pour de futures études pré-cliniques. Dans un deuxième effort, et sur la base du premier travail, nous avons amélioré le système d'imagerie par fluorescence-US au niveau des algorithmes, de la précision----------ABSTRACT This thesis aims to explore the anatomical and functional information by developing new macroscopic multi-modality fluorescence imaging schemes. Adding anatomical imaging to functional modalities such as fluorescence enables better visualization and recovery of fluorescence images, in turn, improving the monitoring and assessment of biological parameters in tissue. Based on this motivation, fluorescence was combined with ultrasound (US) imaging first and then magnetic resonance imaging (MRI). In both cases, the systems characterization and reconstruction performance were evaluated by simulations and phantom experiments. Eventually, they were applied to in vivo molecular imaging in models of cancer and atherosclerosis in mice. Results were presented in three peer-reviewed journals, which are included in this thesis and shortly described below. A first article presented a dual-modality imaging system combining continuous-wave transmission fluorescence imaging with three dimensional (3D) US imaging. Using motorized X-Y stages, the fluorescence-US imaging system was able to collect boundary fluorescent emission, and acoustic pulse-echoes delineating the 3D surface and position of fluorescent inclusions within the sample. A validation in phantoms showed that using the US anatomical priors, the fluorescent reconstruction quality was significantly improved. Furthermore, a pilot in-vivo study using an Apo-E mouse evaluated the feasibility of this dual-modality imaging approach for future animal studies. In a second endeavor, and based on the first work, we improved the fluorescence-US imaging system in terms of sampling precision and reconstruction algorithms. Specifically, now combining US imaging and profilometry, both the fluorescent target and 3D surface of sample could be obtained in order to achieve improved fluorescence reconstruction. Furthermore,

    Image-Guided Diffuse Optical Fluorescence Tomography Implemented with Laplacian-Type Regularization

    Get PDF
    A promising method to incorporate tissue structural information into the reconstruction of diffusion-based fluorescence imaging is introduced. The method regularizes the inversion problem with a Laplacian-type matrix, which inherently smoothes pre-defined tissue, but allows discontinuities between adjacent regions. The technique is most appropriately used when fluorescence tomography is combined with structural imaging systems. Phantom and simulation studies were used to illustrate significant improvements in quantitative imaging and linearity of response with the new algorithm. Images of an inclusion containing the fluorophore Lutetium Texaphyrin (Lutex) embedded in a cylindrical phantom are more accurate than in situations where no structural information is available, and edge artifacts which are normally prevalent were almost entirely suppressed. Most importantly, spatial priors provided a higher degree of sensitivity and accuracy to fluorophore concentration, though both techniques suffer from image bias caused by excitation signal leakage. The use of spatial priors becomes essential for accurate recovery of fluorophore distributions in complex tissue volumes. Simulation studies revealed an inability of the “no-priors” imaging algorithm to recover Lutex fluorescence yield in domains derived from T1 weighted images of a human breast. The same domains were reconstructed accurately to within 75% of the true values using prior knowledge of the internal tissue structure. This algorithmic approach will be implemented in an MR-coupled fluorescence spectroscopic tomography system, using the MR images for the structural template and the fluorescence data for region quantification

    In Vivo Diffuse Optical Tomography and Fluorescence Molecular Tomography

    Full text link

    Improved Modeling and Image Generation for Fluorescence Molecular Tomography (FMT) and Positron Emission Tomography (PET)

    Get PDF
    In this thesis, we aim to improve quantitative medical imaging with advanced image generation algorithms. We focus on two specific imaging modalities: fluorescence molecular tomography (FMT) and positron emission tomography (PET). For FMT, we present a novel photon propagation model for its forward model, and in addition, we propose and investigate a reconstruction algorithm for its inverse problem. In the first part, we develop a novel Neumann-series-based radiative transfer equation (RTE) that incorporates reflection boundary conditions in the model. In addition, we propose a novel reconstruction technique for diffuse optical imaging that incorporates this Neumann-series-based RTE as forward model. The proposed model is assessed using a simulated 3D diffuse optical imaging setup, and the results demonstrate the importance of considering photon reflection at boundaries when performing photon propagation modeling. In the second part, we propose a statistical reconstruction algorithm for FMT. The algorithm is based on sparsity-initialized maximum-likelihood expectation maximization (MLEM), taking into account the Poisson nature of data in FMT and the sparse nature of images. The proposed method is compared with a pure sparse reconstruction method as well as a uniform-initialized MLEM reconstruction method. Results indicate the proposed method is more robust to noise and shows improved qualitative and quantitative performance. For PET, we present an MRI-guided partial volume correction algorithm for brain imaging, aiming to recover qualitative and quantitative loss due to the limited resolution of PET system, while keeping image noise at a low level. The proposed method is based on an iterative deconvolution model with regularization using parallel level sets. A non-smooth optimization algorithm is developed so that the proposed method can be feasibly applied for 3D images and avoid additional blurring caused by conventional smooth optimization process. We evaluate the proposed method using both simulation data and in vivo human data collected from the Baltimore Longitudinal Study of Aging (BLSA). Our proposed method is shown to generate images with reduced noise and improved structure details, as well as increased number of statistically significant voxels in study of aging. Results demonstrate our method has promise to provide superior performance in clinical imaging scenarios

    Review of optical breast imaging and spectroscopy

    Get PDF
    Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy

    Clinical Translation of a Novel Hand-held Optical Imager for Breast Cancer Diagnosis

    Get PDF
    Optical imaging is an emerging technology towards non-invasive breast cancer diagnostics. In recent years, portable and patient comfortable hand-held optical imagers are developed towards two-dimensional (2D) tumor detections. However, these imagers are not capable of three-dimensional (3D) tomography because they cannot register the positional information of the hand-held probe onto the imaged tissue. A hand-held optical imager has been developed in our Optical Imaging Laboratory with 3D tomography capabilities, as demonstrated from tissue phantom studies. The overall goal of my dissertation is towards the translation of our imager to the clinical setting for 3D tomographic imaging in human breast tissues. A systematic experimental approach was designed and executed as follows: (i) fast 2D imaging, (ii) coregistered imaging, and (iii) 3D tomographic imaging studies. (i) Fast 2D imaging was initially demonstrated in tissue phantoms (1% Liposyn solution) and in vitro (minced chicken breast and 1% Liposyn). A 0.45 cm3 fluorescent target at 1:0 contrast ratio was detectable up to 2.5 cm deep. Fast 2D imaging experiments performed in vivo with healthy female subjects also detected a 0.45 cm3 fluorescent target superficially placed ~2.5 cm under the breast tissue. (ii) Coregistered imaging was automated and validated in phantoms with ~0.19 cm error in the probe’s positional information. Coregistration also improved the target depth detection to 3.5 cm, from multi-location imaging approach. Coregistered imaging was further validated in-vivo, although the error in probe’s positional information increased to ~0.9 cm (subject to soft tissue deformation and movement). (iii) Three-dimensional tomography studies were successfully demonstrated in vitro using 0.45 cm3 fluorescence targets. The feasibility of 3D tomography was demonstrated for the first time in breast tissues using the hand-held optical imager, wherein a 0.45 cm3 fluorescent target (superficially placed) was recovered along with artifacts. Diffuse optical imaging studies were performed in two breast cancer patients with invasive ductal carcinoma. The images showed greater absorption at the tumor cites (as observed from x-ray mammography, ultrasound, and/or MRI). In summary, my dissertation demonstrated the potential of a hand-held optical imager towards 2D breast tumor detection and 3D breast tomography, holding a promise for extensive clinical translational efforts

    NOVEL TECHNOLOGIES AND APPLICATIONS FOR FLUORESCENT LAMINAR OPTICAL TOMOGRAPHY

    Get PDF
    Laminar optical tomography (LOT) is a mesoscopic three-dimensional (3D) optical imaging technique that can achieve both a resolution of 100-200 µm and a penetration depth of 2-3 mm based either on absorption or fluorescence contrast. Fluorescence laminar optical tomography (FLOT) can also provide large field-of-view (FOV) and high acquisition speed. All of these advantages make FLOT suitable for 3D depth-resolved imaging in tissue engineering, neuroscience, and oncology. In this study, by incorporating the high-dynamic-range (HDR) method widely used in digital cameras, we presented the HDR-FLOT. HDR-FLOT can moderate the limited dynamic range of the charge-coupled device-based system in FLOT and thus increase penetration depth and improve the ability to image fluorescent samples with a large concentration difference. For functional mapping of brain activities, we applied FLOT to record 3D neural activities evoked in the whisker system of mice by deflection of a single whisker in vivo. We utilized FLOT to investigate the cell viability, migration, and bone mineralization within bone tissue engineering scaffolds in situ, which allows depth-resolved molecular characterization of engineered tissues in 3D. Moreover, we investigated the feasibility of the multi-modal optical imaging approach including high-resolution optical coherence tomography (OCT) and high-sensitivity FLOT for structural and molecular imaging of colon tumors, which has demonstrated more accurate diagnosis with 88.23% (82.35%) for sensitivity (specificity) compared to either modality alone. We further applied the multi-modal imaging system to monitor the drug distribution and therapeutic effects during and after Photo-immunotherapy (PIT) in situ and in vivo, which is a novel low-side-effect targeted cancer therapy. A minimally-invasive two-channel fluorescence fiber bundle imaging system and a two-photon microscopy system combined with a micro-prism were also developed to verify the results
    corecore