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Summary 

Near-infrared diffuse optical tomography (DOT) has been proven in the last few 

decades to be a non-invasive and non-ionizing promising tool for functional imaging 

of soft tissue, mostly human breast tissue. It utilizes inexpensive and portable 

instrumentation and is suitable for intensive scans in a short period of time.  

The main obstacles to further the clinical application of DOT are its poor spatial 

resolution and its inherent difficulty of retrieving optical property distribution in 

tissue. To address these problems, most of the research groups focused on the 

improvements of inverse methods. The proposed algorithms either sacrifice 

reconstruction accuracy or computational speed for the other, or need to encode a 

priori anatomical information from other imaging modalities and deal with the 

attendant regularization problem.  

This thesis focused on not only improvement of inverse method but also enhancement 

of reconstruction accuracy from data acquisition stage. A fast and good accuracy 

multistage reconstruction method was developed for near real-time imaging of large 

volume geometry, and an optimization method of source and detector (SD) 

arrangements was proposed for increasing detection sensitivity and enhancing 

reconstruction accuracy.  These novel techniques were applied to develop an 

optimized rotatable imaging probe for the DOT system in our group.  

The multistage method first employed a signal subspace method to dramatically 

reduce the total number of unknowns, and then iteratively shrinked the group of 

unknowns using the smoothing property of the truncated singular value 

decomposition based pseudo-inverse until no further reduction of unknowns was 
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performed. This algorithm was proven by 2D and 3D simulations to have high 

computational efficiency, good reconstruction accuracy, few background artifacts, and 

robustness against noise. It is suitable for near real-time clinical imaging. Besides, this 

method is simple and adaptable to either stand-alone system or multimodal system.  

The optimization method of SD configurations is based on the Cramer-Rao lower 

bound analysis, which analyzes the precision limits of optical perturbation parameters. 

It combines optical diffuse model, Gaussian statistical model, and noise estimations of 

measurements together to investigate the correlation between the SD configurations 

and the stability of the reconstruction results at the targeted area. The effectiveness of 

the method for selecting optimized SD configurations for good reconstruction 

accuracy and high noise immunity was demonstrated through thorough simulations.  

A novel design of a rotatable imaging probe was implemented and integrated into the 

DOT system. Multiple diverse scans at the same probing location were realized by 

smart mechanical configurations. Optimized SD arrangements were selected based on 

the optimization method. Solid phantom experiments were conducted, demonstrating 

that high signal sensitivity, good spatial resolution, and good noise resistance capacity 

were achieved by the integration of the optimized probe. Other advantages of the 

design included low cost, compact structure, and easy implementation. 
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Chapter 1 Introduction 

Breast cancer is a leading cause of cancer death in women worldwide [1-4]. 

According to a report by the American Cancer Society on global female cancer 

incidences in 2008, breast cancer comprised 22.9% of all cancers (excluding 

non-melanoma skin cancers) and caused 13.7% of cancer deaths (458,503 deaths) [1]. 

Prognosis varies greatly and depends heavily on cancer type, cancer stage when 

diagnosed, and treatment efficacy [4]. Statistics show that in the United States, the 

five-year relative survival rate for women with diagnosed localized breast cancer is 98% 

while the rates for women with regional stage cancer and distant stage cancer are 84% 

and 23% only [5]. Early detection (screening), accurate diagnosis, and consequent 

effective treatments can significantly reduce mortality [3, 6]. Thus, even modest 

improvements in any of these three aspects can have a tremendous impact on women's 

life quality [2, 7].  

Conventional breast imaging techniques play an essential part in breast screening, 

cancer detection, and neoadjuvant chemotherapy (NAC) response monitoring. Among 

the conventional methods, X-ray mammography is a widely adopted tool for breast 

screening and has been tested for treatment monitoring as well [8]. Despite its 

instrumental simplicity, low cost, and short scan time, as a screening tool, X-ray 

mammography has unacceptable false negative rates in women with 

mammographically dense breast tissue, most of which are premenopausal women 

[5-16]. It also has high false positive rate which leads to unnecessary invasive 

examination, typically core biopsy [13-17]. Besides, its radioactive nature makes it 

unsuitable for NAC response monitoring which requires frequent scans in a short time 
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period [2, 6, 10-12, 15]. Non-ionizing methods such as ultrasound (US) and magnetic 

resonance imaging (MRI) were introduced as solutions for imaging dense breast 

tissue. However, US has low sensitivity particularly when the tumor is not yet 

hardened [2, 18], and provides little physiological information [12]. In addition, 

interpretation of the US data depends heavily on the operator's expertise and involves 

uncertainty [15]. When used in treatment monitoring, therapy-induced fibrosis 

hampers the use of US as well as X-ray mammography in detection of tumor 

shrinkage [19-22]. On the other hand, MRI has high sensitivity in dense breast tissue 

[23, 15] but its high cost, limited specificity, and long examination time reduce its 

popularity in either screening or treatment monitoring [2, 24-26].  

Most of the conventional modalities rely on the anatomical differences between 

cancer and healthy tissues [2]. To better characterize a suspicious region inside the 

breast (whether it is malignant or benign tumor, or at what stage the cancer is, etc.), 

advanced imaging modalities providing tumor related physiological information are 

needed. Several groups have proposed functional imaging modalities such as positron 

emission tomography (PET), dynamic-contrast-enhanced (DCE) MRI and single 

photon emission computed tomography (SPECT), which exploit potential for 

metabolic and hemodynamic measurements [2, 15, 27-32]. However, frequent 

measurements with these approaches are hindered by the requirement of injection of 

radioactive contrast agent and high expense, not to mention the lack of 

standardization of data quantification within a specified method [2, 33, 34, 6].  

Whilst the existing imaging modalities have helped to reduce morbidity and mortality 

of breast cancer, as mentioned above, each of them has its own drawbacks when 

dealing with breast imaging. New methods are desirable to be either stand-alone tools 
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or complementary approach to the existing methods. Near-infrared (NIR) diffuse 

optical technique was gaining attentions over the past few decades with several 

advantages [35-42, 2, 15]. It utilizes inexpensive and portable instrumentation and 

uses non-ionizing low intensity NIR light to illuminate the tissue, thus is very safe and 

particularly suitable for intensive scans in therapy monitoring. It relies on quantitative 

contrast in physiological properties of the tissue such as total hemoglobin 

concentration (THC), blood oxygen saturation (stO2) and content of water and lipid, 

which are directly related to tumor vascularity and oxygenation, and has the potential 

to become a non-invasive tool with good sensitivity and specificity for diagnosing 

breast cancer.  

Diffuse optical technique has been moving from theory validation, instrument 

development, to clinical trials. Promising preliminary clinical results in breast 

imaging have been reported by several groups to demonstrate the technique's 

promising future [43-46, 2, 15, 6, 16, 11]. Some problems arisen in the clinic were 

also reported. In the following section, the developments and problems within the 

field of diffuse optical breast imaging will be briefly reviewed.     

1.1 Motivation 

Since the first introduction of NIR diffuse optical technique in 1977 [48], the field has 

progressed tremendously in developments of both hardware instrumentation and 

image reconstruction algorithms, and its clinical applications for imaging the breast. 

Various solutions have been proposed with the goal to achieve good sensitivity and 

specificity of breast cancer detection, as well as rapid imaging. 

Currently, instrumentations of diffuse optical techniques are divided into three 
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categories [12]: continuous wave (CW) systems, frequency domain (FD) systems and 

time domain (TD) systems. The complexity and cost of instrumentations increase 

towards TD systems, but the information obtained per source-detector pair under the 

same circumstance also increases [15, 6, 16]. Though TD systems can provide the 

richest information, the adoption of TD techniques was limited by the demand for 

relatively expensive and complex instrumentation in the past. Recently, developments 

of pulsed laser diodes and time correlated single photon counting (TCSPC) techniques 

have reduced the cost and further promoted TD systems' use in clinic [15, 16]. 

Clinical trials of some stand-alone systems employing the three types of 

instrumentations are underway [49-58].     

Despite the steady progress in instrumentations, the recovery of intrinsic distribution 

of optical properties by reconstruction algorithms is inherently difficult. The purpose 

is to use a limited number of boundary measurements, based on nonlinear diffusive 

model, to retrieve a large number of unknown optical parameters at different locations 

within the interested region. This makes the reconstruction problem ill-posed and 

ill-conditioned [59] regardless of the type of forward model being used (either 

analytical [60-63] or numerical [63-65]). Besides, the dominated scattering effect of 

light propagation inside the tissue leads to poor spatial resolution of reconstructed 

images. Various algorithms have been proposed to solve these problems and can be 

generally categorized as linearization methods or nonlinear iterative methods [59, 66]. 

Linearization methods are sensitive to temporal changes in optical properties and 

computationally fast (usually finish calculation within a few minutes) even for large 

3D phantoms [66]. The drawbacks are: 1) they are only applicable when contrast 

between the interested region and the reference background is relatively small and 

satisfy the Born approximation; 2) they provide qualitative rather than quantitative 
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information of changes [59, 66]. Popular methods among this group are the linearized 

operator approach [67-69] and the normalized Born approach [70]. Nonlinear iterative 

methods, on the other hand, can provide quantitative information of optical properties 

of the investigated region. Moreover, with Rytov approximation, they can reconstruct 

larger perturbations compared with Born approximation [71]. These two advantages 

make the nonlinear iterative methods more clinically practical and widely used than 

the linearization methods. One main limitation of these iterative techniques is heavy 

computational cost especially in 3D imaging, since the unknown photon flux needs to 

be recalculated in each iterative process [59, 66]. There are two distinct classes in this 

category, namely the gradient-based methods [72-75] and the Newton-like methods 

[76-85]. The gradient-based methods, such as the nonlinear conjugate gradient 

method, are considered less computationally intensive than the other class because 

only the gradient is calculated instead of calculating and inverting the whole Jacobian 

matrix. However, the Newton-like methods, such as Levenberg-Marquardt (LM) 

method, Algebraic Reconstruction Technique (ART) and Block-ART, virtually tend to 

converge in less iteration than the gradient-based methods [59].  

Although validated by acceptable simulation results, the above mentioned nonlinear 

iterative methods, when employed in breast imaging experiments, encountered several 

problems in imaging performance [59, 86, 87], including evident spatial artifacts, 

underestimation of optical properties, low contrast between background and 

perturbations, inaccurate perturbation locations, and noise susceptible, not to mention 

the inherent time consuming process. These problems occurred clinically can be due 

to the mismatch between the forward model and the complex structure of the breast, 

the poor applicability of the system to properly image targeted area despite large 

number of sources and detectors employed, the ill-posed inverse problem, and the 



 

6 

 

instability of the algorithms against noise in the real data [59, 87]. Among approaches 

to improve breast imaging performance, three research directions are gaining more 

popularity: the multi-wavelength spectral imaging [88-97], the multimodal methods 

[98-107] and the development of exogenous contrast agents [108-115]. The 

multi-wavelength spectral imaging method collects data of up to (mostly 2-4 

wavelengths) 6 wavelengths (some above 900 nm) [88, 116] from tissue and obtains 

changes in chromophore concentrations and scattering parameters directly by 

incorporating Beer's law and approximations to Mie scattering [117, 118, 64, 46] into 

the reconstruction process. It has been proven to provide more accurate physiological 

and position information of tumor, and to be more robust against noise [91, 77, 35, 

90]. Nonetheless, the increase of wavelength number raises the concern of heavy 

computation and large memory. The multimodal methods specifically focus on the 

enhancement of detection specificity by integrating tissue spatial information 

[119-125] obtained by other imaging modalities such as X-ray mammography 

[126-129, 99], MRI [98, 108, 119, 128, 100, 130-134] or US [135-142] into the 

reconstruction step of diffuse optical techniques. Reconstruction methods that realize 

this integration are called the 'hard-prior' [59, 143, 98] and the 'soft-prior' [59, 119, 

144-149] approaches. The hard-prior approach assumes homogeneous values within 

each predefined region and dramatically reduces the number of unknowns, thus 

reduces the ill-posedness of the inverse problem and the computing time. The 

disadvantages are [143, 59, 150]: the spatial details of each region are lost, the spatial 

resolution is restricted by the size of the predefined region, and the reconstruction 

performance depends heavily on the accuracy of the a priori information. The 

soft-prior approach is refined from least-squares (LS)-based approaches. It smoothes 

reconstructed values with different regularization parameters for different pre-defined 
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regions (or different tissue types) [59], by using a Laplacian-type regularization 

matrix. Although both the hard-prior and the soft-prior methods are possible to 

retrieve biological information precisely because of the integration of the a priori 

information in the inverse problem [59, 143, 145, 77, 150, 151, 138, 39, 134], the 

soft-prior method is preferable due to its reduced likelihood of introducing spatial 

biases in the inversion process. The effectiveness of the soft-prior method has been 

demonstrated experimentally and clinically to be much more stable when dealing with 

uncertainty in the a priori information [119, 120, 133]. However, the soft-prior 

constraints, like the regularization parameters in Newton-like methods, must be 

selected and calibrated carefully to ensure few oscillations and good convergence of 

the algorithm [143]. Overall, though the multimodal methods can improve 

reconstruction accuracy, the combination of diffuse optical techniques and other 

imaging modalities also introduces drawbacks of these methods that limit the use of 

these multimodal methods. So far, diffuse optical techniques combined with US or 

MRI seem to be two appropriate methods that are worth developing. As another 

promising direction, the development of exogenous contrast agents aims at searching 

for or synthesizing safe contrast agents to enhance tumor specificity contrast and 

detection sensitivity. Several exogenous contrast agents along with their experimental 

results have been reported [108-115, 46]. Unfortunately, still, no specific contrast 

agent is developed. Currently, the only clinically approved contrast agent is 

indocyanine green (ICG) [15, 6, 98, 39, 110, 152, 153, 111]. However, it is a blood 

pool contrast agent and does not provide any specificity contrast. Much work needs to 

be done before any qualified exogenous contrast agents going into large-scale clinical 

application. To address the problems mentioned in this paragraph, solutions that can 

increase intake of information, encourage enhanced stability against noise at targeted 
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area, reduce computational burden and improve reconstructed results are desirable.  

1.2 Objective 

The objective of this research was to develop a novel multistage reconstruction 

method of fast computation and high accuracy for 3D large volume imaging and an 

optimization method of configuration of sources and detectors to enhance the capacity 

of noise resistance and reconstruction stability, and incorporate them into a 

time-resolved diffuse optical tomography (DOT) system developed by Chen's group 

[154, 155] to perform breast imaging. The multistage method includes three steps. 

The first step applies a signal subspace method to identify the unknowns that certainly 

belong to the background and dramatically reduces the total number of unknowns in 

the inverse problem. The second step utilizes the pseudo-inverse technique based on 

the truncated singular value decomposition (SVD) with noise constraints. The third 

step makes use of the smoothing property of the truncated SVD based pseudo-inverse 

to further reduce the interested region. Step two and step three are executed iteratively 

until no further reduction of unknowns is performed. The performance of the 

multistage algorithm would be assessed by 2D and 3D simulation with noise involved. 

The optimization method of source and detector configurations is based on the 

Cramer-Rao lower bound (CRLB) analysis which analyzes the precision limits in 

reconstructed positions and values of targets. The optimization method links the 

optical diffuse model, the Gaussian statistical model and noise estimations of 

measurements together to investigate the relationship between the configuration of 

sources and detectors and the detection stability at targeted area. Optimized 

arrangement of sources and detectors with high noise resistance and reconstructed 

stability at interested area would be selected based on the investigation results. The 
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reliability of the method would be evaluated through simulations and phantom 

experiments. The multistage method and a novel designed imaging probe with 

optimized arrangement of sources and detectors would be integrated into the 

time-resolved DOT system for clinical experiments. 

Specifically, the research aimed to: 

 Develop a fast multistage image reconstruction method that can perform near 

real-time imaging of large volume geometry with high accuracy, low 

computational requirement and robustness against noise. The algorithm was 

expected to be simple and easily adapted to either stand-alone system or 

multimodal system. It was also expected to rapidly converge within a few 

iterations. The number of measurements required by this method should be far 

lesser than those needed by the aforementioned inverse methods.   

 Develop an optimization method of source and detector arrangements to enhance 

diffuse optical system's noise resistance and reconstruction accuracy.  

 Design and implement a handheld imaging probe and evaluate its performance by 

phantom experiments. Emphasis was placed on increasing information intake 

with a limited number of sources and detectors and selecting optimal source and 

detector arrangements.  

1.3 Thesis organization 

The remaining part of this thesis is composed of five chapters. First, the diffuse 

optical theory with a focus on conventional solutions to the inverse problem is 

reviewed. This part forms the base of the whole study. Then the theory and various 

simulation verifications of the multistage iterative image reconstruction algorithm are 
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described in detail. The optimization method of source and detector arrangements, 

including the theory and the simulation verifications, are introduced subsequently, 

followed by a detailed description of the implementation and experimental validation 

of an optimized rotatable imaging probe. In detail, the thesis is organized as follows. 

Chapter 2 is an introductory section. It starts with a brief review of the breast tissue 

optics in NIR range, which enables the use of the diffusion theory to the radiative 

transfer equation (RTE) and states the link between optical properties and tissue 

chromophore compositions as well as scattering properties. Then the diffusion theory 

with a focus on conventional inverse methods is concisely reviewed. A brief summary 

of advantages and drawbacks of these inverse methods is presented at the end of the 

chapter.  

Chapter 3 expounds the idea of the multistage iterative inverse method and 

demonstrates its effectiveness as an advanced algorithm through various 2D and 3D 

simulations. 

Chapter 4 describes the optimization method of source and detector arrangements 

based on CRLB analysis and validates the theory through thorough simulations. A 

general guideline for selecting optimized source and detector positions for hand-held 

probe of reflective measurement mode is also derived from specific simulation. 

Chapter 5 presents the implementation of the novel design rotatable handheld probe. 

The design of the handheld probe is described, followed by the procedures of the 

selection of optimized source and detector configurations using the method described 

in Chapter 4. Simulation and phantom experiment are conducted to evaluate the 

performance of the imaging probe integrated in the DOT system.  
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Chapter 6 summarizes the entire thesis and proposes possible directions for future 

studies. 
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Chapter 2 Diffuse optical theory 

This chapter reviews the diffuse optical theory which forms the base of the whole 

study. First, breast tissue optics in NIR range is briefly reviewed. This permits the use 

of the diffusion approximation to the RTE and also establishes the link between tissue 

compositions and optical properties. Then the diffusion theory is concisely reviewed 

in two parts: the forward problem and the inverse problem. Particularly, several 

popular methods of solving the inverse problem are reviewed with their advantages 

and drawbacks discussed.  

2.1 Breast tissue optics in NIR range 

Female breast tissue is optically turbid tissue which principally consists of fibrous and 

adipose tissues. There are four main chromophores in breast tissue: water, lipid, 

oxyhemoglobin (HbO) and deoxyhemoglobin (Hb). Each has their own characteristic 

absorption spectrum. The relatively low absorption and high scattering properties of 

breast tissue in NIR range (650 - 1000 nm) allow the light to transmit through several 

centimeters of tissue (5cm or more) [15] with satisfactory signal-to-noise ratio and 

thus permit the application of the diffusion theory.  

In the diffusion theory, the wavelength-dependent absorption coefficient (  ) and 

reduced scattering coefficient (   ) of tissue are two optical properties that relate to 

tissue physiological composition [35, 36, 156-161, 150, 2] and the output optical 

signal. The main NIR light absorbers in breast tissue are Hb and HbO while 

subcellular organelles such as mitochondria and nucleolus are the main scatterers 

[162]. Based on the Beer-Lambert law [163, 46], we assume the absorption 
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coefficient of breast tissue is solely contributed by the aforementioned four 

chromophores: 

               

 

   

  (2.1)  

where       to       are the known absorption extinction coefficients of water, 

lipid, HbO and Hb respectively,    to    are the corresponding chromophore 

concentrations,   is the wavelength. The spectral relation between reduced scattering 

coefficient and the properties of scatterers, including the scattering amplitude (   ) 

and the scattering power (   ), is shown below: 

                  (2.2)  

which is based on Mie-scattering theory [118, 117, 163, 46].     and     relate to 

refractive index, concentration, and size of scatterers and also the refractive index of 

the surrounding medium in tissue. According to Equations (4.3) and (2.2), any 

changes in tissue physiological composition will result in differences of optical 

properties. 

There are another two physiological parameters that characterize the tissue properties, 

namely     and     . They are defined as [165, 166]: 

              (2.3)  

and 

      
    
   

       (2.4)  
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     and     are the concentrations of HbO and Hb in tissue respectively.     

indicates the unit blood supply level in tissue while      suggests the corresponding 

oxygen consumption level. In addition,     together with knowledge of the tissue 

volume can estimate the blood volume index (   ) of the examined tissue by the 

following equation: 

                        (2.5)  

From physiological understanding, cancerous breast tissue tends to have faster oxygen 

metabolism [6] and higher demand of blood supply than normal breast tissue, owing 

to angiogenesis and vascularization in cancer development [15, 167, 168]. Cancerous 

breast tissue is also believed to have increased number density and altered size of 

subcellular organelles and increased fibrous tissue from rapid cell proliferation [169, 

162, 170, 57], as compared with normal breast tissue. These features may be reflected 

in the differences of the physiological parameters and thus the optical properties 

between cancerous and normal breast tissue. Therefore, we may apply diffuse optical 

techniques to obtain optical properties of the examined breast tissue and determine the 

nature of the tissue by analyzing its optical properties and its physiological 

information retrieved from the optical properties through Equations (4.3) - (2.5). 

Although the physiological data can be obtained directly from optical signals by using 

multi-wavelength (usually 4 wavelengths or more) spectral imaging method [59, 86, 

87], our study is limited to the indirect way mentioned above since the time-resolved 

DOT system involved in this study is a two-wavelength system [155, 154] and using 

multi-wavelength spectral method does not provide any advantage.  
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2.2 Diffusion theory 

The diffusion theory described in this section is presented in the Laplace domain 

because of two reasons: 1) the DOT system involved in this study is a time-resolved 

system; 2) the application of the Laplace domain diffusion theory to time-resolved 

system can lead to more accurate reconstruction of    and    , fewer image artifacts, 

stronger resistance to measurement noise and much less computational burden while 

keeping the advantages of time-resolved systems [171-178]. 

In general, the diffusion theory involves solving two problems: the forward problem 

and the inverse problem. Dealing with the forward problem involves solving the 

photon diffusion equation in tissue for surface light fluence rate with given optical 

properties and source positions. Tackling the inverse problem involves reconstructing 

distribution of optical properties in tissue with given boundary measurements by 

choosing proper inverse method. The following two subsections explore these two 

problems.     

2.2.1 Forward problem 

2.2.1.1 Diffusion equation and Robin boundary condition 

The propagation of NIR light in highly scattering medium, for example, breast tissue, 

can be modeled by the diffusion approximation [179, 78, 63] to the RTE [88] wherein 

two presumptions are satisfied: 

 The medium is predominantly scattering [180]. The common values of    and 

    of breast tissue in NIR range are approximately 0.05 cm
-1

 and 8 cm
-1

 

respectively [165, 181-183]. In other words,       .  
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 The distance between any source and detector pair is much larger than one 

transport mean free path    , which is defined as     
 

   
. In our case, we 

designed a hand-held probe where the minimum distance between measurement 

pair is more than 1cm. This guarantees substantial scattering of photons in tissue 

before they reach the detector and thus validates the second presumption.  

The diffusion equation (DE), which governs the photon energy density          at 

a given position   in the breast tissue, has the following form in the Laplace domain: 

                     
 

 
                     (2.6)  

Here   is the measurement wavelength,   is the Laplace parameter,   is the 

velocity of light in the medium,        
 

                   
 is the diffusion 

coefficient [184-186], and           is the electromagnetic power density of the 

light source. Since the DE is applied to non-invasive breast imaging, the Robin-type 

boundary condition is employed to solve Equation (2.6): 

        
    

 
             (2.7)  

Here   denotes a measurement location on the surface,   is the outer normal unit 

vector at  , and   depends on the refractive index mismatch at the boundary [187]. 

Combining the Robin boundary condition Equation (2.7) with Fick’s first law [188], 

the measurable quantity       , which is the outward normal component of the 

photon flux at a location   at the boundary, has the following relation with        

[63]: 
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                                  (2.8)  

Before exploring the solution to Equation (2.6), one more concept that needs to be 

paid attention to is the constraint for proper selection of Laplace parameter,  . In 

practice, to reduce the computational complexity further, we restrict   to the real 

domain for a real and time-independent photon diffusion equation [176]. The implicit 

time harmonic term      in Equation (2.6) can be interpreted as an exponential time 

weighting coefficient that accentuates the features of the time-resolved signal at 

different time point, and can help to effectively retrieve information from the original 

time-resolved signal. The fragment         
 

 
 in Equation (2.6) can be regarded as 

the absorption coefficient in this time-independent DE. To stabilize Equation (2.6),   

should satisfy the constraint            , or the Laplace transform of the 

time-varying photon density would approach infinity. Up until now, there has been no 

detailed theoretical guide for selection of   value. The selection and use of the real 

domain frequency value are still more or less empirical [176]. 

2.2.1.2 Semi-infinite approximation 

As the imaging probe we designed for our DOT system is a hand-held type with small 

probing area (maximum dimension ~ 5.6 cm) and reflective measurement mode for 

breast imaging, the breast under examination in such case is generally regarded as 

semi-infinite geometry in the computational process. The methods for solving the DE 

can be broadly classified into three types: analytical methods [189-193], Monte-Carlo 

methods [183, 194-201] and numerical methods [63, 49, 202-205]. Although using 

Monte-Carlo methods and numerical methods can provide more accurate solutions to 

the forward problem as compared with analytical methods, both of these solution 
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types require heavy computation and are not suitable for rapid imaging. For a simple 

geometry such as a semi-infinite geometry, analytical methods are adequate to 

guarantee certain accuracy in the forward solutions while preserving the quality of 

rapid imaging. In this section, only the analytical solution for semi-infinite geometry 

is presented. Details of these three types of methods have been reviewed [206-208, 183, 

193]. 

To compute approximate analytic solutions in real space directly, the extrapolated 

boundary condition is commonly used [209, 208]. Detailed mathematical and physical 

derivations of this semi-infinite approximation can be found in [206, 210]. The 

schematic of the extrapolated boundary condition is shown in Figure 2.1. The fluence 

rate is set to zero at a distance    
 

 
 above the surface of the medium [211-213, 88]. 

The extrapolation distance    is derived from Equation (2.7) assuming the photon 

fluence rate is linear around the boundaries. As shown in Figure 2.1, a collimated 

source placed on the medium surface can be approximated as an isotropic point 

source at a distance    
 

   
 beneath the surface. In order to force the photon density 

at the extrapolation boundary to be zero, a negative mirror source of equal strength is 

placed        above the medium. By combining the DE with the extrapolated 

boundary condition, and assuming the examined semi-infinite subject to be optically 

homogeneous, the photon fluence rate at the detector position            can be 

calculated directly: 

           
  
   

 
     

  
 
     

  
   (2.9)  

Equation (2.9) is a combination of infinite solutions to the DE in optically 
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homogenous subject with the real source and the mirror source respectively.   is the 

wave number defined as    
      

 
.    (  ) is the distance between the real 

(mirror) source and the detector position. 

 

Figure 2.1 Schematic of the extrapolated boundary condition 

2.2.2 Inverse problem 

In order to retrieve the internal distribution of the optical properties in the examined 

tissue, which is usually optically inhomogeneous, their correlation to the measurable 

surface photon fluence rate must be established. The perturbation method is 

commonly used to relate the changes in the measurement data to the spatially varied 

optical properties. In the remaining part of the thesis,   and   are implicit unless 

they need to be specified. Given initial values     and   , both optical properties 

can be decomposed as                  and              , where 

       and       are the spatially dependent optical perturbations. Substitute the 

decomposed formats of       and      into the DE (2.6) with a point source and 

rearrange the equation, we have: 
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                                           (2.10)  

Here         is the Green function at position   with       and     and 

        is the point source at   . Equation (2.10) is nonlinear since         

depends on the unknown        and       and cannot be directly solved.  

In order to associate the unknown        and       to the surface measurement 

data, two approximations are commonly used to represent         in a solvable way 

and linearize the problem: the first Born approximation and the first Rytov 

approximation [207]. The first Born approximation defines                  

         , where          is the Green function at position   with initial optical 

properties     and   , and           is the scattered field resulting from the 

perturbations of       and      (       and      ) and is assumed to be 

      . The first Rytov approximation defines                  
   , where 

    is the scattered field assumed to be changing slowly [             ]. We 

focus on the Rytov approximation which, relative to the Born approximation, has 

been reported to approximate larger perturbations [71] and to improve image quality 

by reducing the dynamic range of measurement data [146, 204, 121]. The first Rytov 

approximation appears as: 

        
        

         
   

 

         
                                   

  
 

, (2.11)  

where   denotes the examined tissue volume. Derivations of the Rytov 

approximation in detail can be found in References [214, 215, 71]. Here we let 

                           , which is the experimentally measurable 

transmission function. In Laplace transformed time-resolved measurements, 
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         and           are the surface measurements of the breast and the 

reference subject by the same source and detector pair. They are linked to the Green 

functions by         where    and    are coupling coefficients relating to 

source strength and detector sensitivity respectively. Thus          
        

         
 

            

             
 

        

         
 and Equation (2.11) becomes 

                  
 

         
                                   

  
 

. (2.12)  

The left-hand side of the above equation is directly measurable, and the right-hand 

side of the equation can be represented analytically. In practice, the examined tissue is 

tessellated into small voxels with equal size and Equation (2.12) is expressed in 

matrix form as: 

                                   
      
     

   (2.13)  

with 

          
                    

           
    (2.14)  

         
                       

           
    (2.15)  

  is the total number of measurements which equals to      .    is the number 

of sources and    is the number of detectors.   is the total number of voxels 

contained in the tested domain.      is a vector consisting of the transmission 

functions of the measurements.       is a weight matrix approximating the 

correlations between the changes in measurement data and the changes in the optical 



 

22 

 

properties in every voxel.   represents the i
th

 measurement, and   represents the j
th

 

voxel.        is the size of the voxel. The weight matrix   for the imaging tissue 

is calculated using the adjoint form [216] based on the reciprocity relations of the 

Boltzmann equation [63], due to the computational gain it offers compared with the 

direct form [63].  

For reducing systematic errors such as measurement noise, boundary effects and 

variable source strengths and detector sensitivities in information input, the reference 

measurement           is usually obtained experimentally through scanning a 

homogeneous reference medium or the contralateral normal breast of a cancer patient 

in the case of breast cancer imaging. It is crucial to know the average optical 

properties of the reference subject for accurate modeling of the problem. Making use 

of the analytical solution to the DE for semi-infinite homogeneous geometry (2.9) 

with    replaced by         , where      is the system impulse response in the 

Laplace domain, we derived the following approximate relation between the reference 

measurement and the average optical properties: 

 

 
 
 
 
              

              

   
               

 
 
 

  

         
    
   

   

            

            
 

            

   (2.16)  

  denotes the index of the last Laplace parameters employed in Equation (2.16). 

                          are the Laplace domain reference measurements 

transformed from the same source and detector pair applying a set of Laplace 

parameters      .       
    

          
  

 

      
    and       

    

   
 

 

      
 

  , where     
       

  
,    is the distance between real source position and 
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detector position as defined in Equation (2.9),     and    are the estimated optical 

properties of the reference material.      and     are the differences between the 

average optical properties and the estimated optical properties. Iteratively, Equation 

(2.16) is solved for          ,      and     and     and    are updated 

through              and          , until the predefined criteria are met: 

 
   
     

    
     

   
         and  

   
      

    
      

   
         .   and   are predefined values to 

ensure sufficient convergence of the fitting of optical properties. Detailed derivations 

of Equation (2.16) and the MATLAB code of the fitting method are attached in 

Appendix A.1. 

After the preparatory steps described in this section are performed, the following part 

which is most difficult to deal with is the retrieval of the distribution of optical 

properties of the examined material, in our case, the suspicious breast tissue. This 

involves the inversion of the weight matrix   in Equation (2.13) which cannot be 

inverted directly due to its ill-conditioned and ill-posed nature [63, 207]. As reviewed 

in Chapter 1, popular methods for solving this inverse problem include the matrix 

pseudo-inverse through truncated SVD method, the nonlinear conjugate gradient 

method, the LM method and the newly developed hard-prior and soft-prior methods. 

In the following subsections, each of these methods is briefly reviewed and a 

summary of the strengths and drawbacks of these methods is presented at the end of 

this chapter.  

2.2.2.1 Matrix pseudo-inverse through Truncated SVD 

The pseudo-inverse of a matrix is a generalization of the inverse matrix [217] and is 

often employed to obtain an approximate inverse matrix from a non-invertible matrix. 



 

24 

 

The Moore–Penrose pseudo-inverse [218-220] is the most widely known type of 

matrix pseudo-inverse. It can be computed by using the SVD method [217, 221, 222]. 

In our case, we denote the SVD of the weight matrix   as           , where   

is a     real unitary matrix consisting of   columns of left singular vectors of  , 

  is a      rectangular diagonal matrix with nonnegative real diagonal entries, 

and    is a       real unitary matrix consisting of   columns of right singular 

vectors of   and is the conjugate transpose of  . The singular values of   lie in the 

diagonal of  . By replacing the nonzero diagonal entry of   by its reciprocal and 

transposing the resulting matrix, we get   , the pseudo-inverse of  , and form the 

pseudo-inverse of  : 

         . (2.17)  

Practically, only the singular values above the noise level are used to avoid 

amplification of noise in the measurement data and preserve only the useful 

information in the matrix. The truncated SVD is introduced to meet the requirement 

of a proper pseudo-inverse: 

   
      

   
 . (2.18)  

Here   ,   
  and   

  are truncated versions of their original matrices with sizes of 

    ,     and     respectively. Only the   column vectors of   and the   

row vectors of    corresponding to the   largest singular values of   are involved 

in the calculation of Equation (2.18). This can significantly reduce the computational 

load compared with the traditional SVD.  

After obtaining the pseudo-inverse of   by Equation (2.18), we can calculate the 

optical perturbations by the following equation derived from Equation (2.13): 
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       (2.19)  

The pseudo-inverse method is a linearization method which is fast due to its 

non-iterative nature and sensitive to temporal changes in optical properties. However, 

it is only applicable when the optical contrast between the suspicious region and the 

surrounding background is much smaller than the background optical properties. The 

reconstructed values are mostly quite underestimated, especially when the imaging 

domain is large due to the spread of the perturbation values over the whole domain. 

The computational cost of this method is still several times higher than matrix 

multiplication since the computational time is dominated by the SVD process. It gets 

worse when facing   of large size due to large number of measurements or large 

tissue volume or both, which are the common problems encountered in DOT breast 

imaging. Besides, the threshold to filter out noise is decided empirically and may 

insufficiently or overly filter the singular values. This leads to noisy reconstructed 

images or loss of perturbation information in images.  

2.2.2.2 Nonlinear conjugate gradient method 

The nonlinear conjugate gradient method (NCGM) is commonly employed to find the 

local minimum of a nonlinear function by using its gradient alone. It works when the 

function is twice differentiable at the minimum. The application of the NCGM in 

DOT is briefly stated here. Implementing the method in the inverse problem, we aim 

to minimize the objective function: 

           
     

       
 

, (2.20)  
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where    
     

 is the modeled data and    is the vector of unknown optical 

properties       and     . The minimum of the objective function is found where its 

gradient      is zero: 

             
     

           (2.21)  

     implies the direction of maximum increase. Given an initial estimation    , we 

first perform a line search in the steepest direction                 with an 

adjustable step length   until the local minimum of   is found: 

                        . (2.22)  

Then    is updated:  

               . (2.23)  

After the first iteration, each following iteration performs the search of local 

minimum of   along a subsequent conjugate direction                and 

updates    using forms similar to Equation (2.22) and (2.23).    is a step length 

correlated to the subsequent steepest descent directions and is commonly calculated 

by the popular Polak–Ribière formula. Since conjugacy is lost along the use of 

subsequent conjugate search directions, the search direction needs to be reset to the 

steepest descent direction at least every    iterations (   is the number of 

unknowns in   ) or sooner if the progress stops. The iterations stop when no 

progress is made after direction reset or when the criterion of convergence is met. 

Figure 2.2 shows how this method works. 

This method is generally fast and easy to implement. It does not require the inversion 
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of the weight matrix which can become a heavy burden on computational time and 

memory if the matrix is of large size. This feature makes it applicable to systems with 

large number of measurement pairs and/or large examined domains. The 

reconstruction accuracy of this method is higher than that of the linearization methods 

such as the truncated SVD described previously. It also does not include any 

regularization parameter which introduces instable factor to the reconstruction process 

as the LM method described in the next section. However, the convergence of the 

method is not guaranteed due to the reset of the search directions. It may stop before 

the criterion is met. Besides, noise in the measurement data is not excluded from the 

calculation process and affects the reconstruction results in an indirect way as the 

method progresses to approach the actual solution. 



 

28 

 

 

Figure 2.2 The flowchart of NCGM 

2.2.2.3 Levenberg-Marquardt method 

The LM method [223, 224], also known as a trust-region method [225, 226], is a 

nonlinear least squares fitting method that also needs to minimize the objective 

function (2.20). The objective function is minimized by setting the gradient of it to be 

zero as stated in Equation (2.21). Imagine    is approached by a sequence of 

approximations represented by    , we then use a Taylor series on    
           and 

expand it around      : 

                       
              

                   
 

 
    

         . (2.24)  
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               and    is the first-order derivative of  . Set          

   
           and utilize only the first two terms on the right-hand side of Equation 

(2.24), we get: 

                   
                    

                             . (2.25)  

For the     iteration, substituting Equation (2.25) into Equation (2.21) gives 

                 . (2.26)  

Rewriting Equation (2.26) gives 

                 . (2.27)  

A regularization term is added to the left-hand side of the above equation to stabilize 

the iteration and smooth the reconstructed values since     is typically 

ill-conditioned: 

                            . (2.28)  

     is the update for    in the     iteration.   is the regularization parameter or 

the damping parameter. The discussion about the best choice of   has evoked various 

arguments. Theoretical arguments show some of the choices can guarantee local 

convergence of the algorithm but cause slow global convergence of the algorithm 

especially when it is close to the optimum. In practice,   monotonically decreases 

with iterations and is always kept positive [227-230, 78, 63]. The iterative process 

starts with an initial setting      and a factor    . Given an initial guess    , 

      ,         and           are computed using Equation (2.20) and (2.28). If 

both         and           are larger than       , the damping parameter is 

http://www.iciba.com/monotonically
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increased by successive multiplication of   into itself until                   is 

found for some  . Then       
 . If                 , then        . If 

                 but               ,      . The update of    is 

obtained from Equation (2.28) with the new damping factor    and the new 

optimum location    is updated as             . The iterative process 

continues until          is met. Then     is considered to be the solution for the 

inverse problem. 

The LM method has a simple form of the damping parameter   and it is relatively 

easy to implement. The LM method also has the effect of reducing high frequency 

noise which leads to smooth images of optical properties. It is a straightforward 

method compared with the NCGM described in the preceding section. It also virtually 

tends to converge in fewer iterations than the gradient-based methods such as the 

NCGM [72-75].  

The limitations of this method include [224]:     must be positive definite; the initial 

guess     should be close to the actual values;     is necessary for Equation 

(2.28) to be invertible; the unknown optical properties are not involved in the iterative 

inverse process, thus the solution of the inverse problem may be unreliable. In 

addition, the selection of   also plays an important part in the reconstruction 

performance as mentioned previously in this section. Different choices of   can lead 

to computational costs that vary greatly. Thus the inclusion of a damping factor   in 

the LM method introduces extra risk of instability in algorithm performance. Besides, 

since the LM method requires multiple inversions of the term               , the 

computational burden of this method can become extremely heavy especially when 

dealing with large size matrices. Encountering with large size matrices are usually the 
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cases in practice. And sometimes execution of the method even becomes impossible 

due to memory limitation. The noise in the measurement data is also directly involved 

in the inversion process. This results in noisy and inaccurate reconstructed images 

particularly when the tested geometry is large. Although     is not positive definite 

in DOT (it is nearly singular numerically) because of the ill-conditioned nature of the 

problem, the LM approach has been adopted in many instances successfully and is 

considered a conventional method in DOT image reconstructions [227, 228, 78, 63, 

85]. 

2.2.2.4 Inclusion of a priori information 

As reviewed in Chapter 1, inclusion of prior spatial information from conventional 

imaging modalities in the DOT imaging can potentially enhance the performance of 

DOT image reconstruction in terms of better image resolution, higher reconstruction 

accuracy and faster convergence rate [231-238, 136, 126]. The spatial information is 

typically used to discriminate and predefine regions of different tissue types in the 

imaging domain and is directly encoded into the reconstruction process. Generally, 

the LS minimization methods using prior anatomical information can be classified 

into two approaches: the hard-prior method and the soft-prior method. The following 

two subsections will discuss these two approaches. 

2.2.2.4.1 Hard-prior 

The Hard-prior method utilizes the prior knowledge of the spatial distribution of 

normal tissue and cancerous tissue within one breast and simply divides the examined 

domain into several regions of different types of tissue. This method assumes optical 

homogeneity within the same region and only reconstructs average optical properties 
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of each region. Applying a matrix transformation to  , we have 

      , (2.29)  

Where    is a       matrix with    denoting the total number of regions.   is 

a matrix integrated with prior spatial information: 

          

                                  

 
 
 
 
 
 
 
 
 
                 
                 
            

                 

 

 

                 
                 
            

                  
 
 
 
 
 
 
 
 

             
       

        
 . (2.30)  

Through the transformation, we produce a new weight matrix    where the columns in 

  corresponding to respective optical properties (   and  ) of voxels within the 

same region are added together. Thus only     unknowns need to be solved. We 

then integrate the hard-prior into the LM method and solve an equation similar to 

Equation (2.27): 

                     . (2.31)  

      is the solution update vector with the size of      . In the update process, 

we apply             and update the optical properties as               . 

The iterative process continues until          is met. Then     is considered to 

be the solution for the inverse problem. Note that regularization is not commonly 

required in solving Equation (2.31) since       and thus    is a small and 

well-conditioned matrix. However, when dealing with noisy measurements, involving 

regularization term in Equation (2.31) may help to stabilize the inverse process. 
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The hard-prior method reduces the number of unknowns dramatically and makes the 

inverse problem better posed and the computational cost lower compared with the 

conventional methods. However, the reconstruction accuracy of this method depends 

heavily on the accuracy of the a priori anatomical information. Using accurate a priori 

information can lead to better quantitative estimations of optical perturbations than 

results from conventional methods, while using inaccurate a priori information results 

in severe distortion of reconstructed information. Besides, the spatial resolution of the 

hard-prior method is limited by the size of the predefined regions. Detailed spatial 

information within each region is lost and replaced by the bulk homogeneous values.  

2.2.2.4.2 Soft-prior  

In order to integrate spatial constraint into the reconstruction process without 

suppressing spatial differences within a region of similar type of tissue, the soft-prior 

method is proposed to combine with the LS minimization schemes. The minimization 

function (2.20) is modified to include a Laplacian-type regularization matrix   

wherein a priori tissue structural information is encoded, as shown below: 

               
                

     
                    . (2.32)  

  is the regularization parameter for stabilizing the spatial constraint reconstruction. 

    is a vector of the initial estimates of optical properties. Typically,   is derived 

from anatomical imaging modalities such as MRI and US. It acts on the solution    

directly.   is given by    
    
   

  with 
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 , (2.33)  

Where   and   are the indices of the unknowns in the imaging domain, and   is the 

total number of unknowns in a specific region. The matrix   links all the voxels in a 

specific tissue type and enables the approximation of a second differential operator 

within each region. It allows existence of the sharp boundaries while providing 

flexibility to encode these boundaries obtained from anatomical imaging techniques. 

The LM method encoded with soft-prior gives: 

                      . (2.34)  

We then choose a proper   according to similar steps in LM method and solve the 

above equation for     . Next the optical properties are updated by           

    . A similar iterative process as in the LM method continues until the objective 

function           
     

       
 

              
  converges below some 

threshold  . 

Unlike the hard-prior method, integrating soft-prior information in the inverse process 

smoothes the reconstructed values with different regularization terms for different 

regions (or different types of tissue) and preserves the trends in optical quantifications 

[59, 119, 144-149]. Although the soft-prior method does not reduce the number of 

unknowns in the inverse problem, it has been demonstrated to have better quantitative 

estimate of actual optical properties and faster convergence as well as less image 

artifacts compared with conventional methods. It also has been proven by several 

experimental and clinical settings to be much more robust than the hard-prior method 
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in the presence of uncertainty in a priori information [133]. Despite all its strengths, 

the implementation of the soft-prior method requires thorough test and careful 

calibration to ensure few oscillations and good convergence of the algorithm [59, 143, 

145, 77, 150, 151, 138, 39, 134, 145] because of the inclusion of the regularization 

term     . Otherwise the hard-prior method might be a more straight forward and 

safer choice.  

2.2.2.5 Summary 

We have discussed the advantages and drawbacks of several inverse methods in the 

previous sub-sections in Section 2.2.2 separately. To summarize, here in Table 2-1 we 

briefly compare these methods in terms of five crucial properties. 

The first three methods in Table 2-1, when applied clinically, always encounter 

performance problems such as underestimation of optical properties, low contrast 

between background and suspicious area, distortion of spatial information, highly 

susceptible to noise, and evident boundary artifacts. These are mainly because of the 

mismatch between the forward model and the actual light transport in biological tissue, 

the poor applicability of the system to properly image targeted area despite the use of 

large number of sources and detectors, the ill-posed nature of the inverse problem, 

and the lack of effective noise suppression procedure in the algorithms [59]. Though 

the last two methods in Table 2-1 can improve reconstruction accuracy compared with 

the first three methods, the combination of DOT and conventional imaging modalities 

also introduces drawbacks of these methods. That limits the use of these multimodal 

methods. Methods that can increase information intake, enhance reconstruction 

stability against noise at targeted area, reduce computational burden and improve 

reconstruction accuracy are desirable. Chapter 3 and 4 will introduce two methods 
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respectively to meet these requirements from two different angles. Both methods can 

be integrated together into a DOT system for breast imaging.
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Table 2-1 Comparison of the inverse methods 

Method Category Computational cost Reconstruction 

accuracy 

Stability Implementation 

difficulty 

Popularity 

Matrix 

Pseudo-inverse 

through 

Truncated 

SVD 

Linearization 

method 

Low computational 

cost especially when 

dealing with small 

matrix. 

Suitable for qualitative 

estimation of optical 

perturbation. 

Moderate stability; can be 

sensitive to noise; 

performance depends on 

the empirically chosen 

noise threshold. 

Easies to 

implement among 

the five methods. 

Less popular 

than the 

other four 

methods. 

NCGM Gradient-based 

method 

Medium 

computational cost; 

suitable for large 

matrix; no matrix 

inversion involved. 

Can provide 

quantitative estimation 

of actual values; may 

underestimate actual 

values and reconstruct 

inaccurate perturbation 

positions. 

Moderate stability; may 

have more iterations than 

the LM method; no 

guarantee of convergence 

below predefined criterion; 

performance is moderately 

affected by noise  

Not difficult to 

implement; 

attentions need to 

be paid to make 

sure the steps 

inside the iteration 

loop are correct. 

Commonly 

used in 

experimental 

and clinical 

settings. 
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LM Newton-like 

method 

High computational 

cost especially when 

dealing with large 

matrix. 

Can provide quantitative 

estimation of actual 

values; may 

underestimate actual 

values and reconstruct 

inaccurate perturbation 

positions. 

Moderate stability; no 

guarantee of convergence 

below predefined criterion; 

choice of damping factor is 

critical; performance is 

moderately affected by 

noise. 

Not difficult to 

implement; 

attentions need to 

be paid to make 

sure the steps inside 

the iteration loop 

are correct. 

Commonly 

used in 

experimental 

and clinical 

settings. 

Hard-prior Multimodal 

method 

Low to medium 

computational cost 

depending on the 

structural 

information. 

Reconstruction accuracy 

depends heavily on the 

accuracy of prior 

structural information; 

have the potential to 

obtain bulk optical 

properties of high 

accuracy. 

Stability depends heavily 

on the accuracy of the prior 

information; impact of 

noise on algorithm 

performance is lower than 

that of the NCGM and the 

LM method. 

Easier 

implementation 

than that of the LM 

method; attentions 

need to be paid to 

make sure the steps 

inside the iteration 

loop are correct. 

Newly 

developed; is 

gaining 

popularity. 

Soft-prior Multimodal 

method 

Medium to high 

computational cost 

depending on the 

structural 

information. 

Reconstruction accuracy 

depends moderately on 

the accuracy of prior 

structural information; 

have the potential to 

obtain detailed spatial 

information of high 

accuracy. 

Choice of regularization 

term critically relates to the 

stability of the method; 

impact of noise on 

algorithm performance is 

lower than that of the 

NCGM and the LM 

method. 

Not difficult to 

implement; 

attentions need to 

be paid to make 

sure the steps inside 

the iteration loop 

are correct. 

Newly 

developed; is 

preferable 

compared with 

the hard-prior 

method. 
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Chapter 3 Fast multistage iterative inverse 

method for biological tissue imaging 

This chapter describes a novel multistage iterative inverse method that aims to image 

large volume geometry with high accuracy, low computational requirement, and high 

stability. The theory of the multistage inverse method is interpreted in detail. 2D and 

3D simulation results are shown to demonstrate the effectiveness of the method. 

3.1 The multistage inverse theory 

As reviewed in Chapter 2, the inverse problem of DOT is often a severely ill-posed 

problem due to the finite number of linearly independent measurements, noise, large 

dimensions of examined tissue as well as commonly complicated structure of 

heterogeneities in the tissue. Reconstruction algorithms play a very important role in 

DOT as the image formation processes are non-trivial. Nonlinear iterative methods, 

such as NCGM [239-244, 72, 73], LM method [72-75] and adaptive mesh refinement 

algorithms for finite elemlents forward solver [245-252], and newly developed 

multi-wavelength spectral imaging [59, 86, 87] and multimodal methods [59, 87] are 

commonly used in DOT despite the high computational cost encountered by most of 

the methods. The conventional linearization methods are less popular than the 

aforementioned methods because of the low reconstruction accuracy of these methods 

in clinical cases, albeit their low computational burden. The linearization methods use 

the linear model obtained from the Born/Rytov approximation and employ 

mathematical methods like pseudo-inverse, optode calibration and other linear 
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transformation techniques to solve the inverse problem [78, 253-257, 230, 144, 227, 

97]. The multistage inverse method falls in this category but with good reconstruction 

accuracy. 

The proposed algorithm improves the image quality by iteratively reducing the 

ill-posedness of the inverse problem. It consists of three stages. The first stage uses a 

signal subspace method to identify the regions that definitely belong to the 

background medium and exclude them from the group of unknowns. Hence the region 

of interest becomes smaller and the ill-posedness of the inverse problem reduces. The 

second stage performs truncated SVD based pseudo-inverse for the inverse problem 

with reduced number of unknowns. The third stage uses a criterion based on the 

smoothing property of the truncated SVD based inversion to guess the regions 

belonging to the background tissue and therefore shrinks the suspicious region around 

the scatterers. The second and third stages are performed iteratively until the 

suspicious region cannot be reduced further according to the criterion. The remaining 

part of this section elaborates on the three stages of the proposed method. 

 Stage 1: signal subspace method 

We assume   sources and   detectors are used for measurement. Each detector is a 

linear sensor sensing the perturbation in photon density        at the detector 

position   . The investigated subject is discretized into   small voxels, and optical 

properties are assumed constant within each voxel.  

We form a mapping: 

          , 
(3.1)  



 

41 

 

where   is a vector comprising of the element                with         , 

  is a     vector wherein only the element corresponding to the active source 

term is set to 1 and the rest are set to 0, and         is a     matrix of modified 

scattered fields with the elements                                      . 

        can be represented by the diffusion model as: 

                   , (3.2)  

with                                                               , 

  
 

  
 

    
   

     
     

     
     

   
   

 

     

 and       

 
 
 
 
               
             
             
              

 
 
 

. Here     and 

   are diagonal matrices with each voxel’s     and    on their main diagonal 

respectively. 

According to Equation (3.2),         can be understood as a linear transformation 

from the sources to the photon density perturbations measured at the detectors. Thus 

the vector   in Equation (3.1) lies in the range of        . Applying SVD [15] on 

       , we have               . The range of         is spanned by the vectors 

       . Here, vectors    and    are the left and right singular vectors 

respectively corresponding to the     singular value
 
  . We form a matrix   

consisting of the vectors         which span the range of        . Thus   

forms the space wherein   lies. Since   is measured by illuminating the domain 

using one source with strength        at a time, the vector   has only one nonzero 

element corresponding to the active source. Thus   is related to the corresponding 

column in         through the active source. 
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Combining Equation (3.1) and (3.2), we have: 

                . (3.3)  

We denote the     column in      corresponding to the     unknown    as 

        . According to Equation (3.3),      can be understood as a linear 

transformation that transforms the photon sources induced in the examined subject, 

         , to the scattered fields measured at the detectors. It should be noted that 

photon sources are induced only at the optically heterogeneous locations     
     

 . 

Thus, physically, the vector   lies in a   dimensional vector subspace that is 

spanned by the vectors        
     

 .  

Combining the physical and mathematical perspectives of the subspace to which   

belongs [258], it is evident that every vector        
     

  can be represented as a 

linear combination of the vectors in  : 

        
     

    . (3.4)  

It is expected that for homogeneous voxels (  
     

  ), finding such a combination 

  of the vectors in   should not be possible. However, there might be some 

homogeneous voxels at where          are numerically linear combinations of the 

vectors        
     

 . Therefore, though they do not contribute physically to  , they 

numerically belong to the subspace spanned by        
     

 . Due to this, despite 

being homogeneous, they can be expressed as linear combinations of vectors in  . 

We denote optical unknowns of such voxels depicting an ambiguous behavior as 

  
     

, and the remaining unknowns as   
     

.  
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Based on the residue in Equation (3.4), we form an error metric as below: 

       
                        

          
  (3.5)  

where the superscript + denotes the least square based pseudo-inverse. The value of 

      is small for the unknowns   
     

 and   
     

, and large for the unknowns
 

  
     

. By choosing a proper threshold   , we can classify the unknowns with 

         as   
     

, which definitely belong to    
     

   . It is noteworthy that 

there may be three different       for the same    of a voxel. Thus for the 

classification of   , we compare the mean        of the three       with   . The 

concept of stage 1 is summarized in Table 3-1. 

Table 3-1 Concept of stage 1 

Category Current induced Result from Equation (3.5) Inference based on ε(δj) 

  
     

 Zero          
Definitely homogeneous, 

classified as   
     

 

  
     

 Zero          May be heterogeneous 

  
     

 Non-zero          May be heterogeneous 

It should be noted that although this method is seemingly similar to Multiple Signal 

Classification (MUSIC) algorithm [258, 259], there are some very important 

differences. First, MUSIC is a method used for qualitatively determination of the 

location of heterogeneities, while the present method does not attempt to locate the 

heterogeneities. It rather attempts to find the optical unknowns that cannot be 

confused as heterogeneity and thus reduces the suspicious region. Second, the 

conventional formulation of MUSIC is applicable to point-like heterogeneities only, 
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while the current method is applicable to extended heterogeneities as well. Third, 

MUSIC considers the noise space that is orthogonal to   while the current method 

considers the range of   itself.  

The choice of a threshold value    determines the severity of rejection of the optical 

unknowns in this stage. However, the suitable threshold changes from problem to 

problem and setup to setup. Empirically, we found that if the signal to noise ratio 

(SNR) of the system is   dB, a threshold value of                gives good 

results. Although this is a very large value for the least square error method applied 

here, a reasonably large value is a safer choice to ensure the heterogeneous voxels 

may not get rejected while the ill-posed problem is reduced, especially in the presence 

of noise. 

 Stage 2: truncated SVD based pseudo-inverse 

Here, we construct another mapping: 

            . (3.6)  

         is a vector containing the measurements corresponding to all the pairs of 

sources and detectors.   is a vector containing the elements                   

   
     

 . The elements of   are         
                          

           
   for     and 

       
                             

           
   for   ,                   

     
 .   is the 

index of an measurement pair.   corresponds to the     column in  . Applying the 

truncated SVD based pseudo-inverse to Equation (3.6) gives          , where 

the superscript + now denotes the truncated SVD based pseudo-inverse.  
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Though in stage 1 the number of unknowns is significantly reduced, we were unable 

to distinguish between the ambiguous optical unknowns and the heterogeneous optical 

unknowns. Since stage 2 uses the actual photon scattered fields          which 

correspond to particular vectors in the range subspace, inversion based on the 

measurements should be able to give a better insight about the heterogeneity of the 

unknowns not rejected.  

Nevertheless, stage 1 is indispensable to the method. It is evident that the exclusion of 

definitely homogeneous voxels reduces the number of unknowns and thus reduces the 

ill-posed problem. Stage 1 also has a positive impact on the computational complexity 

of the method. Stage 1 uses          and   to determine and reject the definitely 

homogeneous voxels. The maximum dimensions of          and   are both much 

lesser than the total number of unknowns in the examined domain and close to the 

number of detectors. The pseudo-inverse needs to be calculated only once in stage 1 

because   is derived from measurements and does not change over for any         . 

In stage 2, the maximum dimension of   is the number of unknowns 

                  
     

 , say   , which is much lesser than   . The SVD of   

is required, which has a computational complexity of         . Evidently, the 

computational complexity of stage 1 is much lesser than stage 2. And since stage 1 

rejects some voxels from further consideration, it also reduces the computational 

complexity of stage 2. 
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 Stage 3: iterative rejection of ambiguously optical unknowns 

Since the dimension of   is more than the dimension of      , Equation (3.6) is an 

underdetermined linear equation. Thus there are infinite possible solutions to this 

equation. Among the infinite pool of solutions, truncated pseudo-inverse of   

provides a solution which has the following properties: 

 In the    dimensional space of   (i.e. the domain of  ), solution vectors 

lying in the subspace spanned by the first few right singular vectors (as many 

as the rank of  ) are considered. 

 Among the solutions lying in the subspace mentioned above, the solution with 

minimum length (or minimum Frobenius norm) is chosen as the solution of 

the equation. 

We recall that                     
     

 .   represents the     unknowns of 

the    optical unknowns. If all the heterogeneities have similar, say positive, 

contrast   
     

, then the actual vector   shall have some positive components (for 

the heterogeneous voxels) and some zero components (for the homogeneous voxels). 

Since the truncated pseudo-inverse shall find a solution with minimum length, the 

solution      is as close to the origin of the    dimensional space of   as possible. 

This implies that in comparison to the actual vector  ,      is expected to be a 

smooth vector with small negative and positive values close to zero. Further, the 

unknowns belonging to the heterogeneities or near to them should have positive 

values for the retrieved   
   

, and the unknowns away from the heterogeneities are 

very likely to have negative values for the retrieved   
   

. Consequently, the 

unknowns whose retrieved values   
   

 are negative are very unlikely to belong to 
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  and thus are added to the set of rejected unknowns    
     

 . Stages 2 and 3 

are performed iteratively till all the elements of      are positive.  

It should be noted that the values of the background optical properties cannot be 

known a priori for biological samples, and the values used are the statistical average 

available from previous research or the average fitting results from spectroscopy. The 

actual background optical properties of the tissue may be slightly larger or smaller 

than the values used for reconstruction. Thus it is not reasonable to reject the 

unknowns solely based on the positive definiteness of   
   

. Instead, some margin is 

allowed on the negative side. Accordingly, we may reject unknowns satisfying 

  
                , where          and is preferable to a small value. Typically, 

the value of   can be chosen to be the relative tolerance level in the estimated 

statistical averages of the background optical properties. 

3.2 Validation of the multistage method 

To validate the multistage method, 2D and 3D simulations of different heterogeneous 

setting were conducted in MATLAB environment. The simulations were default to be 

conducted in Laplace domain. The following part presents the simulation results. The 

MATLAB code of the multistage method is included in Appendix A.2. The computer 

CPU used in the simulations is Intel(R) Core(TM)2 CPU 6300 at 1.86 GHz.     

3.2.1 2D simulations 

Two 2D examples were studied to illustrate the performance of the algorithm. In both 

examples, the background medium was assumed to extend infinitely and had the 

parameters   
          and              . All the heterogeneities had only 
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absorption contrast             . The field of view (FOV) was of the size 

       . 8 sources and 8 detectors were circumferentially evenly distributed around 

the FOV. The radius of this circular arrangement was 2.5 cm. The measurement setup 

is shown in Figure 3.1(a).  

The medium was discretized into square pixels with dimensions of               

for the forward problem and               for the inverse problem. Different 

pixel sizes were chosen in order to avoid the inverse crisis. The Green’s function for 

infinite geometry           
 

   

         

      
 was used with single Laplace parameter 

         . The simulated measurements of scattered fields were obtained by 

adding 3% white Gaussian noise to         
     calculated from Equation (3.6). The 

values of    and   were chosen to be              and 0.05 respectively. All 

the reconstructed images presented in Figure 3.1-3.4 were images of optical 

perturbation values. These images except images obtained by soft-prior and hard-prior 

methods were two times interpolation images from the original images with resolution 

of              . The resolution of the images obtained by soft-prior and 

hard-prior methods was              . 

 Example 1 

The first example consisted of three circular heterogeneities in the investigated 

domain (see Figure 3.1(b)). These heterogeneities were located at               , 

             , and              respectively and had the radius of 0.4 cm each.  

The distribution of              is shown in Figure 3.1(c). The pixels rejected as 

definitely homogeneous ones are shown in black in Figure 3.1(d). The final 
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reconstruction result obtained after 13 iterations with the total time cost of 28.9 

seconds is shown in Figure 3.1(e), in which the positions and perturbation values of 

the heterogeneities were retrieved with high accuracy despite the small number of 

iterations. For comparison, we provide in Figure 3.1(f) the result from the 

reconstruction process wherein only the truncated SVD based pseudo-inverse was 

used for reconstruction. It is evident that Figure 3.1(f) presents a very blurred 

reconstruction and the three heterogeneities are not well-resolved.  

The results presented in Figure 3.1(e) and (f) were obtained under the assumption that 

the background absorption coefficient of the medium was known exactly as 

             . However, as discussed before, usually the exact absorption 

coefficient of the background medium is not known in advance, and the estimated 

average is not guaranteed to be of high accuracy. To evaluate the performance of the 

algorithm in such case, two background absorption coefficients with     

differences from the exact background absorption coefficient were used respectively 

for reconstructions. Results are shown in Figure 3.1(g) and (h) with iterations of 14 

times and 18 times respectively. Both images are of much better qualities than Figure 

3.1(f). Though they present worse estimations of absorption contrast compared with 

Figure 3.1(e), they indicate the positions of heterogeneities quite well and are still 

considered good quality images. Figure 3.1(g) and (h) demonstrate the effectiveness 

of the algorithm even with inaccurate estimation of background absorption coefficient 

and the presence of noise. 

In real scenario, the normal biological tissue such as breast tissue and brain tissue is 

not optically homogeneous, but rather a composition of different tissues with similar 

optical properties. To evaluate the performance of the proposed algorithm in real 
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scenario, a random background absorption perturbation of 0.02±0.01cm-  was added 

to the setting in Figure 3.1(b), as shown in Figure 3.1(i). The reconstructed image is 

shown in Figure 3.1(j). Only the optically homogeneous forward model was 

considered in the reconstruction process. We can observe well reconstruction of the 

perturbation locations with extended perturbation regions and lower perturbation 

values. There were only a few artifacts in the background, and the contrast between 

the background and the circular perturbations was good. The algorithm could perform 

better if provided a more accurate forward model.  

Comparisons of the proposed algorithm and other popular methods were also 

conducted. As shown in Figure 3.2, conventional methods, e.g. the truncated SVD 

based pseudo-inverse and the LM method, performed worse than the other three 

newly developed methods. Among all, the LM method had the longest execution time 

due to its iteration of large matrix inversion. The Hard-prior method and the soft-prior 

method among the five methods were the best performers in terms of reconstruction 

accuracy when given accurate prior information (accurate distinction of regions with 

different optical properties). However, when there was distorted prior information, the 

reconstructed results using the soft-prior or the hard-prior method followed the region 

distinction given by the distorted prior information regardless of the true distribution 

of optical properties, as shown in the third row of Figure 3.2, not to mention the 

underestimation of the optical perturbation values. These two methods depend heavily 

on the accuracy of the prior information as discussed in 2.2.2.4. The multistage 

method, even without the aid of prior information, reconstructed the distribution of 

optical perturbations quite well, with very few background artifacts and very short 

execution time.           
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Figure 3.1 Example 1: Three circular optical perturbations. Noise level: 3% additive white 

Gaussian noise. (a) The measurement setup. (b) The FOV and the distribution of optical 

perturbations with absorption contrast   
a
  .  cm- . (c) The distribution of   log        in the 

FOV. The threshold used for stage 1 is   log  t   - . (d) The pixels rejected in stage 1, indicated 

in black. (e) Multistage reconstruction with exact estimation of  
a 

. (f) Truncated SVD based 

reconstruction with exact estimation of  
a 

. (g) Multistage reconstruction with 5% 

underestimation of  
a 

. (h) Multistage reconstruction with 5% overestimation of  
a 

. (i) Three 

circular optical perturbations with random background perturbation of 0.02±0.01cm- . (j) 

Reconstructed image of (i) using proposed algorithm. 
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Figure 3.2 Performances of image reconstruction algorithms. Noise level: 3% additive white 

Gaussian noise. 

 Example 2 

The second example consisted of an annular optical perturbation in the investigated 

domain (see Figure 3.3(a)). It was centered at             , and had the inner radius 

of 0.7 cm, and the outer radius of 1 cm. The center was chosen such that there was no 

symmetry between the source/detector arrangement and the heterogeneity. The 

distribution of              is shown in Figure 3.3(b). The multistage 

reconstruction result was obtained after 12 iterations with the total time cost of 23.7 

seconds and is shown in Figure 3.3(c). As seen in Figure 3.3(c), the method retrieved 

the shape and perturbation value of the annular heterogeneity well with very fast 

convergence. The reconstruction result using only truncated SVD based 

pseudo-inverse is shown in Figure 3.3(d). As seen in Figure 3.3(d), the inner hollow 

of the annular medium was not detected using truncated SVD based pseudo-inverse. 
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Next we present results for the cases where background absorption coefficients with 

    deviation from the actual value were used for reconstruction. The images 

shown in Figure 3.3(e) and (f) were obtained after 14 and 10 iterations respectively. 

Compared with Figure 3.3(c) and (d), we reached a similar conclusion as for Example 

1.    

 

Figure 3.3 Example 2: An annular optical perturbation. Noise level: 3% additive white Gaussian 

noise. (a) The FOV and the distribution of optical perturbations with absorption contrast 

  
a
  .  cm- . (b) The distribution of   log        in the FOV. The threshold used for stage 1 is 

  log  t   - . (c) Multistage reconstruction with exact estimation of  
a 

. (d) Truncated SVD 

based reconstruction with exact estimation of  
a 

. (e) Multistage reconstruction with 5% 

underestimation of  
a 

. (f) Multistage reconstruction with 5% overestimation of  
a 

. 
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Reconstructions using different algorithms were also performed for the annular 

optical perturbation case. Images are shown in Figure 3.4. Similar to Example 1, the 

reconstructed distribution of the absorption perturbations using the truncated SVD 

method and the LM method distorted severely from the true distribution. The 

hard-prior method and the soft-prior method depend heavily on the accuracy of the 

prior information as shown in the subfigures in the last two rows of Figure 3.4. The 

multistage method, among all the five methods, was the most robust method with high 

reconstruction accuracy.  

 

Figure 3.4 Performances of image reconstruction algorithms. Noise level: 3% additive white 

Gaussian noise. 

3.2.2 3D simulation 

A 3D example is also presented here to illustrate the performance of the algorithm. 

We assumed a semi-infinite imaging geometry with optically homogeneous 
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background and two optical heterogeneities embedded. The optical properties of the 

background medium were   
          and              . One heterogeneity 

had only absorption contrast              . The other heterogeneity had only 

diffusion contrast             . The FOV was: -2.5cm≤   ≤ .5cm, 

-2.5cm≤  ≤ .5cm and 1cm≤  ≤3cm. A circular probe with 9 sources and 4 detectors 

dispersedly distributed on it was placed onto the surface of the imaging geometry at 

    coaxially. We rotated the probe around its center at 30 degrees each time in the 

simulation to get multiple scans on the same location. The distribution of the sources 

and the detectors is shown in Figure 3.5. The medium was discretized into cubic 

voxels with dimensions of                . The Laplace parameters used in the 

simulation were                     .  

 

Figure 3.5 The circular probe surface. Red solid circles represent the source positions. Blue solid 

rectangles represent the detector positions. 

Image reconstruction results with SNR 40 dB and 30 dB in the calculated 

measurements respectively are presented in Figure 3.6. All the reconstructed images 

presented here are images of optical perturbation values, with a resolution of 

          . The values of    and   were chosen to be              and 
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0.05 for measurements with 40 dB SNR and              and 0.03 for 

measurements with 30 dB SNR respectively. The multistage reconstruction results 

were obtained after 32 iterations for the 40 dB case and 35 iterations for the 30 dB 

case. A consistent color bar was used for all images obtained under the same 

simulation setting. 

The distribution of absorption contrast and the distribution of diffusion contrast are 

shown in Figure 3.6 (a) and (d) respectively. The two heterogeneities were in different 

locations in the FOV with different optical contrasts to the background as 

aforementioned. From Figure 3.6 (b) and (e), we observe that the reconstruction 

accuracy of the absorption perturbation was higher than that of diffusion perturbation 

in terms of reconstructed perturbation positions and values. As seen in Figure 3.6 (b), 

the absorption perturbation was well reconstructed with good estimation of its 

position and slightly underestimation of its value. The background had very few 

artifacts of relatively low values and none of them would be mistaken as perturbation. 

However, as seen in Figure 3.6 (e), though the diffusion perturbation was 

reconstructed well at the depth of 2.5 cm, the position of the reconstructed diffusion 

perturbation was slight shifted away from the true location at the depth of 3 cm, and 

part of the diffusion perturbation might be also considered as background due to their 

low reconstructed values. The background in Figure 3.6 (e) was still considered clear 

in the 40db case. The reconstruction images of absorption perturbation in the 30 dB 

case as shown in Figure 3.6 (c) were similar to the images in Figure 3.6 (b) with 

slightly lower reconstructed values and a small artifact at the depth of 1.5 cm. The 

reconstruction results of diffusion perturbation in the 30 dB case were the worst 

among all four groups of images, as shown in Figure 3.6 (f). There were small 

obvious artifacts at the depth of 1 cm and 2 cm which would possibly be mistaken as 



 

57 

 

diffusion perturbation. At the depth of 2.5 cm and 3 cm, the reconstructed diffusion 

perturbation had some voxels lost at the true location and some extra voxels appeared 

at the surrounding area of the true diffusion perturbation. The peak values of the 

reconstructed diffusion perturbation were also not within the true location of the 

diffusion perturbation. Nonetheless, though the reconstructed perturbation values in 

Figure 3.6 (f) were lower than the true values, they were still close to true values 

within a reasonable range. Besides, the reconstructed perturbation area at the depth of 

2.5 cm and 3 cm in Figure 3.6 (f) are still around the true location of the diffusion 

perturbation.  

Performance of the proposed algorithm was also compared to a few popular 

algorithms in 3D simulation under 30dB SNR as shown in Figure 3.7. Computational 

costs using different methods were indicated in Figure 3.7 as well. Similar 

conclusions as in 3.2.1 were drawn. Given the accurate prior-information, the 

hard-prior and soft-prior method performed better than the multistage method. 

However, they heavily depend on the accuracy of the prior information as reported in 

many literatures and demonstrated by 2D simulations. The multistage method, among 

the five methods, is the most robust method under different conditions. It is an 

effective and economical method (do not require the assist of other imaging 

modalities) that has the potential to be used clinically. 

Overall, the performance of the multistage algorithm in this 3D simulation case can be 

summarized as: 1) the reconstruction accuracy of absorption perturbation was 

generally higher than that of diffusion perturbation; 2) the algorithm had good 

estimations of perturbation information even in the 30 dB case; 3) the reconstructed 

images had very few artefacts in the background under the condition of noise. This is 
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difficult to achieve by using conventional methods without involving a priori 

information; 4) the convergence rate of the algorithm was very fast even in the 3D 

simulation case mainly due to the effectiveness of Stage 1; 5) the proposed method is 

more stable than the soft-prior method and the hard-prior method which heavily 

depend on the accuracy of the prior information.  
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To be continued on next page… 
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Figure 3.6 Multistage reconstruction of a 3D case. (a) and (d) show the distributions of absorption perturbation and diffusion perturbation in the FOV respectively. 

(b) and (e) show the multistage reconstruction results of optical perturbations with SNR = 40db in the measurements. (c) and (f) show the multistage reconstruction 

results of optical perturbations with SNR = 30db in the measurements. 
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(a) Depth = 1cm 
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(b) Depth = 1.5cm 
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(c) Depth = 2cm 
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(d) Depth = 2.5cm 
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(e) Depth = 3cm 

Figure 3.7 Performances of image reconstruction algorithms in 3D simulation. Signal to noise ratio equal to 30dB in the measurement data. 
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3.3 Discussion and conclusions 

While the conventional approaches directly apply some inversion technique (like 

truncated SVD based pseudo-inverse) to solve Equation (3.6) for  , the multistage 

method reduces the number of unknowns in   in stage 1 and along the iteration 

process in stage 3. The role of stage 1 is to provide an initial guess of the locations of 

heterogeneities and accelerate the algorithm. It does not improve the resolution by 

itself, though it reduces the ill-posedness of the subsequent formulation. The 

improvement in image resolution is specifically due to stage 3. Thus, the quality of 

reconstruction will not be greatly affected if stage 1 is omitted. However, the 

algorithm will typically converge slower. On the other hand, if stage 3 is omitted, the 

reconstruction result from using both stage 1 and stage 2 is only marginally better 

than that from performing stage 2 alone. 

The rejection of the definitely homogeneous regions in this method has two 

advantages. First, the computational intensity of the problem is reduced. Second and 

more importantly, the inverse problem is made more definitive and less ill-posed by 

iteratively reducing the number of unknowns throughout the computational process.  

The limitations of this method include: 1) it is based on linearization model which 

though straightforward and simple, is less precise to describe the scattering problem 

compared with nonlinear model; 2) it involves the choice of threshold values in stage 

1 and stage 3 which typically are decided empirically. Still, the method’s fast 

convergence rate, low memory requirement, and good reconstruction accuracy make 

it a potential tool for clinical preliminary imaging.   

Overall, we have demonstrated the effectiveness of our algorithm for imaging 
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complicated heterogeneous cases, such as multiple heterogeneities or extended 

heterogeneities with boundaries that are not simply connected, in the presence of 

noise. Good reconstruction accuracy was observed. Far fewer measurements are 

needed in this method than in conventional methods to achieve acceptable 

reconstruction accuracy for the same case. Compared to the soft-prior method and the 

hard-prior method, the proposed algorithm can achieve good reconstruction accuracy 

without the aid of prior information from other imaging modalities, which potentially 

increases the risk of reconstruction errors and introduces extra cost. The method is 

straightforward, easy to implement and fast convergent, and has low requirement in 

memory. It is highly adaptable to other measurement domains and other imaging 

geometries. It is also very flexible to combine with other methods. The multistage 

inverse method can be potentially developed for clinical use in fast preliminary 

imaging.  
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Chapter 4 Optimization method of source and 

detector arrangements based on CRLB analysis 

Optimization of source and detector (SD) arrangements in DOT is helpful for 

improving measurements’ sensitivity to localized changes in imaging domain and 

enhancing the capacity of noise resistance. This chapter describes a rigorous and 

computational efficient methodology based on CRLB analysis to realize the 

optimizations of SD arrangements. Simulations were conducted in the reflection 

geometry to validate the effectiveness of the method on selections of optimized SD 

arrangements, given a fixed number of sources and detectors. A general guideline 

derived from CRLB analysis of specific simulation examples for selecting optimized 

SD configurations on hand-held probe of reflective measurement mode is also 

presented in this chapter. 

4.1 The CRLB based optimization method 

The reconstruction quality of DOT is affected by many practical issues, such as 

intrinsic tissue heterogeneity, system noise, instability of reconstruction algorithms, 

and improper deployment of sources and detectors on the imaging probe. Extensive 

research regarding enhancing the accuracy and reducing the computational cost of the 

forward model, developing advanced inverse methods and improving experimental 

conditions (e.g., SD calibrations) have been conducted for decades [260-263, 63, 126, 

257]. Optimizations of SD arrangements have also been studied by some groups in 

recent years [264-271, 256]. Singular value analysis (SVA) technique was widely 

used for selecting optimized SD arrangements through evaluating the amount of 
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useful information contained in the weight matrix of a given imaging set up [264-271, 

256]. It can provide a generic estimation of the SD configuration’s performance over 

the whole imaging domain. However, it cannot directly provide a quantitative 

estimate of the image reconstruction accuracy under specific noise conditions. In this 

case, the reconstruction accuracy can only be evaluated after solving the inverse 

problem explicitly. Besides, the choice of the threshold value for determining useful 

singular values depends on the experimental set up and measurement scheme. Such 

threshold varies case by case and is typically determined empirically [270, 271]. In 

addition, the computational cost of SVA of weight matrices in MATLAB environment 

is usually high especially when dealing with a large number of matrices of large size. 

In order to better meet the needs for optimizing SD configurations, we proposed a 

rigorous and low computational cost optimization method based on CRLB analysis to 

select optimized SD configurations, by directly estimating the reconstruction 

accuracies in targeted imaging regions corresponding to different SD configurations 

quantitatively and comparing the estimations. In other words, the method can evaluate 

the performance of different SD arrangements on a quantitative base.  

The CRLB [272-275] expresses a lower bound on the variance of estimators of a 

deterministic parameter. In its simplest form, the CRLB is the inverse of the Fisher 

information matrix and is the lowest variance an unbiased estimator could possibly 

achieve. The CRLB analysis has been introduced in optics field by some groups to 

calculate the precision limit of the estimations of the perturbation depth [276, 277], 

which is a single-parameter estimation case. Here the precision limit refers to the 

lowest possible variance, or the lower bound on the variance. In our case, we adapted 

the CRLB method to investigate the influence of the SD configurations on the 

reconstruction accuracy in DOT, and thus to select optimized SD configurations. 
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Ideally, the reconstruction accuracy of a particular setting (including instrumental 

setup, measurement noise level and chosen inverse method) in DOT can be evaluated 

by the variance of the retrieved optical perturbation information, including the 

retrieved optical contrasts     and    and the retrieved location information   

(spatial resolution), from its true information. The estimators used to retrieve the 

perturbation information have the information of that particular setting encoded in 

them [276, 277]. Thus the influence of different SD configurations on reconstruction 

accuracy can be compared using the same inverse method and measurement data. 

However, in practice, the true optical perturbation information cannot be known 

exactly so thus the variances of the estimators. Though the exact variances of the 

estimators can be approximated closely through repetitive experiments and solving 

the inverse problem using the same setting, it is impractical to test many sets of the 

SD configurations given a fixed number of sources and detectors because of the heavy 

time cost and the continuous change of experimental conditions. Fortunately, the 

lowest possible variances of the estimators of    ,    and           encoding 

information of the same SD configurations and measurement data can be calculated 

by the CRLB method, regardless of the inverse method used. Specifically, the CRLB 

method combines the diffusion model (information of the SD configurations 

involved), the Gaussian probability density function and the specific noise level 

together [276, 277, 272] to jointly estimate the precision limit of    ,    and 

         , and does not require any information of the inverse method. The CRLB 

on the variance of estimators of a deterministic parameter indicates the highest 

possible precision achievable by estimators derived from the same set of SD 

configurations. A lower value of CRLB suggests a higher highest possible precision of 

estimators and therefore implies a better performance of the corresponding SD 
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configurations. Consequently, we can compare the CRLB values corresponding to 

different SD configurations for different parameters respectively and choose the SD 

configurations with lower CRLB values for optimization purpose. 

It is known that in the simplest form of the CRLB analysis, the estimators are 

assumed to be unbiased while the estimators of the perturbation information in diffuse 

optical imaging are generally biased mainly due to the ill-posed inverse problem. 

However, the ill-posed inverse problem can be minimized in certain situations, for 

instance, when a priori information is available and/or there are adequate SD pairs to 

recover the unknown perturbation information. And the estimators can be considered 

approximately unbiased. In addition, advanced instrumentations (e.g., time-resolved 

DOT) and inverse methods can also help to build unbiased estimators which are 

preferable to biased estimators. Other issues, such as the accuracy of the forward 

model, are of less importance and their effects could be removed by calibrations. Thus, 

the CRLB analysis can be adapted to our problem. The following relationship exists 

[272]: 

               , 
(4.1)  

where    is an unbiased estimator of a parameter vector   consisting of independent 

perturbation parameters,         is the covariance matrix of   , and      is the 

Fisher information matrix (FIM). The diagonal elements in        are the precision 

limits (the CRLBs on the variances) of    of the corresponding parameters in  .  

In a DOT system, the measurements of photon density obtained from the same SD 

pair obey Gaussian statistics with the expectation value         and the standard 

deviation       equal to the noise strength. Subscript   denotes the     SD pair in 
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a set of SD configurations. The probability distribution of measurements from a set of 

SD configurations               
  is denoted as                 , where 

       is the      vector of expectation values of the measurements and      is 

the diagonal     covariance matrix with the main diagonal element formulized as 

     
 . Specifically, the probability density function is written as [272]: 

     
 

                   
     

 

 
                              (4.2)  

      can be represented as                where   denotes the noise level.  

To calculate the precision limits of   , the FIM      encoding Equation (4.2) is 

computed with typical element [272]: 

      
       

   

       

   
     

         
       

   
 

 

       
       

   
  

 

 
         

     

   
      

     

   
   

(4.3)  

tr( ) denotes the trace of the matrix in the parentheses.     in the first line of the 

above equation denotes the ensemble average. Here the partial derivative 

of        with respect to a perturbation parameter    is derived from the first Rytov 

approximation                 
    as 

       

   
       

    

   
. It is noteworthy 

that 
       

   
 can be derived from other forward models such as numerical models. For 

simplicity, in our study we used the derivation from the first Rytov approximation. 

After computing the FIM, the CRLBs corresponding to different perturbation 

parameters can be obtained from the main diagonal of       . Specifically, the 

        
  lying in the main diagonal of        represents the cross coupling 
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precision limit of     when taking the influence of other unknown parameters in   

into account.     
   is the precision limit of     when other parameters in   is known. 

Since the perturbation parameters in   are all unknown and affect the measurements 

in a coupling way, the elements in the main diagonal of        are preferable to 

    
   as the CRLB values. The MATLAB code of the CRLB method is attached in 

Appendix A.3. 

4.2 Validation of the optimization method  

To demonstrate the optimization method’s effectiveness for SD configurations, 

several simulations were conducted in MATLAB environment with results shown in 

this section. 

Though the CRLBs for    of perturbation information at any location in an imaging 

FOV corresponding to a particular set of SD arrangements can be obtained from the 

optimization method, it is more important and efficient to focus the evaluation of the 

SD arrangements’ influence on the reconstruction accuracy of the perturbation 

information in the central area of the imaging FOV. This is mainly because the optical 

contrast and depth information of perturbation in such an area is typically difficult to 

retrieve.  A set of optimized SD arrangements with good reconstruction accuracy of 

perturbation information in the central area can help to alleviate the problem. In 

clinical scenarios, the cancerous tissue, compared with the normal tissue, usually 

possesses more obvious contrast in absorption coefficient than in diffusion coefficient. 

Thus in the simulations presented below, we only considered the case of single 

absorption perturbation in the central area of the imaging FOV and computed the 

CRLB values for      and    of the target corresponding to different sets of SD 
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arrangements. 

We first compared the CRLB values corresponding to all the possible combinations of 

SD arrangements for a fixed number of sources and detectors under the same 

simulation setting. Then the reliability of the CRLB based method was examined 

through comparisons of the CRLB values and the corresponding sample variances of 

     and    for a group of SD sets. Next we compared the effectiveness of the CRLB 

method to the commonly used SVA method on several sets of SD arrangements. 

Lastly, reconstruction images for two sets of SD configurations under different 

simulation settings, one with higher precision limits of      and    and the other 

with lower precision limits of      and   , are presented to demonstrate the 

effectiveness of the CRLB based optimization method for selecting optimized SD 

arrangements in terms of better image qualities (improved spatial resolutions). 

4.2.1 Simulation setup 

We assumed a circular probe surface with various options of SD positions as shown in 

Figure 4.1 and conducted simulations to compare the performance of different SD 

arrangements. There are 23 options of source positions and 12 options of detector 

positions on the probe surface. The examined geometry was chosen to be 

semi-infinite, and the dimensions of the imaging domain were 3.5×3.5×3.6 cm
3
. The 

probe and the imaging domain were placed coaxial. We rotated the probe around its 

centre to get multiple scans and set the rotation angle at 40 degrees. All possible 

combinations of any three sources and four detectors (876,645 sets) from the pool of 

SD positions were examined. Although some groups [266, 267] have suggested 

choosing identical quantities of sources and detectors to achieve better image qualities, 
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we focused on choosing more optimized SD arrangements given a fixed number of 

sources and detectors for illustration. The Laplace parameters used in our model 

ranged from –400 MHz to 600 MHz with a step size of 200 MHz. The absorption 

coefficient and the reduced scattering coefficient of the homogenous background were 

set to 0.02 cm
-1

 and 6 cm
-1

 respectively, which are close to the optical properties of 

normal breast tissue [263]. The refractive index of the background was set to 1.4, 

which was close to the tissue refractive index [155]. We divided the imaging domain 

into voxels with the size of 0.5×0.5×0.4 cm
3
. The total number of voxels was 441. 

The central targets used in the simulations were defined as those with their centres 

lying along the axis passing through the centre of the probe surface. A central target 

of 3×3×3 voxels with the absorption contrast equal to 0.2 cm
-1 

was embedded into the 

homogeneous diffusive background at depth equal to 1.0, 1.8 and 2.6 cm at a time. 

Gaussian noise of 1, 2, and 3%of the signal were added to the calculated signal 

respectively. 

 
Figure 4.1 XY plane of the probe. The circles on the left of the probe surface represent the 23 

options of source positions and the asterisks on the right of the probe surface represent the 12 

options of detector positions. 
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4.2.2 CRLB values for different SD arrangements 

As discussed before, the CRLB values for a perturbation parameter should be 

different while different sets of SD arrangements are employed. In this subsection, we 

compare the CRLB values corresponding to different SD arrangements and 

investigate the necessity level of optimizing SD arrangements for enhancing 

reconstruction accuracy in central imaging area. 

Figure 4.2 illustrates the precision limits of      and    for all the examined SD sets 

under different noise levels and with different target depths. From the figure, we 

observed that the relative ranking of the normalized precision limits of      and    

corresponding to any one set of SD arrangements, compared with normalized 

precision limits for other sets of SD arrangements under the same setting, showed 

consistency under different assumptions of noise level and target depth. Thus we 

deduced that a set of SD arrangements that has lower precision limit of a perturbation 

parameter compared with that for other SD sets may also have lower precision limit of 

other perturbation parameters, regardless of the noise level and target depth involved. 

In addition, we also observed that the highest precision limits of      and    were 

both more than two times of the lowest precision limits under the same simulation 

setting, for different noise levels and target depths. Therefore, it is meaningful to 

optimize the SD arrangements under the inference that SD sets with low CRLB values 

of perturbation estimators can lead to potentially high reconstruction accuracy of 

perturbation information and high noise immunity.   
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Figure 4.2 Normalized square roots of precision limits of      and    for all examined SD sets. Each data point in (a–d) represents the normalized square roots of 

precision limit for one SD set under specified conditions. The normalization formulas and the ranges of the square roots of precision limits are indicated in (a–d). (a) 

The normalized square roots of precision limits of    with target depth = 1 cm and noise level equal to 1, 2, and 3%, respectively. (b) Normalized square roots of 

precision limits of    with noise level = 1% and target depth equal to 1.0, 1.8, and 2.6 cm, respectively. (c) Normalized square roots of precision limits of      with 

target depth = 1 cm and noise level equal to 1, 2, and 3%, respectively. (d) Normalized square roots of precision limits of      with noise level = 1% and target 

depth equal to 1.0, 1.8, and 2.6 cm, respectively.
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4.2.3 Reliability of the CRLB based method 

The CRLB values in Figure 4.2 were calculated from the reciprocal of the modified 

FIM adapted to DOT. To validate the reliability of the CRLB based method, the 

CRLB values and the corresponding sample variances of      and    for a group of 

SD sets were compared. The LM inverse method [150] with positivity constraint was 

used to reconstruct the optical perturbation in simulation environment with certain 

level of Gaussian noise. Then the sample variances were obtained after repetitive 

simulations and reconstructions. 

We randomly chose 500 sets with index number smaller than 600, 500 sets with index 

number between 465,000 and 475,000, and another 500 sets with index number larger 

than 870,000 from Figure 4.2 to conduct the investigations. Figure 4.3 shows the 

sample variances of      after 20 times’ repetitions of simulation with 1, 2, and 3% 

Gaussian noise levels, respectively, and the CRLB values calculated from the 

proposed method for different SD sets. Figure 4.4 shows the sample variances of    

and the corresponding CRLB values with the same simulation conditions as those 

used to generate the data in Figure 4.3. From these two figures, we observed that 

those SD sets with lower precision limits of      and    for all the tested target 

depths and different noise levels had corresponding lower sample variances. This 

implies that these SD sets have a higher chance of achieving higher accuracy of 

reconstructed parameters. Note that though most of the sample variances were higher 

than the corresponding CRLB values (in such case the reliability of the 



 

 

7
9 

 

Figure 4.3 Sample variances of      versus the corresponding CRLB values for the selected 1500 SD sets. Each black asterisk represents the sample variance of 

     generated from each SD set after 20 times’ repetitions of simulations. Each red asterisk represents the CRLB value for the same SD set. The images are 

organized in columns based on noise level from 1 to 3%, and in rows based on target depth equal to 1.0, 1.8, and 2.6 cm, respectively.
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Figure 4.4 Sample variances of    versus the corresponding CRLB values for the selected 1500 SD sets. Each black asterisk represents the sample variance of    
generated from each SD set after 20 times’ repetitions of simulations. Each red asterisk represents the CRLB value for the same SD set. The images are organized 

in columns based on noise level from 1 to 3%, and in rows based on target depth equal to 1.0, 1.8, and 2.6 cm, respectively.
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CRLB based method is verified), we still observed some sample variances smaller 

than the corresponding CRLBs. This is mainly due to numerical errors in calculation. 

Another interesting finding was that for those SD sets with close precision limits, the 

sample variances of the reconstructed parameters, though comparable among these 

SD sets, were not strictly following the same ranking as the precision limits. This is 

mainly due to the simulated measurement fluctuations generated from simulated 

random noises.  

4.2.4 CRLB based method versus SVA method 

The SVA method is a widely used method for evaluating performance of SD 

configurations. Judgement is based on the total number of useful singular values 

above a specific threshold. To demonstrate the effectiveness of the CRLB based 

method, we compared it with the SVA method on a group of SD sets. Figure 4.5 

shows the SVA analysis of the total number of useful singular values above a 

threshold of 10
−4

 and the sum of them for the same group of SD sets used in Figure 

4.3 and Figure 4.4. Note that although the total number of useful singular values 

changes when using different threshold values, the ranking of the total number of 

useful singular values for each examined SD set in the whole group is not affected by 

the value of threshold [265-271, 256]. Figure 4.3-Figure 4.5 indicates that similar 

judgements on the performance of each examined SD set were made by these two 

methods according to their own criteria. Specifically, low (high) CRLB values for 

perturbation estimators shown in Figure 4.3 and Figure 4.4 corresponded to a large 

(small) number of useful singular values shown in Figure 4.5 for the same set of SD 

configurations. The SVA method suggests that for two SD sets with significant 
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different numbers of useful singular values, the SD set with a larger number of useful 

singular values is more optimized than the other. Associating the CRLB results in 

Figure 4.3 and Figure 4.4 with the SVA results in Figure 4.5, we can conclude that the 

set of SD arrangements with lower CRLB values for perturbation estimators is more 

optimized in terms of reconstruction accuracy of perturbation information. Also from 

Figure 4.3-Figure 4.5, we can conclude that for those SD sets with similar CRLB 

values, or similar numbers of useful singular values, their performances are 

comparable.  

Although the SVA method can provide qualitative analysis of a SD set’s performance 

on reconstruction accuracy of perturbation information, unlike the CRLB based 

method, it cannot provide quantitative analysis of a SD set’s performance on 

reconstructing particular perturbation parameters, or under different noise conditions. 

Besides, the computational time for the CRLB analysis is much lower than that for the 

SVA analysis. Using a PC with Intel(R) Core(TM)2 CPU 6300 at 1.86 GHz, the 

computational time for calculating the precision limits of      and    for one set of 

SD configurations was ∼0.005 s, while the computational time for SVA of the SD 

set’s weight matrix was ∼0.450 s, which is eight times longer than that of the CRLB 

based method.  

To summarize, the effectiveness of the SVA method and that of the CRLB method as 

tools for selecting optimized SD arrangements are comparable qualitatively; however, 

only the CRLB method can provide quantitatively meaningful evaluations of 

reconstruction accuracy of perturbation parameters under different settings. 
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Figure 4.5 SVA analysis. (a) The total number of the useful singular values above 10
−4

 for the 

selected 1500 SD sets. Each asterisk represents the total number of the useful singular values for 

each SD set. (b) The sum of the useful singular values above 10
−4

 for the selected 1500 SD sets. 

Each asterisk represents the sum of the useful singular values for each SD set. 

4.2.5 Image reconstruction examples 

In the previous subsections, we have demonstrated the effectiveness of the CRLB 

based method for selecting optimized SD arrangements. In this subsection, 

reconstruction images for two sets of SD configurations with significant differences in 

precision limits under different settings of noise level and target depth are presented 

for direct illustration of the correlation between the CRLB values and the 

reconstruction accuracy of perturbation information. 

Figure 4.6(a)-(c) list three sets of SD configurations randomly selected from the SD 

sets used in Figure 4.3 and Figure 4.4 with index number >1000, and Figure 4.6(d)-(f) 
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list the other three SD sets randomly selected from the SD sets used in Figure 4.3 and 

Figure 4.4 with index number < 500. The first group of three SD sets have lower 

precision limits of      and    than that for the other group of three SD sets under 

the same settings of noise level and target depth. The precision limits of      (or   ) 

for the SD sets are close to each other within the same group. According to the CRLB 

based method, the performances of the SD sets are comparable within each group. 

Figure 4.6(a)-(c) show that the numerical values of the distances from the centre of 

probe surface to the sources and the detectors are close to each other for the same SD 

set, and the sources and detectors from the same SD set are distributed dispersedly 

from the centre of probe surface. Figure 4.6(d)-(f) show that the numerical values of 

the distances from the centre of probe surface to the detectors differ from each other 

with some detectors being too close to the centre of probe surface. Besides, we also 

observed that the sources and the detectors congregate respectively within different 

small areas on the probe surface in Figure 4.6(d)-(f). Based on the observation of SD 

distributions of the six sets on the probe surface, we inferred that the SD sets with 

dispersed distributions of sources and detectors with proper distances from the centre 

of probe surface may perform better than others in terms of the reconstruction 

accuracy in central area. 
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Figure 4.6 Six SD sets with different precision limits of      and   . The red solid circles indicate the chosen source positions while the blue solid circles indicate the 

chosen detector positions. (a–c) represent three SD sets with relatively low precision limits. (d–f) represent three SD sets with relatively high precision limits. 
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Figure 4.7 Reconstruction images of targets in the YZ plane (X = 0): Target depths in (a,b), (c,d) and (e,f) are 1.0cm, 1.8cm and 2.6 cm respectively. (a,c,e) use SD 

set 1. (b,d,f) use SD set 6. Images in the first column show the actual perturbation information of the target. Images in the second to fifth columns were 

reconstructed from simulated measurements with 0%, 1%, 2% and 3% Gaussian noise respectively.  
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Table 4-1 Reconstruction values from Figure 4.7 
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Reconstructed images of different central targets at the YZ plane (X = 0) under 

different noise conditions using SD sets 1 [Figure 4.6(a)] and 6 [Figure 4.6(f)] are 

presented in Figure 4.7 to illustrate the differences in reconstruction accuracy caused 

by the differences in SD arrangements. All images in Figure 4.7 are images of 

absorption coefficients and are applied the same color bar of data ranging from 0.02 

to 0.22 cm
−1

. Figure 4.7 shows that the image qualities (in terms of accuracy of 

reconstructed target information and background artifacts) are better using SD set 1 

than that using SD set 6 for all the examined target depths and noise levels. Detailed 

reconstructed values are presented in Table 4-1. Based on the results of investigations, 

the SD sets with lower precision limits for all the examined conditions can be chosen 

to fulfil the optimization requirement for SD arrangements. 

4.2.6 Summary 

We have introduced a rigorous and computationally efficient methodology for 

selecting optimized source and detector arrangements for DOT systems. It directly 

provides quantitative evaluations of reconstruction accuracy of perturbation 

parameters without solving the inverse problem. Simulations were conducted on a 

probe hosting three sources and four detectors with multiple rotations around its 

center to validate the effectiveness of the proposed method. Performances of different 

SD sets were investigated based on the precision limits of the target depth and the 

target perturbation value under different simulation settings. We also conducted 

image reconstructions under different noise conditions for two SD sets with 

significantly different precision limits of perturbation parameters. It was demonstrated 

that the SD set with lower precision limits afforded better reconstructed images. 
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According to the CRLB based method, the SD sets with the lowest precision limits 

can be selected for designing an optimized DOT imaging probe, which leads to the 

best possible image qualities. We also discussed the advantages of the proposed 

method over the SVA method. Our method can be easily adapted to other imaging 

geometries and other measurement domains. 

4.3 General guideline for selection of optimized SD 

configurations for reflective measurement mode 

In this section, we limit the discussion to reflective measurement mode since the DOT 

system developed by our group [155, 154] utilizes a hand-held probe for data 

acquisition. Besides, we only consider absorption contrast in the simulation because it 

is more significant than the contrast of diffusion coefficient between cancerous tissue 

and normal tissue in clinical scenario. Since the actual experiments used multiple SD 

pairs to collect data from a reflective geometry, a key issue is to decide the positions 

of the SD pairs on the imaging probe for the purpose of enhancing the reconstruction 

accuracy of perturbation information. We begin with a double-SD-pair case to 

investigate the relation between the positions of SD pairs and the precision limits of 

   across the imaging geometry, and to derive a general guideline for selection of 

optimized SD arrangements. Here the estimator vector                   
 . 

 

Figure 4.8 XY views of three arrangements of double SD pairs, from left to right: set A, set B and 

set C. Red solid circle indicates the source position. Blue square indicates the detector position. 

The spatial unit of each subfigure is centimeter. 
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Arrangements of three double-pair sets and distribution of the precision limits of    

for the double-pair sets in the presence of 0.1% noise are presented in Figure 4.8 

andFigure 4.9 respectively. The examined geometry was semi-infinite with the FOV: 

- cm≤  ≤ cm, - cm≤  ≤ cm and  .3cm≤  ≤3cm. Background optical properties were 

set to be 0.02cm
-1

 for absorption coefficient and 10cm
-1

 for reduced scattering 

coefficient, which are very close to the optical properties of normal breast tissue [266]. 

The absorption perturbation is set to be 0.2cm
-1

. The geometry was also divided into 

small voxels with the size of 0.1×0.1×0.1cm
3
. We calculated the precision limits in the 

depth of 1cm, 2cm and 3cm across the FOV with single absorber size of one voxel 

and three voxels aligning in x direction respectively. Since the purpose of studying 

double SD pairs was to find out some general guidelines for selecting optimized SD 

arrangements, and the precision limits were expectably high due to the enormous 

difference between the number of SD pairs and the number of examined voxels, we 

normalized the data in Figure 4.9 by the maximum of the precision limits of 

corresponding element in    from all three double SD pairs. 

From non-normalized data of Figure 4.9 and Equation (4.3), we deduce that for 

absorbers of multiple voxels or multiple-absorber group, the distribution of precision 

limits of the absorber’s center or the multiple-absorber group’s center across the XY 

plane is similar to that of the absorber of single voxel, but with lower precision limits 

of the absorbers because of their stronger absorptions.  

In all the subfigures, we observe that the anti-diagonal positions in the XY images had 

higher precision limits than other area. It may be due to the analogous correlations 

among different SD pairs to these positions so that little signal contrasts among 

different SD pairs are established.  
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In set A, an expected finding is that the precision limits of    and    increase as the 

scan goes deeper. Despite not many changes of precision limits of    in other area of 

the XY images as    increases, the maximum precision limit of    in anti-diagonal of 

the XY images decreases as    increases, and the position of the maximum moves 

towards the center of the XY plane. As the depth of the XY plane increases, the signal 

becomes weaker and the signal differences among different SD pairs in set A become 

smaller, especially when the target is at the center of the XY plane. That makes the 

maximum move to the center of the XY plane. Besides, since the signal becomes 

weaker when the depth increases, it is unlikely to mistake a weak signal from the 

depths of the imaging geometry as a signal from superficial areas, which may lower 

the precision limits in    as the scan depth increases. Similar trends can be observed 

in the precision limits of absorption perturbation     . From the XY images of 

precision limits for set A, we also learn that set A has higher precision limits of    and 

     than the other two sets, and is more sensitive to noise in these parameters.  

Set B has a similar trend of changes in precision limits of    and     as set A. It also 

has the poorest stability in    and    positions of reconstructed targets among all the 

three sets.  

From the subfigures of precision limits for set C, we notice that set C has the lowest 

precision limit of every element in    among all three sets. 

Relating the distribution of the precision limits of    to the pattern of double-pair SD 

arrangements, we observe that symmetric arrangements of SD positions around the 

center of the probe surface do not achieve lower precision limits of    for either one 

absorber of different sizes or for a group of multiple absorbers, but create instability 
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in some parameters. In contrast, sparse and asymmetric distribution of SD positions 

across the probe surface, within maximum distance for acceptable signal strength, 

may lead to high signal sensitivity to perturbation information. This may be used as a 

general guideline for selection of optimized SD arrangements for measuring signals 

from reflective geometry. 
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Figure 4.9 XY images of distribution of precision limits for set A (subfigure (a)), set B (subfigure (b)) and set C (subfigure (c)) in    (top left of every block of four 

images),    (top right of every block of four images),    (bottom left of every block of four images) and      (bottom right of every block of four images), under the 

condition of 0.1% noise. In every subfigure: the first two rows are the precision limits of single absorber of single voxel, while the third and the fourth rows are the 

precision limits of single absorber of three voxels; The first two columns are the XY images of depth=1cm, the third and the fourth columns are the XY images of 

depth=2cm, and the last two columns are the XY images of depth=3cm. The spatial unit of each subfigure is centimeter.
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Chapter 5 An optimized design of imaging 

probe for DOT 

This chapter describes the design and implementation of a novel rotatable handheld 

imaging probe for the time-resolved DOT system developed by our group. The 

purpose of the design was to increase the system’s sensitivity of signal detection, 

reconstruction accuracy of perturbation information, and noise immunity. The 

mechanical configurations of the probe are illustrated first, followed by the 

description of the selection of SD arrangements on the probe surface based on the 

CRLB based optimization method and the general guideline described in Chapter 4. 

Lastly, image reconstruction results from phantom experiments are shown to evaluate 

the probe performance. 

5.1 Design concept 

One of the fundamental problems with DOT is its poor spatial resolution because of 

the severe scattering occurred during the migration of diffusive photons in tissue. The 

spatial resolution is a function of SD distance and imaging geometry. It has been 

shown in past studies that multiple diverse measurements taken at the same FOV 

improve spatial resolution significantly [75]. Another way to improve spatial 

resolution at the signal acquisition stage is by optimizing the SD arrangements on the 

imaging probe surface to enhance the detection sensitivity [264-271, 256, 235]. The 

CRLB based optimization method described in the previous chapter is a superior and 

more effective method to the traditional SVA method and was implemented to select 

optimized SD arrangements for the imaging probe presented in this chapter.   
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The design tasks of the imaging probe were: 1) to use a fixed small number of sources 

and detectors (given 9 sources and 4 detectors) to realize multiple diverse 

measurements; 2) to select optimized SD arrangements; 3) to constrain the size of the 

probe to be of proper dimensions for clinical application; 4) to be suitable for 

reflective mode measurement. To fulfill the tasks, we proposed the design concept of 

a rotatable cylindrical probe with radius of 3.1 cm and optimized SD arrangements on 

its surface. The aim was to improve spatial resolution in the imaging geometry and 

increase system’s noise resistance with relatively low cost. The probe’s rotation 

function is realized by a step motor. Thus, the probe can be precisely positioned to 

any desired angle. By utilizing the rotatable structure, the density of scans at the same 

probing location is no longer limited by the manufacturing dimensions of the optical 

fibers. Multiple diverse measurements at the same FOV are expectable with only a 

small number of sources and detectors involved. The radius of 3.1 cm is a proper 

dimension for the probe to measure uneven breast surface and also to have enough 

space to accommodate 9 sources and 4 detectors distributed dispersedly on its surface. 

To optimize the SD arrangements on the proposed probe, we used the general 

guideline derived in Chapter 4 for preselecting patterns of SD configurations and then 

the CRLB analysis of the spatial resolution in the reflective imaging geometry to 

further select optimized SD configurations.  

5.2 Mechanical configurations 

As shown in Figure 5.1, the mechanical probe is a circular gear with radius of 3.1 cm 

attached with a stepper motor to precisely control its rotation angle. The probe has 23 

holes for inserting source fibers and 12 holes for inserting detector fibers. The 

minimum distance between the centers of two adjacent holes for sources is 0.5cm and 
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for detectors is 0.8cm. A breast tissue mimic plate [155]
 
(absorption coefficient: 

0.02cm
-1

, reduced scattering coefficient: 6cm
-1

) with the thickness of 0.2cm is 

embedded at the bottom of the probe. It blocks the rotatable part of the probe from the 

surface of the tested subject and ensures the smoothness of multiple scans at the same 

FOV. The probe was integrated into a fast time-domain DOT system employing two 

distinct wavelengths (785nm and 808nm) [74]. Optimized arrangements of 9 sources 

and 4 avalanche photo-diodes as detectors were chosen from the 23 source positions 

and the 12 detector positions on the probe respectively. The selection process is 

described in the next section. 

 

Figure 5.1 Schematic of the rotatable imaging probe 

5.3 Selection of optimized SD arrangements 

Since similar SD arrangements on the imaging probe result in similar distribution of 



 

99 

 

9
9 

precision limits of perturbation estimators in imaging geometry [47], we selected four 

typical patterns of SD arrangements as shown in Figure 5.2 for comparison, given 9 

sources and 4 detectors. According to the general guideline that we derived in Section 

4.3, a sparse distribution of sources and detectors across the surface of the imaging 

probe with proper distances may result in relatively low precision limits of the 

estimators for the same perturbations wherever they are in the imaging geometry. 

Observing the four patterns, Set 1 in Figure 5.2 has dense distribution of sources; Set 

2 has dense distribution of both sources and detectors, and some SD distances are too 

short and may result in detector saturation; Set 3 has more sparse distribution of 

sources and detectors across the imaging probe compared with Set 1 and Set 2, but 

some SD distances are quite long and may result in weak signal; Set 4 has sparse 

distribution of sources and detectors, and the SD distances are within acceptable range. 

Thus we gave a preliminary deduction that Set 4 may have the lowest precision limits 

of perturbation estimators across the imaging geometry among the four evaluated sets. 

 

Figure 5.2 Four patterns of SD arrangements. From left to right: Set 1, Set 2, Set 3 and Set 4. 

Next, simulation of CRLB analysis for the four sets was conducted using the same 

simulation setup employed for the performance evaluation of double SD pairs in 

Section 4.3. The rotation angle of the probe was set to 60 degrees and the simulation 

of a full circular scan was performed. For illustration, Figure 5.3 shows the precision 

limits of   ,    and      for single absorber with size of single voxel, depth = 1cm, 

2cm and 3cm and positions in XY plane across the XY FOV for Set 1 to Set 4 

respectively, with additive 0.1% noise in simulated measurements. Different scale 
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colormaps were used in Figure 5.3 to show the changes in the FOV clearer and the 

narrow data range in each FOV. The distributions of precision limits of    aren’t 

shown in Figure 5.3 since they are similar to the distributions of precision limits of    

with 90 degrees transposed. We noticed that the precision limits among the four sets 

are in the order of 10
-3

, which is a very small value compared to the true values of 

examined parameters. That does not indicate the performances of the four sets are 

similar since the noise level is only 0.1%. And according to Equation (4.3), the 

precision limits increase squared multiple of the increase of the noise level. Therefore, 

the precision limits for these four sets differ more as the noise level increases. From 

Figure 5.3, we observed: 1) Set 1, Set 2 and Set 4 have similar distributions and 

values of precision limits of    and   , and Set 4 has lower values of precision limits 

of    and    than that of the other two sets; 2) Set 3, which has the highest precision 

limits of    and    among the four sets, may have the worst performance in terms of 

the reconstruction accuracy of absorber’s   and  , especially in the central area of 

XY plane; 3) Set 1 and Set 2 have similar distributions and values of precision limits 

of     , while distributions and values of precision limits of      for Set 3 and Set 4 

are similar to each other and lower than the former two sets; 4) Set 4 has the lowest 

precision values of      across the XY planes among the four sets. Overall, 

according to the simulation results, set 4 has the lowest precision limits of   ,   ,    

and      across the imaging geometry. Thus the integration of Set 4 on the probe 

leads to system’s relatively high possibility of achieving high signal sensitivity and 

robust reconstruction performance under the condition of noise. This conclusion 

matches the previous conclusion based on the general guideline.
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Figure 5.3 XY images of distribution of precision limits of    (in first column of each subfigure),    (in second column of each subfigure) and      (in third column 

of each subfigure) for a single absorber with the size of single voxel for Set 1 (Subfigure (a)), Set 2(Subfigure (b)), Set 3 (Subfigure (c)) and Set 4 (Subfigure (d)) 

respectively, with additive 0.1% noise in simulated measurements. In each subfigure, Row 1 to Row 3 represent the precision limits of the parameter estimators for 

the single absorber at the depth of 1cm, 2cm and 3cm respectively. The spatial unit for all the small images is centimeter.  
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5.4 Experimental evaluation of probe performance 

In Section 5.3, we deduced that Set 4 may perform better than the other three sets 

based on CRLB analysis. We also found that it follows the general guideline derived 

in Section 4.3. To evaluate the four sets’ actual performance, we conducted solid 

phantom experiments using these sets and obtained image reconstruction results for 

illustration. 

5.4.1 Experimental setup 

The experimental setup is shown in Figure 5.4. Nine discs of solid resin optical 

tissue-like phantoms were placed in a coaxial manner and two cylindrical tumor-like 

absorbers were embedded into the second slice from the top. The diameter of the 

tissue-like phantom disc is 7cm and the thickness is 0.5cm. The optical properties of 

the tissue-like phantom are approximately: µs' = 6 ± 1 cm
-1

 and µa = 0.02 ± 0.01 cm
-1

. 

The diameter of the absorber is 0.7cm and its height is 0.5cm. The centers of the two 

absorbers are 1cm apart from the center of the second tissue-like slice, 2cm apart from 

each other. The optical properties of the absorber are approximately: µs' = 6 ± 1 cm
-1

 

and µa = 0.06 ± 0.01 cm
-1

. The imaging probe was placed at one end of the tissue-like 

cylinder coaxially to record signals. All four sets of SD arrangements in Figure 5.2 

were examined. The rotation angle was set to 60 degrees. A full circular scan was 

performed and reflective signals were recorded at different rotation position of the 

probe. 
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Figure 5.4 The experimental setup 

5.4.2 Reconstruction results 

By applying the LM method as the inverse reconstruction approach to the acquired 

Laplace transform time-resolved signals, optical information within the semi-infinite 

imaging geometry was retrieved. The FOV of the imaging geometry are: -2cm≤x≤

2cm, -2cm≤y≤2cm and 0.3cm≤z≤3cm. The reconstructed absorption perturbation 

values are shown in Table 5-1. Figure 5.5 shows the reconstructed XY images at the 

depth of 1cm and the reconstructed XZ images at y = 0cm for the four examined sets 

for illustration. The image resolution is 0.1×0.1cm
2
. For easy comparison, the same 

color bar was applied to all the images in Figure 5.5. The SNR of the images of Set 

1-4 are 33.7dB, 29.8dB, 27.1dB, and 39.0dB respectively. The reconstruction 
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recovery rate of the true absorption perturbation values are 55.8%, 58.5%, 43.5%, and 

62.0% for set 1-4 respectively. Comparing the images in Figure 5.5 along with the 

data in Table 5-1, we observe that: 1) Set 1 and Set 2 have similar reconstruction 

results; 2) reconstruction results for Set 4 is better than that for the first two sets, with 

a clearer background and more accurate retrieved values; 3) Set 3 has the worst 

performance among all the four sets because of higher inaccuracy of reconstructed 

target values and positions. Poor position reconstruction (  ,   ,   ) for Set 3 can be 

expected from the analysis of CRLB in Section 5.3. This may affect the reconstruction 

accuracy of the absorption perturbation values and result in a different conclusion 

from deductions about Set 3’s performance in Section 5.3. Figure 5.5 and Table 5-1 

indicate that Set 4 has the best performance among all the four tested sets in terms of 

reconstruction precision of targets’ positions and absorption perturbations, as well as 

background noise level. This matches the deduction drawn in Section 5.3. Thus, Set 4 

was chosen to be an optimized set of SD arrangements and was integrated into the 

imaging probe for clinical application. 

5.5 Discussion 

In this section, we discuss some issues that were left untouched in previous sections. 

One of them is the high precision limits and the poor reconstruction information 

around the boundary area for all the four tested sets. Fortunately, these are not our 

concern. Since we can always move the probe around the area that we are interested 

in, the boundary area at one probing location can become the center at another 

probing location and the information can be recovered with higher accuracy. The 

second issue is the CRLB calculation in the case of multiple absorbers. Though we 

can simultaneously evaluate the estimators of perturbation information of every single 



 

106 

 

absorber, this would make a very large FIM and would require heavy computation if 

the number of the absorbers is large. Using Equation (4.3), we can jointly evaluate the 

estimators of the center of a multiple-absorber system and the distance from each 

absorber’s center to it instead of analyzing the estimators of all the position 

parameters of every single absorber in the system. That could reduce the total number 

of estimators of position information of absorbers by two third. The last issue that is 

discussed here is the evaluation of a probe’s performance in the case of multiple 

absorbers. Since there are various patterns of distribution of multiple absorbers in an 

imaging geometry, it is impractical to evaluate a probe’s performance in different 

cases of multiple absorbers. From formalism of Equation (4.3), we can deduce that the 

performance of an imaging probe in a multiple-absorber case is a coupling effect of 

the performance of the probe in every single-voxel absorber case where the single 

voxel belongs to the multiple absorbers. Thus analyzing a probe’s performance in 

every single-voxel case within an imaging geometry is sufficient for inferring the 

probe’s performance in multiple-absorber case. 

5.6 Conclusions 

We proposed a rotatable imaging probe which realizes multiple diverse measurements 

using a limited number of sources and detectors at the same probing location and 

optimized arrangements of sources and detectors for a time-resolved DOT system [74, 

164] for breast imaging. The selection of optimized SD arrangements is based on the 

general guideline and the CRLB analysis described in Chapter 4. The effectiveness of 

the chosen optimized SD arrangements as well as the effectiveness of the proposed 

probe were illustrated by solid phantom experiments. The reconstruction images from 

phantom experiments indicated that high signal sensitivity, good spatial resolution, 



 

107 

 

and good noise resistance capacity were achieved by integrating the optimized probe 

into the system. Other advantages of the design include low cost, compact structure, 

and easy implementation.  
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Table 5-1 Reconstruction values 

 Set 1 Set 2 Set 3 Set 4 True Value 

Absorption Perturbation (cm
-1

) 0.0223±0.0061 0.0234±0.0060 0.0174±0.0032 0.0248±0.0075 0.04 

Background Noise (cm
-1

) 4.5923e-4±0.0084 7.5806e-4±0.0145 7.6907e-4±0.0056 2.7879e-4±0.0131 0 

 

Figure 5.5 Reconstruction images of absorption perturbation. From left to right: Set 1, Set 2, Set 3 and Set 4. Subfigures in Row 1 are XY images at Z = 1cm. Black 

dash circles indicate the true positions of two absorbers. Subfigures in Row 2 are XZ images at Y = 0cm. Black dash rectangles indicate the true positions of two 

absorbers. The same color bar is applied to all the subfigures. The spatial unit of each subfigure is centimeter. 
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Chapter 6 Conclusions 

6.1 Conclusions 

The first objective of this study was to develop a fast iterative multistage image 

reconstruction method for near real-time imaging of large volume geometry, such as 

human breast. Emphasis was placed on achieving good reconstruction accuracy, high 

computational speed, low memory requirement and robustness against noise. The 

algorithm consists of three stages with Stage 1 and Stage 3 being the unique and 

crucial steps for reduction of the total number of unknowns during iteration process. 

The effectiveness of Stage 1 and Stage 3 was demonstrated through the computer 

based simulations described in Section 3.2. The simulation results proved the 

superiority of the novel multistage method over conventional methods in 

reconstruction accuracy of optical information, memory requirement, convergent rate 

and noise resistance especially when dealing with complex structure perturbations 

and/or large imaging geometry. Particularly, due to continuous exclusion of 

background voxels from the unknown group, the images reconstructed by the 

multistage method had very few artifacts in the background medium under the 

condition of noise. This is difficult to achieve by using conventional methods without 

involving a priori information. Besides, the number of measurements required by this 

method to achieve certain reconstruction accuracy is much lesser than that required by 

conventional methods. Compared to the newly developed soft-prior method and 

hard-prior method, the proposed algorithm is more robust under different conditions 

and the reconstruction results are comparable. In addition, the method is simple and 

can be easily implemented in either stand-alone system or multimodal system.   
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The second objective of this study was to develop an optimization method of SD 

arrangements to enhance diffuse optical system's noise resistance, signal sensitivity 

and spatial resolutions. The optimization method is based on CRLB analysis and is 

used to jointly evaluate the precision limits of estimators of perturbation positions and 

values for SD sets. The importance of optimization of SD arrangements was verified 

by conducting CRLB analysis of all the combinations of a fixed number of sources 

and detectors on a probe in a simulation setting. The results showed that the highest 

precision limits of estimators of perturbation information were more than two times of 

the lowest precision limits of corresponding estimators. This suggests that obvious 

differences can exist among different sets of SD arrangements and it is essential to 

choose optimized SD arrangements for better reconstruction accuracy and stability. 

The reliability of the theoretical adaption of CRLB analysis in DOT was also proven 

by observing lower values of the precision limits of perturbation estimators compared 

with the variances of estimators from simulations for a large number of SD sets. The 

CRLB based optimization method was also demonstrated to be preferable to the 

traditional SVA method because of low computational cost and capability of 

quantitative evaluation of SD set’s performance. Furthermore, the effectiveness of the 

proposed method was illustrated by observing concordances between image 

reconstruction results from simulation data and the inference of SD sets’ performance 

from CRLB analysis. In addition, a general guideline for selecting good distribution 

patterns of sources and detectors on the probe surface was derived from CRLB 

analysis for specific simulations. Although the CRLB based method was developed in 

Laplace domain and only applied to analyze reflective measurement mode in the 

simulation, the method can be easily adapted to other signal domains and other 

measurement modes. 
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The third objective was to design, implement, and evaluate an optimized handheld 

imaging probe, which would be integrated into the time-resolved DOT system 

developed by our group [74, 164]. Emphasis was placed on increasing information 

intake with a limited number of sources and detectors and selecting optimal source 

and detector arrangements. A probe with mechanically rotatable structure driven by a 

stepper motor was proposed with the purpose of realizing multiple scans at the same 

probing location. By using the rotatable structure, the density of scans at the same 

probing location is no longer limited by the manufacturing dimensions of the optical 

fibers. A set of Optimized SD arrangements was chosen for the probe based on the 

general guideline and the CRLB based method described in Chapter 4. The 

effectiveness of the novel design probe was validated through solid phantom 

experiments. Reconstruction images in the 4
th

 column of Figure 5.5 using the 

optimized probe show higher reconstruction accuracy of perturbation information and 

fewer artifacts in the background compared with the other three designs of the probe 

(only the patterns of SD arrangements are different). This indicates the DOT system’s 

performance is enhanced in terms of high signal sensitivity, good spatial resolution 

and good noise resistance by integration of the optimized probe. Other advantages of 

the design include low cost, compact structure, and easy implementation.  

The advanced multistage inverse method and the proposed optimized probe have been 

recently integrated into the current time-resolved DOT system [74, 164] for the 

ongoing clinical trials of breast imaging. 

6.2 Recommendations for future work 

The following aspects are recommended for future research, which can help either 

improve the current work or adjust the DOT system to be more clinically applicable:  
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 The criterion involved in Stage 1 of the multistage inverse method is decided 

empirically and is related to the noise level in the measurements. Since we cannot 

evaluate the exact influence of noise in the measurements in experimental 

scenario, it is better to develop a fast automatic search method of the threshold 

value    in order to restrict the reconstructed values to a reasonable range. 

Preliminary estimations of noise level can be obtained from the reference 

measurements prior to the scans on the examined subjects and will be provided as 

initial values for good search performance. It is noteworthy that: 1) a low value of 

   may result in rejection of optically heterogeneous voxels and thus leads to loss 

of perturbation information and overestimation of perturbation values; 2) a high 

value of    may not be efficient to reject homogeneous voxels and may lead to 

underestimation or distortion of perturbation information, and/or unnecessary 

background artifacts. Thus a balance between the severity of voxel rejections and 

the qualities of reconstruction images must be considered when moving    along 

certain search direction.  

 The forward solutions used in the multistage inverse method are analytical 

solutions to DE and the weight matrix is not recalculated through the whole 

reconstruction process. This is the reason that the method can perform fast despite 

its good reconstruction accuracy even when dealing with large volume geometry. 

However, for more accurate and detailed imaging of inherently optically 

heterogeneous medium such as biological tissue, it is desirable to use numerical 

forward solutions for better description of light transport in such medium and 

recalculate the weight matrix according to the reconstruction results from the 

multistage method. The new weight matrix will be applied back to the multistage 

method and new reconstruction results will be generated. The iterative process 
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will continue until the absolute values of the latest reconstruction results are 

smaller than some predefined thresholds which indicate the noise tolerance level 

in the background optical values. The use of numerical forward solutions and 

iterative recalculation of weight matrix will dramatically increase the 

computational burden in return for higher reconstruction accuracy and more 

details of optical information.  

 As demonstrated in Chapter 3, the multistage inverse method using the analytical 

forward solutions is suitable for near real-time clinical preliminary imaging. In 

contrast, the adoption of numerical forward solutions and iterative recalculation 

of weight matrix during the multistage inversion process will increase the 

computational cost significantly but are suitable for more accurate and detailed 

image reconstruction, as stated in the second recommendation. Based on the first 

two recommendations, a software application integrating the multistage method 

can be developed with options for automatic search or manual adjustment of   , 

and options for fast reconstruction or detailed reconstruction. The application 

should include image windows for near real-time display of reconstructed values 

at different tissue depths, input panel for experimental setting such as SD 

arrangements, measurement domain, imaging geometry, and control panel for 

selecting automatic search mode or manual adjustment mode for   , as well as 

fast reconstruction or detailed reconstruction. The software application is 

supposed to be easily implemented and adaptable to any kind of DOT problem.  

 The analytical solutions used in CRLB analysis can be replaced by numerical 

solutions. This will be helpful when analyzing performance of SD arrangements 

on irregular imaging geometry and/or medium with complex inherent distribution 

of optical properties. The contribution of using a numerical model in the 
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effectiveness of evaluating SD set’s performance versus the increase in 

computational cost must be weighed carefully. If the former is relatively small 

compared with the latter, it might be more strategic to implement analytical 

solutions on simple geometry and infer the performance of SD arrangements on 

complex examined subjects. 

 There are 9 sources and 4 detectors used in the proposed optimized rotatable 

imaging probe. For more data acquisition without increment in scan time, more 

detectors could be considered for future development. 

 The proposed handheld probe is for breast imaging. It is suitable for intensive 

imaging of suspicious cancerous areas, or imaging areas with detection difficulty 

such as the region near the armpit. However, for fast breast screening, probes 

with large dimensions and spatial distribution of sources and detectors to cover 

the whole breast are desirable. For imaging breasts of large size, parallel plates 

with a large number of sources and detectors on them or two parallel rotatable 

plates capable of providing dense scans are suitable. For imaging breasts of small 

size, semi-ellipsoid with optimized SD arrangements will suit the situation. 

 The current ongoing clinical trials of breast imaging are recruiting Asian female 

cancer patients undergoing neoadjuvant chemotherapy (NAC) treatments. 

Investigations not only in the cancerous breast but also in the normal breast of the 

patients are recommended. The trials will explore optical and physiological 

parameters of normal breast tissue of Asian female cancer patients, and the 

correlation to demographic factors (including menopausal status, body mass 

index, and age) and cancer risks. The clinical experiments will also monitor 

changes in optical and physiological parameters of cancerous breast tissue in 

Asian women during NAC treatment circles and explore the time-resolved DOT 
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system's potential for early prediction of treatment efficacy. 
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