
IMPROVED MODELING AND IMAGE GENERATION FOR
FLUORESCENCE MOLECULAR TOMOGRAPHY (FMT) AND

POSITRON EMISSION TOMOGRAPHY (PET)

by
Yansong Zhu

A dissertation submitted to Johns Hopkins University in conformity
with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
September 2020

© 2020 Yansong Zhu
All rights reserved



Abstract

In this thesis, we aim to improve quantitative medical imaging with advanced image

generation algorithms. We focus on two specific imaging modalities: fluorescence

molecular tomography (FMT) and positron emission tomography (PET).

In the case of FMT, we present a novel photon propagation model for its forward

model, and in addition, we propose and investigate a reconstruction algorithm for its

inverse problem. In the first part, we develop a novel Neumann-series-based radiative

transfer equation (RTE) that incorporates reflection boundary conditions in the model.

In addition, we propose a novel reconstruction technique for diffuse optical imaging

that incorporates this Neumann-series-based RTE as forward model. The proposed

model is assessed using a simulated 3D diffuse optical imaging setup, and the results

demonstrate the importance of considering photon reflection at boundaries when

performing photon propagation modeling. In the second part, we propose a statistical

reconstruction algorithm for FMT. The algorithm is based on sparsity-initialized

maximum-likelihood expectation maximization (MLEM), taking into account the

Poisson nature of data in FMT and the sparse nature of images. The proposed method

is compared with a pure sparse reconstruction method as well as a uniform-initialized

MLEM reconstruction method. Results indicate the proposed method is more robust

to noise and shows improved qualitative and quantitative performance.

For PET, we present an MRI-guided partial volume correction algorithm for

brain imaging, aiming to recover qualitative and quantitative loss due to the limited

resolution of PET system, while keeping image noise at a low level. The proposed

ii



method is based on an iterative deconvolution model with regularization using parallel

level sets. A non-smooth optimization algorithm is developed so that the proposed

method can be feasibly applied for 3D images and avoid additional blurring caused

by conventional smooth optimization process. We evaluate the proposed method

using both simulation data and in vivo human data collected from the Baltimore

Longitudinal Study of Aging (BLSA). Our proposed method is shown to generate

images with reduced noise and improved structure details, as well as increased number

of statistically significant voxels in study of aging. Results demonstrate our method

has promise to provide superior performance in clinical imaging scenarios.
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Chapter 1

Introduction

Molecular imaging uses specific molecular probes to provide image contrast for non-

invasive and real-time visualization of biochemical events at cellular and molecular

level within living cells, tissues, and intact subjects [1]. Although it traces its root in

nuclear medicine [2–4], the discipline of molecular imaging has been extended to many

other imaging modalities such as computed tomography (CT), magnetic resonance

imaging, ultrasound imaging and optical imaging [2, 5–8]. Today, molecular imaging

has been widely used in both clinical and pre-clinical applications.

The ability to provide quantitative information allows MI to move beyond simply

visualizing biochemical process. Quantitative information can provide additional value

to MI in applications such as disease diagnosis, clinical decision making and therapy

response assessment [9]. Although not all MI methods have traditionally involved

quantitative imaging, progresses in hardware and image generation algorithms has

enabled quantitative imaging in a wider array of MI disciplines.

Development of quantitative imaging in MI has benefited a lot from advanced

image generation algorithms. For example, in nuclear medicine, developments on

statistical iterative algorithms and various degradation compensation techniques enable

improved quantitative accuracy for emission tomography. As another example, in

optical molecular imaging, advanced photon propagation models and reconstruction
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methods generate images with higher resolution as well as more accurate quantification.

1.1 Motivation and contribution

This dissertation focuses on two specific MI modalities, i.e. fluorescence molecular

tomography (FMT) and positron emission tomography (PET). It aims to improve

quantitative performance of these two imaging modalities with advanced image gener-

ation algorithms. Contributions of this dissertation include:

1) development of a novel Neumann-series-based radiative transport equation that

incorporates reflection boundary condition to model photon propagation in optical

imaging.

2) Proposal of a reconstruction algorithm for FMT that is based on sparsity-initialized

maximum likelihood expectation maximization (MLEM).

3) Development of a magnetic resonance imaging (MRI)-guided partial volume cor-

rection method for brain PET imaging that aims to use high-resolution anatomical

information to recover quantitative loss caused by limited spatial resolution of PET

system.

1.2 Thesis outline

The thesis is organized as follows:

Chapter 2: background

This chapter provides background knowledge to the following three chapters. This

chapter has two main sections that discuss detail on FMT and PET separately.

In the FMT subsection, we first briefly introduce the fluorescence mechanism and

FMT instrumentation. Then we derive photon propagation model based on radiative

transport equation (RTE). Diffusion approximation and Monte Carlo methods, as

2



the most commonly used deterministic and stochastic methods, respectively, are

introduced. Another deterministic model based on Neumann-series is also introduced.

This model is closely related to the content in Chapter 3. Next, we discuss the

forward model and inverse problem of FMT. This part is related to the content in

Chapter 4. In the PET subsection, we elaborate on PET physics, instrumentation and

data acquisition as well as commonly used reconstruction methods, including both

analytical and statistical methods. We then discuss several image degradation factors

in PET. In the last part of this chapter, we introduce the partial volume effect. The

correction method will be discussed in detail in Chapter 5.

Chapter 3: Incorporating reflection boundary conditions in the Neumann-

series-based radiative transport equation

In this chapter, we derive the boundary condition for the Neumann-series-based model,

which did not consider photon reflection previously. The new model is validated by

comparing with Monte Carlo method. In addition, a diffuse optical imaging (DOI)

reconstruction technique based on Neumann-series formalism is also proposed to

estimate the optical properties of the tissue. These methods were implemented and

evaluated using a simulated 3D diffuse optical imaging setup. This work has been

presented as two conference proceeding papers [10, 11] and published as a journal

paper on Biomedical Optics Express [12].

Chapter 4: Sparsity-initialized maximum-likelihood expectation maximiza-

tion for fluorescence molecular tomography reconstruction

In this chapter, we discuss a novel reconstruction method for FMT based on sparsity-

initialized maximum-likelihood expectation maximization (MLEM). The method is

compared with uniform-initialized MLEM and a sparse reconstruction method with

preconditioning. Simulation experiments with a homogeneous cubic phantom and a

heterogeneous digital mouse phantom are used to evaluate the performance of these

methods. This work has been presented at an SPIE conference and an OSA conference
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[13, 14] and has been published as a journal paper in Biomedical Optics Express [15].

Chapter 5: Partial volume correction for brain PET imaging

This chapter discusses detail on the topic of partial volume correction (PVC). We

first introduce commonly used PVC methods, including reconstruction-based methods

and post-reconstruction methods. We then develop an MRI-guided PVC method for

brain PET imaging. The method is based on deconvolution model with parallel level

set regularization. A non-smooth optimization algorithm based on split Bregman

framework is also developed to solve the optimization problem. The proposed method

is evaluated on both simulation data and in vivo human data. This work has been

presented at multiple international conferences [16–19] and has also been submitted

for journal publication [20].

Chapter 6: Conclusion and future work

This chapter concludes the thesis and discusses future work.

Appendix A: Application of computational breast phantoms to evaluate

reconstruction methods for fluorescence molecular tomography

In this appendix, we apply our proposed FMT reconstruction method for the task

of breast tumor detection. We evaluated our method against conventional Tikhonov

regularization method using a realistic digital breast phantom. This work has been

presented at 2017 Computational Phantom workshop and has been published as a

arxiv preprint [21].
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Chapter 2

Background

2.1 Fluorescence molecular tomography

2.1.1 Overview

FMT enables quantitative 3D imaging of fluorophores distribution within biological

tissue. Since the advent of optical tomography with fluorescence light in mid 1990s

[22, 23], this imaging modality has attracted significant research interest due to

potential advantages such as high sensitivity, absence of ionizing irradiation, high

temporal resolution and relatively low cost [24]. FMT has been used for both preclinical

and clinical applications such as pharmaceutical research [8], brain imaging [25, 26],

and tumor detection [27, 28].

FMT makes use of fluorescence light for imaging. Fig. 2-1 (a) illustrate the

mechanism of fluorescence generation. When illuminating a fluorescence molecule with

light source of proper wavelength, it absorbs excitation photon and transmits to higher

vibrational energy state from ground state. The molecule then rapidly relaxes to lower

vibrational level without radiation, which is known as internal conversion. In the

next transition, the molecule falls back to ground state. The difference energy will be

released either through heat or by emitting a fluorescence photon. Due to the energy

loss during internal conversion, the energy of emitted fluorescence photon is usually

lower than that of excitation photon, resulting in a shift of spectrum towards longer
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Figure 2-1. (a) Jablonski diagram illustrating fluorescence mechanism. (b) Example of
excitation and emission spectra [29].

wavelength, which is known as Stokes shift, as shown in Fig. 2-1 (b). Fluorescence

lifetime and quantum yield are two important characteristics of a fluorophore. The

former refers to the average time that fluorescence molecule spends in the excited

state before returning to the ground state. The later refers to the ratio of the number

of emitted photons to the number of absorbed photons [30].

To collect emitted fluorescence light, a typical non-contact experimental setup

for small animal FMT is shown in Fig. 2-2. In this setup, the laser source is split

into two beams. One is focused to illuminate from the back of the subject to excite

fluorescence light. The other is used as front illumination to obtain geometry of

subject surface which is used to model photon propagation [32]. The subject is placed

on a rotating platform so that signal can be collected from different angle. A CCD

camera serves as detector to collect emitted fluorescence light, and a filter is placed

in front of the detector to filter out non-fluorescence light. Different setups for FMT

have been developed. For example, optic fibers can be used to build a contact system

and collect fluorescence signal directly from subject surface [33]. In this type of

system, measurement geometry could be transmission-based or reflection-based [26].

6



Figure 2-2. An experimental setup for FMT [31].

In addition, subject geometry can be obtained from other modalities. There has been

reported FMT-CT and FMT-MRI systems [25, 34, 35], where subject anatomical

information is collected through CT or MRI. Anatomical information collected from

these systems provide internal structure of subjects and thus heterogeneous tissue

map can be applied for more accurate photon propagation modeling. In some other

systems, photomultiplier tubes (PMTs) are used as detectors rather than CCD camera

[36]. More recently, systems based on wide-field illumination have attracted much

research interest, where the focused point laser source is replaced with an expanded

wide-field source [37, 38]. This type of systems allows faster data acquisition as well

as flexible spatial modulation of illumination pattern which provides improved image

quality. Based on the collected data type, these FMT systems can be categorized

into three major modes, i.e. continuous wave (CW) mode, frequency-domain (FD)

mode and time-domain (TD) mode [39]. CW mode uses laser source with steady

illumination power [40]. It is the most commonly used mode due to its low cost and

simplicity. Since it only collects intensity data, it can be used to image fluorescence
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concentration or quantum yield, but not for fluorescence lifetime imaging. In contrast,

FD and TD mode allow both concentration imaging and lifetime imaging. In FD

mode, frequency modulated (˜MHz) source is applied to collect both intensity and

phase information [36, 41]. In TD mode, ultra-short (˜fs-ps) laser pulse is used as

source together with time-resolved detection to collect temporal point spread function

information of arrival photon [42, 43].

Photon migration in turbid medium such as biological tissue is complicated by

scattering and absorption. In order to reconstruct fluorescence distribution with

collected diffuse photons, a forward model is required to describe photon propagation.

In the next section, we will discuss details on mathematical modeling that describes

photon propagation in biological tissue.

2.1.2 Photon propagation in biological tissue

2.1.2.1 Physical quantities

We start by defining physical quantities that will be used in this section. Let Q denote

radiant energy, which is the total energy emitted from a source. If we use V , Ω, E to

denote volume, solid angle and energy, respectively, the fundamental quantity used

throughout this section is photon distribution function w(r, ŝ, E, t), defined as

w(r, ŝ, E, t) = 1
E

∂3Q

∂V ∂Ω∂E
. (2.1)

w(r, ŝ, E, t)∆V ∆Ω∆E can be interpreted as the number of photons contained in

volume ∆V centered at position r, traveling in solid angle ∆Ω about direction ŝ, with

energies between E and E + ∆E at time t. When energy is expressed as eV , the

distribution function can be easily related to a more commonly used quantity radiance

L with L = cmw, where cm is the speed of light in the medium.

There are several other important quantities. We define Φ = ∂Q
∂t

as radient power.

Source distribution Ξ(r, ŝ, E, t) describes photons injected into a medium and is
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defined as

Ξ(r, ŝ, E, t) = 1
E

∂3Φ
∂V ∂Ω∂E

. (2.2)

Irradiance I describes radiant power received by a surface per unit area, defined as

I = ∂Φ
∂A

. (2.3)

A similar quantity is fluence rate ϕ, which is also defined as radiant power per unit

area, but does not specify the direction. We also define a vector quantity photon flux

as

J(r, ŝ, E, t) = cm

∫︂
4π

dΩŝw(r, ŝ, E, t) (2.4)

Scattering cross section σsc describes the probability of scattering happening for a

particle. When a beam of radiation incident on the entity yields a certain scattered

flux, the scattering cross section is a measure of scattered flux per unit irradiance. For

elastic scattering, which will be considered in this thesis, we have:

σsc = Φ
I0

, (2.5)

where I0 represents normal irradiance on surface. Similarly, we can define absorption

cross section σabs as rate of energy absorption per unit irradiance

σabs = ∂Qabs/∂t

I0
, (2.6)

With cross sections defined, we can define absorption coefficient µabs and scattering

coefficient µsc as

µabs = nabsσabs, (2.7)

µsc = nscσsc, (2.8)

where nabs and nsc denotes the number of absorbing and scattering particles per unit

volume, respectively.
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2.1.2.2 The radiative transport equation

Photon propagation within medium is described with the ratiative transport equation

(RTE). For optical imaging using diffuse photons such as FMT, it is reasonable to

assume mono-energy light source as well as elastic scattering. Thus, we can drop

the dependence on energy. With photon distribution function w(r, ŝ, t), the RTE is

written as
dw

dt
=
[︄

∂w

∂t

]︄
abs

+
[︄

∂w

∂t

]︄
em

+
[︄

∂w

∂t

]︄
sc

+
[︄

∂w

∂t

]︄
prop

, (2.9)

where we have written w(r, ŝ, t) as w for short, the right four terms describe photon

absorption, emission, scattering and propagation, respectively.

Time-derivative of photon distribution function contributed by absorption is given

by [︄
∂w

∂t

]︄
abs

= −cm(r)µabs(r)w(r, ŝ, t), (2.10)

Photon emission is directly given by source distribution Ξ(r, ŝ, t), so we have[︄
∂w

∂t

]︄
em

= Ξ(r, ŝ, t), (2.11)

The contribution of scattering has two parts. The first part describes photons that

scatter away from current direction ŝ at position r. This part can be written similar

as photon absorption: [︄
∂w

∂t

]︄
out

= −cm(r)µsc(r)w(r, ŝ, t). (2.12)

The second part describes photons that scatter from other direction into current

direction at position r, and is given by[︄
∂

∂t
w(r, ŝ, t)

]︄
in

= cm(r)µsc(r)
∫︂

4π
dΩ′p(ŝ, ŝ′)w(r, ŝ′, t), (2.13)

where ŝ′ denotes the direction of incoming photons. p(ŝ, ŝ′) is the scattering phase

function, which is commonly chosen as Henyey–Greenstein function [44]

p(ŝ, ŝ′) = 1
4π

1 − g2

[1 + g2 − 2g(ŝ · ŝ′)]3/2 , (2.14)
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where g is anisotropy factor.

The contribution of scattering thus can be written as[︄
∂w

∂t

]︄
sc

=
[︄

∂w

∂t

]︄
out

+
[︄

∂w

∂t

]︄
in

= −cm(r)µsc(r)w(r, ŝ, t) + cm(r)µsc(r)
∫︂

4π
dΩ′p(ŝ, ŝ′)w(r, ŝ′, t),

(2.15)

Finally, the propagation term is given by[︄
∂w

∂t

]︄
prop

= −cm(r)ŝ · ∇w(r, ŝ, t). (2.16)

We replace the terms in equation (2.9) with equation (2.10), (2.11), (2.15) and (2.16).

This gives [45]

d

dt
w(r, ŝ, t) = −cm(r)µt(r)w(r, ŝ, t) +

∫︂
4π

dΩ′K(ŝ, ŝ′|r)w(r, ŝ′, t)

− cm(r)ŝ · ∇w(r, ŝ, t) + Ξ(r, ŝ, t),
(2.17)

where µt(r) = µsc(r) + µabs(r) is the total attenuation coefficient, K(ŝ, ŝ′|r) =

cm(r)µsc(r)p(ŝ, ŝ′) is the scattering kernel.

2.1.2.3 Solving the RTE with deterministic methods

Solving the RTE analytically is a difficult problem. Significant researches have been

conducted to find approximate solutions for the RTE. A well-established methods

to treat the RTE is to expand it with spherical harmonics [46]. Spherical harmonics

allow expanding a function based on its angular dependence. If we apply spherical

harmonics expansion on the distribution function w(r, ŝ, t), we get

w(r, ŝ, t) =
∞∑︂

l=0

m=l∑︂
m=−l

Wlm(r, t)Ylm(ŝ), (2.18)

wherer Ylm(ŝ) is the basis function for spherical harmonics. The coefficients Wlm(r, t)

can be determined by

Wlm(r, t) =
∫︂

4π
dΩY ∗

lm(ŝ)w(r, ŝ, t), (2.19)
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where Y ∗
lm(ŝ) is the complex conjugation of Ylm(ŝ).

Diffuse approximation

The most widely used deterministic model for photon migration modeling is diffuse

approximation (DA). If we truncate equation (2.18) at order l = 1, we can relate the

distribution function with the fluence rate ϕ(r, t) and photon flux J(r, t) with

w(r, ŝ, t) = 1
4πcm(r) [ϕ(r, t) + 3ŝ · J(r, t)] . (2.20)

Assuming the source Ξ(r, ŝ, t) is isotropic, we drop the angular dependence and get

ξ(r, t) = 4πΞ(r, ŝ, t). (2.21)

Substituting equation (2.20), (2.21) into (2.17) and integral over the 4π space, we

obtain
1

cm(r)
∂ϕ(r, t)

∂t
+ µabs(r)ϕ(r, t) + ∇ · J(r, t) = ξ(r, t) (2.22)

In strongly scattering medium, we can apply Fick’s law, which says the photon flux

can be approximated with the gradient of fluence rate as

J(r, t) = −D(r)∇ϕ(r, t), (2.23)

where D = 1
3(µabs+µ′

sc) is diffusion coefficient, µ′
sc = (1 − g)µsc is reduced scattering

coefficient. If we use Fick’s law in equation (2.22), we obtain the well-known diffusion

equation

1
cm(r)

∂ϕ(r, t)
∂t

+ µabs(r)ϕ(r, t) − ∇ · [D(r)∇ϕ(r, t)] = ξ(r, t) (2.24)

Equation (2.24) can be solved with numerical method such as finite element method

to obtain the optical field in complicated geometry [47, 48]. Notice we have made

several assumptions in diffuse approximation. As a result, the diffuse approximation

is valid when µ′
sc ≫ µabs and the observation point is far from the boundary and the

source [49].
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Neumann-series method

As discussed in the previous section, there are several limitations to the DA method

due to assumptions made in its derivation. As a result, DA-based methods are not

accurate, for example, in media with low scattering but high absorption or small

geometry [50–53]. To overcome these issues, we now discuss a Neumann-series method

that aims to solve the RTE. Neumann-series method solves the RTE with integral

form. Unlike methods using differential form of the RTE that require solving multiple

coupled equation, Neumann-series method only require solving a single equation [54].

In addition, this method has a clear physical interpretation for the RTE solution, as

we will show later. We next describe how to derive Neumann-series method to solve

the RTE.

We first apply Fourier transform on equation (2.17). This gives

ŝ · ∇w(r, ŝ, ν) +
(︄

µt(r) + iν

cm(r)

)︄
w(r, ŝ, ν) = 1

cm(r)

∫︂
4π

dΩ′K(ŝ, ŝ′|r)w(r, ŝ′, ν)

+ 1
cm(r)Ξ(r, ŝ, ν),

(2.25)

wherer ν is frequency. For steady-state source, ν = 0. The following discussion will be

based on the assumption of steady-state source. The model can be easily extended to

general frequency domain by setting µ′
t(r) = µt(r) + iν

cm(r) . With steady-state source,

we have

ŝ · ∇w(r, ŝ) + µt(r)w(r, ŝ) = 1
cm(r)

∫︂
4π

dΩ′K(ŝ, ŝ′|r)w(r, ŝ′) + 1
cm(r)Ξ(r, ŝ). (2.26)

If we perform integration along the path in ŝ direction, we obtain [45]

w(r, ŝ) = 1
cm(r)

∫︂ ∞

0
dlΞ(r − ŝl, ŝ) exp

[︄
−
∫︂ l

0
dl′µt(r − ŝl′)

]︄

+ 1
cm(r)

∫︂ ∞

0
dl[Kw](r − ŝl, ŝ) exp

[︄
−
∫︂ l

0
dl′µt(r − ŝl′)

]︄
,

(2.27)

where K is scattering operator and is defined as

[Kw](r, ŝ) =
∫︂

4π
dΩ′K(ŝ, ŝ′|r)w(r, ŝ′). (2.28)
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We define another operator X from equation (2.27) as

[Xw](r, ŝ) = 1
cm(r)

∫︂ ∞

0
dlw(r − ŝl, ŝ) exp

[︄
−
∫︂ l

0
dl′µt(r − ŝl′)

]︄
. (2.29)

The operator X defines an integral transform which is known as x-ray transform

[45]. This operator describes the attenuation of photons when propagating along ŝ

direction due to absorption and scattering away from current direction. We refer to

this operator as attenuation operator. Use equation (2.28) and (2.29), we can write

equation (2.27) in operator form as

w = XΞ + XKw. (2.30)

An equivalent form is

(I − XK)w = XΞ. (2.31)

Expand the above equation with Neumann-series and we obtain

w = (I − XK)−1XΞ

= XΞ + XKXΞ + XKXKXΞ + . . .
(2.32)

Each term in this solution has an intuitive interpretation. The first term XΞ describes

the contribution of ballistic photons that propagates through a medium without

scattering. Terms with operator [KX ]n describe contribution from photons that

scatter n times [54]. This is illustrated in Fig. 2-3.

With spherical harmonics defined in (2.18) and (2.19), we transform operator K

and X in spherical harmonics basis. We first define an operator Y that maps the

distribution function w(r, ŝ) to its spherical harmonics coefficient Wlm(r). This is

written as

[Yw]lm(r) =
∫︂

4π
dΩY ∗

lm(ŝ)w(r, ŝ, t) = Wlm(r). (2.33)

We can also define its inverse operator as

[Y−1W ](r, ŝ) =
∞∑︂

l=0

m=l∑︂
m=−l

Wlm(r, t)Ylm(ŝ) = w(r, ŝ). (2.34)
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Figure 2-3. A schematic illustrating the physical interpretation of the different terms in
the Neumann series RTE [11].

Applying Y on both side of (2.30), we get

Yw = YXY−1ξ + YXY−1YKY−1W, (2.35)

where ξ = YΞ is spherical harmonics coefficients of the source. We now define the

transformed operator of K and X as D = YKY−1 and A = YXY−1. It can be

shown that the transformed scattering operator D is

[DW ]lm(r) = cm(r)µsc(r)
∑︂
l′,m′

glδll′δmm′Wl′m′(r), (2.36)

where δmn denote the Kronecker delta function. The transformed attenuation operator

A is

[AW ]lm(r) = 1
cm(r)

∑︂
l′,m′

∫︂
∞

dr′ 1
|r − r′|2

Y ∗
lm

(︄
r − r′

|r − r′|

)︄

×Ylm

(︄
r − r′

|r − r′|

)︄
exp

[︄
−
∫︂ |r−r′|

0
dl′µt(r − r − r′

|r − r′|
l′)
]︄
,

(2.37)

We can then write the Neumann-series-based RTE in spherical harmonics as

W = Aξ + ADAξ + ADADAξ + . . . (2.38)

Based on equation (2.38), Neumann-series-based RTE has been successfully imple-

mented in both uniform medium [54] and non-uniform medium [55].

Other analytical method

Many other analytical methods have also been developed in order to overcome the
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drawbacks of DA. Instead of using the first order spherical harmonics, high order

methods have been developed [56–59]. This type of methods is known as PN method.

Methods using simplified harmonics (SPN) were also developed in order to address

the issue of mathematical complexity and computationally demanding in PN method

[52, 60]. Apart from spherical harmonics expansion, other methods have been developed

to solve the RTE. Klose et. al. [61] use discrete ordinate method to discretize angular

space. Pulkkinen and Tarvainen [62] use truncated Fourier series to expand RTE.

2.1.2.4 Solving the RTE with the Monte Carlo method

Monte Carlo (MC) method is another commonly used method to solve RTE. MC

method simulates photon migration stochastically. In general, MC methods apply

random sampling and statistical modeling to estimate mathematical functions. In a

typical MC simulation, a system is modeled as probability density functions (PDFs).

Repeated samples are obtained from these PDFs. Finally, statistics of interest will be

computed based on these samples [63]. Specifically, for photon migration problem,

different parameters which characterize photon behavior, such as propagation step

size and scattering angle, obey certain probability distributions that are defined based

on optical properties of different medium [64]. After sufficient number of photons

sampled, the cumulative distribution of all photon paths provide accurate solution to

RTE.

Although MC method is accurate, it requires large number of photons to be

simulated in order to obtain a stable solution, which made it very slow in early years.

More recently, different strategies have been developed to accelerate MC simulation

so that it can be applied to obtain the forward model of optical imaging with diffuse

light. Strategies such as scaling [65] and perturbation [66] try to maximize the use

of information collected in certain MC simulations to deduce photon distribution in

medium with different optical properties. Other strategies such as filtering [67] try
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to improve signal-to-noise ratio (SNR) and reduce the number of photons required

for a single MC simulation. The emergence of graphics processing units (GPUs) and

parallel computing techniques have also contributed to significantly speed up MC

simulation [68].

2.1.3 Forward model of FMT

For steady-state source, solving the RTE gives us the Green’s function G(r, r′), which

describes fluence rate at position r′ due to point source at r. Photon propagation in

FMT is a two-stage process. In the first stage, excitation photons propagate from

source into tissue. In the second stage, emitted fluorescence photons propagate from

fluorophores to detectors outside the boundary of the subject. We use Gex(r, r′)

and Gem(r, r′) to denote Green’s function of excitation photon and emission photon,

respectively. Then the fluence rate for excitation photon at position r is

ϕex(r) =
∫︂

Λ
Gex(rs, r)q(rs)drs, (2.39)

where Λ is the domain of the subject. q(rs) is excitation source, and rs is source

position. For emitted fluorescence, we have [69]

ϕem(rd) =
∫︂

Λ
Gem(r, rd)ηµaf (r)ϕex(r)dr, (2.40)

where η is quantum yield of fluorophore and µaf(r) is absorption coefficient of fluo-

rophores at excitation wavelength. If we discretize Λ into N voxels, we obtain the

linear matrix equation for the forward model:

Φ = Gx, (2.41)

where

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1
em,1ϕ

1
em,1 . . . g1

em,Nϕ1
em,N

... ...
gNd

em,1ϕ
1
em,1 . . . gNd

em,Nϕ1
em,N

g1
em,1ϕ

2
em,1 . . . g1

em,Nϕ2
em,N

... ...
gNd

em,1ϕ
Ns
em,1 . . . gNd

em,NϕNs
em,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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is the sensitivity matrix of the system, Φ is an M × 1 vector denoting detector

measurements. Ns and Nd are number of sources and detectors, respectively, and

M = Ns × Nd is the total number of measurements, x = ηµaf is the unknown

fluorescence yield.

2.1.4 Inverse problem of FMT

The inverse problem is to reconstruct x from equation (2.41) given detector measure-

ments Φ and system matrix G. Since biological tissue is highly scattering, and the

number of measurements is usually smaller compared to the number of unknowns.

The inverse problem of FMT is highly ill-posed. In order to reduce ill-posedness of

the problem, Regularization is often used. The following equation shows a typical

least-square regularization model that has been widely used for FMT reconstruction

[43, 70–72].

min
x

∥Gx − Φ∥2
2 + λR(x), (2.42)

where R(x) is certain regularization function, and λ is regularization parameter.

Various regularization methods have been developed. The most widely used one is

Tikhoniv regularization [73]. With Tikhonov regularization, equation (2.42) becomes

min
x

∥Gx − Φ∥2
2 + λ∥Γx∥2

2, (2.43)

where Γ is a weighting matrix. When no prior information is available, Γ = I is

identity matrix. Equation (2.43) becomes l2 regularization [74]. On the other hand, Γ

can be designed for spatial adaptive regularization [71] or to incorporate anatomical

prior information [70]. By setting the gradient of objective function in (2.43) to zero,

we obtain an explicit solution as

x̂ =
(︂
GT G + λΓT Γ

)︂−1
GT Φ. (2.44)

Computing the inverse matrix in (2.44) directly can be slow if matrix size is large.

Instead, equation (2.43) can be solved iteratively with numerical method such as
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gradient descent method [75]. Some methods tries to solve the linear equation

(2.41) directly, such as algebraic reconstruction technique (ART), conjugate gradient

method and truncated singular value decomposition (TSVD) [31, 46, 76]. In these

methods, early stopping is commonly used in iterative methods to obtain meaningful

solution. The step size and truncation number in these methods play a similar role

as the regularization parameter. Discussion on their relationship with Tikhonov

regularization can be found in [77, 78].

In practice, Tikhonov regularization often tends to generate over-smoothed images.

Since fluorophores usually concentrate in local regions, sparsity can be exploit to

improve image quality. Different regularization functions encouraging sparsity have

been studied in recent years, such as lp (0 < p ≤ 1) norm [72, 79, 80], log function

[81], total variation [82, 83] and group sparsity functions [84, 85].

In addition, the advent of multimodality systems also encourages the development of

FMT reconstruction algorithm. As we discussed earlier in this chapter, multimodality

systems such as FMT-CT and FMT-MRI provide structural information, which can be

used to provide more accurate photon propagation modeling. On the other hand, such

structural information can be incorporated during reconstruction process to improve

image quality. Apart from Tikhonov regularization, where anatomical information

can be used to design weighting matrix, advanced reconstruction algorithms have

been proposed to incorporate structural information, such as anisotropic diffusion

regularization [86], group-sparsity function [87], and kernel method [88].

There are other reconstruction methods. For example, instead of treating FMT

reconstruction as pixel-based parameter identification problem, shape-based methods

try to reconstruct the support of fluorescence distribution [89, 90]. More recently,

deep-learning-based reconstruction methods have also been developed which maps

boundary measurements directly to inside fluorescence distribution [91, 92].
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2.2 Positron Emission Tomography

PET uses positron emitting radionuclides for imaging [93, 94]. As elaborated below,

PET imaging involves detection of anti-parallel photon pairs generated following

positron annihilation, followed by reconstruction of spatial distributions for radio-

tracers based on these data. Compared to another widely used emission tomography

modality, namely single-photon emission computed tomography (SPECT), that utilize

radionuclides with single or multiple uncorrelated gamma photon emissions, the fea-

ture of imaging with simultaneous annihilation photons propagating in anti-parallel

directions provides several advantage to PET imaging, such as higher sensitivity and

easier attenuation correction [95, 96]. Today, PET imaging is actively and clinically

performed in a wide range of applications including oncology, neurology, and cardiology

[97–99]. In this section we will briefly introduce background knowledge for PET. We

start this with more elaborate introduction into the physics of PET imaging.

2.2.1 PET Physics

The process of positron annihilation is illustrated in Fig. 2-4. For radioactive decay

with positron emission, a proton in the nucleus is transformed into a neutron and a

positively charged electron. For a typical radionuclide A
ZX with A denoting the total

number of protons and neutrons, and Z representing the number of protons, the above

process is described as
A
ZX −→A

Z−1 X + β+ + v, (2.45)

where v represents a neutrino. The ejected positron travels a short distance and loses

its kinetic energy in collisions with atoms of surrounding materials. The distance for

certain radionuclide that positron travels after ejection is known as positron range.

The positron then interacts with an electron through annihilation reaction, generating

two 511 keV γ photons traveling in almost 180◦ opposing directions and detected by
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Figure 2-4. Schematic representation of positron annihilation process.

Table 2-I. Properties of commonly used PET radionuclide [94, 100].

Radionuclide Half life (mins) Positron range in water (mm)
18F 110 0.6
11C 20.4 1.1
13N 9.97 1.5
15O 2.03 2.5

68Ga 67.71 2.9
82Rb 1.25 5.9

detector ring in PET scanner.

The radioactive decay of positron emitter follows exponential law and can be

described as

Nt = N0 exp (−λt), (2.46)

where N0 is the initial number of radioactive atoms, Nt is the number of radioactive

atoms at time t, and λ is decay constant. An important parameter for a radionuclide

is half life T 1
2
, which describes the time required for a radionuclide to decay to 50% of
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its initial activity level. Its relation with decay constant λ is

T 1
2

= ln 2
λ

. (2.47)

Table 2-I shows properties of commonly used radionuclide in PET.

2.2.2 PET instrumentation and data acquisition

After arriving at detectors, the 511 keV γ photons interact with detector material,

which is made of scintillation crystals. During this process, while most energy of

the γ photon will be released as thermal energy, a portion of the energy is released

as low-energy photon at wavelength of visible light [94]. In order to effectively stop

high-energy gamma ray photons and generate signal carrying accurate information of

location of incident photons, deposited energy, as well as timing information, an ideal

scintillator should have short decay time, high light output, be dense, and cheap to

produce [101]. Commonly used detector materials include bismuth germanate (BGO),

lutetium oxyorthosilicate (LSO) and Lutetium-yttrium oxyorthosilicate (LYSO). The

low-energy photons produced in scintillation crystals are then channeled into PMTs,

which amplify the signal and convert it to electrical signal. Instead of coupling each

scintillation detector to a PMT, modern PET systems use block detector, as shown

in Fig. 2-5. The use of block detectors allows using smaller scintillation detectors as

well as reducing the number of PMTs. This reduces the cost while improving spatial

resolution of PET system [102, 103]. Positioning logic circuit is used to determine the

coordinates of events on block detector plane.

In order to localize radionuclide with the photon pair generated through positron

annihilation, PET system uses a coincidence detection circuit to judge whether two

photons arrive at detector “simultaneously”. By setting a time window, coincidence

detection circuit will declare an event if the two photons arrive two detectors within

this time window. This mechanism is known as annihilation coincidence detection

(ACD) [105]. The line linking the two detectors is called line of response (LOR). By
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Figure 2-5. Block detector commonly used in PET systems [104].

using ACD, PET system could localize LOR without using a physical collimator. This

increases the sensitivity of PET system compared to SPECT system.

Besides being used to judge if an event occurs, the arrival times of photon pair

provide more information. If we consider the difference of arrival time, which is known

as time-of-flight (TOF) information, theoretically the location of annihilation event

could be constrained to a point rather than a line, thus distribution of radiotracer

could be obtained without performing reconstruction [106]. In practice, however,

current commercial TOF PET scanners usually have timing resolution ranging from

about 200-550 ps [107–109]. Due to this limited timing resolution, we currently cannot

obtain the exact positron emitter position only based on this information, but the

additional TOF information still improves SNR of reconstructed images [110, 111].

Data acquisition in PET can be categorized as 2D mode and 3D mode [112]. For

2D mode, axial collimators are placed between slice of detector rings so that only

photons from the same slice or adjacent slices are allowed. In 3D mode, collimators

between slices are removed and coincidence events are also recorded along the oblique

planes. Compared to 2D mode, 3D acquisition improves sensitivity by a factor of

around 5-7 [113, 114], although this benefit is complicated by degradation factors such

as increased dead time loss, random coincidence and scattered events [115].
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The measurements obtained from detectors are stored either as list-mode data or

sinogram data. In list-mode data, detector coordinate of LOR, together with other

necessary information, are stored in data packet for each coincidence event [116].

Such data can be directly used for reconstruction [117]. In sinogram data, detector

measurements are summed along each LOR and binned into sinogram space based on

predefined projection angle, detector coordinate and time frame [118].

Today, commercial PET systems are commonly combined with CT or MR systems.

Due to the limited resolution of PET, in many cases it is desirable to localize PET

activity with the help of high-resolution anatomic structures from CT or MR [119].

In addition, the anatomical information provided by CT or MR system can also be

used to perform attenuation correction [120, 121] or to improve image quality by

incorporating such information within the image generation process [112, 122].

2.2.3 PET reconstruction

To describe the process of data acquisition through projection, we first introduce

Radon transform. The left part of Fig. 2-6 shows an example of projecting a 2D

Shepp-Logan phantom to sinogram space. If we use f(x, y) to denote the object, g(l, θ)

to denote the sinogram data, for a line {(x, y)|x cos θ + y sin θ = l}, the projection

process can be described with the following line integral

g(l, θ) = [Rf ](l, θ) =
∫︂

∞

∫︂
∞

f(x, y)δ(x cos θ + y sin θ − l)dxdy, (2.48)

where x, y are coordinates in object space, θ is projection angle and l is the lateral

position. This transform is known as Radon transform and we use R to denote this

operation. The right part of Fig. 2-6 shows the sinogram data after Radon transform

of the phantom.
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Figure 2-6. An example of Radon transform (left) and sinogram (right).

2.2.3.1 Analytical reconstruction

In order to reconstruct the object, a naive way is to project the sinogram data

into object space, and sum them up over all the angles, as illustrated in Fig. 2-7.

Mathematically, this can be described as

f̂(x, y) =
∫︂ π

0
g(x cos θ + y sin θ, θ)dθ. (2.49)

This transform is the adjoint operation of Radon transform, and will be referred

to as backprojection operation. As shown in Fig. 2-7, reconstruction obtained with

backprojection operation produces blurry image.

With central slice theorem, which states the 1D Fourier transform of a projection

is a slice of the 2D Fourier transform of the object, we can derive a more commonly

used analytical reconstruction method, known as filtered backprojection (FBP). The

detail of derivation can be found in [123, 124]. If we use F1D to denote 1D Fourier

transform and R∗ to denote backprojection operator, FBP is written as

f̂(x, y) = R∗F−1
1D [|ρ|F1Dg(l, θ)]

=
∫︂ π

0

[︃∫︂
∞

|ρ|G(ρ, θ) exp (2πjρl)dρ
]︃

l=x cos θ+y sin θ
dθ,

(2.50)

where G(ρ, θ) = F1Dg(l, θ). In equation (2.50), |ρ| plays the role as a high-pass filter

and is known as ramp filter. In practice, the ramp filter can be modified to control
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Figure 2-7. Illustration of (a) backprojection reconstruction and (b) filtered backprojec-
tion.

noise [112]. Fig. 2-7 (b) gives an example of reconstruction with FBP algorithm. FBP

was used for PET reconstruction for many years but was later replaced with statistical

iterative methods since they provide more accurate noise model as well as flexibility

to incorporate knowledge of PET system and prior information.

2.2.3.2 Statistical reconstruction

The detector measurements obtained in PET system obey Poisson distribution. A

statistical iterative algorithm for PET reconstruction, known as maximum-likelihood

expectation maximization (MLEM), can be derived based on this noise model. To

show this, we first perform discretization on detector measurements and image. Let

g = [g1, g2, · · · , gM ]T denote detector measurements, where M is the total number

of sinogram bins, f = [f1, f2, · · · , fN ]T represent PET image, with N representing

the number of voxels. Let P ∈ RM×N be the projection matrix. For now we do not
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consider any degradation factor, so P just performs Radon transform. If we use p(x|y)

to represent the probability of variable x conditioned on variable y, the likelihood

function of PET image f is

p(g|f ) =
M∏︂

m=1
exp [−(Pf )m] (Pf )gm

m

gm! , (2.51)

If we take the logarithm of the likelihood function, we have

log p(g|f ) =
M∑︂

m=1
{−(Pf )m + gm ln [(Pf )m] − ln gm!} . (2.52)

The first order derivative of the log-likelihood function is given by

∂

∂fn

log p(g|f ) =
M∑︂

m=1

{︄
−Pmn + gm

(Pf )m

Pmn

}︄
. (2.53)

Setting ∂
∂fn

log p(g|f ) = 0 yields

1 = 1∑︁M
m=1 Pmn

M∑︂
m=1

gm

(Pf )m

Pmn. (2.54)

Multiplying both side with f and replacing f with a sequence of estimates f̂
(k) yields

the fixed-point iteration:

f̂
(k+1)
n = f̂

(k)
n

1∑︁M
m=1 Pmn

M∑︂
m=1

gm

(Pf̂
(k)

)m

Pmn. (2.55)

The above equation gives MLEM update [45]. In practice, instead of using MLEM,

ordered-subset expectation maximization (OSEM) is commonly used for PET recon-

struction, which is an accelerated version of MLEM [125]. In OSEM, sinogram data is

divided into subsets and these subsets are used to update reconstruction image. The

acceleration is approximately proportional to the number of subsets.

In order to control the noise level in reconstructed image, early termination can be

applied for MLEM/OSEM algorithm [126]. An alternative way is to incorporate prior

information such as image smoothness. To do this, we use Bayes’ rule to compute

the posterior probability of image f given observation data g. The logarithm of the
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posterior probability is

log p(f |g) = log p(g|f )p(f )
p(g)

= log p(g|f ) + log p(f ) − log p(g).
(2.56)

Maximizing equation (2.56) gives maximum a posterior (MAP) estimation. In practice,

Gibbs prior p(f ) = 1
Z

exp(−λR(f )) is usually chosen as the prior probability, where

R(f ) is a cost function and λ is a tuning parameter [127]. The MAP estimation can

be written as

f̂ = arg max
f

log p(g|f ) − λR(f ). (2.57)

To solve this optimization problem, similar to the case for MLEM, we first compute

the first order derivative of log p(f |g). This gives

∂

∂fn

log p(f |g) =
M∑︂

m=1

{︄
−Pmn + gm

(Pf )m

Pmn

}︄
− λ

∂R(f )
∂fn

. (2.58)

By setting ∂
∂fn

log p(f |g) = 0, rearranging the equation, multiplying both side with f ,

and replacing f with a sequence of f (k), we obtain

f̂
(k+1)
n = f̂

(k)
n

1∑︁M
m=1 Pmn + λ∂R(f(k))

∂fn

M∑︂
m=1

gm

(Pf̂
(k)

)m

Pmn. (2.59)

Notice derivative of R(f ) in the right side of the above equation is always estimated

based on current step f (k), rather than the new step f (k+1). Thus, this method

is known as one-step late (OSL) algorithm [128, 129]. Although OSL algorithm is

relatively easy to implement and can be applied for any differentiable penalty functions,

it is known to be unstable and divergent when strong penalty is applied (i.e. λ is

large) [130]. Other methods have also been developed to solve optimization problem

in (2.57), such as modified MLEM [131, 132], separable paraboloidal surrogates (SPS)

[133], and gradient-based method [134, 135].

2.2.4 Image degradation factors

So far, we only considered an ideal PET system. In practice, PET suffers from

different degradation factors. These factors include 1) attenuation, 2) scattered events,
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Figure 2-8. Illustration of attenuation in PET.

3) random events, 4) nonuniformity, 5) detector dead time, 6) inter-crystal blurring,

7) positron physics, 8) decay correction, and 9) patient motion.

2.2.4.1 Attenuation

Similar as the case in optical imaging we discussed in 2.1.2.2, photons propagating

through the medium may experience photoelectric absorption or be scattered away

from its current direction due to scattering. Either of these factors contributes to

attenuation along its current propagation direction. For 511 keV γ photons in PET

imaging, Compton scattering plays a very dominant role for photon attenuation [94]

(unlike the photoelectric effect which increasingly contributes at lower energies). As

shown in Fig. 2-8, both photons generated from positron annihilation need to be

detected in order to declare an event. Due to attenuation, the probability for each

detector to detect a photon can be described using Beer Lamber’s law. Then the

probability of detecting both photons is

p(det) = exp
(︃

−
∫︂

a
µ(x)dx

)︃
× exp

(︃
−
∫︂

L−a
µ(x)dx

)︃
= exp

(︃
−
∫︂

L
µ(x)dx

)︃
, (2.60)

where µ is linear attenuation coefficient. We see that the attenuation along an LOR is

independent of the source position along this LOR. This makes attenuation correction

more straightforward in PET compared to SPECT. For PET-CT or PET-MR devices,
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Figure 2-9. Example of scattered event.

attenuation correction can be performed with anatomical information provided by CT

or MR systems [120, 121]. For PET-only system, transmission scan can be used for

attenuation correction [136]. In this method, images are obtained using an external

source with (transmission scan) and without (blank scan) patient. Attenuation

correction factors can be computed by dividing the blank scan with the transmission

scan.

2.2.4.2 Scattered events

For photon experiencing Compton scattering, although it is considered as attenuated

along its original LOR, it may still be detected and declared as an event, which

generate a new LOR, as shown in Fig. 2-9. Such event is known as scattered event.

Scattered events cause mispositioning of LOR, which reduces image contrast. Scattered

events can constitute 10-20% of all events for 2D PET and 40-60% for 3D PET [95].

Scatter correction can be achieved with fitting technique [137], energy window methods

[138, 139], or model-based methods [140, 141].

2.2.4.3 Random events

In PET imaging, it is possible that only one photon in an annihilation event is not

detected due to its propagation direction, attenuation or simply passing through
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Figure 2-10. Example of random event.

detector without being absorbed, while the other photon is successfully detected. If

photon pairs from two such events are detected within the coincidence time window

and considered as a single event, this event is known as random event. Fig. 2-10 shows

an example of random event. Random events add relatively uniform background

across the reconstructed image and thus reduce contrast of reconstructed image. The

rate of random event in a detector pair is given by [93]

Rrandom,AB = ∆TRsingle,ARsingle,B, (2.61)

where ∆T is the coincidence time window, Rsingle,A and RsingleB
are the rate of single

events at detector A and B, respectively. As can be seen from the equation, random

rate is proportional to the width of the coincidence time window. On the other hand,

since the rate of single events for one detector increases linearly with the total amount

of activity, random rate increases as the square of the total activity. Since random

rate is only related to the width of the time window, but independent of time point

where the window is set, a delayed time window can be used to obtain the number of

random event and used for correction. An alternative way is to measure counting rate

of individual detectors and compute random rate with equation (2.61).
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2.2.4.4 Nonuniformity

Efficiency of LORs joining detectors varies due to influence from detectors as well as

geometry of PET scanner [142]. For individual detectors, sensitivity changes due to

small differences in, for example, crystal dimensions, efficiency and PMTs gains. In

addition, geometry influences include i) different photon incident angles for LORs at

different detectors, which changes effective thickness as well as cross section of crystals,

and ii) varying efficiency of LORs across different detector rings [143]. These factors

result in nonuniformities in PET scanning, with undesirable artifacts in reconstructed

images. Correction for this is known as normalization. The normalization factors can

be obtained by performing a normalization scan for a uniform or rotating radioactive

source.

2.2.4.5 Detector dead time

Dead time related to the time required by a detector to process individual detected

events. During this time the detector is unable to process incoming events, which

results in loss of count. The loss due to dead time increases as total amount of activity

increases. This limits the amount of injected radioactivity. Different components of a

PET system could contribute to the dead time. A contribution comes from detector

integration time, which is related to crystal decay time [144]. If a photon deposits

energy in the detector crystal while charge from previous event is still being integrated,

this gives the pulse pile-up effect. The pulse pile-up effect leads to two results: either

collected charge exceeds the upper threshold of energy window and is rejected, or the

two events are treated as one. Both cases result in count loss. In addition, the detector

electronics usually have a reset time, during which the sub-system is unable to accept

further events. In coincidence detection circuit, it is also possible that more than two

events might occur during the coincidence time window, which is known as multiple

coincidence. In this case, events comprising the multiple coincidence will be rejected.
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Also, processing a coincidence event takes time, during which new coincidences event

cannot be accepted. In PET scanners, data channels are multiplexed into smaller

shared circuits, which has higher data rate and contribute to the overall system dead

time [145].

The counting systems can be classified as paralyzable and nonparalyzable systems.

In a nonparalyzable system, if an event occurs during the dead time of a preceding

event, the new event will simply be ignored and have no influence on subsequently

occurring events. On the other hand, for a paralyzable system, each event introduces

a dead time whether or not that event is actually counted. This makes a new event

extend the dead time of a previous event and thus further influence subsequent events.

Deadtime correction can be performed by scaling the observed counts by correction

factors that are measured from singles rate [94].

2.2.4.6 Inter-crystal blurring

An incoming γ photon may enter one detector crystal but is detected in another

crystal. When this happens, it produces mispositioned LOR and gives so-called inter-

crystal blurring that degrades image resolution [93]. Two cases may cause inter-crystal

blurring. (i) when entering a detector crystal, γ photon may experience Compton

scattering and is deflected into another crystal, as shown in Fig. 2-11 (a). This is

known as inter-crystal scattering. (ii) If a photon enters crystal at some angle, it may

penetrate through current detector and is detected in the neighboring crystal, which

is known as inter-crystal penetration, as shown in Fig. 2-11 (b).

This latter inter-crystal penetration effect leads to the so-called parallax effect,

which refers to the phenomenon that the apparent width of a detector element increases

with increasing radial offset in a PET scanner since the interaction depth of the γ

photons are unknown. This cause a degradation in radial spatial resolution with

increasing distances from the center of the scanner field of view (FOV) [146]. The
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Figure 2-11. Example of (a) inter-crystal scattering and (b) inter-crystal penetration.

parallax effect can be reduced by using depth-of-interaction (DOI) encoding technology

[147–150] as well as resolution modeling techniques [151].

2.2.4.7 Positron physics

Two factors from positron physics could degrade spatial resolution of PET scanner.

The first one is positron range. As we have discussed in 2.2.1, emitted positron travels

a short distance before annihilation, as shown in Fig. 2-4. As a result, detected LOR

only covers the location where positron annihilation occurs, but not precisely the

location where the decaying radionuclide emitted the positron. We have listed positron

ranges for commonly used radionuclide in Table 2-I. We can observe that for some

radionuclides, such as 82Rb and 68Ga, their positron ranges can be large and could

severely degrade system resolution if they are not corrected. The second factor is

photon non-collinearity. In practice, the photon pair generated from annihilation does

not travel in exactly antiparallel direction. The angular distribution is approximately

Gaussian with full width at half maximum (FWHM) approximately 0.5 degree [94].

This effect is due to small residual momentum of the positron when it annihilates

with a electron. Its effect on spatial resolution is linearly dependent on the separation

distance of detectors and is described as

FWHM = 0.0022 × D, (2.62)

where D is the diameter of the FOV. For whole-body PET scanner, diameter of FOV is

about 80 cm, which gives about 2 mm FWHM blurring due to photon non-collinearity
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Figure 2-12. Illustration of PVE due to (a) tissue fraction effect and (b) limited spatial
resolution

effect.

2.2.4.8 Decay correction

Radiotracers experience radioactive decay as time passes and thus the emitted positrons

also decrease. Such decay needs to be corrected in order to get quantitative PET

images independent of physical decay. The correction can be performed by scaling

the image counts with the decay correction factor computed using decay constant of

radionuclides, start and end time points of the PET frame.

2.2.4.9 Patient motion

During PET scan, patient movement could severely degrade image quality such as

introducing motion blurring and attenuation mismatch artifacts [152]. Patient motion

can be roughly categorized into (i) unwanted body movement, (ii) motion due to

cardiac cycles and (iii) motion due to respiratory cycles [153].

2.2.5 Partial volume effect

The spatial resolution of a PET scanner is primarily determined by the size of detectors

[154]. Besides, we discussed in the last section several factors, including positron
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physics and detector inter-crystal blurring, that further degrade the spatial resolution of

a PET system. Commercially available PET scanners usually have spatial resolutions

4-6 mm [93]. As a result, the limited spatial resolution leads to the so-called partial

volume effect (PVE) [122]. In general, PVE can be defined as the loss in apparent

activity that occurs when an object is imaged by an imaging instrument [155, 156].

PVE is attributed to two effects: tissue-fraction effect and spill-over effect [97, 156].

In the tissue-fraction effect, due to the finite voxel size, each individual voxel can

contain two or more tissue types. This usually occurs at the boundary between regions

of different tissue-type, as shown in Fig. 2-12 (a). When PVE is mentioned in CT or

MRI images, it usually refers to this effect [157, 158].

For the spill-over effect, due to the blurring introduced by finite spatial resolution

of the imaging system, activity could spill into adjacent regions. The spill-over effect

not only causes blurry appearance of PET images, but also leads to quantitative

overestimation in cold region and underestimation in hot region. An example of

spill-over effect is shown in Fig. 2-12 (b).

Apart from the above two phenomena, patient motion, especially respiratory

motion, could also introduce blurring effect that gives additional PVE [159]. Motion

correction itself is an active research field. More discussion on motion correction can

be found in [152, 153, 160–166].

Structures smaller than 3 times the FWHM of scanner resolution will be influenced

by PVE [97, 167]. The main consequence of PVE is the introduction of bias that is

related to the size of region of interests (ROIs). This may lead to inaccurate clinical

assessment of PET images. For example, for brain imaging, the presence of tissue

atrophy could increase PVE. As a result, it is hard to distinguish such apparent loss of

radioactivity due to increased PVE from true loss of tissue uptake [168]. In oncologic

imaging, PVE influences the apparent tumor size and heterogeneity, which could

further influence radiotherapy treatment planning [97, 169]. Thus, in order to obtain
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accurate quantification and clinical interpretation of PET images, it is important to

correct such partial volume effects. In Chapter 5, we will discuss methods to perform

partial volume correction (PVC).
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Chapter 3

Incorporating reflection boundary
conditions in the
Neumann-series-based radiative
transport equation

In this chapter, we describe a novel Neumann-series RTE that models the reflection of

photons at the boundary between tissue and external medium. We use this Neumann

series RTE to investigate the improvement in estimating optical coefficients when

reflection of photons at the boundary is modeled. For this purpose, we also propose

a novel reconstruction technique that incorporates the Neumann-series formalism to

estimate the optical coefficients of the tissue. These methods are evaluated using a

Monte Carlo simulated three-dimensional (3D) DOI imaging system. It was observed

that the average root-mean-square error (RMSE) for the output images and the

estimated absorption coefficients reduced by 38% and 84%, respectively, when the

reflection boundary conditions were incorporated. These results demonstrate the

importance of incorporating boundary conditions that model the reflection of photons

at the tissue-external medium interface.
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3.1 Introduction

Photon propagation modeling plays an important role in biomedical optics applications

such as diffuse optical imaging (DOI), diffuse optical spectroscopy, FMT, and light

dosimetry modeling [51, 69, 170–173]. The RTE is a well-known method for modeling

this light propagation. Due to the computational complexity of solving the RTE

directly, different methods have been proposed to provide approximation solution

to the RTE [47, 52, 56, 62]. Among these methods, the DA is widely used due to

its simplicity and fast implementation in complicated geometry [48]. However, as

we discussed in 2.1.2.3, the DA assumes isotropic source as well as strong scattering

medium, which is not correct near tissue surface, in anisotropic tissues, and in regions

of high absorption or low scatter [50, 53] As a result, it cannot accurately describe

light propagation in highly absorbing regions such as haematomas, void-like spaces

such as ventricles and the subarachnoid-space, and for small tissue geometries, such

as whole-body imaging of small animals [53, 174, 175].

We discussed a Neumann-series-based RTE method in 2.1.2.3, which solves the

RTE in using integral form equation. This method requires solving only a single

equation. Further, the method also provided improved accuracy for imaging setups

where the DA-based methods have limitations [54]. Additionally, the method provided

a novel intuitive framework to physically interpret the RTE solution. Each term in

the Neumann-series RTE describes contributions from photons that have scattered a

specific number of times. Thus, the method can numerically quantify the contribution

from photons that, for example, do not scatter (ballistic photons), or scatter only a

certain number of times. However, the existing Neumann-series method inaccurately

assumes that there is no reflection of photons at the boundary. On the other hand,

practical biomedical optics applications, as we mentioned above, usually require placing

detectors on the surface of the tissue, which leads to a refractive index mismatch
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when photons exiting from the tissue to the external medium. Accounting for the

boundary conditions arising due to this refractive index mismatch is necessary for

accurate modeling of photon propagation. It has been observed that not accounting

for boundary conditions accurately leads to erroneous modeling of scattered light [176],

and 50% or more errors in estimating the optical coefficients of the tissue [177].

Studies on incorporating boundary conditions while modeling photon transport in

biological tissue have been conducted. For example, Marshak-type boundary condition

has been proposed for analytical solution of the RTE. This condition incorporates

reflection of photons accurately using Fresnel’s equations [178–180]. For DA, different

boundary conditions including partial-current, extrapolated, and vacuum boundary

conditions have been proposed. These conditions have varying degrees of inaccuracy

[177, 181, 182]. A corrected DA method has been proposed to correct these inaccuracies

[183, 184].

In the following, we describe how to incorporate reflection boundary condition

into Neumann-series-based RTE model. In addition, we also present a reconstruction

technique for DOI using Neumann-series-based RTE as forward model.

3.2 Methods

3.2.1 The Neumann-series RTE modeling the boundary con-
ditions

We have introduced the RTE in 2.1.2.2. Here we rewrite the steady-state RTE equation

as

ŝ · ∇w(r, ŝ) + µtotw(r, ŝ) = 1
cm

[︃
Ξ(r, ŝ) + µs(r)

∫︂
4π

dΩ′p(ŝ, ŝ′; r)w(r, ŝ′)
]︃

, (3.1)

where w(r, ŝ) is the photon distribution function at location r = (x, y, z) in direction ŝ,

µtot(r) = µa(r) + µs(r) is the total attenuation coefficient, µa(r) and µs(r) are absorp-

tion and scattering coefficients, respectively, cm is the speed of light in the medium,
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Ξ(r, ŝ) denotes a monochromatic mono-energetic emission source, and p(ŝ, ŝ′; r) is

Henyey-Greenstein scattering phase function and is defined as

p(ŝ, ŝ′; r) = 1
4π

1 − g2

[1 + g2 − 2g(ŝ · ŝ′)]3/2 , (3.2)

where g ∈ [−1, 1] is anisotropy factor. The RTE can be represented in an integral

form as

w = XΞ + XKw, (3.3)

where K and X are scattering and attenuation operators, respectively. The effect of

the scattering operator on the distribution function is

[Kw](r, ŝ) =
∫︂

4π
dΩ′cmµs(r)p(ŝ, ŝ′; r)w(r, ŝ′). (3.4)

Similarly, the attenuation operator performs as

[Xw](r, ŝ) = 1
cm(r)

∫︂ ∞

0
dλw(r − ŝλ, ŝ) exp

[︄
−
∫︂ λ

0
dλ′µtot(r − ŝλ′)

]︄
, (3.5)

where λ corresponds to the length variable. A schematic demonstrating the scattering

and attenuation operators for the 3D DOI system considered in this chapter is given

in Fig. 3-1. Equation (3.3) can be alternatively written in a Neumann-series form as

follows:

w = XΞ + XKXΞ + XKXKXΞ + . . . (3.6)

The equation has a very intuitive physical interpretation; the contribution of photons

that have scattered n times is given by the term X (KX )nΞ in this series.

To incorporate the boundary conditions into the Neumann series, we start with a

first principles treatment of light propagation in tissue. Similar to Schweigher et al.

[185], we define the boundary of the tissue to be an infinitesimally thin layer where

only the reflection event occurs. This thin boundary layer is illustrated in Fig. 3-2.

Due to the refractive index mismatch, photons incident on the boundary are reflected

within this thin layer. Therefore, the thin layer acts as a source of photon emission.
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Figure 3-1. Physical interpretation of the various operators in the RTE in considered
DOI setup.

Let R denote the reflection operator. An alternative way to think about the reflection

operation is to consider it as a scattering operation, except that the scattering phase

function is given by the laws of reflection. Either of these two interpretations, when

modeled in equation (3.3), leads to the following form for the RTE:

w = XΞ + XRw + XKw. (3.7)

The operator R is defined using Fresnel’s laws of reflection. Let ŝ, ŝ′ and n̂ denote

the angle of incidence, reflection, and normal to the boundary surface. In accordance

with Fresnel’s laws of reflection,

[Rw](r, ŝ) = cm

∫︂
n̂·ŝ′>0

dΩ′R(ŝ′)δ[ŝ − ŝ′ + 2(n̂ · ŝ′)n̂]w(r, ŝ′)δ(b(r)), (3.8)

where δ(r) is the delta function and b(r) = 0 is the equation of the boundary. Thus,

δ(b(r)) denotes that the reflection operator acts only on photons in the infinitesimally

thin boundary layer. For example, if the boundary is a plane normal to n̂ and at

a perpendicular distance p from the origin, then b(r) = r · n̂ − p. Further, R(ŝ′) is
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Figure 3-2. A schematic describing the thin boundary layer in the considered DOI setup.

reflectivity coefficient. Let ni and nt denote refractive index of incident medium and

transmitted medium, respectively. Also let θi, θt and θc denote incident, transmitted,

and critical angle, respectively. Then we have

R(ŝ) =

⎧⎨⎩1
2

(︂
ni cos θi−nt cos θt

ni cos θi+nt cos θt

)︂2
+ 1

2

(︂
nt cos θi−ni cos θt

nt cos θi+ni cos θt

)︂2
, for θi < θc.

1, for θi > θc.
(3.9)

Taking the terms involving the distribution function on the left side of equation (3.7)

yields

[I − XR − XK]w = XΞ. (3.10)

A Neumann-series solution for the above equation is

w = [I − XR − XK]−1XΞ

= [I + XR + XK + XRXK + XKXR + · · · ]XΞ,
(3.11)

Similar to the originally proposed Neumann-series RTE, the various terms in the

above expansion have physical interpretations, as shown in Fig. 3-3. For example,

the term XRXΞ represent the photons that are reflected at the boundary and

subsequently transmitted back into the medium. The photons that reflects back into

the medium and then get scattered are represented by the term XKXRXΞ. The

term XRXKXΞ denotes photons that are scattered in the medium and subsequently

reflected from a boundary surface.
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Figure 3-3. Physical interpretation of the three reflection terms in the RTE.

3.2.2 Implementation

The Neumann-series formalism was implemented for a 3-D DOI setup as shown in

Fig. 3-1. The output image was obtained by a pixellated contact detector. For

computational reasons, the effect of reflection was accounted using only three terms

that contained the reflection operator, as follows:

w = XΞ + XKXΞ + XRXΞ + XRXKXΞ + XKXRXΞ+

XKXKXΞ + XKXKXKXΞ + · · ·

= Original Neumann series + XRXΞ + XKXRXΞ + XRXKXΞ.

(3.12)

The original Neumann series has been implemented in [54]. For the three additional

terms involving reflection operator, we will show their mathematical expressions below.

The detail derivations of these terms can be found in Appendix 3.A.

The first term XRXΞ describes photons that are emitted from the source, pass

through the medium, incident on the exit boundary, and then reflected back into

the medium. In our DOI setup, the laser source emits a unidirectional beam along

the optical axis, considered as the z axis. Denote the plane where the laser source

is incident by z = 0 and the length of the medium along the z axis by L. Denote
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the profile of the beam along the (x, y) coordinates by h(x, y) and let α denote the

intensity of the laser source. Then the source term is

Ξ(r, ŝ) = αh(x, y)δ(ŝ − ẑ)δ(z). (3.13)

For this source term, the expression for the XRXΞ term, as derived in Appendix

3.B, is

[XRXΞ](r, ŝ) = αR(ẑ)
cm

h(x, y)δ(ŝ+ẑ) exp
[︄
−
∫︂ L

0
dλ′µtot(x, y, L − λ′) −

∫︂ L−z

0
dλ′µtot(r + ẑλ′)

]︄
.

(3.14)

The second term XKXRXΞ describes photons that scatter once after reflection

before reaching the detector surface. To compute this term, we treat the term XRXΞ,

given by equation (3.14), as a new source term Ξ′. We apply scattering operator to

this source term and obtain

[KΞ′](r, ŝ) = αµsR(ẑ)h(x, y)p(ŝ, −ẑ) exp
[︄
−
∫︂ L

0
dλ′µtot(x, y, L − ẑλ′) −

∫︂ L−z

0
dλ′µtot(r + ẑλ′)

]︄
.

(3.15)

Implementing this term in Cartesian coordinate can be difficult. As we discussed in

2.1.2.2, spherical harmonics can be used to expand this term based on its angular

distribution. If we express the term [KΞ′](r, ŝ) in spherical harmonics, we obtain

[Dχ′]lm(r) = αµsR(ẑ)h(x, y)
√︄

2l + 1
4π

gl exp
[︄
−
∫︂ L

0
dλ′µtot(x, y, L − ẑλ′) −

∫︂ L−z

0
dλ′µtot(r + ẑλ′)

]︄
.

(3.16)

The attenuation operator is then applied numerically on this term. The expression

for the attenuation operator in the spherical harmonic basis has been introduced in

2.1.2.3.

The third term XRXKXΞ describes photons that scatter once before being

reflected at boundary. This boundary is the set of all planes surrounding the medium,

as shown in Fig. 3-2, and is thus defined as ∑︁i δ(r · n̂i − pi), where the index i denotes

the different planes, n̂i denotes the unit normal vector to the ith plane and pi denotes
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the distance of the ith plane from the origin along the normal vector. With this

notation, the expression for the XRXKXΞ term, as derived in Appendix 3.B, is

[XRXKXΞ](r, ŝ′) = α
∑︂

i

∫︂
∞

d3r′ 1
|r − ŝ′λ21i − r′|2

1
ŝ · n̂i

R(ŝ10)δ(ŝ′ − ŝ10 + 2(n̂i · ŝ10)n̂)×

h(x′, y′)p(ŝ10, ẑ) exp
[︄
−
∫︂ z′

0
dλ′µtot(r′ − ẑλ′) −

∫︂ λ

0
dλ′µtot(r − ŝλ21i − ŝ10λ

′)
]︄

,

(3.17)

where

λ21i = r · n̂i − pi

ŝ · n̂i

, (3.18)

and

s10 = r − r′

|r − r′|
. (3.19)

From the computed distribution function, the transmitted flux on the detector face

for the DOI system is computed as follows. Denote the x and y dimensions of each

pixel by ∆x and ∆y, respectively. Denote the transmitted flux detected by the mth

pixel with center at rm by Φm. Assuming that the distribution function over a pixel

is approximately constant, we get

Φm = cm∆x∆y
∫︂

2π
dΩT (ŝ)(n̂ · ŝ)w(rm, ŝ), (3.20)

where T (ŝ) = 1 − R(ŝ) is transmission coefficient. As an example, the flux due to the

XRXKXΞ term is derived in Appendix 3.B.

3.2.3 Neumann-series-based reconstruction algorithm for DOI
with boundary conditions

Denote the absorption/scattering coefficient at location r by the function µ(r). The

function is discretized using the spatial basis function ϕn(r), as below:

µ(r) =
N∑︂

n=1
µnϕn(r), (3.21)

where µn denote the optical coefficient (scattering or absorption) for the nth basis

function. The spatial basis functions could be the commonly used voxels, but the
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method is generalizable to other spatial basis functions too. Denote the N-dimensional

vector of the coefficients µn by µ. Denote the image acquired by the pixelated detector

in the DOI setup by the M-dimensional vector g. Our objective is to estimate µ given

g. For this purpose, we derive a gradient-descent-based approach.

We denote the mean noiseless image as a function of the scattering and absorption

coefficient by ḡ(µ). In our reconstruction approach, the objective is to estimate the

value of µ that minimizes the L2 norm of the error between the measured data g and

the ḡ(µ). Mathematically, the objective is to estimate µ̂ that satisfies

µ̂ = arg min
µ

Ψ(µ), (3.22)

where Ψ(µ) = ∥g − ḡ(µ)∥2
2, is the objective function, and ∥x∥2

2 denotes the square of

the L2 norm of the vector x. To implement the gradient-descent method, we need to

calculate the derivative of Ψ(µ), which can be written as

∇Ψ(µ) = −2
(︄

dḡ(µ)
dµ

)︄T

(g − ḡ(µ)). (3.23)

The calculation of the above equation requires computing the derivative of ḡ(µ) with

respect to µa and µs. Let hm(r, ŝ) denote the detector response function of the mth

detector pixel. Then, the mth component of ḡ(µ), denoted by ḡm, is

ḡm = ⟨hm, w⟩, (3.24)

where ⟨· , ·⟩ represents inner product. Taking the derivative on both sides with respect

to µn yields
∂ḡm

∂µn

=
⟨︄

hm,
∂w

∂µn

⟩︄
. (3.25)

From equation (3.7), we have

∂w

∂µn

= ∂X
∂µn

Ξ + ∂X
∂µn

Rw + ∂X
∂µn

Kw + X ∂K
∂µn

w + XR ∂w

∂µn

+ XK ∂w

∂µn

. (3.26)

As derived in [186], terms containing partial derivatives of X and K are

∂X
∂µn

Ξ = −cmX (ϕnXΞ), (3.27)
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∂X
∂µn

Kw = −cmX (ϕnXKw), (3.28)

and
∂K
∂µn

w = ϵϕnK1w, (3.29)

where ϵ = 1 for µ = µs and ϵ = 0 for µ = µa, and the operator K1 is defined as

[K1w](r, ŝ) = cm

∫︂
dΩ′p(ŝ, ŝ′)w(r, ŝ′). (3.30)

Further, as derived in Appendix 3.B

∂X
∂µn

Rw(r, ŝ) = −cmX (ϕnXRw). (3.31)

Substituting the expressions from (3.27)-(3.31) in equation (3.26), we have

∂w

∂µn

= cmXϕn(XΞ + XRw + XKw) + X ϵϕnK1w + XR ∂w

∂µn

+ XK ∂w

∂µn

. (3.32)

As indicated in equation (3.7), XΞ + XRw + XKw = w. Thus

∂w

∂µn

= −cmXϕnw + X ϵϕnK1w + XR ∂w

∂µn

+ XK ∂w

∂µn

. (3.33)

Define S = −cmϕnw + ϵϕnK1w. The above equation can then be rewritten as

∂w

∂µn

= XS + XR ∂w

∂µn

+ XK ∂w

∂µn

, (3.34)

Comparison to equation (3.7) reveals that the expression for the gradient is the same

as the original RTE, but with a different source term. Therefore, the gradient of the

distribution function is computed by simply executing the Neumann-series RTE but

with the source term S.

From the gradient of the distribution function and using equation (3.25), the

gradient of gm with respect to µn is obtained. Using a simple iterative gradient-descent

approach, the computed gradient is used to update the values of the optical coefficients

in each iteration until convergence is achieved. Thus, the absorption and scattering

coefficients are estimated. Specifically, for a homogeneous medium, the N-dimensional

coefficients vector µ in the above derivation becomes a scalar value µ. The calculation

of ∂ḡm

∂µ
remains the same as the above derivation.
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Figure 3-4. The experimental setup simulated to evaluate the proposed framework.

3.2.4 Simulation experimental setup

The proposed Neumann-series RTE approach was validated for a 3D DOI setup

(Fig. 3-4). The scattering medium was a cube with each side of length 2 cm. The

scattering and absorption coefficients in the medium were 1 cm−1 and 0.01 cm−1.

The medium was small geometry, had a relatively low scattering coefficient, and a

collimated source. The choice for this setup was made to study the performance of

the proposed method in a scenario where the diffusion approximation-based methods

are known to have limitations. In the simulation setup, across different experiments,

the refractive index of the media was varied from 1.1 to 1.5, while the refractive index

of the external medium was kept as 1. The anisotropy factor g for the scattering

medium was set to 0. A pixellated 2D contact detector with 20 × 20 pixels acquired

the output image.

Our first objective was to investigate the performance of the proposed Neumann-

series method in modeling photon transport. For this purpose, output images and

fluence fields were generated using the proposed method. These were compared
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to the images and the fields obtained with the MCX Monte-Carlo (MC) technique

[68]. For the MC study, the medium was discretized into 40 × 40 × 40 voxels. As

in previous studies, the output using the MC technique was considered as the gold

standard [54, 55]. The difference between the output obtained using the MC and the

proposed Neumann-series technique over the entire image was quantified using the

normalized root mean square error (RMSE) metric. Let M denote the number of

pixels in the acquired image. In our setup, M = 400. Let gm,RT E and gm,MC denote

the measurements acquired by the mth detector pixel. Then the normalized RMSE

was defined as follows:

RMSE =

⌜⃓⃓⎷ 1
M

M∑︂
m=1

(︄
gm,RT E − gm,MC

gm,MC

2
)︄

. (3.35)

We also examined the effect on accuracy of modeling photon transport when the

reflection of photons at the boundary was not accounted. For this purpose, the output

images were obtained using an existing Neumann-series method that assumed that

the photons are completely absorbed at the boundary [54]. The RMSE for these

output images were compared to those obtained using the proposed Neumann-series

technique, thus quantifying the improvement in accuracy.

The second objective was to examine the effect on the accuracy of the estimated

optical coefficients when the reflection of photons at the boundary was modeled. For

this purpose, first the image data for the DOI setup in Fig. 3-4 was generated using

the MC technique. Next, the absorption coefficient of the medium was estimated from

this generated image using two reconstruction methods; the proposed Neumann-series-

based reconstruction method and a modified Neumann-series-based reconstruction

method that did not contain the reflection operator [54]. The scattering coefficient

was assumed to be known. For this setup, the spatial basis function in equation (3.21)

was simply the entire support of the object so that N = 1 and the objective was to

only estimate a single value µa. The RMSE of the estimated absorption coefficient

using the two reconstruction methods were compared.
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Figure 3-5. Comparison of the linear profiles of the images obtained with the MC and
proposed Neumann-series RTE formalism, when the refractive index of the scattering
medium is (a) 1.2 (b) 1.3 (c) 1.4 and (d) 1.5.

3.3 Results

Results from the experiments investigating the accuracy of photon transport are

presented in Figs. 3-5 and 3-6. In Figs. 3-5a-d, the linear profile along the center of

the output image obtained using the proposed Neumann series approach and using

the MC technique are plotted for different amounts of refractive index mismatch.

It is observed that the linear profiles overlap, demonstrating the accuracy of the

proposed technique. The RMSE between the output images obtained using the MC

and proposed Neumann-series RTE method is shown in Table 3-I. The corresponding

RMSE using the existing Neumann-series technique that does not model the reflection

of photons is also shown. It is observed that the RMSE values were lower using the

proposed Neumann series technique with the average RMSE reduced by 38%.
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Table 3-I. RMSE in the output image obtained using the Neumann-series RTE method
with and without the reflection boundary conditions.

Refractive index n
RMSE for output image

Proposed Neumann-series RTE Neumann-series RTE
without reflection boundary conditions

1.1 14.2% 14.6%
1.2 9.5% 21.8%
1.3 14.5% 26.1%
1.4 15.6% 28.7%
1.5 18.1% 31.0%

The fluence on a 2D plane defined at y = 0.9 cm using the MC and proposed

Neumann-series RTE method is shown in Fig. 3-6. In the third column of Fig. 3-6, the

fluence contours for the Neumann-series RTE and the MC method are overlaid on top

of each other, facilitating a visual comparison. It is observed that for different values

of refractive index mismatch, the contour fields using the MC and RTE methods lie

approximately on top of each other. Results from the experiments investigating the

reconstruction method are presented in Fig. 3-7. It is observed that using the proposed

reconstruction algorithm, the estimated absorption coefficient was close to the true

absorption coefficient of 0.01 cm−1 for all values of refractive index, with an average

normalized RMSE of 25.1%. However, on using the modified reconstruction algorithm

that did not contain the reflection operator, the estimated absorption coefficient had

a large error for all values of refractive index, with an average RMSE of 156.5%. On

an average, we found that the mean RMSE of the estimated absorption coefficient

reduced by 84%.

3.4 Discussions

The first goal of this work was to propose a Neumann-series RTE that modeled

the reflection of photons at the boundary surface. The results in Fig. 3-5 and 3-6

demonstrate that the proposed Neumann-series method provided an accurate modeling
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of the photon transport for the considered experimental setup. Further, results in

Table 3-I show that the proposed technique yields improved accuracy in modeling

photon transport in comparison to when the reflection of photons at the boundary is

not modeled. Thus, these results demonstrate that accounting for the reflection of

photons at the boundary is essential to model photon transport accurately.

Figure 3-6. Comparison of the fluence calculated using the MC and proposed Neumann-
series RTE-based methods. The refractive index of the medium is n = 1.2 (first row),
n = 1.3 (second row), n = 1.4 (third row), and n = 1.5 (fourth row). In the first column
(a, d, g, j), the logarithm of the amplitude of the fluence obtained with the MC method is
plotted. In the second column (b, e, h, k), the logarithm of the amplitude of the fluence
obtained with Neumann-series RTE is plotted. In the third column (c, f, i, l), the contour
of the fluence obtained with the MC and Neumann-series RTE is plotted at 3 dB spacing.

The second goal of this work was to investigate the effect of modeling reflection

at the boundary on the accuracy of the estimated optical coefficients. The results in

Fig. 3-7 show that the optical coefficients estimated when the reflection was modeled
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Figure 3-7. (a) Plot of estimated absorption coefficient as a function of the refractive
index using the proposed reconstruction method and another method that does not model
photon reflection. Error bars are also shown. (b) Plot of the RMSE between the true
and estimated absorption coefficient as a function of the refractive index using the two
reconstruction methods

were substantially more accurate than when the reflection at the boundary was not

modeled. These results demonstrate the importance of modeling the reflection of

photons at the boundary of the tissue and the external medium.

To implement the proposed Neumann-series method, we considered only three

additional terms in comparison to the original Neumann series. In each of these

terms, the reflection operator was present once, under the assumption that terms that

contain two or more instances of the reflection operator would not have a significant

contribution to the output. This is because if the reflection coefficient R is not very

high such that R2 ≪ 1, terms that contain the reflection operator twice could be

ignored. For example, for the experimental setup in this manuscript, the plot of the

reflection coefficient as a function of the incident angle is plotted in Fig. 3-8. We

observe that the value of R is close to 0 for a majority of the angles of incidence.

Another reason for choosing these three terms was that computing the other terms

containing the reflection operator would require implementing the reflection operator

in spherical harmonic basis. This is complicated because the reflection operator is

highly directional. The results in Fig. 3-5 show that the output using the MC and RTE
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Figure 3-8. The Fresnel reflection coefficient values as a function of the incident angle
for various values of refractive index n, when the surrounding media has a refractive index
of 1.

approaches match well when only these three additional terms are used. Because the

refractive index mismatch in the simulation study setup are representative of actual

imaging setups, these results provide strong evidence for using only three additional

terms in the Neumann-series RTE.

The Neumann-series method can handle different phase functions in a way similar

to the other more conventional integro-differential methods to solve the RTE. This is

because the scattering operator is in an integral form in both the Neumann series and

the integro-differential form of the RTE. Also, the Neumann-series method method can

handle complex illumination patterns. Note that the source term is modeled by the

Ξ(r, ŝ) term in the Neumann-series RTE. The DOI setup used in this work consisted

of a collimated monochromatic laser source, so that the source term was defined as

in equation 3.13. For a different illumination pattern, this term would need to be

modified accordingly. Finally, while the setup considered in this manuscript assumed

a time-independent source, the Neumann-series RTE is applicable to time-dependent
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sources. For this purpose, note that the RTE can be represented in the frequency

domain for each frequency component ν by replacing µtot in equation (3.1) by µtot + iν
cm

,

where i denotes the imaginary unit. Thus, the Neumann-series RTE can be solved for

each frequency component by simply replacing µtot by µtot + iν
cm

[54]. Consequently,

the proposed Neumann-series method could be used to model photon propagation in

a wide range of imaging setups. We do note that for the different imaging setups, the

number of terms required in the Neumann-series might be different and not known a

priori. For this purpose, a criterion has been developed that enables assessing whether

the Neumann-series RTE output has converged [54]. Using this criterion allows an

adaptive determination of whether the Neumann series has converged or whether more

terms need to be computed to obtain an accurate output.

For the experimental setup considered in this manuscript, the DA-based methods

are inaccurate [50–54]. Our results demonstrate the accuracy and resultant advantage

of the proposed Neumann series method in modeling photon transport in this setup.

However, when the scattering coefficients are high, or the medium has a large geometry,

the Neumann series method has large memory and computational requirements.

Previously we have observed that the method is accurate and practical when µsL

is around 5 [54], where L denotes the length of the medium. This is a limitation of

the proposed method. In these cases, the DA-based methods yield accurate results.

Thus, the proposed method could be integrated with the DA methods to yield hybrid

approaches, similar to the RTE-DA method [187] and MC-DA method [188] proposed

previously. Further, rapid advances in the high-performance computing hardware

technology are being observed. For example, a NVIDIA graphics processing units

(GPU)-based implementation of the RTE was proposed with the NVIDIA C2050 GPUs

in 2012 [55]. The current generation of GPUs, namely the NVIDIA Volta, have about

fifteen-times the processing power and five-times the memory of the C2050. Since the

challenges with the Neumann-series method are mainly computational, we anticipate
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that these advances in high-performance computing will alleviate these challenges in

the near future.

The implementation of the Neumann series approach with boundary conditions

enables an experimental validation of this technique. This experimental valida-

tion is an important direction of future research. Another important frontier is

the implementation of this method for heterogeneous medium. In this context, a

Neumann-series method for a heterogeneous medium has been developed, but assumes

vacuum boundary conditions [55]. Using the approaches outlined in this manuscript,

the Neumann-series method for heterogeneous medium could be extended to model

reflection of photons at the boundary of the tissue. Further, in several bio-photonics

imaging applications, reflection can occur between different tissues. For example, in

transcranial imaging, refractive index changes occur between skull and cerebrospinal

fluid in the brain. Improving the Neumann-series approach to model photon propaga-

tion in such media is another important area of future study. Solving a set of coupled

equations using a treatment similar to Lehtikangas et al. [189] offers a mechanism for

this purpose.

The reconstruction method proposed in this manuscript was used to estimate

the absorption coefficient for a medium that had uniform optical coefficients. This

was because our main purpose was to investigate the effect of modeling boundary

conditions on the accuracy of estimating the optical coefficients. However, the proposed

reconstruction method is general and an important direction of research is to refine the

method for estimating the scattering and attenuation coefficients for a non-uniform

medium.

In this manuscript, we have focused on the deterministic approaches to solve the

RTE. Another widely prevalent set of techniques for modeling photon transport are

the stochastic MC-based techniques. The output of MC-based techniques is considered

as the gold standard in several computational validation studies of the RTE, including
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in this manuscript. However, for image reconstruction, the use of stochastic MC-based

techniques can lead to noisy estimates of the derivate or the need for simulating a

large number of photons, which can be computationally expensive. In this context,

several techniques have been proposed to accelerate the MC method [65]. However,

using MC method to reconstruct the scattering coefficients is still challenging [190–

192]. In contrast, deterministic approaches such as the Neumann-series RTE yield an

analytical expression for the gradient that is not affected by noise. Given the trade-offs

between the stochastic and deterministic RTE approaches, research on integrating

these approaches for improved image reconstruction is an important frontier.

3.5 Conclusions

This work has proposed and investigated a Neumann-series-based RTE for improved

modeling of photon propagation in tissue. The method models photon reflection

at the interface of tissue and external medium using Fresnel’s equations. Further,

the method was used to develop an algorithm to reconstruct the absorption and

scattering coefficients of a scattering medium. Computational studies demonstrated

that the method yielded more accurate modeling of photon transport for a 3D diffuse

optical imaging (DOI) system in comparison to when the photon reflection was not

modeled. In addition, the method yielded substantially more accurate estimates

of the absorption coefficients for the 3D DOI system. The results demonstrate the

importance of accounting for the reflection of photons at boundary when modeling

photon propagation.

3.A Derivation of the XRXΞ term

Substituting the expression from equation (3.13) into equation (3.5) yields

[XΞ](r, ŝ) = α

cm

h(x, y)δ(ŝ − ẑ) exp
[︃
−
∫︂ z

0
µtot(r − ẑλ)

]︃
. (3.36)
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The photons described by the XΞ term are incident on the boundary defined by the

plane z = L. We define this infinitesimally thin boundary by the expression δ(z − L).

Applying the reflection operator, as defined by equation (3.8), on the distribution

function within this boundary yields

[RXΞ](r, ŝ) =
∫︂

n̂·ŝ′>0
dΩ′αh(x, y)δ(z − L)R(ŝ′)δ[ŝ − ŝ′ + 2(n̂ · ŝ′)n̂]δ(ŝ′ − ẑ)×

exp
[︄
−
∫︂ L

0
dλµtot(r − ẑλ)

]︄
.

(3.37)

Using the sifting property of the delta function and the fact that the normal to the

boundary surface n̂ is the direction vector ẑ yields

[RXΞ](r, ŝ) = αh(x, y)R(ẑ)δ(ŝ + ẑ)δ(z − L) exp
[︄
−
∫︂ L

0
dλµtot(r − ẑλ)

]︄
. (3.38)

The above expression has a simple physical interpretation, namely that the photons are

reflected back into the medium along the negative ẑ direction, as would be expected.

Finally, applying the attenuation operator in equation (3.5) yields

[XRXΞ](r, ŝ) = αR(ẑ)
cm

h(x, y)δ(ŝ + ẑ) exp
[︄
−
∫︂ L

0
dλ′µtot(x, y, L − λ′)−

∫︂ L−z

0
dλ′µtot(r + ẑλ′)

]︄
.

(3.39)

3.B Derivation of the XRXKXΞ term

In [54], it was shown

[KXΞ](r, ŝ) = αµs(r)h(x, y)p(ŝ, ẑ) exp
[︃
−
∫︂ z

0
dλ′µtot(r − ẑλ′)

]︃
. (3.40)

With equation (3.5), we obtain

[XKXΞ](r, ŝ) = α

cm

∫︂ ∞

0
dλµs(r − ŝλ)h(x − ŝxλ, y − ŝyλ)p(ŝ, ẑ)×

exp
[︄
−
∫︂ z−ŝzλ

0
dλ′µtot(r − ŝλ − ẑλ′) −

∫︂ λ

0
dλ′µtot(r − ŝλ′)

]︄
.

(3.41)

Next, the reflection operator must be applied. This operator acts only on locations

within a thin boundary region, denoted by ∑︁i δ(r · n̂i − pi). Applying the reflection
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operator, as defined by equation (3.8), on [XKXΞ](r, ŝ) with this definition for the

boundary yields

[RXKXΞ](r, ŝ′) = α
∑︂

i

∫︂
n̂·ŝ>0

dΩ
∫︂ ∞

0
dλδ(r · n̂i − pi)R(ŝ)δ(ŝ′ − ŝ + 2(n̂i · ŝ)n̂i)×

µs(r − ŝλ)h(x − ŝxλ, y − ŝyλ)p(ŝ, ẑ)×

exp
[︄
−
∫︂ z−ŝzλ

0
dλ′µtot(r − ŝλ − ẑλ′) −

∫︂ λ

0
dλ′µtot(r − ŝλ′)

]︄
.

(3.42)

To simplify the above equation, replace r − ŝλ by r′, so that ŝ = r−r′

|r−r′| , λ = |r − r′|

and d3r′ = λ2dλdΩ. For notational simplicity, define

ŝ10 = r − r′

|r − r′|
, (3.43)

where we recognize the fact that ŝ10 is not a constant, but a function of r and r′. This

yields

[RXKXΞ](r, ŝ′) = α
∑︂

i

∫︂
d3r′ 1

|r − r′|2
R(ŝ10)δ(ŝ′ − ŝ10 + 2(n̂i · ŝ10)n̂i)×

µs(r′)h(x′, y′)p(ŝ10, ẑ)δ(r · n̂i − pi)×

exp
[︄
−
∫︂ z′

0
dλ′µtot(r′ − ẑλ′) −

∫︂ λ

0
dλ′µtot(r − ŝ10λ

′)
]︄

.

(3.44)

With attenuation operator defined in (3.5), we have

[XRXKXΞ](r, ŝ′) = α
∑︂

i

∫︂ ∞

0
dλ′′

∫︂
d3r′ 1

|r − ŝ′λ′′ − r′|2
µs(r′)R(ŝ10)×

δ(ŝ′ − ŝ10 + 2(n̂i · ŝ10)n̂i)h(x′, y′)p(ŝ10, ẑ)δ(r · n̂i − ŝ′ · n̂iλ
′′ − pi)×

exp
[︄
−
∫︂ z′

0
dλ′µtot(r′ − ẑλ′) −

∫︂ λ

0
dλ′µtot(r − ŝ′λ′′ − ŝ10λ

′)
]︄

.

(3.45)

Using the scaling property of the delta function and we have

δ(r · n̂i − ŝ′ · n̂iλ
′′ − pi) = 1

ŝ′ · n̂i

δ

(︄
r · n̂i − pi

ŝ′ · n̂i

− λ′′
)︄

. (3.46)

For notational simplicity, define

λ21i = r · n̂i − pi

ŝ′ · n̂i

, (3.47)
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we recognize that λ21i is a function of r and ŝ. Substituting (3.46) in (3.45) and using

the above definition for λ21i yields

[XRXKXΞ](r, ŝ′) = α
∑︂

i

∫︂
d3r′ 1

|r − ŝ′λ21i − r′|2
1

ŝ′ · n̂i

µs(r′)R(ŝ10)×

δ(ŝ′ − ŝ10 + 2(n̂i · ŝ10)n̂i)h(x′, y′)p(ŝ10, ẑ)×

exp
[︄
−
∫︂ z′

0
dλ′µtot(r′ − ẑλ′) −

∫︂ λ

0
dλ′µtot(r − ŝ′λ21i − ŝ10λ

′)
]︄

.

(3.48)

Substituting the above expression in equation (3.20) yields the following expression

for the transmitted flux detected by the mth pixel due to the XRXKXΞ term:

Φm = cm∆x∆y
∑︂

i

T (ŝ21i)(n̂i · ŝ21i)
∫︂

d3r′ 1
|rm − ŝ21iλ21i − r′|2

1
ŝ · n̂i

µs(r′)R(ŝ10)×

h(x′, y′)p(ŝ10, ẑ) exp
[︄
−
∫︂ z′

0
dλ′µtot(r′ − ẑλ′) −

∫︂ λ

0
dλ′µtot(rm − ŝ21iλ21i − ŝ10λ

′)
]︄

,

(3.49)
where we have used the sifting property of the delta function and where

ŝ21i = ŝ10 − 2(n̂i · ŝ10)n̂i. (3.50)

3.C Derivation of the ∂X
∂µn

R term

Applying the attenuation operator in equation (3.5) on the expression for the Rw

term in (3.8), we have

[XRw](r, ŝ) = 1
cm

∫︂ ∞

0
dλ[Rw](r − ŝλ, ŝ) exp

[︄
−
∫︂ λ

0
dλ′µtot(r − ŝλ′)

]︄
. (3.51)

Taking the derivative of the above expression with respect to µn yields

∂X
∂µn

Rw(r, ŝ) = − 1
cm

∫︂ ∞

0
dλ[Rw](r−ŝλ, ŝ) exp

[︄
−
∫︂ λ

0
dλ′µtot(r − ŝλ′)

]︄ [︄∫︂ λ

0
dλ′′ϕn(r − ŝλ′′)

]︄
.

(3.52)

By rearranging terms followed by a change of integration order, which is similar as

described in [186], we have

∂X
∂µn

Rw(r, ŝ) = − 1
cm

∫︂ ∞

0
dλ′′ϕn(r−ŝλ′′)

∫︂ ∞

λ′′
dλ[Rw](r−ŝλ, ŝ) exp

[︄
−
∫︂ λ

0
dλ′µtot(r − ŝλ′)

]︄
.

(3.53)
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Separating the exponential integral into two parts, we obtain

∂X
∂µn

Rw(r, ŝ) = − 1
cm

∫︂ ∞

0
dλ′′ϕn(r − ŝλ′′) exp

[︄
−
∫︂ λ′′

0
dλ′µtot(r − ŝλ′)

]︄
×

∫︂ ∞

λ′′
dλ[Rw](r − ŝλ, ŝ) exp

[︄
−
∫︂ λ

λ′′
dλ′µtot(r − ŝλ′

]︄
.

(3.54)

Note that

∫︂ ∞

λ′′
dλ[Rw](r − ŝλ, ŝ) exp

[︄
−
∫︂ λ

λ′′
dλ′µtot(r − ŝλ′)

]︄
= cmXRw(r − ŝλ′′, ŝ). (3.55)

Thus

∂X
∂µn

Rw(r, ŝ) = − 1
cm

∫︂ ∞

0
dλ′′ϕn(r − ŝλ′′)cmXRw(r − ŝλ′′, ŝ) exp

[︄
−
∫︂ λ′′

0
dλ′µtot(r − ŝλ′)

]︄
= −cmX (ϕnXRw).

(3.56)
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Chapter 4

Sparsity-initialized
maximum-likelihood expectation
maximization for fluorescence
molecular tomography
reconstruction

In this chapter, we present a reconstruction method involving maximum-likelihood

expectation maximization (MLEM) to model Poisson noise as applied to fluores-

cence molecular tomography (FMT). MLEM is initialized with the output from

a sparse reconstruction-based approach, which performs truncated singular value

decomposition-based preconditioning followed by fast iterative shrinkage-thresholding

algorithm (FISTA) to enforce sparsity. The motivation for this approach is that spar-

sity information could be accounted for within the initialization, while MLEM would

accurately model Poisson noise in the FMT system. Simulation experiments show the

proposed method significantly improves images qualitatively and quantitatively. The

method results in over 20 times faster convergence compared to uniformly initialized

MLEM and improves robustness to noise compared to pure sparse reconstruction.

We also theoretically justify the ability of the proposed approach to reduce noise

in the background region compared to pure sparse reconstruction. Overall, these

results provide strong evidence to model Poisson noise in FMT reconstruction and for
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application of the proposed reconstruction framework to FMT imaging.

4.1 Introduction

Fluorescence molecular tomography (FMT) is finding several applications in 3D

visualization and quantification of the distribution of molecular target within biological

tissue [74]. In particular, FMT has received substantial interest in small animal imaging

for applications such as studying tumor physiology and for pharmaceutical research

[8, 193]. In FMT imaging, fluorescence molecules are first injected into biological

tissue. External illumination sources are used to excite the fluorescence molecules.

The photons emitted by the excited fluorescence molecules are collected by detectors

at the tissue surface. The objective in FMT is to use these surface measurements to

reconstruct the 3D distribution of fluorescence molecules within the tissue.

The reconstruction problem in FMT is known to be highly ill-posed, and is

sensitive to noise and modeling errors such as discretization [72, 194]. Over the

past two decades, various reconstruction methods for FMT have been proposed [49].

Tikhonov regularization is a popular regularization applied to FMT reconstruction

problem. The regularized problem can be solved iteratively with methods such as

Newton method and algebraic reconstruction technique (ART) [49, 195]. However,

such regularization tends to over-smooth the reconstructed images, leading to loss of

localized features during reconstruction [196]. More recently, reconstruction methods

that exploit sparsity of the fluorescence distribution have been studied [72, 83, 197, 198].

In these methods, ℓ0 or ℓ1 regularization on the fluorescence distribution is applied to

enforce sparsity while performing the reconstruction. These regularization problems

can be solved with methods such as greedy algorithms and iterative thresholding

methods [199].

In FMT systems, often the detector system is charged-couple device (CCD)-based
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camera or photon multiplier tube (PMT). In these systems, the noise is described by a

Poisson distribution [200–202]. For this noise distribution, MLEM-based reconstruction

techniques have yielded reliable results, especially in nuclear medicine imaging [45, 203–

206]. The MLEM technique has several advantages, such as accurately modeling the

Poisson noise distribution in the acquired data, constraining the activity values to be

non-negative without the need for a specific regularizer, and ensuring the conservation

of the total number of photons across multiple iterations. In optical tomography,

several studies have applied MLEM for reconstruction in bioluminescence tomography

[207–209]. In [210], MLEM has also been applied for FMT reconstruction. However,

the MLEM technique typically suffers from slow convergence for optical tomography

modalities, with thousands of iterations and large amount of time per iteration being

required [209, 211, 212]. This makes MLEM a time-consuming method and thus not

very practical [207, 210]. As a result, MLEM has not been widely used for image

reconstruction in optical tomography.

The performance of MLEM is influenced by different factors. An important factor

being the initial estimate provided to the algorithm. Conventionally, MLEM starts

with a uniform initial estimate, as we explain later. However, different initializations

for MLEM yield different reconstruction results [45, 213]. In this work, we studied the

use of sparse reconstruction to initialize the MLEM approach. The overall motivation

for this approach is that the sparse reconstruction method would account for the

sparsity of the fluorescence distribution, while the MLEM would accurately model

the Poisson noise in the FMT system. However, this combined approach is also

able to exploit several inherent advantages of these two techniques, as we describe

below. Our method yields reliable and improved results in comparison to pure sparse

reconstruction as well as uniformly initialized MLEM methods.
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4.2 Methods

4.2.1 The forward model and reconstruction problem in FMT

As we have discussed in 2.1.3, the forward model in FMT is described by a pair of

coupled equations. The first equation describes the propagation of excitation photons

from source at location rs to location r in the medium and the second one describes

the propagation of emitted fluorescence photons from location r to detector at location

rd, where rs, r and rd are three-dimensional vectors. Using ϕex(r) and ϕem(r) to

represent excitation light field at r and emission light field at rd, we have

ϕex(r) =
∫︂

Ω
gex(rs, r)s(rs)drs, (4.1)

and

ϕem(rd) =
∫︂

Ω
gem(r, rd)x(r)ϕex(r)dr, (4.2)

where gex(rs, r) and gem(r, rd) are Green’s function of excitation light and emission

light, respectively. x(r) is the fluorescence yield at location r, and Ω denotes object

support. If we discretize Ω into N voxels, we obtain the linear matrix equation for

the forward model:

Φ = Gx, (4.3)

where

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1
em,1ϕ

1
em,1 . . . g1

em,Nϕ1
em,N

... ...
gNd

em,1ϕ
1
em,1 . . . gNd

em,Nϕ1
em,N

g1
em,1ϕ

2
em,1 . . . g1

em,Nϕ2
em,N

... ...
gNd

em,1ϕ
Ns
em,1 . . . gNd

em,NϕNs
em,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is the sensitivity matrix of the system. Assuming we have Ns laser sources and Nd

detectors, Φ is an M × 1 vector with M = Ns × Nd representing the total number of

measurements. x is an N × 1 vector representing unknown fluorescence yield. Due to

the limited number of sources and detectors, typically M < N in FMT.
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Modeling the measurement noise denoted by the M -dimensional vector n, equation

(4.4) becomes

Φ = Gx + n, (4.4)

In FMT, the data collected by the detectors is corrupted by Poisson noise [200]. The

reconstruction problem in FMT is to reconstruct x given sensitivity matrix G and

detector measurements Φ.

4.2.2 Modeling Poisson noise in the reconstruction

We have shown in 2.2.3.2 that the MLEM can be derived from Poisson likelihood

function. Here we just rewrite the MLEM update as follows:

x̂(k+1)
n = x̂(k)

n

1
sn

M∑︂
m=1

ϕm

(Gx̂(k))m

Gmn, (4.5)

where sn = ∑︁M
m=1 Gmn.

The MLEM iteration starts from an initial estimate x̂(0), and and the results of this

technique can be influenced by this initial estimate [45]. Typically, the initial estimate

is uniform, where all the elements in x̂(0) are assumed to be a constant [214, 215].

However, with this estimate, MLEM updates all the voxels in every iteration, increasing

the computational requirements. In equation (4.5), note that x̂(k)
n will always be zero

if x̂(0)
n = 0 due to the multiplicative nature of the technique. Thus, the zero elements

can be excluded from x̂(0) = 0 during the MLEM iteration. Matrix G used for MLEM

iteration can be formulated with columns corresponding to non-zero elements in

x̂(0). This reduces the size of matrices in the reconstruction problem and accelerates

the computation speed. In this context, in many FMT applications, fluorescence

molecules tend to concentrate in a small target region. Thus, if we could exploit this

property, we could generate a sparse initial estimate, which allows us to accelerate the

MLEM technique. Such a technique would inherently exploit the sparsity-based prior

information in FMT as well as model the Poisson noise in FMT accurately. Inspired
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by this, we developed a sparse reconstruction method and used the output from this

method as the initial estimate for MLEM. In the next section, we describe the method

we used to obtain sparse initial estimate of MLEM.

4.2.3 Sparse reconstruction and preconditioning of sensitiv-
ity matrix

In order to obtain the sparse initial estimate for MLEM, the following minimization

problem can be formulated based on equation (4.4):

min
x

∥x∥0 such that ∥Φ − Gx∥2 ≤ ϵ. (4.6)

While directly solving this problem is computationally complex, equation (4.6) can

be approximately solved with greedy algorithms or convex relaxation techniques

[199]. The theory of compressed sensing (CS) provides the conditions under which

such approximate solvers are valid. Further, approaches based on singular value

decomposition (SVD) can be applied to the sensitivity matrix to improve sparse

reconstruction in FMT [38, 69, 216, 217]. This technique is known as preconditioning

of sensitivity matrix. Here, we follow truncated singular value decomposition (TSVD)

described in [217] as the preconditioning method. First, expressing the matrix G in

terms of its singular vectors and singular values using SVD, equation (4.4) becomes:

Φ = UΣVT x + n, (4.7)

where U and V are M × M and N × N unitary matrices where the columns are

left-singular vectors and right-singular vectors, respectively, and Σ is a diagonal matrix

where the diagonal elements are the singular values. By multiplying both sides of

equation (4.7) with Σ−1UT , we could potentially use VT as the new sensitivity matrix.

However, since the reconstruction problem in FMT is highly ill-posed, the inversion of

small singular values contained in Σ will cause large noise amplification. To address

this issue, we keep only the K largest singular values of matrix Σ and discard the
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rest, before performing the inversion of Σ. The corresponding columns in U and V

are also discarded. This process is referred to as truncation. Then (4.7) becomes

Φ = UtΣtVT
t x + n, (4.8)

where the size of Ut, Σt and Vt are M × K, K × K and N × K, respectively. Since

small singular values are discarded, usually K < M . Applying M = Σ−1
t UT

t to both

sides of equation (4.8) yields

MΦ = VT
t x + Mn. (4.9)

Denoting y = MΦ, A = VT
t and n′ = Mn, equation (4.9) can be written as

y = Ax + n′. (4.10)

We now solve equation (4.10) as a sparse reconstruction problem. More specifically, we

implemented convex relaxation technique in this work. Our objective is to minimize

the ℓ1 norm of the vector x. Thus the sparse reconstruction problem is posed as

min
x

∥x∥1 such that ∥y − Ax∥2 ≤ ϵ. (4.11)

We applied the fast iterative shrinkage-thresholding algorithm (FISTA) for solving

the minimization problem in equation (4.11) [218]. The output with this method is

then input to the MLEM technique as the initial estimate. Note that results from

sparse reconstruction might contain negative elements. As we explained previously,

MLEM constrains the activity values to be non-negative. To enable this, the negative

elements in x̂(0) are set to zero.

4.2.4 Experiments

To validate the proposed method, different simulation experiments were conducted.

Three different reconstruction methods were implemented for comparison, namely, (a)

a pure sparsity-based reconstruction method that used TSVD in conjunction with
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(a) (b)

Figure 4-1. (a) The experimental setup of cube phantom. (b) Cross section at y = 2.5 cm
of the simulated phantom.

FISTA, (b) the MLEM method with uniform initial estimate of the image (more

specifically, the initial activity values in all the voxels was set to unity) and (c) the

MLEM method with an initialization that was obtained using the method described

in (a). We will refer to these methods as pure sparsity-based reconstruction method,

uniformly initialized MLEM and sparsity-initialized MLEM, respectively.

In the first set of experiments, a 5 × 5 × 5 cm3 cubic phantom was considered, as

shown in Fig. 4-1(a). The phantom was discretized into 20 × 20 × 20 voxels. The

absorption coefficient of the phantom was set to µa = 0.05 cm−1 and the reduced

scattering coefficient was set to µ′
s = 10 cm−1. 20 sources and 144 detectors were

placed on the side surfaces. This configuration generated 2880 measurements. Two

cylindric fluorescence bars with radius of 0.375 cm and length of 2.5 cm each were

inserted into the phantom. The fluorescence intensity in these bars was set to unity.

The cross section of the phantom at y = 2.5 cm is shown in Fig. 4-1(b). The

Green’s function in the forward model of FMT was computed using Monte Carlo

method, where a large number of photons were simulated to generate approximately

noiseless measurements[68]. The measurements were then scaled to different levels and

corresponding Poisson noise was applied using a Poisson distributed pseudo random

number generator. This yielded detector measurements with different signal-to-noise
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(a) (b)

Figure 4-2. (a) The experimental setup of digital mouse phantom. (b) Cross section of
digital mouse phantom at z = 16mm.

ratio (SNR) values.

Table 4-I. Optical properties of digital mouse phantom[219]

Tissue type Brain Skull Skin
µ′

s( cm−1) 12.5 10.0 8.0
µa( cm−1) 0.178 0.101 0.159

To study the effect of MLEM iteration number on reconstruction performance,

1000 iterations were performed for MLEM with different initializations with the SNR

initially set to 18dB, and the truncation number K set to 760. The region of interest

(ROI) corresponded to the region occupied by the fluorescence bars. The rest of the

region was defined as background. For quantitative study, different figures of merit

were computed. Specifically, we computed absolute bias in the estimated uptake in

the ROI and the background, spatial variance within the pixels in the ROI and the

background, and the root mean square error (RMSE) for the entire image. The mean

of the fluorescence uptake within the ROI, denoted by θROI, is defined as

θROI = 1
NR

NR∑︂
r=1

xr, (4.12)

where r denotes the rth voxel in the ROI, and NR is the number of voxels in the ROI.

71



Similarly, the background mean, denoted by θB, is defined as

θB = 1
NB

NB∑︂
b=1

xb, (4.13)

where b denote the bth voxel in the background region, and NB is the number of voxels

in the background. Then the ROI absolute bias, denoted by bROI, was computed as:

bROI = 1
R

R∑︂
k=1

|θROI,k − θtrue
ROI,k|, (4.14)

where k denotes the kth noise realization, θtrue
ROI,k denotes the true uptake in the kth

voxel in the ROI, and R is the total number of noise realizations. The background

absolute bias, denoted by bB, was computed as:

bB = 1
R

R∑︂
k=1

|θB,k − θtrue
B,k |, (4.15)

where θtrue
B,k denotes the true uptake in the kth voxel in the background. We also

computed the spatial variance within the pixels in the ROI (denoted by σ2
ROI) and in

the background (denoted by σ2
B) as follows:

σ2
ROI = 1

R(NR − 1)

R∑︂
k=1

NR∑︂
r=1

(xr,k − θROI,k)2. (4.16)

σ2
B = 1

R(NB − 1)

R∑︂
k=1

NB∑︂
b=1

(xb,k − θB,k)2. (4.17)

The RMSE over the entire 3D image was computed as below:

RMSE = 1
R

R∑︂
k=1

⌜⃓⃓⎷∑︁N
i=1 (xi,k − xtrue

i,k )2∑︁N
i=1 (xtrue

i,k )2 × 100%, (4.18)

In this and all the other experiments in this work, 100 noise realizations were used to

compute the various figures of merit. To study the sensitivity of our method to noise,

experiments were conducted with SNR ranging from 5 dB to 40 dB, with step size of

5 dB.

In the second set of experiments, we conducted simulation studies with a digital

mouse phantom[220]. Three fluorescence targets were placed in the mouse brain. Two

72



Figure 4-3. Cross sections at y = 2.5 cm reconstructed by MLEM with different iteration
number n for a cube phantom. SNR=18 dB. The reconstructed images are from MLEM
with uniform initial estimate for the top row and MLEM with sparse initial estimate for
the bottom row.

of them had a radius of 0.8 mm and the third had a radius of 1.2 mm. The optical

properties of the mouse head are listed in Table 4-I. The whole brain was discretized

into 2942 voxels. 48 sources and 51 detectors were placed at the surface of the mouse

head, as shown in Fig. 4-2(a). The cross section of the phantom at z = 16mm is

shown in Fig. 4-2(b).

First, 1000 iterations were performed for MLEM with uniform and sparse initializa-

tion to study the effect of iteration number on MLEM performance. The SNR was set

to 18 dB. The truncation number K was set to 120. Next, quantitative performance

of pure sparse reconstruction, sparsity-initialized MLEM and uniformly initialized

MLEM methods at different noise levels were evaluated. The SNR value ranged from

5 dB to 40 dB, with step size of 5 dB.

The selection of truncation number plays an important role in the quality of the

reconstructed image acquired from sparse reconstruction[38, 69]. For this reason, we

also studied the effect of truncation number on reconstruction results of pure sparse

reconstruction method and the proposed sparsity-initialized MLEM method. To

compare our proposed method and pure sparse reconstruction method, we conducted

experiments with different truncation number K. 450 iterations were used for MLEM

with sparse initial estimate. For quantitative study, RMSE was computed as a function
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Figure 4-4. Quantitative results of different reconstruction methods as functions of
iteration number for cube phantom. (a) Plot of ROI bias vs. number of iterations. (b)
Plot of ROI spatial variance vs. number of iterations. (c) Plot of ROI spatial variance vs.
ROI bias. (d) Plot of background bias vs. number of iterations. (e) Plot of background
variance vs. number of iterations. (f) Plot of RMSE vs. number of iterations.

of the truncation number. The experiments were conducted for two noise levels, namely

SNR=40 dB and SNR=20 dB.

4.3 Results

4.3.1 Uniform cube phantom

Fig. 4-3 shows cross sections reconstructed by MLEM with different iteration numbers.

For sparsity-initialized MLEM, iteration number n = 0 corresponds to the case of pure

sparse reconstruction. The fluorescence intensity in all figures were normalized to the

range of [0, 1]. The computation time required by MLEM with different initializations

for 1000 iterations is provided in Table 4-II. It can be observed that sparsity-initialized

MLEM is about 8 times faster than uniformly initialized MLEM.

Fig. 4-4 shows the quantitative results as a function of iteration number. We

observe from these plots that sparsity-initialized MLEM converges at a lower num-
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Table 4-II. Computation time required by MLEM for 1000 iterations.

Method Time (s)
Sparsity-initialized MLEM 5

Uniformly initialized MLEM 39

Figure 4-5. Quantitative results of different reconstruction methods as functions of SNR
for cube phantom. (a) Plot of ROI bias vs. SNR. (b) Plot of ROI variance vs. SNR. (c)
Plot of background bias vs. SNR. (d) Plot of background variance vs. SNR. (e) Plot of
RMSE vs. SNR.

ber of iterations. Sparsity-initialized MLEM has lower ROI bias, background bias,

background spatial variance, and image RMSE. We also computed the variance of

the mean ROI and the mean background uptakes, and found that these were much

lower (less than 1%) compared to the bias. Thus, we do not show these results

here. From Fig. 4-4(f), we notice that sparsity-initialized MLEM reached its lowest

RMSE after only 50 iterations, but for uniformly initialized MLEM, the lowest RMSE

was obtained after 800 iterations. Based on this result, we chose 50 iterations for

sparsity-initialized MLEM and 800 iterations for uniformly initialized MLEM for the

first set of experiments with different SNR values. The plots of quantitative results

for the different reconstruction methods at different SNR values are shown in Fig. 4-5.
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Figure 4-6. Quantitative results of different reconstruction methods as functions of
iteration number for digital mouse phantom. (a) Plot of ROI bias vs. number of iterations.
(b) Plot of ROI spatial variance vs. number of iterations. (c) Plot of ROI spatial variance
vs. ROI bias. (d) Plot of background bias vs. number of iterations. (e) Plot of background
variance vs. number of iterations. (f) Plot of RMSE vs. number of iterations.

we again observe that sparsity-initialized MLEM leads to lower ROI bias, background

bias, background spatial variance, and image RMSE for all noise levels.

4.3.2 Digital mouse phantom

Fig. 4-6 shows quantitative performance of different reconstruction methods as a

function of iteration number. We observe that sparsity-initialized MLEM achieves

lower ROI bias, background bias and RMSE. It was observed that for the sparsity-

initialized MLEM and uniformly initialized MLEM, 450 and 900 iterations yielded the

minimum RMSE. Thus, these values were chosen for the two methods for subsequent

experiments. Quantitative performance of different reconstruction methods at different

noise levels is shown in Fig. 4-7. The sparsity-initialized MLEM method shows better

performance for ROI bias, background bias and RMSE compared to the other two

methods.
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Figure 4-7. Quantitative results of different reconstruction methods as functions of SNR
for digital mouse phantom. (a) Plot of ROI bias vs. SNR. (b) Plot of ROI variance vs.
SNR. (c) Plot of background bias vs. SNR. (d) Plot of background variance vs. SNR. (e)
Plot of RMSE vs. SNR.

Fig. 4-8 shows the cross sections reconstructed by pure sparse reconstruction and

MLEM with sparse initial estimate for different truncation number. From Fig. 4-8, we

notice that for small truncation number, pure sparse reconstruction generates blurry

images. As truncation number increases, the resolution improves, but the background

noise also increases due to the amplification of noise during preconditioning. For

truncation number larger than 550, the signal is totally overwhelmed by the noise. As

a comparison, the proposed method is able to largely reduce the background noise

as truncation number increases. The RMSE as a function of truncation number is

plotted in Fig. 4-9. The sparsity-initialized MLEM leads to lower RMSE for both

noise levels.
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4.4 Discussion

In this work, we have proposed an MLEM-based technique to reconstruct the fluo-

rescence distribution from FMT data. In our framework, the initial estimate for the

MLEM algorithm is derived from a sparse reconstruction method. Often an uniform

initial estimate is used with MLEM-based techniques, but here we observe that a

sparsity-initialized technique yields several advantages compared to uniformly initial-

ized MLEM. First, sparsity-initialized MLEM has faster convergence speed. From

Table 4-II, Fig. 4-3, Fig. 4-4(a) and Fig. 4-6(a), we observe that sparse initial estimate

speeds up the convergence by both shortening the computation time for each iteration

and requiring fewer iterations for convergence. In addition, sparsity-initialized MLEM

also provides improved quantitative performance in ROI bias, background bias, ROI

spatial variance, RMSE, and bias-variance trade-off compared to uniformly initialized

MLEM, as shown in Fig. 4-4-4-7. Further, while results in both the cube phantom

and the digital mouse phantom experiments indicate that the proposed method leads

to higher ROI spatial variance compared to uniformly initialized MLEM for the same

number of iterations, Fig. 4-4(c) and Fig. 4-6(c) show that the proposed method

still provides better bias-variance trade-off compared to MLEM with uniform initial

estimate. Further, sparsity-initialized MLEM often requires fewer iterations, which

enables it to provide lower ROI spatial variance compared to uniformly initialized

MLEM, as we observe from Fig. 4-5(b) and Fig. 4-7(b).

We also observe that sparsity-initialized MLEM provides advantages over pure

sparse reconstruction method. From Fig. 4-8, we notice that sparsity-initialized MLEM

is less sensitive to the choice of truncation number. For pure sparse reconstruction

method, when the truncation number is small, the reconstructed image is blurry. As

truncation number increases, image resolution is improved, but the noise in the back-

ground region is also increased due to the noise amplification during preconditioning.

78



Figure 4-8. Cross sections of fluorescence target reconstructed with pure sparse recon-
struction method for the top row and the proposed method for the bottom row with
different truncation number K for digital mouse phantom for SNR=40dB.

On the other hand, for small truncation number, sparsity-initialized MLEM is able

to improve the resolution compared to pure sparse reconstruction method. For large

truncation number, sparsity-initialized MLEM reduces noise in the background. These

properties make MLEM with sparse initial estimate more robust to the choice of trun-

cation number compared to pure sparse reconstruction method. The plots of RMSE

vs. truncation number in Fig. 4-9 also demonstrate this point. Sparsity-initialized

MLEM also improves quantitative performance of reconstructed images compared to

pure sparse reconstruction method. Fig. 4-5 and Fig. 4-7 indicate this for different

SNR values. Apart from improved background bias and spatial variance due to the

reduction of background noise, sparsity-initialized MLEM also reduces the ROI bias

compared to pure sparse reconstruction method, especially at low SNR value. At

low SNR value, small truncation number is preferred to avoid noise amplification,

which results in only a small number of measurements used for reconstruction. Small

truncation number not only generates blurry images, as we discussed previously, but

also causes severe bias in the reconstruction results. For example, for SNR= 5 dB, we

observe that pure sparse reconstruction generated 71% ROI bias in the cube phantom

experiments and 57% ROI bias in the digital mouse phantom experiments. As a

comparison, MLEM uses the original system matrix and detector measurements for

reconstruction, enabling it to compensate for the bias in the image, which reduced
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(a) (b)

Figure 4-9. Plot of RMSE vs. truncation number for pure sparse reconstruction method
and the proposed reconstruction method for different noise levels. (a) Plot of RMSE vs.
truncation number for SNR=40 dB. (b) Plot of RMSE vs. truncation number for SNR=20
dB.

the ROI bias to 40% in the cube phantom experiments and 33% in the digital mouse

phantom experiments.

We have observed, for example in Fig. 4-3, that sparsity-initialized MLEM is able

to suppress the noise in the background region that is present in the sparse initial

estimate. To explain this observation, here we provide a theoretical justification. For a

set of detector measurements denoted by Φ, consider two reconstructed images x1 and

x2, where x1 is image with noise in the background region (referred to as background

noise), and x2 is image that does not contain this background noise, as shown in

Fig. 4-10(a) and (b), respectively. We denote the background noise as ϵ = x1 − x2,

where ϵn ≥ 0 for all n. Before we proceed further, we introduce the concept of KL

distance. This distance measures how two probability distributions diverge from

another. It is known that MLEM attempts to find an estimate that minimizes the

Kullback-Leibler (KL) distance between the measured data Φ and the data predicted

by an estimate Gx. Thus, our objective is to assess whether the KL distance of x2 is

less than x1, which would explain why MLEM would yield a solution x2 in comparison

to x1.
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Figure 4-10. (a) Image with background noise. The noise spot in the background is
marked with red circle. (b) Image without background noise. (c) Plot of fm. (d)Plot of
(Gϵ)m and 2(ϕ − Gx2)m.
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For x1, the KL distance is:

DKL,1(Φ, Gx1) =
∑︂
m

{︄
(Gx1)m − ϕm + ϕm ln ϕm

(Gx1)m

}︄
. (4.19)

Similarly, for x2, the KL distance is:

DKL,2(Φ, Gx2) =
∑︂
m

{︄
(Gx2)m − ϕm + ϕm ln ϕm

(Gx2)m

}︄
. (4.20)

We then have the difference:

∆DKL = DKL,2(Φ, Gx2) − DKL,1(Φ, Gx1)

=
∑︂
m

{︄
−(Gϵ)m + ϕm ln

[︄
1 + (Gϵ)m

(Gx2)m

]︄}︄
. (4.21)

We denote fm((Gϵ)m) = −(Gϵ)m + ϕm ln
[︂
1 + (Gϵ)m

(Gx2)m

]︂
. If ϕm ≤ (Gx2)m, fm ≤ 0 since

fm is monotonically decreasing for (Gϵ)m ≤ 0 and fm(0) = 0. If ϕm > (Gx2)m, the

plot of fm is shown in Fig. 4-10(c). To estimate the zeros of fm, we use second order

Taylor expansion to approximate fm, which gives:

fm ≈ −(Gϵ)m + ϕm

⎡⎣ (Gϵ)m

(Gx2)m

− 1
2

(︄
(Gϵ)m

(Gx2)m

)︄2
⎤⎦ . (4.22)

Let fm = 0, we have

(Gϵ)m,1 = 0, (4.23)

and

(Gϵ)m,2 = 2(Gx2)m[ϕm − (Gx2)m]
ϕm

≤ 2[ϕm − (Gx2)m], (4.24)

where the inequality comes from the fact that ϕm > (Gx2)m. Also, note that the

function fm has its maxima at (Gϵ)m = ϕm − (Gx2)m. Thus, if the detector response

to the noise spot has similar pattern as ϕm − (Gx2)m, fm will be close to its maximum

for most detector index m. This provides a higher chance that ∆DKL > 0, which

means MLEM is more likely to update towards noisy image. This is the case for the
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noise close to ROI. On the other hand, for noise spot in background region, the detector

response to noise spot will have a very different pattern compared to ϕm − (Gx2)m,

as shown in Fig. 4-10(d). For detector index m where ϕm − (Gx2)m > 0, (Gϵ)m is

either close to 0 or too large. This results in makes fm either close to zero or have a

negative value. In this case, it has higher chance that ∆DKL < 0, meaning MLEM

tends to update towards results without the noise spot.

The noise model in FMT is often assumed to be Gaussian [38, 72, 83, 196, 197, 217].

In very few cases is the Poisson noise model applied [201]. Gaussian noise model is a

good approximation when SNR is high, i.e. sufficient number of photons are detected.

However, in some applications, the SNR value might be low, such as in brain imaging

[26], dynamic FMT [221] and early-photon FMT [43]. Our results demonstrate that

incorporating the Poisson noise model is especially valuable in these scenarios. More

specifically, the pure sparse reconstruction method was formulated based on Gaussian

noise model, while the proposed method incorporated both the sparsity information

and Poisson noise model. We observe that the performance of the proposed method

improves in comparison to the pure sparse reconstruction method as the SNR value

decreases, and the proposed method is substantially more reliable at low SNR values.

This shows the importance of accurately modeling Poisson noise for applications of

FMT when insufficient number of photons are detected. We also point out that there

might be some instances where the data is not a pure Poisson distribution. This could

occur, for example in case of CMOS detectors where the noise is a combination of

Poisson and Gaussian distribution and is effected by electronic gain [222]. However,

even in those cases, MLEM provides a convenient way to account for non-negativity

constraints and enforce photon conservation. These factors may help to improve the

quality of reconstruction in comparison to just using a sparsity-based method. Thus,

exploring the performance of this method with systems that have non-Poisson noise

distribution would be another important future study.
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In this work, we only considered the case where the background uptake of fluo-

rescence distribution is zero. While this is a common assumption in FMT studies

[38, 69, 72, 83, 196, 197, 217], it is possible that the background uptake is non-zero.

Exploring the performance of the proposed method for this task would be an important

future direction. The proposed method has been validated with extensive simulation

experiments. Evaluating the performance of the method with physical phantom and in

vivo animal experiments is another important direction of research. Finally, we used

the MC-based method to model photon propagation to obtain the Greens function in

this work. However, there have been several analytical methods proposed for modeling

light transport[12, 54, 55, 59, 184, 187]. These methods can also be used to obtain

an expression for the Green’s function. Analytical methods offer the advantage that

they might be less sensitive to photon noise. Thus, implementing this reconstruction

method using the analytical approaches is another important research direction.

4.5 Conclusion

We have presented a reconstruction framework for FMT involving sparsity-initialized

MLEM. Simulation experiments on cubic digital mouse phantoms demonstrate that the

proposed method yields improved qualitative and quantitative performance compared

to uniformly initialized MLEM as well as sparsity-initialized MLEM techniques.

Further, compared to uniformly initialized MLEM, the proposed method is faster to

execute, overcoming another barrier to application of MLEM technique for optical

tomography. Moreover, compared to pure sparse reconstruction, the proposed method

is more robust to noise amplification. We have also provided theoretical justification for

the ability of the proposed method to reduce noise in the background region. Overall,

this work provides strong evidence that the proposed sparsity initialized MLEM-based

reconstruction framework is feasible and advantageous for reconstruction in FMT

imaging systems.
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Chapter 5

Partial volume correction for brain
PET imaging

In this chapter, we first introduce commonly used PVC methods. We then present

a post-reconstruction PVC method based on deconvolution with parallel level set

(PLS) regularization. We frame the problem as an iterative deconvolution task with

PLS regularization that incorporates anatomical information without requiring MR

segmentation or assuming uniformity of PET distributions within regions. An efficient

algorithm for the non-smooth optimization of the objective function is developed

so that the proposed method can be feasibly applied for 3D images and produces

sharper images compared to conventional PLS method with smooth optimization.

The proposed method was evaluated with both simulated data and in vivo human

data collected from Baltimore Longitudinal Study of Aging (BLSA). Results indicate

our method is able to reduce image noise while preserving structure details, as well

as increasing the number of statistically significant voxels. Further, our statistical

analysis shows that our method has the potential to better differentiate amyloid

positive and amyloid negative scans. Overall, our results demonstrate promise to

provide superior performance in clinical imaging scenarios.
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5.1 Introduction

Due to the limited spatial resolution of PET systems, the reconstructed PET images

suffer from partial volume effect (PVE), as we have discussed in 2.2.5. For brain

PET imaging, structures such as cortical gray matter may have a thickness of only 4

mm and can be severely influenced by PVE. The situation becomes even worse when

studying neurodegenerative disease such as Alzheimer’s disease and Parkinson disease,

where atrophy occurs in different structures [223, 224].

In order to correct such effect, different partial volume correction (PVC) algorithms

have been developed. These methods can be roughly categorized into reconstruction-

based methods and post-reconstruction-based methods [122, 225]. For reconstruction-

based methods, resolution degradation factors are modeled in system matrix. There

are different ways to model these factors in system matrix [151, 226–232]. Here we

give an example of resolution modeling based on the following matrix factorization

[151, 230, 232]:

P = Pdet,sensPdet,blurPattnPgeomPblur,im. (5.1)

In this factorization, Pgeom represents the forward projection matrix. Pattn and

Pdet,sens contains the attenuation and normalization factors, respectively. Resolution

degradation factors are modeled through Pdet,blur and Pblur,im. Specifically, Pdet,blur

accounts for sinogram blurring factors including photon-pair noncollinearity, inter-

crystal scatter and penetration. Pblur,im models image space blurring factors such

as positron range. Direct reconstruction with point spread function (PSF) modeling

may cause Gibbs artifacts near edges. To alleviate such artifact, Bayesian MAP

reconstruction can be applied to incorporate prior information [233].

On the other hand, post-reconstruction-based methods usually model PVE by as-

suming the observed image is a result of the true image convolved with PSF. Inversion of

this process is achieved through either voxel-based methods or region-of-interest-based
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methods. Compared with reconstruction-based PVC methods, post-reconstruction

methods do not require access to image raw data or scanner reconstruction algorithm,

and as such are more applicable to large scale (especially multi-center) studies.

We now briefly introduce some commonly used post-reconstruction-based methods.

Let Ω be a cubic domain in R3. g, u : Ω → R denote the observed (PVE contaminated)

and true PET images, respectively. h represent system PSF. Most post-reconstruction

PVC methods use high-resolution anatomical information from MRI. Further, many

PVC methods require segmenting MRI into different tissues. Assume we segment

Ω into Ω1 · · · ΩM such that Ω = Ω1 ∪ · · · ∪ ΩM . We define a mask function for each

segmentation region as

mi(r) =

⎧⎨⎩1, if r ∈ Ωi.

0, otherwise
(5.2)

Geometric transfer matrix method

Rousset et al. [234] developed a so-called geometric transfer matrix (GTM) method for

PVC. In this method, the spill-over effect between region i and region j is addressed

by computing a weighting factor as

wij = 1
nj

∫︂
Ωj

RSFi(r)dr, (5.3)

where ni is the number of pixels in region j, RSFi(r) is regional spread function and

is computed as RSFi(r) = (h ∗ mi)(r). By further assuimg the observed image g

and the true image u are piecewise-constant images such that g(r) = ∑︁
i timi(r) and

u(r) = ∑︁
i Timi(r), where ti and Ti are regional mean activities in g and u, respectively.

Then ti and Ti are linked with

t = WT, (5.4)

where t = [t1, · · · , tM ]T , T = [T1, · · · , TM ]T and wij computed in 5.3 are elements in

W. Corrected regional mean value T can be obtained with

T = W−1t. (5.5)
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Labbé et al. [235] developed a similar method. In Labbé’s method, the observed

image g is not assumed to be piecewise-constant, thus the weighting matrix W

addresses the spill-over effect between ROIs in the true image and voxels in the

observed image. Sattarivand et al. [236] developed a so-called symmetric GTM

method which is mathematically equivalent to Labbé’s method but reduces the

computational burden. Du et al. [237] proposed a perturbation-based GTM method

that took nonlinearity of the reconstruction process into account. The GTM-type

methods recover corrected ROI mean activities of the true image, but they do not

produce voxel-based images.

Müller-Gärtner’s method

In Müller-Gärtner’s method [238], the true brain image is treated as the summation

of three compartment: gray matter (GM), white matter (WM) and cerebrospinal fluid

(CSF). This can be represented as

g(r) = (h ∗ u)(r) = h(r) ∗ [(uGMmGM)(r) + (uCSF mCSF )(r) + (uW MmW M)(r))] ,

(5.6)

where uGM , uW M and uCSF are images of GM, WM, and CSF, respectively. By

assuming WM and CSF have constant activities such that uW M(r) = TW M and

uCSF (r) = TCSF , the corrected GM image is obtained with

uGM(r) = g(r) − h(r) ∗ (TW MmW M)(r) − h(r) ∗ (TCSF mCSF )(r)
h(r) ∗ mGM(r) . (5.7)

In practice, the mean activity TW M and TCSF can be estimated from the observed

image g by computing the mean concentrations in smaller ROIs in WM and CSF.

The Müller-Gärtner’s method was further extended to four compartments [239]

and later was generalized to multiple regions [240, 241]

Yang’s method

Yang et al. [242] presented a method where PVC is applied to the whole image. In

Yang’s method, a simulated piece-wise constant PET image usimulated is created from
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the segmented MR image. Each region in usimulated is filled with its true relative mean

value. Then image after correction is computed as

ucorrected(r) = g(r) × usimulated(r)
(h ∗ usimulated)(r) (5.8)

Erlandsson et al. [156] improved this method by updating the mean activity

estimation in usimulated iteratively, which gives the so-called iterative Yang method.

Thomas et al. [243] proposed region-based voxel-wise (RBV) method based on Yang’s

method that uses GTM method to estimate usimulated.

Iterative deconvolution method

There are two classical deconvolution methods: reblurred Van-Cittert (rVC) method

and Richardson-Lucy (RL) method, that are based on Gaussian and Poisson noise

models, respectively [244]. In rVC method, we aim to solve the following least-square

minimization problem:

min
u

∥g(r) − h(r) ∗ u(r)∥2
2, (5.9)

where ∥ · ∥2 denotes L2 norm. The steepest descent update for the above equation is

u(k+1)(r) = u(k)(r) + αh(r) ∗ [g(r) − h(r) ∗ u(k)(r)], (5.10)

where the step length α is typically set as 0 < α < 2. Update in 5.10 is referred to

as rVC method. RL deconvolution has a similar update equation as MLEM but the

system matrix is replaced with a convolution operator with system PSF.

For the above-mentioned MR-guided PVC methods, we notice that commonly

uniform PET activity distribution is assumed within a given anatomical region, as

determined by the segmented MRI. However, this assumption is often violated in

reality, which may influence the performance of these methods. On the other hand, for

iterative deconvolution methods, a known issue is that they lead to noise amplification

as the number of iterations increases [245]. To overcome this issue, different noise

suppression techniques either through filtering or regularization have been incorporated
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with the deconvolution framework. For example, in [246], a regularized deconvolution

method with adaptive regularization parameter based on local topology was proposed.

in [247], wavelet denoising is applied on data residual during deconvolution process

to control noise. In [248], non-local-mean-based regularization is incorporated into

deconvolution to provide anatomical guidance as well as controlling noise.

In the present work, we develop a post-reconstruction PVC method that relies on

‘subtle’ MR guidance, meaning that the method does not assume uniform PET activity

distribution and also does not force strong boundaries in the PET images based solely

on boundary information provided by anatomical guidance. Deconvolution-based

methods provide an excellent framework to minimize or avoid such assumptions on

PET activity distributions. In order to incorporate anatomical information to suppress

noise while further improving image resolution, here we choose the parallel level set

(PLS) function as the regularization term. PLS was proposed recently and has been

used for PET reconstruction and PET-MRI joint reconstruction [249, 250]. PLS

allows incorporating anatomical information without segmentation and reduces to

total variation when local MRI map is uniform, allowing it to preserve edges in PET

when corresponding structure is missing in MRI. On the other hand, unlike functions

such as total variation that does not use any anatomical guidance, PLS allows recovery

of structures in PET wherever boundary matches with that from anatomical guidance.

This provides images with higher resolution compared to those recovered without

using anatomical guidance. Overall, we propose a post-reconstruction PVC method

based on regularized deconvolution with PLS regularization. The proposed method

allows performing anatomical-guided PVC without assumption of uniformity on PET

activity distribution and segmentation of MR image. Moreover, conventional PLS

requires adding a smoothing factor so that gradient-based optimization methods

are applicable. By contrast, in this work, we develop a non-smooth optimization

strategy based on split Bregman method to minimize the objective function of the
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regularized deconvolution problem, which enables applying the method on 3D image

in a computationally efficient manner while avoiding blur caused by smoothing. The

proposed method was evaluated and compared against other post-reconstruction PVC

methods using both simulation data and clinical data.

5.2 Methods

5.2.1 Regularized Deconvolution Model

We have defined g, u as the observed and true PET images, and h as system PSF.

The regularized deconvolution model is given as

u∗ = arg min
u

µ

2 ∥g − h ∗ u∥2
2 + R(u), (5.11)

where R(u) represents regularization function, µ is a hyper-parameter that balances

deconvolution and regularization.

5.2.2 Parallel Level Sets Regularization

In this work, we utilize PLS as the regularization function in (5.11). PLS function is

defined as [250]:

RP LS(u) =
∫︂

Ω

(︂
β2 + ∥∇u(r)∥2

2 − ⟨∇u(r), ξ(r)⟩2
)︂ 1

2 dr, (5.12)

where ∥∇u(r)∥2
2 = [(∇xu(r))2 + (∇yu(r))2 + (∇zu(r))2]1/2 is the L2 norm for image

gradient of PET, ⟨·, ·⟩ represents the inner product, ξ(r) = ∇v(r)/(η2 + ∥∇v(r)∥2
2)

1
2

denotes the normalized MR gradient with v : Ω → R representing MR image, and β

and η are two smoothing factors.

5.2.3 Optimization Algorithm

When β ̸= 0 in (5.12), the PLS regularization function is differentiable and thus, the

minimization problem in (5.11) can be solved using gradient-based methods. However,
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the smoothing factor β may lead to undesirable blur in the output images. In this

section we applied split Bregman method [251] to provide a non-smooth optimization

strategy for our problem.

It was shown in [250] that

∥∇u(r)∥2
2 − ⟨∇u(r), ξ(r)⟩2 = ∥B(r)∇u(r)∥2

2, (5.13)

where B(r) = (I − cξξT )(r), c =
(︂
1 + [1 − ∥ξ(r)∥2

2]1/2
)︂−1

is a normalization constant.

When β = 0, the PLS regularization function can be written as:

RP LS(u) =
∫︂

Ω
∥B(r)∇u(r)∥2. (5.14)

For discrete image, if we use g, u to denote vectorized observed and true PET images,

and replace regularization function in (5.11) with (5.14), we obtain:

min
u

µ

2 ∥g − Hu∥2
2 +

N∑︂
i=1

∥Bi(∇u)i∥2, (5.15)

where H is blurring matrix with each column hi representing PSF centered at voxel i,

N is the total number of voxels in PET image, ∇u represents 3D image gradient and

can be obtained with finite difference method. If we introduce an auxiliary variable

d = [dx, dy, dz]T , the minimization problem in (5.15) can be written as:

min
u

µ

2 ∥g − Hu∥2
2 +

N∑︂
i=1

∥di∥2 such that di = Bi(∇u)i. (5.16)

Let us write (5.16) in an unconstrained form, and we have:

min
u,d

µ

2 ∥g − Hu∥2
2 +

N∑︂
i=1

∥di∥2 + λ

2

N∑︂
i=1

∥di − Bi(∇u)i∥2
2, (5.17)

where λ is another regularization parameter. Conventionally, solution of (5.17) only

approximate that of (5.16) when λ → ∞. Bregman iteration guarantees the solution

of (5.17) converges to that of (5.16) as the number of iteration increases. To apply

Bregman iteration, we update the following two steps iteratively:

min
u,d

µ

2 ∥g − Hu∥2
2 +

N∑︂
i=1

∥di∥2 + λ

2

N∑︂
i=1

∥di − Bi(∇u)i − b(k)
i ∥2

2, (5.18)

b(k+1) = b(k) + B∇u(k+1) − d(k+1), (5.19)
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where the superscripts (k + 1), (k) here denote iteration number. Solving (5.18) by

minimizing u and d separately arrives at a three-step split Bregman iteration process:

u(k+1) = arg min
u

µ

2 ∥g − Hu∥2
2 + λ

2

N∑︂
i=1

∥d(k) − B∇u − b(k)∥2
2, (5.20)

d(k+1) = arg min
d

N∑︂
i=1

(︄
λ

2 ∥di − Bi(∇u(k))i − b(k)
i ∥2

2 + ∥di∥2

)︄
, (5.21)

b(k+1) = b(k) + B∇u(k+1) − d(k+1). (5.22)

The u subproblem in (5.20) is differentiable and can be solved with gradient-based

methods, such as steepest descent method and conjugate gradient method. Usually

these algorithms are applied iteratively until full convergence is achieved. For split

Bregman method, solving the subproblem until full convergence is not necessary since

the added precision brought about by full convergence will be wasted in the update

of the Bregman parameter b [251]. In addition, updating the u subproblem to full

convergence could be time-consuming, especially for applications to 3D images. We seek

an approximate solution to the u subproblem with as fewer iterations as possible. For

this purpose, we applied a one-step gradient descent method that uses Barzilai-Borwein

step with backtracking [252, 253]. The algorithm enables approximating the solution

with sufficient accuracy with only a single iteration. The d subproblem in (5.21) is

nondifferentiable but can be efficiently solved with generalized soft-thresholding [254].

5.2.4 Parameter selection

There are three hyperparameters λ, η and µ in this algorithm: (i) Parameters µ

balances deconvolution and regularization strengths. (ii) η controls smoothing added

on MR image. These two parameters need to be selected based on noise levels in

PET and MR images; (iii) The other parameter λ influences the convergence of the

algorithm. We adopted residual balancing method [255] to update this parameter

adaptively.
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In residual balancing, we first define primal residual m and dual residual n as:

m(k+1) = B∇u(k+1) − d(k+1), (5.23)

n(k+1) = λ(k)(B∇)T (d(k+1) − d(k)), (5.24)

where (B∇)T denotes adjoint operator of B∇. Then λ is updated as

λ(k+1) =

⎧⎪⎪⎨⎪⎪⎩
τλ(k) if∥m(k)

norm∥2 > ϵ∥n(k)
norm∥2,

τ−1λ(k) if∥n(k)
norm∥2 > ϵ∥m(k)

norm∥2,

λ(k) otherwise,

(5.25)

where τ and ϵ are two constants and are typically chosen as τ = 2 and ϵ = 10, mnorm

and nnorm are normalized primal residual and dual residual terms, respectively, which

are defined as:

mnorm = m
max{∥B∇u(k+1)∥2, ∥d(k+1)∥2}

, nnorm = n
∥(B∇)T b(k+1)∥2

. (5.26)

5.2.5 Summary of the Algorithm

Our framework can be summarized by the following algorithms 1 and 2:

Algorithm 1 (One-step gradient descent algorithm)

Input: u(k), u(k−1), C(k)

Initialize:

ρ = 0.4, σ = 10−4

p = u(k) − u(k−1), y = ∂F (k)(u(k)) − ∂F (k)(u(k−1))

α0 = pT p
pT y

while F (k)(u(k) − α(k)∂F (k)(u(k))) > C(k) − σα(k)(∂F (k)(u(k)))T ∂F (k)(u(k))

α(k+1) = ρα(k)

end

u(k+1) = u(k) − α(k+1)∂F (k)(u(k))

output u(k+1),

where F (k)(u) = µ
2 ∥g − Hu∥2

2 + λ
2 ∥d(k) − B∇u − b(k)∥2

2

∂F (k)(u) = µHT (Hu − g) − λ∇T BT (d(k) − B∇u − b(k))
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Algorithm 2 (Post-reconstruction PVC with

non-smooth optimized PLS regularization)

Inputs: PET image g, MR image v, system psf h, µ, λ

Initialize:

d0 = 0, b0 = 0, u0 = 0, u1 = g

z0 = 1, C0 = F 0(g), γ = 0.995

for k=1:K

obtain u(k+1) by solving u subproblem with algorithm 1

d(k+1)
x,y,z = max (∥B∇u(k) + b(k)∥2 − 1

λ
, 0) (B∇u(k)+b(k))x,y,z

∥B∇u(k)+b(k)∥2

b(k+1) = b(k) + B∇u(k+1) − d(k+1)

update parameters for algorithm 1:

z(k+1) = γz(k) + 1

C(k+1) = γz(k)C(k)+F (k)(u(k+1))
z(k+1)

update λ with residual balancing

end

5.3 Experiments

5.3.1 Simulation Experiments

We first evaluated the proposed method using simulation experiments. We generated

a fluorodeoxyglucose (FDG) PET simulation phantom from the BrainWeb phantom

[256], as shown in Fig. 5-1 (first row). The phantom was discretized into 181×217×181

voxels with voxel size of 1 mm × 1 mm × 1 mm. Realistic PET activity distribution

was assigned as 12500 Bq/ml in gray matter (GM), 3125 Bq/ml in white matter (WM),

0 Bq/ml in air, CSF and bone, and 1000 Bq/ml in all other tissues [257]. To avoid

oversimplified piecewise constant true activity distributions, the activity distribution in

GM was further convolved with a Gaussian function with full width at half maximum

(FWHM) of 10 mm to create true nonuniformities. Activity in GM was then multiplied

with a constant to scale the mean activity back to 12500 Bq/ml. The simulated PET
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Figure 5-1. Transaxial slice (left column), coronal slice (middle column) and sagittal
slice (right column) of simulated PET phantom (top row), MR phantom (middle row) and
segmented tissue map (bottom row).
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phantom is shown in Fig. 5-1. The simulated phantom was first projected into the

sinogram space using a realistic system matrix. Attenuation, scatter and normalization

were also modeled within the sinogram space. An MR derived attenuation map was

used to simulate the attenuation effect [258] and 25% scatter counts were added.

The system resolution was modeled corresponding to a Gaussian PSF with 4.5 mm

FWHM. Poisson noise was simulated corresponding to 108 total coincidence events.

We simulated 20 noise realizations to evaluate quantitative performance of different

PVC methods. Reconstructions were performed using ordered-subset expectation

maximization (OSEM) algorithm with 10 subsets and 18 iterations.

We compared our proposed methods, which we refer to as ‘non-smooth PLS’, with:

(i) rVC deconvolution, (ii) RBV, (iii) a deconvolution method with asymmetric Bowsher

regularization which we refer to as ‘aBowsher’ method, and (iv) PLS regularized

deconvolution using smoothing factor β ̸= 0, which we refer to as ‘smooth PLS’. The

implementation of rVC followed descriptions in [244], where the step size was chosen

as 1.5. The implementation of RBV was same as described in [243]. For ‘aBowsher’

method, we replace the regularization term in (5.11) with Bowsher type regularization,

as described in [259]. In this method, we chosen the search window of size 3 × 3 × 3

and 7 closest gray-level neighbors were picked. In the smooth PLS method, we

set smoothing factor β = 10−2. For the last two methods, the objective function

was minimized with limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

algorithm [75]. Since rVC and RBV do not apply any smoothing, the reconstructed

images were first smoothed using a Gaussian filter with FWHM of 2.5 mm in all three

dimensions to suppress noise before being input into these two methods.

Apart from the rVC method, all other methods mentioned above, including our

method, requires anatomical guidance. MR image as shown in the middle row of

Fig. 5-1 was used as anatomical guidance for our method and the aBowsher method.

RBV method requires segmented MR tissue map. Instead of using segmentation map
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Figure 5-2. Transaxial slice of difference image between perfect registered MR image
and misregistered MR image with (a) 1mm and (b) 2mm registration error.

provided by BrainWeb that only contains the entire GM and WM, we segmented the

MR image using FreesSurfer to obtain more region of interests (ROIs) [260]. Specifically,

we assessed the performance of different PVC methods in medial frontal, precuneus,

posterior cingulate, caudate and putamen regions. The bottom row in Fig. 5-1 shows

the segmented tissue map provided to RBV and used to study quantitative performance

in different ROIs.

In the clinical scenario, one concern for the use of PVC is that it is sensitive

to accuracy of MR registration and segmentation [261, 262]. Therefore, in our

simulation experiments, we also studied the influence of inaccurate MR registrations

and segmentations on the performance of PVC algorithms. We simulated registration

mismatch by shifting MR phantom by 1 mm (1 voxel) and 2 mm (2 voxel). The

difference images between perfect registered MR image and misregistered MR image are

shown in Fig. 5-2. For segmentation error, in order to control the extent of segmentation

mismatch, we modeled imperfect MR segmentation with image-wise morphological

operations. Specifically, we simulated three different levels of segmentation errors by

applying image dilation operation on GM using spheres with radii of 0.2 mm, 0.5 mm

and 1 mm, as shown in Fig. 5-3.
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Figure 5-3. Transaxial slice of (a) tissue map with perfect segmentation; (b) tissue map
dilated with 0.2 mm sphere; (c) tissue map dilated with 0.5 mm sphere; (d) tissue map
dilated with 1 mm sphere; (e) difference image between (a) and (b); (f) difference image
between (a) and (c); (g) difference image between (a) and (d).

In order to compare different PVC methods quantitatively, we plotted bias-noise

trade-off curves for different ROIs. We computed mean percentage ROI bias as [232]:

bias = 1
Rθtrue

R∑︂
j=1

(θj − θtrue) × 100%, (5.27)

where R is the number of noise realizations, θ = 1
N

∑︁N
i=1 ui denotes mean activity

in ROI (N is the number of voxels in the ROI), and θtrue is ROI mean activity of

ground truth. For noise, we computed average voxel-wise coefficient of variability

(cov) [257, 263]:

cov = 1
θtrue

⎛⎝ 1
N(R − 1)

N∑︂
i=1

R∑︂
j=1

(ui,j − ūi)2

⎞⎠ 1
2

× 100%, (5.28)

where ūi = 1
R

∑︁R
j=1 ui,j is mean value for voxel i.

5.3.2 Application to In vivo Human Dataset

Our assessment of the proposed method on in vivo human dataset consists of two

parts.
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In the first part, we performed a preliminary assessment of our method in few in

vivo examples. In this part, our data set consists of brain PET scans collected for one

85-year-old cognitively normal amyloid negative male and one 85-year-old cognitively

normal amyloid positive female participant in the Baltimore Longitudinal Study of

Aging (BLSA). Two scans were performed for each participant, each with a different

radiotracer. In the first scan, participants were injected with 370 MBq of 15O-H2O

and data were acquired over 60s once the counts reached threshold levels. In the

second scan, 555 MBq of 11C-PIB was injected and data were acquired over 70 min.

We use the average of motion-corrected time frames corresponding to 50-70 min post

PIB injection in this analysis. The scans were performed on a GE Advance scanner

[264] and reconstructed using filtered back projection (FBP) algorithm to generate

3D images of 128 × 128 × 35 voxels with voxel size of 2 mm × 2 mm × 4.25 mm. Each

participant also underwent a magnetization-prepared rapid gradient echo (MPRAGE)

scan on a 3T Philips Achieva scanner (repetition time = 6.8ms, echo time = 3.2ms,

flip angle = 8◦, image matrix = 256 × 256 × 170, voxel size = 1 × 1 × 1 × 1.2mm3)

MPRAGE scans were inhomogeneity-corrected, skull-stripped, and anatomically-

labeled using the MUSE algorithm [265]. Each PET scans was rigidly registered onto

their corresponding MPRAGE. The inverse of this transform was applied to both the

inhomogeneity-corrected (but not skull-stripped) MPRAGE and the anatomical label

image to bring them into PET native space. We assessed our non-smooth PLS method,

together with RBV and rVC, using these six PET scans. The FWHM of Gaussian

PSF was set as 7.5 mm, consistent with measurements on GE Advance scanner [266].

We evaluated visual performances and compare standard uptake value ratios (SUVRs)

in different ROIs for these methods.

In the second part, we built a dataset using 15O-H2O brain PET data from 175

participants from the BLSA. The three PVC methods were further assessed based on

the greatest negative age association at baseline (after adjusting for sex) that is given
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Figure 5-4. Transaxial slice (top row), coronal slice (middle row) and sagittal slice
(bottom row) of ground truth (1st column), post-smoothed OSEM (2.5 mm Gaussian filter,
2nd column), rVC (30 iterations, 3rd column), RBV (4th column), smooth PLS (µ = 2,
5th column), aBowsher (µ = 2, 6th column), and non-smooth PLS (µ = 60, 7th column)
with perfect MR guidance. Arrows indicate example locations where different structural
details can be observed for different methods.

by the number of voxels with statistically significant differences within the cortical

gray matter. To do this, voxelwise linear regressions were performed with SUVR as the

outcome variable, and age and sex as the independent variables. Multiple comparison

correction was performed with 1000 permutation tests. Statistical significance was set

when corrected p-value was less than 0.05 for two-sided t-tests.

5.4 Results

5.4.1 Results for Simulation Experiments

Figrue 5-4 shows transaxial, coronal, and sagittal slices for different PVC methods,

where perfect MR guidance (no registration or segmentation errors) was used for

MR-guided PVC methods. Regularization parameters in smooth/non-smooth PLS

and aBowsher were selected so as to balance noise and recovery accuracy in these

methods. Compared to post-smoothed OSEM and rVC methods, all MR-guided
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Figure 5-5. Image patches for different MR-guided PVC methods with different level of
registration and segmentation mismatch. First row: MR guidance with 0 mm registration
mismatch; Second row: MR guidance with 1 mm registration mismatch; Third row: MR
guidance with 2 mm registration mismatch; Fourth row: difference image between first
row and second row; Fifth row: difference image between first row and third row.

PVC methods recovered more structure details. Among the four MR-guided PVC

methods (smooth/non-smooth PLS, aBowsher and RBV), our proposed non-smooth

PLS generated images with comparable structural detail to those obtained using RBV,

which requires segmentation of MR image. Compared to the other segmentation-free

methods aBowsher and smooth PLS, the proposed method generated images with

sharper edges.

Fig. 5-5 illustrates the impact of registration and segmentation errors on different

MR-guided PVC methods. In this figure, we quantitatively compare the results of

smooth/non-smooth PLS, aBowsher, and RBV using different segmentation maps.

The first three rows show zoomed-in image patches of different MR-guided PVC

methods with 0 mm, 1 mm and 2 mm registration mismatch, respectively. We then

subtracted recovered images with 0 mm registration-mismatched MR guidance from
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images with 1 mm and 2 mm registration-mismatched MR guidance. These difference

images are shown in the 4th and 5th rows. For the 3 segmentation-free methods, edges

are seen to become blurry as registration mismatch increases. For RBV, one does not

observe blurry edges when there are registration or segmentation errors, but from the

difference image one can see that the whole image shifted.

Fig. 5-6 plots bias-noise curves of different PVC methods in different ROIs, with

both perfect MR guidance and imperfect MR guidance. For smooth/non-smooth

PLS and aBowsher methods, the curves were generated by changing regularization

parameter µ. Specifically, we use values in the range 10-500 for non-smooth PLS

and 0.6-20 for both smooth PLS and aBowsher methods. For rVC, the curves were

generated by changing the number of iterations, from 10 to 60. Note that plots

for all three registration mismatch levels are shown with the same range of bias

and noise in each ROI in order to reveal the impact of registration mismatch on

quantitative performance of different methods. We notice that RBV with perfect

tissue map depicts the best bias-noise performance. Imperfect tissue map degrades

the performance of RBV. Non-smooth PLS method is inferior to RBV with perfect

tissue map but shows better performance compared to other PVC methods. As

registration mismatch increases, performance of all MR-guided PVC methods degrades

and differences between these methods become less obvious.

5.4.2 Results for In vivo Human Dataset

Fig. 5-7 shows transaxial, coronal and sagittal slices for the 15O-H2O scans with

different PVC methods. Fig. 5-8 shows similar results for 11C-PIB. For both 15O-H2O

and 11C-PIB scans, we observed our proposed non-smooth PLS to generate images

with lower noise. For example, if we quantify noise using standard deviation in

postcentral gyrus, for 15O-H2O scans, non-smooth PLS generated images with spatial

noise on average 49% lower compared to RBV method, and 69% lower compared to
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Figure 5-6. Bias-noise (cov) trade-off curves for different PVC methods in different ROIs
with MR registration mismatch of 0 mm (first column), 1 mm (second column) and 2 mm
(third column).
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Figure 5-7. PVC results on 15O-H2O scans for an amyloid negative (left) and amyloid
positive (right) participant.
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RVC method. For 11C-PIB scans, images from non-smooth PLS have on average 27%

lower noise compared to RBV method and 59% lower noise compared to RVC method.

Meanwhile, non-smooth PLS shows comparable ROI mean activities to those of RBV

and RVC method. For example, in the posterior cingulate region, mean activity from

non-smooth PLS is on average 0.7% higher than RVC method and 13% lower than

RBV method for 15O-H2O scans, and is on average 0.3% higher than RVC method

and 9% lower than RBV method for 11C-PIB scans. In the caudate region, mean

activity from non-smooth PLS is on average 2% higher than RVC method and 5%

lower than RBV method for 15O-H2O scans, and is on average 2% lower than RVC

method and 7% lower than RBV method for 11C-PIB scans.

Fig. 5-9 plots SUVRs from different PVC methods for amyloid negative and

amyloid positive participants and their differences. It can be observed that different

PVC methods lead to increased SUVR compared to uncorrected images. Our method,

together with other PVC methods, provide larger differences between amyloid positive

and amyloid negative scans compared to uncorrected image.

Fig. 5-10 shows the normalized distribution of two-sided t-values for the association

between age and SUVR, and the spatial distribution of statistically significant voxels

for different PVC methods.

5.5 Discussion

In this work, we developed a post-reconstruction PVC method based on deconvolu-

tion with PLS regularization. The method avoids assumption on uniform activity

distribution and requirement of MR segmentation, which are used by most current

post-reconstruction PVC methods. Further, we developed a non-smooth optimization

algorithm based on split Bregman method so that the method could be efficiently

applied on 3D image. Our proposed method was evaluated using both simulated and
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Figure 5-8. PVC results on 11C-PIB scans for an amyloid negative (left) and amyloid
positive (right) participant.

Figure 5-9. Mean concentration in different ROIs for different PVC methods for amyloid
negative (left), amyloid positive (middle) participants and their difference (right).
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real data.

From our simulation experiment results, we first observe that the use of anatomical

information from MRI brings substantial improvement both visually and quantitatively,

as shown in Fig. 5-4 and Fig. 5-6. Specifically, although rVC method, which does not

use MR guidance, leads to improved image contrast and smaller bias compared to

uncorrected images, the images obtained with this method are significantly noisier.

In contrast, the four MR-guided PVC methods are able to control spatial noise

amplifications while further improve quantitative accuracy. Even when reasonable

registration errors occurred in MR guidance, the improvement brought about by MR

information was still considerable.

We next compare the four MR-guided methods: smooth/non-smooth PLS, aBow-

sher and RBV. As mentioned previously, when perfect MR guidance is provided,

RBV method shows best performance, while our proposed non-smooth PLS method

performs better than the other methods. Specifically, if we compare non-smooth PLS

with smooth PLS, we clearly see the improvement brought about by non-smooth

optimization algorithm: both sharper edges in visual results as well as better bias-

noise trade-off performance in quantitative results. For aBowsher method, overall its

performance is better than smooth PLS but inferior to non-smooth PLS method. It

shows the best quantitative performance in the caudate region, but is outperformed

by non-smooth PLS and RBV with perfect tissue map in other regions.

In real scenario, perfect MR guidance is never available. We also studied impact

of imperfect MR guidance on different MR-guided PVC methods. As mentioned

previously, it causes additional blur in output images for segmentation-free PVC

methods, and shifted images for RBV method. Quantitatively, imperfection from

registration and segmentation mainly degrades bias of MR-guided PVC methods.

From Fig. 5-6, we observe that although RBV with perfect tissue map shows the best

performance, at 2 mm registration mismatch, its performance almost overlaps with
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that of non-smooth PLS in several ROIs, such as in WM, putamen, posterior cingulate

and precuneus. The mismatch in segmentation also degrades the performance of RBV.

For tissue map dilated with 0.2 mm sphere, the performance of RBV is similar to

that of non-smooth PLS in several situations, such as in GM in the presence of a 0-

or 1-mm registration error, and in medial frontal, posterior cingulate and precuneus

in the presence of a 1- or 2-mm registration error. In ROIs other than WM, RBV

shows inferior performance to that of non-smooth PLS. As segmentation mismatch

further increases, with tissue map dilated with 0.5 mm sphere, performance of RBV

is similar to aBowsher method in several ROIs, including the GM, putamen, medial

frontal, posterior cingulate and precuneus. For RBV with tissue map dilated using 1

mm sphere, though it still shows improvement compared to post-smoothed OSEM, its

improvement on bias is similar as rVC in most cases, which does not use MR guidance,

regardless of the registration mismatch level. These indicate that the performance of

segmentation-based PVC method, such as RBV, is sensitive to segmentation accuracy.

On the other hand, segmentation-free methods such as smooth/non-smooth PLS and

aBowsher, as explored in this work, are not susceptible to segmentation errors.

Our method was further evaluated using in vivo human data. Our non-smooth

PLS PVC method yields images with better visual quality, which retain the structural

detail while control the image noise at lower level, as shown in Fig. 5-7 and 5-8. Our

method also shows potential to provide larger difference between amyloid positive

and amyloid negative scans comparing to images without PVC, as shown in Fig. 5-9

Furthermore, from Fig. 5-10, we observed the non-smooth PLS method yields the

greatest number of statistically significant voxels where older individuals had lower

SUVR. This indicates our method may enable discovery of effects that would not be

considered statistically significant when no PVC or other PVC methods are applied.
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Figure 5-10. Normalized histograms of two-sided t-values for the age term in the linear
regression model with voxelwise SUVR as the outcome (adjusted for sex). Each row
corresponds to a different PVC method. Red vertical dashed lines indicate the t-values that
correspond to a multiple comparison-corrected (via permutation tests) p < 0.05 threshold.
Number of statistically significant cortical gray matter voxels with a negative and positive
association are indicated to the left and right of the dashed lines, respectively. Sagittal
slices illustrate the extent of the statistically significant clusters on the left medial cortical
surface.
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5.6 Conclusion

We have presented a deconvolution-based post-reconstruction PVC method with PLS

regularization. A non-smooth optimization method based on split Bregman algorithm

is used to effectively solve the regularized deconvolution problem as well as avoiding

additional blur caused by smoothing. We thoroughly quantified the performance of

our method in the case of both perfect and imperfect MR guidance, and compared it

against other voxel-wise PVC methods. Results from simulation experiments indicate

our method has promise to show advanced performance when realistic anatomical

guidance is provided. The proposed method was also evaluated with real data and

show promise performance in the analysis of scans acquired with different radiotracers.

Our results based on simulated and real data provide further confidence regarding

applicability of our methods to routine clinical PET imaging.
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Chapter 6

Conclusions and general discussion

6.1 Chapter 3: Incorporating boundary condition
for Neumann-series-based RTE

We have proposed a Neumann-series-based RTE with boundary condition modeled to

improve photon propagation computations in tissue. In addition, we developed an algo-

rithm for reconstruction of optical properties based on the photon propagation model

we developed. The proposed method was estimated using a Monte Carlo simulated

3D DOI setup. The results indicate the proposed method yield more accurate photon

propagation modeling compared to Neumann-series-based RTE without boundary

condition. Futhermore, in the task of reconstructing absorption coefficients for the 3D

DOI system, the proposed method generates substantially more accurate estimation.

A limitation in our work is that the method was only implemented in homogeneous

mediums, while in practice different biophotonics applications require modeling photon

propagation in heterogeneous mediums. One future work is to extend this model for

heterogeneous medium. Here we describe one possible approach to this. Consider a

heterogeneous medium with K sub-domains, where each sub-domain is characterized

by a different refractive index. Similar to the method in [189], we can derive a set of
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K coupled equations as ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w1 = XΞ1 + XKw1 + XRw1

w2 = XΞ2 + XKw2 + XRw2
...
wk = XΞk + XKwk + XRwk,

(6.1)

where wi is distribution function in ith tissue, Ξi is the source term in ith tissue, which

can be written as Ξi = Si + Twicb, where Si is any direct contribution due to the laser

source in tissue i, and wicb is distribution function at boundary from any neighboring

tissue, and T is transmission operator. Solving this set of coupled equations will

provide distributions in heterogeneous medium. Further, current Neumann-series

framework may require large memory and long computation times when processing

mediums with high scattering coefficients or large geometry. In these cases, diffuse-

approximation-based methods could generate accurate results. Another research

direction is to integrate the Neumann-series method with diffuse approximation meth-

ods. In addition, although Neumann-series-based RTE without boundary condition

has been implemented using GPU [55], the model we developed in this work currently

only has CPU-based implementation. Extending the implementation to GPU could

reduce computation time and potentially allow this model to be applied in more

complex scenarios. This is also an important future work.

6.2 Chapter 4: Reconstruction algorithm for FMT

In this chapter, we developed a reconstruction algorithm for FMT based on sparsity-

initialized MLEM. We evaluated our proposed method together with uniform-initialized

MLEM method and pure sparse recovery method using both homogeneous and het-

erogeneous simulation phantoms. Apart from improved qualitative and quantitative

performance, the proposed method shows several other advantages. Compared to

uniform-initialized MLEM method, the proposed method is faster to execute. Com-

pared to pure sparse reconstruction, the method is more robust to noise amplification
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caused by preconditioning. In addition, our study also demonstrates the importance

of accurately modeling Poisson noise in FMT applications.

In our work, we assumed that there is no background fluorescence signal. However,

in real FMT applications, it is possible that weak background fluorescence signals

exist. Generalizing our current method to the case with background fluorescence

is a future research direction. When background fluorescence occurs, our existing

assumption on spatial sparsity might become invalid. Possible alternatives include

exploring sparsity in other domains such as in the gradient space or wavelet space.

Furthermore, we evaluated the proposed method with extensive simulation studies.

Evaluating the performance of the proposed method using physical phantom and in

vivo animal experiments is another important future work. Finally, in this work, we

obtained the forward model using a Monte-Carlo-based framework. Combining the

proposed reconstruction method with analytical-based forward model such as the

Neumann-series RTE which we described in Chapter 3 is another direction for future

research.

6.3 Chapter 5: Partial volume correction for brain
PET imaging

We developed a deconvolution-based post-reconstruction PVC method with PLS

regularization. Both simulation and in vivo human data were used to evaluate our

proposed method, together with several other voxel-wise PVC methods. Results

demonstrate the proposed method provides fine structure detail while reducing image

noise. In addition, the proposed method shows resilience to mismatches between

anatomical and functional images. Last, voxel-wise statistical analysis indicated the

proposed method to have great potential to reveal voxel-wise effects that would not

be considered statistically significant with other PVC methods.

Future work involves evaluating the proposed PVC method more thoroughly on
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clinical datasets. In this work, we only compared regional standard uptake value ratio

of different PVC methods on a very limited dataset. In future, we plan to evaluate

the mean and variability of regional standard uptake value ratio on larger dataset.

Furthermore, we plan to apply and extend a so-called no-gold-standard technique

[267, 268] to evaluate quantitative performance such as bias and noise of different

PVC methods on clinical dataset. More regional and voxel-wise statistical analysis

will also be performed to study if our proposed PVC method improves separability

between clinical participants with dementia disease from those with normal aging. In

addition, deep learning has attracted much research interest for its wide applications in

PET [269–272]. Recently, deep-learning-based method has been developed to generate

super-resolution PET image from low-resolution image [273, 274]. These methods show

promising results and provde alternative ways to perform partial volume correction.

Comparing our proposed method with deep-learning-based methods is another future

research.

115



Appendix A

Application of computational
breast phantoms to evaluate
reconstruction methods for
fluorescence molecular tomography

Fluorescence molecular tomography (FMT) has potential of providing high contrast

images for breast tumor detection. Computational phantom provides a convenient

way to a wide variety of fluorophore distribution configurations in patients and

perform comprehensive evaluation of the imaging systems and methods for FMT.

In this study, a digital breast phantom was used to compare the performance of a

novel sparse reconstruction method and Tikhonov regularization method for resolving

tumors with different amount of separation. The results showed that the sparse

reconstruction method yielded better performance. This simulation-based approach

with computational phantoms enabled an evaluation of the reconstruction methods

for FMT for breast-cancer detection.

A.1 Introduction

Fluorescence imaging is an emerging optical technique that provides high contrast

image with the use of fluorophores. Previously, Indocyanine Green (ICG) has been

reported for fluorescence image-guided surgery for breast cancer [275]. Recently,
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clinical studies have been conducted to study the feasibility of fluorescence molecular

tomography (FMT) for breast tumor detection [27]. The advent of sparse recon-

struction methods has shown potential of providing more accurate estimation of the

location and intensity of fluorescence distribution compared to conventional method in

FMT [83]. However, studies are required to assess whether the sparse reconstruction

methods indeed yield improved performance for FMT-based breast-cancer imaging.

Computational phantom provides a comparatively easier way to conduct these studies

by allowing modeling of different fluorscence distributions in breast-cancer populations

as opposed to having to actually image patients. In this study, we conducted a

computational human-phantom-based study to compare the performance of sparse

reconstruction method and a traditional Tikhonov regularization method for resolving

tumors in patient images.

A.2 Method

As we have described in Chapter 2, the forward model of FMT is given by

Φ = Gx, (A.1)

where G is system matrix, Φ is detector measurements, and x is unknown fluorescence

yield. To reconstruct the fluorescence yield, the following optimization problem with

Tikhonov regularization is commonly used:

x̂ = arg min
x

∥Gx − Φ∥2
2 + +λ∥Γx∥2

2, (A.2)

where Γ is a weighting matrix. In this case, we choose identity matrix I as the

weighting matrix. For sparse reconstruction method, we choose the sparsity-initialized

MLEM algorithm we described in Chapter 4.
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Figure A-1. Comparison of reconstruction with Tikhonov regularization method and the
sparse reconstruction method. From top row to bottom row, the distances of the center
of two tumors are 2.5 cm, 2 cm and 1.7 cm, respectively.

A.3 Experiments

Simulation-based experiments were conducted to study the ability of FMT for resolving

breast tumor. A breast phantom generated from MR database was used in this

experiment. The phantom was segmented into four different tissues: blood vessels,

skin layer, fat, and fibroglandular tissues. Different optical properties were assigned to

each type of tissue, as described in [276]. Two tumors of size 1.6 cm were inserted in the

breast phantom at difference separation and fluorophore was assumed to concentrate

in the tumors. 40 laser sources and 40 detectors were positioned around the phantom.

Monte Carlo method was implemented to calculate the forward model [68]. Two

different methods, Tikhonov regularization method and the sparsity-initialized MLEM

reconstruction method were used for reconstruction of FMT.
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A.4 Results and conclusions

The result is shown in Fig. A-1. First, we observe while Tikhonov regularization

generate images with oversmoothed edges, the sparse reconstruction method is able

to preserve edges of the two tumors. Further, we notice that for larger separation

between tumors (2.5cm), both Tikhonov method and sparse reconstruction method

can differentiate the two tumors. When the separation between the tumors decreases,

it becomes hard to distinguish the two tumors from images produced by Tikhonov

regularization. However, the sparse reconstruction method is still able to resolve the

two tumors. In addition, we also notice that compared to Tikhonov reconstruction

method, sparse reconstruction provides more accurate estimation of fluorophore

distribution and signal intensity.

In this work, we evaluated the performance of our proposed sparse reconstruction

method for the task of resolving breast tumor and compared it with commonly used

Tikhonov regularization method. Although there have been studies to apply FMT for

the task of human breast tumor detection, the use of sparse reconstruction technique

is very limited in such applications [27, 70]. The results in this study indicate that

sparse reconstruction technique has potential to provide better performance in this

task. In future, we will further evaluate if sparse reconstruction methods outperform

conventional reconstruction method for the task of breast tumor detection in more

realistic circumstance, such as in the case of phantom study and in vivo human study.
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