
 

 

 
UNIVERSITÉ DE MONTRÉAL 

 
 
 
 

 
MULTI-MODALITY DIFFUSE FLUORESCENCE IMAGING 

APPLIED TO PRECLINICAL IMAGING IN MICE 

 
 
 
 
 
 
 

BAOQIANG LI 

INSTITUT DE GÉNIE BIOMÉDICAL 

ÉCOLE POLYTECHNIQUE DE MONTRÉAL 
 
 
 
 
 
 

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION 

DU DIPLÔME DE PHILOSOPHIÆ DOCTOR 

(GÉNIE BIOMÉDICAL) 

JUILLET 2014 
 

 

© Baoqiang Li, 2014.



 

 

 
UNIVERSITÉ DE MONTRÉAL 

 
 

 
ÉCOLE POLYTECHNIQUE DE MONTRÉAL 

 
 
 
 
 
 

Cette thèse intitulée: 
 
 
 

MULTI-MODALITY DIFFUSE FLUORESCENCE IMAGING APPLIED TO 

PRECLINICAL IMAGING IN MICE 

 

 

 

 

présentée par : LI Baoqiang

en vue de l’obtention du diplôme de : 

  

Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de : 

  

 
 
  
 

M. LEBLOND Frédéric

M. 

, Ph. D., président  

LESAGE Frédéric

M. 

, Ph. D., membre et directeur de recherche  

SAVARD Pierre

M. 

, Ph. D., membre  

NEAR Jamie, Ph. D., membre  



iii 
 

 

DEDICATION 

   To My Family  

  致我的家人 

  



iv 
 

 

ACKNOWLEDGMENTS 

This work embraces not only my effort but many others’. First, I would like to thank Prof. 

Frederic Lesage who accepted me in his group, and the China Scholarship Council that awarded 

me a scholarship from the “Chinese government graduate student overseas study program”, 

which practically facilitated my ideal of studying abroad, following, initiated my long, but 

memorable journey to Montreal, Canada.   

Next, living in Montreal, it was very pleasant to find kind friends, with whom I spent 

many of our week-ends and holidays to explore the city finding new and interesting aspects to 

spice up our lives.  

I sincerely thank all the staff in the animal facility at the Montreal Heart Institute, 

particularly Natacha Duquette, Marc-Antoine Gillis, Vanessa Durocher-Granger, Karine Nadeau 

and Robert Clement. Their assistance in the animal manipulation and administrative management 

truly facilitated my scientific works with animals. I furthermore want to specially acknowledge 

my colleagues: Maxime Abran, Romain Berti, Foued Maafi and Philippe Pouliot, who provided 

invaluable technical and experimental support to my research. I am also grateful to other 

members who worked previously or currently in the LIOM Laboratory at Polytechnique, with 

whom we have built a multi-cultural, harmonious and collaborative working environment for our 

lab: Mahnoush Amiri, Pramod Avti, Simon Archambault, Clement Bonnery, Edward Baraghis, 

Samuel Belanger, Karim Zerouali-Boukhal, Alexandre Castonguay, Zhang Cong, Michele 

Desjardins, Simon Dubeau, Peng Ke, Joel Lefebvre, Alexis Machado, Mohammad Moeini, 

Emilie Beaulieu-Ouellet, Nicolas Ouakli, Carl Matteau-Pelletier, Leonie Rouleau, Abas Sabouni, 

Maryam Sadat Tabatabaei Shafiei and Tri Truong Van.   



v 
 

 

In the end, I want to, again, wholeheartedly express my gratitude to my PhD supervisor, a 

talented scientist and a dedicated professor: Frederic Lesage, with all the support and help he 

offered to my research and life. His patient and earnest coaching let me get into, following, 

understand my research subject. And his instruction and direction on my research works helped 

me gradually build confidence and develop deep interest in this research field, which I believe 

will benefit my research career for the future.    

  



vi 
 

 

RÉSUMÉ 

Cette thèse vise à explorer l'information anatomique et fonctionnelle en développant de 

nouveaux systèmes d'imagerie de fluorescence macroscopiques à base de multi-modalité. L’ajout 

de l’imagerie anatomique à des modalités fonctionnelles telles que la fluorescence permet une 

meilleure visualisation et la récupération quantitative des images de fluorescence, ce qui en 

retour permet d'améliorer le suivi et l'évaluation des paramètres biologiques dans les tissus. Sur 

la base de cette motivation, la fluorescence a été combinée avec l’imagerie ultrasonore (US) 

d'abord et ensuite l'imagerie par résonance magnétique (IRM). Dans les deux cas, les 

performances du système ont été caractérisées et la reconstruction a été évaluée par des 

simulations et des expérimentations sur des fantômes. Finalement, ils ont été utilisés pour des 

expériences d'imagerie moléculaire in vivo dans des modèles de cancer et d’athérosclérose chez 

la souris. Les résultats ont été présentés dans trois articles, qui sont inclus dans cette thèse et 

décrits brièvement ci-dessous. 

Un premier article présente un système d'imagerie bimodalité combinant fluorescence à 

onde continue avec l’imagerie à trois dimensions (3D) US. A l’aide de stages X-Y motorisés, le 

système d'imagerie a été en mesure de recueillir l’émission fluorescente et les échos acoustiques 

délimitant la surface 3D et la position des inclusions fluorescentes dans l'échantillon. Une 

validation sur fantômes, a montré que l'utilisation des priors anatomiques provenant des US 

améliorait la qualité de la reconstruction fluorescente. En outre, un étude pilote in-vivo en 

utilisant une souris Apo-E a évalué la faisabilité de cette approche d'imagerie double modalité 

pour de futures études pré-cliniques. 

Dans un deuxième effort, et sur la base du premier travail, nous avons amélioré le 

système d'imagerie par fluorescence-US au niveau des algorithmes, de la précision 
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d'échantillonnage et de la reconstruction. Plus précisément, en combinant maintenant imagerie 

ultrasonore et la profilométrie, à la fois la cible fluorescente et une surface 3D de l'échantillon 

peuvent être obtenues permettant une meilleure reconstruction de fluorescence. De plus, une 

reconstruction basée sur des patrons mesurés sur la surface de détection a été utilisée pour 

augmenter l’efficacité du calcul tout en préservant l’information utile. En retour, cette approche a 

nécessité une correction de la normalisation de Born. Il a été démontré par des simulations et des 

fantômes que les cibles fluorescentes pourraient être récupérés plus précisément et 

quantitativement par cette mise à niveau instrumentale et numérique. Enfin, ce système a été 

validé en imagerie in vivo avec un modèle de tumeurs précliniques. Les résultats ont confirmé 

que cette approche d'imagerie a été en mesure d'extraire des informations à la fois anatomiques et 

fonctionnelles, améliorant ainsi la quantification et la localisation des cibles moléculaires. 

Le troisième article a développé un système multi- modalité combinant la tomographie 

moléculaire fluorescente (FMT) avec l'IRM à nouveau dans le but de faciliter la récupération et 

l'interprétation des informations fonctionnelles. Nos expériences sur fantôme et souris morte 

montrent que des modèles hétérogènes des propriétés optiques, dérivés d'images IRM, sont 

supérieurs à ceux homogènes pour quantifier la fluorescence. Le système FMT- IRM a été utilisé 

pour effectuer de l’imagerie moléculaire in vivo avec un modèle souris d’athérosclérose. Les 

résultats ont montré que les modèles hétérogènes donnent lieu à des reconstructions qui corrèlent 

mieux avec les données ex vivo que leurs homologues homogènes. 

Globalement, cette thèse a été consacrée au développement de systèmes multi-modalité 

pour mesurer la fluorescence chez la souris. Les résultats des trois articles ont évalué la 

faisabilité et les performances de l'approche d'imagerie combinée à des simulations, des fantômes 
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et des souris in vivo. Les résultats suggèrent que la multi-modalité en appui à la fluorescence 

peut être un outil puissant pour les études précliniques et biologiques chez la souris. 
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ABSTRACT 

This thesis aims to explore the anatomical and functional information by developing new 

macroscopic multi-modality fluorescence imaging schemes. Adding anatomical imaging to 

functional modalities such as fluorescence enables better visualization and recovery of 

fluorescence images, in turn, improving the monitoring and assessment of biological parameters 

in tissue. Based on this motivation, fluorescence was combined with ultrasound (US) imaging 

first and then magnetic resonance imaging (MRI). In both cases, the systems characterization and 

reconstruction performance were evaluated by simulations and phantom experiments. Eventually, 

they were applied to in vivo molecular imaging in models of cancer and atherosclerosis in mice. 

Results were presented in three peer-reviewed journals, which are included in this thesis and 

shortly described below.  

A first article presented a dual-modality imaging system combining continuous-wave 

transmission fluorescence imaging with three dimensional (3D) US imaging. Using motorized X-

Y stages, the fluorescence-US imaging system was able to collect boundary fluorescent emission, 

and acoustic pulse-echoes delineating the 3D surface and position of fluorescent inclusions 

within the sample. A validation in phantoms showed that using the US anatomical priors, the 

fluorescent reconstruction quality was significantly improved. Furthermore, a pilot in-vivo study 

using an Apo-E mouse evaluated the feasibility of this dual-modality imaging approach for 

future animal studies. 

In a second endeavor, and based on the first work, we improved the fluorescence-US 

imaging system in terms of sampling precision and reconstruction algorithms. Specifically, now 

combining US imaging and profilometry, both the fluorescent target and 3D surface of sample 

could be obtained in order to achieve improved fluorescence reconstruction. Furthermore, a 
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pattern-based fluorescence reconstruction on the detection side was used to achieve a 

computational efficient but informative reconstruction. In turn, this required a correction of the 

standard Born-normalization by decreasing the attenuation effect for a quantitative fluorescence 

datasets. It was demonstrated with simulations and phantoms that the fluorescent targets could be 

recovered more accurately and quantitatively by this instrumental and computational upgrade. 

Finally, this system was validated during in vivo imaging with a preclinical tumor model. Results 

confirmed that this imaging approach was able to extract both functional and anatomical 

information, thereby improving quantification and localization of molecular targets.   

The third article developed a multi-modality system combining fluorescent molecular 

tomography (FMT) with MRI again with the goal of facilitating recovering and interpreting 

functional information. Our investigations in phantom and dead mouse show that heterogeneous 

models derived from MRI images were superior to homogeneous ones in quantifying 

fluorescence. The FMT-MRI system was the used to perform in vivo atherosclerosis molecular 

imaging with mice. Results showed that, the MRI-derived heterogeneous models resulted in 

reconstructions correlating better with the ex vivo measurements than their homogeneous 

counterparts did.  

Overall this thesis was dedicated to multi-modality targeted fluorescence imaging in mice. 

Results from the three articles evaluated the feasibility and performance of the combined 

imaging approach in simulations, phantoms and mice in vivo. Results suggested that multi-

modality fluorescence imaging might serve as a potent tool for preclinical and biological study in 

mice.  
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CHAPTER 1 GENERAL CONTEXT 

1.1 Overview 

Diffuse Fluorescence Imaging (DFI) has been widely used in biological, preclinical and 

clinical studies because of its excellent sensitivity and specificity (Gibson, Hebden, & Arridge, 

2005; Frederic Leblond, Davis, Valdés, & Pogue, 2010; Frederic Leblond, Tichauer, Holt, El-

Ghussein, & Pogue, 2011). With the administration of an exogenous fluorescent molecular probe, 

receptors expressed during a given disease could be targeted. In some cases, enzymes can 

activate a probe to fluoresce, specifically expressing the activity of the targeted molecules (H. H. 

Chen et al., 2013; Jaffer, Libby, & Weissleder, 2009a; Ripplinger et al., 2012; Sanz & Fayad, 

2008; Tardif, Lesage, Harel, Romeo, & Pressacco, 2011; Vries et al., 2009). In both cases, the 

fluorescent molecules act as an antenna: after being excited, the fluorescent photons escaping 

from the tissue can be detected on the boundary of the tissue by a fluorescence imaging system. 

To quantify the received fluorescence, these boundary measures will be taken as input for a 

model-based 3D fluorescence reconstruction (Gibson et al., 2005). Following this modeling, with 

the reconstruction algorithm, fluorescent concentration can be quantified and localized, thereby, 

revealing the molecular activities in the progression of the disease (Markel, Mital, & Schotland, 

2003). 

In Fluorescence Molecular Tomography (FMT), light within the wavelength range 650 

nm to 800 nm is typically employed in the form of collimated beam or wide-field patterns to 

excite the fluorophores in a given sample (Ntziachristos, Bremer, & Weissleder, 2003). The 

reason is that within this range of wavelengths, the main absorbers in tissue, e.g. deoxy-

hemoglobin (Hb), oxy-hemoglobin (HbO2) and water have relatively low absorption, which 
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allows deeper penetration in tissue and enable signal detection with better signal to noise ratio 

(SNR) (S. A. Prahl, n.d.; L. V. Wang & Wu, 2007). 

In contrast to microscopic imaging techniques, FMT belongs to the regime of 

macroscopic diffuse light imaging and provides millimeter-level spatial resolution, but preserves 

the ability to image up to several centimeters deep in tissue (L. V. Wang & Wu, 2007). Distinct 

from anatomical imaging modalities, such as X-ray computed tomography (CT), magnetic 

resonance imaging (MRI) and ultrasound (US), it yields functional information about the 

biological processes or activities of disease-related molecules (Ntziachristos et al., 2003). 

Furthermore, when compared to ionizing imaging techniques, such as contrast enhanced X-ray 

CT or positron emission tomography (PET) (Fu et al., 2013; Nahrendorf et al., 2010; Ricketts, 

Guazzoni, Castoldi, Gibson, & Royle, 2013), FMT is non-ionizing, thus, does not create a risk 

for subjects with the imaging tasks. Therefore, given its simplicity and low-cost, FMT may have 

great potential in biological and preclinical/clinical applications. 

Depending on the excitation mechanism, fluorescence imaging can be divided into 

frequency-domain, continuous-wave (CW) and time-domain fluorescence imaging (L. V. Wang 

& Wu, 2007). In the frequency-domain, the excitation light wave is modulated with a high 

frequency (e.g. 100MHz) and the measurement consists of both amplitude and phase information 

of the emitted photons. However, CW mode is a special case of the frequency-domain with 

modulation frequency set to zero. In this case the measurement only contains amplitude 

information. In the time-domain technique, a pulsed laser is typically used to excite the 

fluorophore and the emitted photons are recorded by a time-gated camera or photon-counting 

device. The frequency-domain and time-domain are more complex than the CW technique in 

term of system design but could offer more informative datasets to resolve both concentration 
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and lifetime of the injected fluorophores in tissue. However, the CW system has advantages in 

low-cost, easy implementation, and fast acquisitions. Beyond these three modes, recently efforts 

in optimizing the illumination spatial pattern were done. A spatial domain frequency method was 

reported in several studies, e.g. to resolve optical properties in tissue (Weber et al., 2011) as well 

as enhance resolution and contrast of fluorescence imaging (Mazhar et al., 2010). 

In the next sub-chapter, different aspects of FMT will be introduced by briefly reviewing 

the recent literature. The versatility of the fluorescence imaging tools will first be reviewed for a 

variety of applications. Second, FMT, or in general, diffuse fluorescence imaging 

instrumentation will be summarized using recent studies. Then, the latest development of hybrid-

modal FMT and its advantages will be briefly reviewed. Finally, we will review the 

computational progress in FMT, including both forward and inverse problems as well as the data 

calibration techniques.   

1.2 Brief literature review 

Diffuse fluorescence imaging, in general, has been mainly used in preclinical and 

biological studies. Several studies in-vivo were conducted showing that lymphatic function could 

be evaluated by monitoring the fluorescence signal in the micro-circulation following the 

administration of indocyanine green (ICG) (Kwon, Agollah, Wu, Chan, & Sevick-Muraca, 2013; 

Kwon & Sevick-Muraca, 2011; Solomon et al., 2011). The results suggested that by imaging 

fluorescence in lymphatic nodes, lymphatic architecture could be visualized and the progression 

and metastasis of cancer might be staged. Until now, tumorous/cancerous imaging remains one 

of primary applications with fluorescence imaging. Using wide-field fluorescence lifetime 

imaging (FLI), surface tumors could be detected by auto-fluorescence imaging of the skin at 

Applications 
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video-rates (McGinty et al., 2010). In other studies, fluorescence imaging combined with other 

imaging techniques or working alone were employed to characterize tissue properties for the 

diagnosis of skin cancer (Dancik, Favre, Loy, Zvyagin, & Roberts, 2013; Gruber et al., 2010a; 

Nie, An, Hayward, Farrell, & Fang, 2013; Sunar, Rohrbach, Morgan, Zeitouni, & Henderson, 

2013). These studies suggest a great potential of translation to humans for biopsy of cancerous 

tissue. Fluorescence imaging was also employed to characterize brain tumors by using near-

infrared dyes (Davis et al., 2010; Fortin et al., 2012). The biophysics underlying these 

applications is that lesions and normal tissues will show distinctive characterizations with respect 

to the accumulation and metabolism of the fluorescent dye reflected by different levels of 

fluorescent signal intensity and pharmacokinetic rate. Using this principle, tumor neo-vasculature 

was measured by dynamic fluorescence imaging (M. Choi, Choi, Ryu, Lee, & Choi, 2011); and 

tumor contrast was obtained by late-fluorescence mammography aiming to separate malignant 

lesions by assessing tumor capillary permeability (Hagen et al., 2009). Furthermore, fluorescence 

imaging was employed intraoperatively to delineate lesion (tumor) margins (Q. Zhao, Jiang, et 

al., 2011) or to guide the concurrent surgery (Themelis, Yoo, Soh, Schulz, & Ntziachristos, 

2009). It has been argued that the spectroscopic information measured during fluorescence 

imaging could aid in the diagnosis of many other carcinomatous diseases, such as oral cancer 

(Fatakdawala et al., 2013), glioma tumors in the brain (Gibbs-Strauss et al., 2009), prostate 

cancer (Boutet et al., 2009) and pancreatic cancer at early stage (Erten et al., 2010). Fluorescence 

imaging was also demonstrated using tomographic approaches to quantify and localize tumors 

(Ale, Ermolayev, Deliolanis, & Ntziachristos, 2013; Deliolanis et al., 2009; D. S. Kepshire et al., 

2009; Konecky et al., 2012). In these three representative studies, different techniques in FMT, 
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such as hybrid modalities, single photon detection and complete-angle projections were explored 

to retrieve the functional information associated with cancer.   

Cardiovascular imaging is another major application of fluorescence imaging. 

Spectroscopic measures were used to characterize atherosclerotic plaques using time or 

wavelength resolved detection methods (Larsen et al., 2011; Liu, Sun, Qi, & Marcu, 2012; 

Sćepanović et al., 2011; Yinghua Sun et al., 2011). Fluorescence imaging was also used to guide 

surgery for cardiovascular disease (Cooley, 2011). Moreover, as cardiovascular tissue exhibits 

high absorption due to the enriched blood content, in-vivo atherosclerotic imaging was mainly 

performed in the form of endoscopy (Bec et al., 2012; Calfon, Vinegoni, Ntziachristos, & Jaffer, 

2010; Mallas et al., 2012; Razansky et al., 2010; Xie et al., 2012). In these studies, catheter 

probes were used to accommodate a fluorescence detector or coupled with additional US 

transducers to visualize intravascular vessels and characterize atherosclerotic plaques. One in-

vivo study reported autophagy imaging in the heart using FMT by recovering cathepsin activity 

(H. H. Chen et al., 2013). However, until now, very few examples for non-invasive in-vivo 

atherosclerosis imaging exist. Developing such examples is one of the focus point of this thesis.  

Beyond diagnosis, fluorescence imaging also contributed to assess therapy. It was 

reported that time-domain and spatial frequency domain fluorescence imaging could quantify 

fluorophore distribution in order to assess photodynamic therapy (Mo, Rohrbach, & Sunar, 2012; 

Saager, Cuccia, Saggese, Kelly, & Durkin, 2011). In radiotherapy, Cerenkov emission was used 

to excite fluorescent molecular reporters; ensuing fluorescence mapping could potentially 

evaluate and monitor tissue response of therapy (Axelsson, Davis, Gladstone, & Pogue, 2011; 

Demers, Davis, Zhang, Gladstone, & Pogue, 2013). Other examples using FMT include the 

quantification of asthma severity (Korideck & Peterson, 2008); photon-counting or multispectral 
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fluorescence techniques enabled pH sensing with biological samples as well as in small animals 

(Hight et al., 2011; J. Li et al., 2012). Dynamic FLI was used to assess protein-losing 

nephropathy due to renal diseases (Goiffon, Akers, Berezin, Lee, & Achilefu, 2009). A proof-of-

concept study demonstrated the feasibility of employing time-resolved dynamic imaging of ICG 

to provide information on the blood supply to the brain of humans (Milej et al., 2012); 

parameters related with imaging geometries and fluorophore wavelength were optimized for 

imaging amyloid plaques with Alzheimer's disease mice (S B Raymond, Kumar, Boas, & 

Bacskai, 2009). 

Many of the examples introduced above were also extended to humans. In the study of 

carcinomatous disease, fluorescence imaging combined with diffuse optical tomography (DOT) 

was employed to measure the pharmacokinetic rate of ICG to discriminate malignant lesions 

from normal tissue in the human breast (Leproux et al., 2011). Malignant tissue in the human 

breast could also be distinguished from healthy tissue by measuring deoxy-glucose using wide-

field fluorescence imaging (Langsner et al., 2011). In the same application, integration between 

DOT and time-resolved fluorescence was used to recover optical properties and fluorescent 

properties towards a comprehensive diagnosis for breast cancer (W. Zhang et al., 

2013)(Grosenick et al., 2011). A hand-held fluorescence imaging scheme was proposed and 

expected to translate into clinical studies (Erickson et al., 2013; Ge, Erickson, & Godavarty, 

2010; J, Sj, & A, 2009). Ex-vivo fluorescence imaging was also enabled by activatable molecular 

probes: multispectral FMT was employed to reveal matrix metalloproteinases (MMPs) activities 

in the characterization of human carotid plaque (Vries et al., 2009). Multimodal FLI was used to 

characterize the composition, structure and function of human atherosclerotic plaques ex-vivo 

(Yang Sun et al., 2011). Different aspects were investigated for fluorescence imaging guided 
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surgery. Here, a ratiometric fluorescence approach could result in a better delineation of tumor 

boundary in image guided surgery (F Leblond et al., 2011). This maneuver might even be 

achievable by a pulsed light excitation fluorescence imaging method to perform surgery under 

normal room lighting (Sexton et al., 2013).  

The applications discussed above demonstrate the versatility of fluorescence as well as 

the efforts in this field for the development of different aspects. In this sub-section, recent 

instrumental and methodological advancements of fluorescence imaging will be concisely 

introduced. Multi-modal imaging and computational developments, such as forward/inverse 

problems and data calibration techniques will be introduced in the next two sub-sections.  

General development of fluorescence imaging 

Fluorescence imaging can be performed in different geometries. In epi-illumination mode, 

both illumination and detection are conducted on the same side of sample. In trans-illumination 

mode, illumination and detection are conducted on the separate sides of the sample. The former 

is sensitive to depth, but has limited penetration of light in tissue; and it is less immune to auto-

fluorescence contamination. An all optical approach was developed that by dynamically 

measuring reflectance ICG signal, tissue anatomy could be revealed due to the distinctive 

pharmacokinetic rate of different tissue types (Hillman & Moore, 2007). It was reported recently 

that the Mellin-Laplace transform of time-domain reflection data could potentially help probe 

deep inclusions (Puszka et al., 2013). The transmission measures are less sensitive, but have 

better ability to detect objects embedded deeply, which would suggest a better SNR for 

measurements. For example, transmission fluorescence was employed to image biocompatible 

upconverting nanoparticles embedded in mice, which demonstrated an auto-fluorescence free 

detection approach (Vinegoni, Razansky, Hilderbrand, et al., 2009). Transmission fluorescence 
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working in the angular domain might decrease scattering effect to detect deep objects in mice 

(Vasefi et al., 2009). Here, angular domain refers to a technique using the angular filter array 

(AFA) to overcome to collect emission photons going through limited scattering events. A more 

advanced approach is to acquire projection measurement over 360o around the imaging sample, 

which is expected to combine the merits of both reflection and transmission. Investigators 

combined both FMT and X-ray CT to acquire projection dataset in both modalities for animal 

studies in-vivo (Ale et al., 2012a; Ale, Schulz, Sarantopoulos, & Ntziachristos, 2010; Lapointe, 

Pichette, & Bérubé-Lauzière, 2012).  

Besides imaging geometries, the development of detection mechanisms and illumination 

methods also had significant impact on the imaging performance. It has been broadly reported 

that time-domain could provide superior information in term of richness of information over 

CW-mode fluorescence imaging (Holt, Tichauer, Dehghani, Pogue, & Leblond, 2012). Instead of 

measuring optical intensity like the CW-mode does, time-domain measurement has temporal 

resolution up to hundred picoseconds, which could result in the recovery of lifetime of 

fluorophore. Different from CW intensity measures, lifetime measures are immune to 

experimental and biological factors, such as laser power, probe uptake and concentration 

(Goergen, Chen, Bogdanov, Sosnovik, & Kumar, 2012). The benefits of time-domain have been 

proven by theoretical studies (Ducros, Da Silva, Hervé, Dinten, & Peyrin, 2009; Ducros, Hervé, 

Da Silva, Dinten, & Peyrin, 2009). One of the appealing features of time-domain schemes would 

be to reconstruct or separate fluorescence yield and the lifetime of endogenous fluorophores 

(Gao et al., 2010; Nothdurft et al., 2009). And the contrast to background of lifetime measures 

could even be enhanced when employing a fluorophore having a distinct lifetime from the auto-

fluorescence (May, Bhaumik, Gambhir, Zhan, & Yazdanfar, 2009). A time-gated method was 



9 
 

 

used to record the arrival time of photons. So, depending on arrival time of selected photon, the 

depth of fluorescent object could be resolved (Q. Zhao, Spinelli, et al., 2011). Other studies 

demonstrated in simulation and experiments that using early arriving photons could reduce the 

scattering effect in the detection, thereby yielding significant improvements in the quality of 

fluorescence reconstructions (Niedre & Ntziachristos, 2010; B. Zhang et al., 2011; Q Zhu et al., 

2011). Further studies using early arrival photons showed that multiple point-like fluorescent 

inclusions could be separated with millimeter spatial error; and both spatial resolution and image 

contrast were improved. These conclusions were verified by simulation and phantom experiment 

(Pichette, Domínguez, & Bérubé-Lauzière, 2013). Another advantage of time-domain technique 

is lifetime multiplexing due to the distinct lifetime decay profiles of different fluorophores. This 

technique was demonstrated both in phantoms and mice in vivo (J. Chen, Venugopal, & Intes, 

2011; Scott B Raymond, Boas, Bacskai, & Kumar, 2010; Rice, Hou, & Kumar, 2013). Lifetime 

measurements could also be achieved by the frequency-domain modality, using the detected 

intensity and phase information (Chatni, Li, & Porterfield, 2009; DiBenedetto, Capelle, & 

O’Neill, 2012; Elder, Kaminski, & Frank, 2009; Y Lin et al., 2011a). However, either time-

domain or frequency-domain suggests implementation complexity, long acquisition and 

relatively high cost. Strategies have been developed in order to preserve low cost, fast acquisition 

and good performance. Illumination strategies were developed aiming to shorten acquisition time 

while preserving informative datasets. Line excitation was compared with point or area 

illumination and phantom and animal experiments showed it as a feasible illumination scheme to 

potentially achieve quantitative recovery of fluorescence (L. Cao & Peter, 2013; D. Wang, Liu, 

& Bai, 2009). Wide-field excitation was adopted in time-domain fluorescence to reconstruct 

fluorescence lifetime with high throughput acquisition (Venugopal, Chen, & Intes, 2010; L. Zhao, 
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Abe, Barroso, & Intes, 2013). Low modulation frequency and LED illumination was used to 

achieve an alternative solution for FLI (Gioux, Lomnes, Choi, & Frangioni, 2010). In one 

example, a function generator was used to modulate a laser diode; thereby, the frequency-domain 

mechanism became cost efficient (B. Yuan, McClellan, Al-Mifgai, Growney, & Komolafe, 

2009). In this sense, the CW-mode technique could be a good compromise between performance 

and cost (Patel et al., 2010). Further studies showed that early photons detection suffered from a 

low SNR due to the rejection of a great amount of emitted light; hence, first reconstructing with 

the quasi-CW data and then refining with early photons measurements were shown to yield a 

better resolution of fluorescence reconstruction image (Z. Li & Niedre, 2011). More recently, a 

spatial-frequency domain system was developed. In this technique, a low-cost projector was used 

to spatially modulate the CW excitation light for detecting both spatial frequency and intensity 

information. Demonstrated in a phantom study, illumination patterns with multiple spatial 

frequencies were projected on the surface of the imaging object; the depth recovery of 

fluorescent objects could be achieved by varying the spatial modulation frequency (Mazhar et al., 

2010). Spatial-frequency fluorescence acquisition was conducted in tomographic mode with 

rotating view (Ducros et al., 2013). Both theoretical and experimental studies have been 

conducted to optimize illumination patterns to exploit the illumination flexibility as well as 

reduce computation burden (Dutta, Ahn, Joshi, & Leahy, 2010; Ducros et al., 2010; Ducros, 

D’Andrea, Bassi, Valentini, & Arridge, 2012). Arguably, using Cramer-Rao theoretical analysis, 

it was stated that the best depth precision of fluorescent object with FLI was not significantly 

better than the spatially modulated CW technique (Boffety, Allain, Sentenac, Massonneau, & 

Carminati, 2011).   
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Additionally, multi-spectral approaches have been explored to increase the measurement 

dimension in the wavelength domain. First, simulation work was conducted to validate the 

feasibility of employing multispectral excitation for a quantitative fluorescence reconstruction 

(Chaudhari et al., 2009). And it was reported that multispectral excitation might be able to 

separate different fluorophores having different concentrations (Pu et al., 2013). Using a tunable 

wavelength selection device, hyper-spectral excitation was achieved (Klose & Pöschinger, 2011).  

The development of fluorescence imaging was also motivated by precision machining 

and fabrication. For example, investigators used (angular filter array) AFA to overcome the 

effect of scattering in macroscopic fluorescence imaging. By the AFA, only the emitted photons 

going through minimal scattering events would be collected; as a result, the retrieved 

fluorescence mapping could be enhanced to sub-millimeter resolution (Najiminaini et al., 2010; 

Vasefi et al., 2009; Vasefi, Belton, Kaminska, Chapman, & Carson, 2010). Separately, a 

handheld fluorescence imager probe consisting of micro-electromechanical systems (MEMS)-

based scanning mirror was developed. And its ability for 3D fluorescence tomography was 

evaluated in in-vivo imaging of small animals (He et al., 2012). Moreover, another study 

reported that a micro-lensed dual-fiber optical probe would largely improve the detection 

efficiency of light, hence, result in a better SNR of measurement (H. Y. Choi et al., 2011).  

These state-of-the-art techniques have also been pursed to work in conjunction with 

complementary anatomical imaging modalities, such as MRI, X-ray CT, and US. The benefits of 

this combination are multiple and improvements significant. In one instance, photo-acoustic 

tomography (PAT) was combined with FMT, thus the high resolution of PAT and high 

sensitivity of FMT could be correlated to for a comprehensive pathological analysis (B. Wang, 

Multi-modality fluorescence imaging 
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Zhao, Barkey, Morse, & Jiang, 2012). A clinical study was conducted to reconstruct oxygen 

saturation and water content of joint tissues to separate osteoarthritic joints from healthy ones in 

the hand. In this study, the physiological parameters were recovered guided by the X-ray CT 

images (Z. Yuan, Zhang, Sobel, & Jiang, 2010). Likewise, a fluorescence probe coupled with 

transrectal US was used on a prostate phantom, and demonstrated its feasibility on guiding 

biopsies of tumors (Laidevant et al., 2011). Also, US images were used to provide anatomical 

prior information in white light excited fluorescence imaging; the recovered protoporphyrin IX 

(PpIX) mapping was capable of evaluating photodynamic therapy for human skin tumor (Flynn, 

DSouza, Kanick, Davis, & Pogue, 2013). A handheld fluorescence imager combined with an 

acoustic sensor was able to detect small fluorescent objects deep in a phantom, as well as 

determine imager orientation and phantom geometry (Erickson, Martinez, Gonzalez, Caldera, & 

Godavarty, 2010).  

Several studies showed that the prior information recovered from anatomical images 

could improve the quality of reconstructions in terms of quantification and localization. X-ray 

images were used to provide prior information to determine optical properties for 

bioluminescence tomography (Naser & Patterson, 2010a). Similar work showed that X-ray CT 

images provided anatomical guidance for FMT; and the image accuracy was improved even 

when using limited projection scans for FMT (Radrich, Ale, Ermolayev, & Ntziachristos, 2012). 

Microcomputed tomography (MicroCT) was also employed to couple with single photon 

counting FMT for small animal imaging; and with CT image guidance, PpIX was accurately 

recovered from mouse phantoms (D. Kepshire et al., 2009). Beyond anatomical priors, other 

studies showed that PET functional priors, which were also specific to a lesion, could improve 

fluorescence reconstruction when using targeted molecular fluorescent probe (C. Li, Wang, Qi, 
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& Cherry, 2009). Likewise, optical properties could be reconstructed by CW DOT; subsequently, 

the simulation of photons propagation could be optimized for a better fluorescence 

reconstruction (Naser & Patterson, 2010).   

Tri-modality imaging appears as a more sophisticated imaging strategy. Herein, a 

commercial microPET/CT was integrated with frequency-domain fluorescence imaging and 

employed with small animals to image fluorescent agent targeting on orthotopic growth of 

human prostate cancer (Darne et al., 2012). Also, the combination of MRI, DOT and FMT could 

provide anatomical and functional priori information for an improved fluorescence 

reconstruction. In this last study, MRI anatomy guided the recovery of optical properties of tissue. 

Then both the anatomical and functional information helped recover a fluorescent inclusion 

embedded 15 mm deep in rat with less than 5% quantification error (Yuting Lin, Ghijsen, 

Nalcioglu, & Gulsen, 2012). Another study demonstrated that with both X-ray CT anatomy and 

DOT functional information, fluorescence could be quantitatively recovered. An in vivo 

evaluation showed quantification errors as low as 2% (Yuting Lin et al., 2010b).  

As FMT process involves model-based reconstruction, the developments of forward 

modeling and the inverse problem are critical in this diffuse light imaging technique. The 

forward modeling is the process describing photons propagation in tissue and linking the 

variation of optical/fluorescent properties of tissue to individual sources or detectors. Monte 

Carlo (MC) is one of the most commonly used methods to simulate photons propagation. A MC 

program was presented in 1995, to simulate photons traveling in tissue with multi-layer structure. 

High agreement was reached with analytical diffusion models (L. Wang, Jacques, & Zheng, 

1995). Following, the tMCimg algorithm was proposed to simulate photons in tissues having 

Reconstruction, data extraction and calibration  
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complex 3D geometry (Boas, Culver, Stott, & Dunn, 2002). More recently, meshed based MC 

was developed, which displayed an accuracy comparable to analytical diffuse models for targets 

with curved boundaries (Fang, 2010). A direct MC algorithm was also reported that stored 

photons traveling paths and then showed that fit between fluorescent properties and tissue 

absorptions could be completed rapidly (Kumar, 2012). In addition to MC, radiative transfer 

equation (RTE) derived forward modeling was also broadly employed in fluorescence 

reconstruction. Several studies showed its accuracy and agreement with MC (Liemert & Kienle, 

2012; Montejo, Klose, & Hielscher, 2010). To simplify the RTE in terms of complexity and 

computation time, the diffusion equation has also been commonly used. DE is the first order 

angular approximation to the RTE under an approximation that as µµ >>, , which is true when 

light travels a few millimeters in tissue but less accurate close to boundaries. In one study, an 

additive correction was added to the DE; and substantial improvements were shown in 

comparison to standard DE (Lehtikangas, Tarvainen, & Kim, 2012). Another way to improve the 

DE was to combine both RTE and DE. Specifically, DE was replaced with RTE in the spatial 

regions where the modeling accuracy increased (Gorpas & Andersson-Engels, 2012). Other 

high-order approximations of RTE were also explored and the improvement of modeling 

precision was observed comparing with the standard DE (Lu et al., 2010). 

The inverse problem aims to retrieve the fluorescence properties, given the weight matrix 

found by the forward modeling and the experimental measurements. Since inversion involves 

taking the inverse of the weight matrix, the inverse computation is unavoidably ill-posed, thus is 

commonly resolved iteratively. Tikhonov Regularization (TR) is regarded as one of commonly 

used techniques in fluorescence reconstruction (Arridge & Schotland, 2009). Specifically in 

multi-modality fluorescence imaging, anatomical prior information can be coupled into the 
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objective function as a penalty term to constrain the optimization process (Yalavarthy, Pogue, 

Dehghani, & Paulsen, 2007). In addition to the L2 norm that is often used to integrate the prior in 

TR, other methods have been investigated to better utilize the prior for fluorescence 

reconstruction. The L1 norm was suggested as a penalty term to regularize the reconstruction, 

and it was shown that it gave sparse solutions and could avoid the over-smoothing effects 

particularly when solving sparsely localized small fluorescent objects (Basevi et al., 2012; 

Chamorro-Servent et al., 2013; Kavuri, Lin, Tian, & Liu, 2012; Q. Zhang, Chen, Qu, Liang, & 

Tian, 2012). A total variation regularization was proposed showing its advantages over the L2 

norm of avoiding over-smoothness and enhancing the spatial resolution of fluorescent object in 

the reconstruction fluorescence images (J F P-J Abascal et al., 2011; Behrooz, Zhou, Eftekhar, & 

Adibi, 2012; Freiberger, Clason, & Scharfetter, 2010). A joint L1-total variation norm was seen 

to have the advantages of preserving the edge and the local smoothness (Dutta, Ahn, Li, Cherry, 

& Leahy, 2012). In all these techniques, the regularization parameter is also a subtle but 

important point to adjust the strength of the penalty term. Here, a L-curve method was often used, 

with which the regularization parameter would be determined at the corner of the log-log plot of 

the regularized solution and the norm of the corresponding residual (Hansen & O’Leary, 1993). 

Also, it was demonstrated that a U-curve method could be used to select the regularization 

parameter in the reconstruction of DFI (Chamorro-Servent, Aguirre, Ripoll, Vaquero, & Desco, 

2011). Instead of these automatic methods, an optimal value of regularization parameter was 

often determined empirically (Yalavarthy, Pogue, Dehghani, & Paulsen, 2007). 

Given a well-developed reconstruction algorithm, data of good quality is expected to 

bring good results. In this sense, data calibration can be used to cancel off experimental factors, 

or somehow bypass the difficulties in the forward model. Here, (Born-normalization) BN has 
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been widely applied in fluorescence imaging, by which the ratio between fluorescent signal and 

intrinsic light signal is taken as input for the reconstruction. With this approach, experimental 

factors, such as laser power and coupling loss can be cancelled (Ntziachristos & Weissleder, 

2001). In another study, a workflow of calibration steps was elaborated for a CT-guided FMT 

system. The phantom results indicated the importance of careful calibration (Tichauer et al., 

2011). When guided by anatomical image, the sampling of problematic data could be reduced; 

thus the fidelity of reconstruction was improved (X. Zhang et al., 2011). Also, work was done to 

reduce the image artifact due to tissue heterogeneity. In one study, fluorescence from the targeted 

lesion was corrected by an excitation image to reduce the artifact induced by the spurious 

fluorescent signal because of the parts of tissue that was thin or had low-absorption (Mohajerani, 

Adibi, Kempner, & Yared, 2009). Fidelity of measurements can also be enhanced experimentally. 

In one study, specific fluorescence signal was subtracted from an unbounded surrogate. This 

dual-tracer approach reduced the background signal originated from the bounded probe; thereby 

demonstrating substantial improvement in image contrast (Tichauer et al., 2013). Furthermore, 

good acquisition means having of a high SNR. In this endeavor, automatic control of imaging 

exposure time helps avoid saturation for the thin tissues, and enable high signal amplitude for the 

absorbing portions, ultimately to ensure linearity of measurement (D. L. Kepshire, Dehghani, 

Leblond, & Pogue, 2009). In fluorescence imaging, excitation light leakage contaminates the 

fluorescence signal. To overcome this, the combination between appropriate filter and 

collimation optics could efficiently reject excitation light thus potentially improve the detection 

sensitivity of fluorescence (B. Zhu, Rasmussen, Lu, & Sevick-Muraca, 2010).  

Methods have been investigated to speed up the computation for both forward modeling 

and inverse problem. For instance, a coupled Boundary element method (BEM)-finite element 
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method (FEM) computational approach simplified the nodes for outer tissue but kept the 

complexity for the internal ones. And the computational speed using this approach was shown to 

be faster than the standalone FEM (Srinivasan, Ghadyani, Pogue, & Paulsen, 2010). The size of 

the forward model matrix could be compressed by wavelet methods whilst preserving the 

significant information (Correia, Rudge, Koch, Ntziachristos, & Arridge, 2013; Ducros et al., 

2011). In a separate study, the wavelet method was applied to reduce model dimension in order 

to speed up the computation (Landragin-Frassati, Dinten, Georges, & Da Silva, 2009). Principal 

component analysis (PCA) methods were also used to reduce measurement redundancy for a fast 

and informative reconstruction (X. Cao et al., 2013; Mohajerani & Ntziachristos, 2013). Along 

the same line, a fast reconstruction was achieved by an iterated shrinkage based reconstruction 

method with sparsity regularization, showing accurate results with limited measurement data 

(Han et al., 2010).  

Fast computations could also be achieved by advanced programming techniques. A 

matrix-free technique was developed using a Matlab function, called ‘gmres’, to optimize the 

objective function, in which the creation and storage of big Jacobian matrices were avoided, thus 

computation burden reduced (Zacharopoulos et al., 2009). Different studies demonstrated that 

the graphics processing unit (GPU) based parallel computing could largely shorten the 

computation in a MC based forward modeling (Fang & Boas, 2009), as well as for both forward 

modeling and inverse problem in a DE based scheme (Freiberger, Egger, Liebmann, & 

Scharfetter, 2011).  

1.3 Organization of the thesis by objectives 

Three objectives were set in this thesis and each is associated with different hypotheses.  
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Objective #1:

• Hypothesis #1-1: The fluorescent and structural information recorded from the 

fluorescence-US system could benefit the extraction of fluorescent functional 

information.      

 To develop a low-cost multi-modality imaging system combining CW 

transmission fluorescence imager and home-made single-element-transducer US system. 

Proof-of-concept study was conducted to characterize the system and assess its feasibility 

for in-vivo animal imaging.  

• Hypothesis #1-2: This low-cost combined system could potentially provide an 

imaging strategy for in-vivo study with mice. 

The article that addressed this objective is: 

Baoqiang Li, Maxime Abran, Carl Matteau-Pelletier, Léonie Rouleau, Tina Lam, Rishi Sharma, 

Eric Rhéaume, Ashok Kakkar, Jean-Claude Tardif and Frédéric Lesage, "Low-cost three-

dimensional imaging system combining fluorescence and ultrasound," J. Biomed. Opt. 16, 

126010 (Dec 06, 2011). 

Objective #2:

• 

 The second objective was to improve the fluorescence-US system in 

terms of sampling precision and reconstruction mechanism. The system would further be 

validated using in-vivo molecular imaging with tumorous murine model. 

Hypothesis #2-1:

• 

 An electron multiplying charge coupled device (EMCCD) camera 

detection will enrich the recording of fluorescent emission. The US subsystem and 

the profilometer will provide accurate structural information of the imaging sample.  

Hypothesis #2-2:

The article that addressed this objective is: 

 This fluorescence-US system can serve as a potent tool for 

preclinical tumorous imaging study with mice.   
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Baoqiang Li, Romain Berti, Maxime Abran and Frederic Lesage, “Ultrasound guided 

fluorescence molecular tomography with improved quantification by an attenuation compensated 

born-normalization and in vivo preclinical study of cancer,” Rev. Sci. Instrum., vol. 85, no. 5, p. 

053703 (May 2014). 

Objective #3:

• 

 Develop a MRI-guided FMT system for atherosclerotic imaging with 

mice. 

Hypothesis #3-1:

• 

 MRI anatomy can help optimize the forward modeling for 3D 

fluorescence reconstruction. 

Hypothesis #3-2:

The article that addressed this objective is: 

 This multi-modality imaging approach can achieve quantitative 

fluorescence reconstruction for atherosclerotic studies with mice. 

Baoqiang Li, Foued Maafi, Romain Berti, Philippe Pouliot, Eric Rhéaume, Jean-Claude Tardif, 

and Frederic Lesage, "Hybrid FMT-MRI applied to in vivo atherosclerosis imaging," Biomed. 

Opt. Express 5, 1664-1676 (2014).  

The thesis is planned as follows: In the second chapter, the basic theory of diffuse 

fluorescence imaging is described, which includes the concepts of forward modeling, inverse 

problem, as well as how to reconstruct fluorescence targets from boundary measurement (BM). 

From the third chapter to the fifth chapter, three published papers are presented addressing the 

objectives above. In these three chapters, DFI was first incorporated with US imaging, and then 

MRI. The benefits of these anatomical modalities were evaluated by simulation, phantoms and 

mice experiments in vivo. In the sixth chapter, a discussion of the advantages as well as 

limitations of the proposed multi-modality imaging approaches is discussed. Finally, the thesis is 

concluded in the seventh chapter.  
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CHAPTER 2 THEORY OF DIFFUSE FLUORESCENCE IMAGING 

The theory behind Diffuse Fluorescence Imaging (DFI) consists of forward modeling and 

solving the inverse problem (Arridge & Schotland, 2009; L. V. Wang & Wu, 2007). The former 

predicts how the photons propagate through tissue with known optical properties of tissue, 

source/detector positions, as well as power and direction of illumination. The outcome of the 

forward modeling is a weight matrix. The latter is then used to reconstruct the fluorescent/optical 

properties from BM based on this same weight matrix which may be iteratively modified during 

this process. When linearizing the system, a simplified description of fluorescence reconstruction 

can be modeled by:   

 AXY =  (2.1) 

where Y represents the experimental measurements; X is the fluorescent properties to be 

reconstructed; A is weight matrix. Having the measurement, X could be reconstructed by 

inversing the weight matrix A: 

 YAX 1−=  (2.2) 

The inverse of the matrix A is often ill-posed and computationally demanding to compute. Hence, 

sophisticated method has been developed to reduce the ill-posedness of the inverse problem. 

Furthermore, for accuracy, the forward modeling needs an accurate geometrical 

definition of the problem domain. This requirement motivates the incorporation with 

supplemental anatomical imaging modality. As an added bonus, the anatomical images can also 

be used to regularize the fluorescence reconstruction.  

2.1 Forward modeling 

Several methods exist to simulate the photons propagation in biological tissue. MC 

methods stochastically model a photon trajectory as random walk (L. Wang et al., 1995; Fang & 
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Boas, 2009; Boas et al., 2002). The eventual evaluation of a given process is estimated with 

averaging multiple independent photons. The RTE method models photons transport analytically 

(Gorpas & Andersson-Engels, 2012). Because of its complexity, it is often simplified to the DE 

under the approximation of as µµ >>, . The DE method is less accurate in comparison to MC and 

RTE, but computationally efficient, therefore, has been widely adopted in simulating photons 

propagation. 

In this subchapter, the forward modeling will be strictly based on the DE in the CW mode. 

Nonetheless, the concepts, such as Green function, weight matrix can be translated to other 

modeling methods. Please refer to other materials (Arridge & Schotland, 2009; Dehghani et al., 

2009; Markel et al., 2003; L. V. Wang & Wu, 2007) for a detailed equation derivation and 

comprehensive understanding of forward modeling.  

The fluorescent photons propagation in diffusive medium can be described by the 

following coupled diffusion equations. Under the principle of red-shift (L. V. Wang & Wu, 

2007), the fluorophore embedded in medium absorbs photons at the wavelength of xλ ; and then 

emits fluorescence at wavelengths greater than xλ , mλ . Because optical properties ( ,
sµ and aµ ) 

are wavelength dependent, the photon propagation in medium is described by the following two 

equations: 

 ),(),(])([),()( ωωωµω rqrUirccrUrD xaxxx =++∇⋅∇−  (2.3) 

 
2)]([1

)(1),()()(),(])([),()(
r
rirUrrrU

c
irrUrD xflmammm ωτ

ωτωµηωωµω
+
−

=++∇⋅∇−  (2.4) 

where the subscripts x and m represent excitation wavelength and emission wavelength, 

respectively; r is a random position in the imaging medium Ω; ω is modulation frequency, which 

equals to zero in the CW mode. The term ),( ωrU represents the photon density; )(raµ is the 



22 
 

 

optical absorption coefficient;
))()((3

1)( , rr
rD

sa µµ +
=  is the diffusion coefficient with )(, rsµ

representing the reduced scattering coefficient; τ and η are the lifetime and quantum yield of 

fluorophore, respectively; )(rflµ is the absorption coefficient of fluorophore; q(r,ω) is the photons 

density source strength; c is velocity of light in the medium. The first equation describes the 

propagation of photons at the excitation wavelength in the medium. In turn, the second one 

describes the propagation of photons at the fluorescent emission wavelength in the medium. For 

each source-detector pair, the coupled partial differential equations can be solved by the Green’s 

function method. Without giving the detailed equations derivation, the photon density ),( ωrU x of 

the equation (2.3) is incorporated into the equation (2.4) as a part of the source term. Thus,

),( ωrU m can be solved from the equation (2.4) as: 

 rdrrGrArrGKrrU dmsxdsm
3),()(),(),( ∫Ω=  (2.5) 

where )(rA is the fluorescent yield, which can be represented as flA ηµ= ; here, Cfl εµ = ; and ε ,

C are the quantum yield and concentration of fluorophore, respectively; xG is the Green’s 

function describing photons propagation at the excitation wavelength from the source position sr

to a random position r inΩ . Likewise, mG is the Green’s function describing photons propagation 

at the emission wavelength from r to the source position sr in Ω . The parameter K represents 

experimental factors, such as source power, camera gain and coupling loss.  

Previous studies demonstrated that using a so-called BN could result in a quantitative 

measuring. Here, the BN is a ratio that dividing the fluorescence emission light by the intrinsic 

absorption light to diminish the experimental effects such as source intensity, detector gain and 
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coupling efficiency (Ntziachristos & Weissleder, 2001; Vinegoni, Razansky, Figueiredo, 

Nahrendorf, et al., 2009). In this formulation, this normalization scheme is directly given by:  

 rdrrGrArrG
rrGrrU

rrUrrU dmsx
dsxdsx

dsm
dsB

3),()(),(
),(),(

),(),( ∫Ω==
α  (2.6) 

where BU is the born normalization field; the constantα is a calibration factor re-scaling the 

fluorescence amplitude which could be experimentally determined by measuring fluorophores of 

known concentration (Frederic Leblond et al., 2009; Soubret, Ripoll, & Ntziachristos, 2005; 

Vinegoni, Razansky, Figueiredo, Nahrendorf, et al., 2009). From the equation (2.6), a sensitivity 

matrix ),( ds rrS is obtained for each source-detector pair, as follows:  

 rdrrGrrG
rrG

rrS dmsx
dsx

ds
3),(),(

),(
1),( ∫Ω=  (2.7) 

with the matrix ),( ds rrS describing photons propagation between the source position of sr and the 

detector position dr . In experiments, measurement with multiple source-detector pairs will be 

acquired. For notation, the sensitivity matrix for the ith measurement is presented as iS with each 

measurement corresponding to one source-detector pair. So, for total N measurements, the 

weight matrixW is built as: 

 T
NiMN SSSSW ],,,,,[ 21 =×  (2.8) 

where M is number of element of the sensitivity matrix S . 

As shown, the coupled DEs are solved to first have the Green function mxG , for either a 

source or a detector; and ultimately form the weight matrixW . Likewise, mxG , could also be 

computed by MC and RTE; and same process would be applied to finally generateW .   
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2.2 Inverse problem 

In experiments, the optical signal of both the excitation wavelength and the emission 

wavelength are typically recorded. As reported, this enables to perform a BN ratio which will 

cancel off experimental factors, such as detector gain, detection exposing time, power of incident 

light and coupling loss. Instead of the direct fluorescent measurement, using the BN ratio is 

expected to enhance the quantification of the reconstruction (Ntziachristos & Weissleder, 2001).  

In practice, the BN ratio BM is calculated by dividing the measurement at the 

fluorescence emission wavelength mM by the measurement at the excitation wavelength xM , both 

at the same detector position dr : 

 
x

m
B M

MM =  (2.9) 

However, imperfect filtering might induce signal contamination by allowing leakingθ percent of the 

excitation signal leaking into the fluorescence channel. In such case, the BN ratio can be 

corrected by: 

 
x

xleakingm
B M

MM
M

θ−
=  (2.10) 

with the value of leakingθ estimated experimentally by measuring a sample without fluorescent 

inclusion, given by:  

 '

'

x

m
leaking M

M
=θ  (2.11) 

where, '
mM and '

xM are the optical measurements recorded at the fluorescence emission channel 

and the excitation filter channel, respectively.  
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The reconstruction is started by minimizing the following objection function (Davis et al., 

2007a; Dehghani et al., 2009; Yalavarthy, Pogue, Dehghani, & Paulsen, 2007; Yalavarthy, 

Pogue, Dehghani, Carpenter, et al., 2007): 

 22
χλχ LWmeas +−Φ=Ω  (2.12) 

Taking the first-order condition, 0=
∂
Ω∂
χ

, leads to the following iterative minimization process: 

 i
C
i

meas
i

TTT
i WLLWW χλχ +Φ−Φ+= −
+ )(][ 1
1  (2.13) 

Here, measΦ and CΦ are the experimental and simulated Born ratios; W is the weight matrix; χ

represents the fluorescence yield εηC, in which ε, η and C are the extinction coefficient, quantum 

yield and concentration of the fluorophore, respectively. The matrix L encodes the prior 

localization of fluorescence emission in the Laplacian form (Yalavarthy, Pogue, Dehghani, & 

Paulsen, 2007); it is used to constrain reconstruction as a soft-prior. λ is the regularization 

parameter to adjust the strength of the penalty term. Finally, reconstruction it typically performed 

iteratively, and i represents the iteration index. Convergence is considered achieved when the 

projection error between two iterations is below 1%. However, a maximum of eight iterations it 

typically imposed to avoid the estimated error increasing (Yalavarthy, Pogue, Dehghani, & 

Paulsen, 2007).  

2.3 Prior guided fluorescence reconstruction 

The anatomical image can benefit both the forward modeling and the inverse problem. As 

discussed in the literature review in the previous chapter, separating different tissue types or 

organs in the anatomical images can allow specifically assigning the known optical properties to 

each tissue type or organ.  With the proper assignment of the optical properties (Alexandrakis, 

Rannou, & Chatziioannou, 2005; S. A. Prahl, n.d.), the photon propagation in tissue can be more 
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precisely simulated; thus a more accurate weight matrix W would be expected for a better 

reconstruction. On the other hand, the structural prior derived from anatomical images can also 

be used to construct matrix L in equation (2.13) to constrain the reconstruction in a Laplacian 

form(Davis et al., 2007a; Yalavarthy, Pogue, Dehghani, & Paulsen, 2007). The mathematical 

form of L that is typically used is indicated below: 

 

NLij /1
1

0








−=  

if i and j are not in the same region  

 if i and j are in the same region (2.14) 

 if i=j  

Here, N represents the number of nodes. The anatomical image can also be co-registered with 

fluorescent functional images to provide a comprehensive interpretation; therefore, providing a 

valuable supplement to fluorescence imaging.  
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CHAPTER 3 ARTICLE #1: LOW-COST THREE-DIMENSIONAL 

IMAGING SYSTEM COMBINING FLUORESCENCE AND 

ULTRASOUND 

Baoqiang Li1,2, Maxime Abran1,2, Carl Matteau-Pelletier1,2, Léonie Rouleau1,2,3, Tina Lam4, 

Rishi Sharma4, Eric Rhéaume2, Ashok Kakkar4, Jean-Claude Tardif2, Frédéric Lesage1,2 

1Institute of Biomedical Engineering, École Polytechnique de Montréal, Montreal, Canada. 

2Montreal Heart Institute, Montreal, Canada 

3Génie Chimique et Biotechnologique, Université de Sherbrooke, Sherbrooke, Canada 

4Chemistry Department, McGill University, Montreal, Canada 

3.1 Presentation of the article 

This article (B. Li, et al., 2011) aimed to address the first objective of this thesis. In this work, we 

developed a low-cost fluorescence-US imaging system. Characterized by phantoms, it was 

shown that the supplemental US information could improve the fluorescence reconstruction. 

Also, proof-of-concept experiment with mice demonstrated its feasibility for future in vivo study. 

This article was published in Journal of Biomedical Optics. 

3.2 Abstract 

In this paper, we present a dual-modality imaging system combining 3D CW trans-illumination 

fluorescence tomography with 3D US imaging. We validated the system with two phantoms, one 

containing fluorescent inclusions (Cy5.5) at different depths, and another varying-thickness 

semi-cylindrical phantom. Using raster scanning, the combined fluorescence/US system was 

used to collect the boundary fluorescent emission in the X-Y plane, as well as recovered the 3D 
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surface and position of the inclusions from US signals. US images were segmented to provide 

soft a prior for the fluorescence image reconstruction. Phantom results demonstrated that with 

priors derived from the US images, the fluorescent reconstruction quality was significantly 

improved. As further evaluation, we show pilot in-vivo results using an Apo-E mouse to assess 

the feasibility and performance of this system in animal studies. Limitations and potential to be 

used in atherosclerosis studies are then discussed. 

3.2.1 Key words 

Fluorescence, US, reconstruction, imaging, tomography, prior information, atherosclerosis 

3.3 Introduction 

Diffuse optical fluorescence tomography has gradually been applied in biological research and 

pharmaceutical industry as it has the potential to lift topographic fluorescence techniques to a 

quantitative method for imaging molecular and cellular activity using specific fluorescent agents 

(Gibson et al., 2005; Frederic Leblond et al., 2010; Soubret et al., 2005). However, while 

multiple demonstrations of image reconstruction have been published, quantification of 

fluorescence signals in 3D remains a challenge. Instrumentation for fluorescence imaging comes 

in different flavours with camera based broad beam imaging being the most common 

configuration (Frederic Leblond et al., 2010). Pogue BW et al found that raster-scanned point 

sampling system had advantages over broad beam CCD camera system towards accurate 

quantification of fluorescence signals (Pogue, Gibbs, Chen, & Savellano, 2004). Epi-illumination, 

which illuminates objects and collects emission on the same side, is severely limited with respect 

to quantification when probing deep objects in tissue (a few millimetres) due to light absorption 

and scattering (Frederic Leblond et al., 2010). It is also subject to the non-specific signal 

contamination such as auto-fluorescence originating from the surface in small animals. Recent 
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work demonstrated that a camera based epi-illumination system could possibly resolve reflected 

GFP-like fluorescence signals from depth up to 10 mm in a phantom of optical properties μa=0.1 

mm-1 and μs’=1 mm-1 (Björn, Ntziachristos, & Schulz, 2010). But the quality of the image 

deteriorated severely as the depth increased and the absorption coefficient used was not coherent 

with measured in vivo values for the wavelength employed in this study. However, in 

transmission mode, a collimated laser beam with large energy deposition, but still under the 

safety limits, can traverse several centimetres into the tissue (D’Andrea, Spinelli, Comelli, 

Valentini, & Cubeddu, 2005; Gibson et al., 2005; Graves, Ripoll, Weissleder, & Ntziachristos, 

2003; Kumar, Raymond, Dunn, Bacskai, & Boas, 2008; Leavesley, Jiang, Patsekin, Rajwa, & 

Robinson, 2008; Frederic Leblond et al., 2010; Montet et al., 2007; Ntziachristos & Weissleder, 

2002; Patwardhan, Bloch, Achilefu, & Culver, 2005; Zavattini et al., 2006a). 

Besides imaging geometries, recent improvements in diffuse fluorescence imaging were 

made by incorporating structural information into the model-based reconstructions (Ale et al., 

2010; Brooksby, Dehghani, Pogue, & Paulsen, 2003; Davis et al., 2007a, 2008; Fang, Moore, 

Kopans, & Boas, 2010; Guven, Yazici, Intes, & Chance, 2005; Intes, Maloux, Guven, Yazici, & 

Chance, 2004; D. Kepshire et al., 2009; Y Lin et al., 2011a; Y Lin, Gao, Nalcioglu, & Gulsen, 

2007; Yuting Lin et al., 2010a; Schulz et al., 2009; Tan & Jiang, 2008; Yalavarthy, Pogue, 

Dehghani, & Paulsen, 2007; Yalavarthy, Pogue, Dehghani, Carpenter, et al., 2007). For example, 

Fang et al used a composition-based image segmentation method to combine X-ray structural 

priors into DOT for breast imaging (Fang et al., 2010). Kepshire et al reported a study, which 

combined X-ray microCT with fluorescence and assessed performance using protoporphyrin IX 

phantoms (D. Kepshire et al., 2009). The benefits to fluorescence imaging from X-ray priors 

were also demonstrated in several other studies (Ale et al., 2010; Yuting Lin et al., 2010a; Schulz 
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et al., 2009). Using the same modality, Y. Tan et al employed DOT, which might be easily 

integrated in the fluorescence imager, to provide functional priors for fluorescence reconstruction 

(Tan & Jiang, 2008). Structural priors from MRI have also been investigated for guiding DOT or 

fluorescence reconstructions (Brooksby et al., 2003; Davis et al., 2008; Y Lin et al., 2011a). 

Hence, structural information measured from the variety of imaging modalities mentioned above 

provide prior information that can be incorporated by a regularization method for image 

reconstruction (Davis et al., 2007a; Yalavarthy, Pogue, Dehghani, & Paulsen, 2007; Yalavarthy, 

Pogue, Dehghani, Carpenter, et al., 2007). Outcomes from these works confirmed that prior 

anatomical information benefited the fluorescence image reconstructions. However, these 

techniques require instruments associated with large cost and infrastructure. Moreover, they 

either necessitate custom integration of optical imaging in the MRI/CT imaging chambers, 

usually leading to lower optical sampling or require a multimodal ‘animal bed’ leading to serial 

instead of simultaneous imaging. Methods and systems that integrate anatomical information 

while keeping the lower cost advantages of fluorescence imaging would thus be beneficial. 

In this endeavour, a few studies showcased the feasibility to employ US as a complement 

to fluorescence imaging. C. Snyder et al employed fluorescence imaging and 2D US imaging to 

assess tumour size in mice (Snyder et al., 2009). They used both imaging modalities separately 

and confirmed co-registered tumour detections but did not combine the information. Zhu et al 

used two orthogonal US slices to estimate tumour diameter and center (Quing Zhu et al., 2003). 

The estimated size was then employed to segment the tissue into lesion and background regions 

aiming to provide a priori knowledge in diffuse optical reconstruction. Zhu et al have used a 

phantom imaged using both US and optical absorption to investigate the improvement in image 

reconstruction in reflection geometry; but recovering small targets in this configuration might be 
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a challenge because of the distance (~4mm) between each element of the US detector array used 

as higher horizontal resolution may be needed, especially for recovering a non-regular object 

surface (Q. Zhu, Durduran, Ntziachristos, Holboke, & Yodh, 1999). In addition to guiding 

fluorescence imaging, other studies demonstrated that US images help in the estimations of the 

optical properties. For example, it was demonstrated that the geometrical constraints derived 

from US signals might provide improvement in computing the optical properties of DOT 

(Holboke et al., 2000). A recent study showed the recovery of the lesion tissue value by imaging 

protoporphyrin IX production in skin tumour and demonstrated that the fluorescence emission 

can be better quantified when using priors obtained by segmenting US image into tissue layers 

(Gruber et al., 2010a).  

Distinct from the above studies (Gruber et al., 2010a; Holboke et al., 2000; Snyder et al., 

2009; Q. Zhu et al., 1999; Quing Zhu et al., 2003), we built a low-cost system combining 

fluorescence tomography with US imaging in an attempt to explore 3D images from these two 

modalities. Instead of combining both modalities in reflection (Q. Zhu et al., 1999), our 

fluorescence configuration is in trans-illumination, thereby using the documented quantification 

benefits of this geometry. A raster-scanned 3D imaging was achieved in both modalities 

controlled by two motors, providing a simple and low-cost system design using a single US and 

fluorescence detector. To evaluate the performance of this simple system, we conducted 

phantoms and animal studies. We segmented 3D US images into background and fluorescence 

emission regions to provide an accurate structural prior to fluorescence reconstruction. 

Fluorescence tomography with US priors was facilitated by the co-registered scans. US imaging 

could also help investigator interpret functional images.  
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We characterized the system with phantoms in order to provide answers to whether US 

can be used to provide informative priors to fluorescence tomography. We also evaluated the 

feasibility and potential of this system to be used in animal study with an Apo-E mouse 

(Nakashima, Plump, Raines, Breslow, & Ross, 1994). Our results show that while US images are 

difficult to segment and provide limited structural information, their benefits to fluorescence 

reconstruction are still significant. As a result, this low cost (less than 9k$) multimodal 

fluorescence/US system may provide an interesting avenue towards quantitative molecular 

imaging. 

3.4 Methodology 

3.4.1 System design 

A schematic of the system is shown in Figure 3.1. A laser diode (658nm, HL6512MG, Thorlabs) 

was used to generate a collimated laser beam illuminating from the bottom of the object. Laser 

light was further filtered by an optical band-pass filter D650/20 (Chroma Technology). On the 

opposite side, the emitted photons were detected with an optical fibre used to guide light towards 

a set of optical filters (Chroma Technology) mounted in a filter wheel (FW103/M, Thorlabs) thus 

enabling multi-spectral detection. Filtered photons were collected by a photomultiplier tube 

(PMT) (H5783-20, Hamamastu). To eliminate residual ambient light, the laser diode was 

modulated with a square wave at 1 KHz (software adjustable) and demodulated on detection. For 

US recordings, the system employed a single element transducer (5 MHz, ⌀0.5’’, F=10cm, 

Olympus). The electronics were built to support transducers with frequencies between 2.25MHz 

and 30MHz. The laser and transducer scanned over the region of interest (ROI) point by point in 

the X-Y direction using a translation stage controlled by two actuators (L12-100-100-12-I, 

Firgelli Technologies) in 1mm steps (positional accuracy: ± 0.3 mm). A home-made electronic 
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circuit controlled the laser diode, derived the transducer, controlled the two actuators, sampled 

and pre-processed optical and ultrasonic signals. The received datasets were then sent to a 

computer through a USB link for post-processing. In addition, a monochrome CMOS camera 

(DCC1545M, Thorlabs) was used to capture a snapshot to select the scan area. By correlating the 

pixel index of snapshot to the positions of both actuators, the ROI for each scan was calibrated. 

For each point, fluorescence signals were sampled at a frequency of 200KHz and with an 

integration time for demodulation of typically 200ms (software adjustable). For US imaging, 

each point was sampled at 125MHz, and typically averaged 1000 times (software adjustable). In 

order to couple ultrasonic pulse-echoes in the experiments, the object was placed under a water 

bath separating water from the object with a plastic membrane to conduct both fluorescence and 

US imaging. 

 

Figure 3.1: Schematic of this dual-modality imaging system. 
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3.4.2 Reconstruction 

A coupled diffusion model was used to simulate fluorescence propagation in a diffusive media 

(Milstein et al., 2004). The propagation of excitation light is modeled by (3.1); the transport of 

excited fluorescence by (3.2). 

 )(),(])([)],()([ skxaxxx rrr
c
jrrrD −−=+−∇⋅∇ δωφωµωφ  (3.1) 
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where λx and λm denote the excitation and emission wavelength,φ is the photon flux (W/m2), D is 

the diffusion coefficient, μa is the absorption coefficient. Quantum efficiency, absorption 

coefficient and lifetime of fluorophore are represented by η, μfl and τ respectively and c is the 

velocity of light in the medium (Milstein et al., 2004). 

We employed the software package-NIRFAST to model photon propagation using a 

FEM for the forward model and to perform reconstructions (Dehghani et al., 2009). The inverse 

model was performed with the following Tikhonov minimization function equation (Yalavarthy, 

Pogue, Dehghani, & Paulsen, 2007). 
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Where the measured and simulated boundary fluence are represented by ΦMeas and ΦC, 

respectively, NM is the total number of measurements, NN is the number of FEM node, λ is the 

Tikhonov regularization parameter, 0χ is the initial guess of the fluorescence parameter, ημaf in 

our case, and jχ is the parameter to be updated (Yalavarthy, Pogue, Dehghani, & Paulsen, 2007). 

Using equation (3.3) and applying a Levenberg Marquardt (LM) procedure, the update 

step is performed by (Yalavarthy, Pogue, Dehghani, & Paulsen, 2007): 

 )(][ 1 CMeasTT JIJJ Φ−Φ+=∆ −λχ  (3.4) 
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with 0χχχ −=∆ j . J is the Jacobian matrix which defines the relationship between the simulated 

boundary data and fluorescence parameter and I is the identity matrix (Yalavarthy, Pogue, 

Dehghani, & Paulsen, 2007). 

3.4.3 Phantoms 

To validate the system we employed two phantoms having different geometries and optical 

properties. As shown in Figure 3.2 (a), the first one had a rectangular parallelepiped shape and 

dimension of 100mm×30mm×20mm (provided by ART Inc). To model heterogeneous 

absorption, it included four inclusions with different optical properties, denoted by Diff 1-4 (see 

Table 3.1 for optical properties). As illustrated in Figure 3.2 (b) and (c), two holes were drilled 

along y direction and fluorescent tubes were inserted, denoted by Fluo 1 and 2. The second 

phantom (Figure 3.2(d)) had a semi-cylindrical geometry of 19-mm radius and 105-mm length 

and was homogeneous. It was used to assess performance in non-regular geometries. A 

fluorescent tube was inserted in the phantom perpendicular to the curved surface to model non-

uniform fluorophore depths. Detailed design information on the two phantoms is provided in 

Table 3.1. 
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Figure 3.2: (a) Dimension of the rectangular phantom: phantom 1. (b)-(c) Schematic depiction 

showing the four heterogeneities (denoted by diff 1-4) and two holes for inserting fluorescent 

tubes (denoted by fluo 1-2). (d) Dimension of the semi-cylindrical phantom, phantom 2. 

For experimental data, the fluorochrome used was Cy5.5 with an absorption peak at 

675nm and emission peak at 694nm.  
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Table 3.1: Optical properties for both phantoms. Phantom 1 and 2 represent the 

rectangular phantom and semi-cylindrical phantom, respectively. 

 Inclusion Center position (mm) Dimension (mm) Optical properties (mm-1) 
      X    Y    Z  Diameter    X    Y    Z         μa           μs’ 
Phantom 1 Bulk     --    --    --     --           100   30  20 0.02       1.0 
 Diff 1 13   15   7 18            --     --    6 0.005     0.5 
 Diff 2 39   15  15 18            --     --    6 0.04       2.0 
 Diff 3     79   15   7 18            --     --    6 0.01       ~0 
 Diff 4     --    --    --     --           100   30  1.5 0.01       2.0 
 Fluo 1 14   15  13 5            --     30   --         --         -- 
 Fluo 2     32  15   9 5            --     30   --         --         -- 
Phantom 2 Bulk     --    --    --     --           100   38  19 0.01       1.0 
 Fluo 66   19   8 5            --     35   --         --         -- 

3.5 Results 

3.5.1 Sensitivity tests 

We characterized the sensitivity of the fluorescence imaging subsystem using Phantom 2. 

Fluorescent tubes were inserted with varying concentrations of Cy5.5: 1000nM, 100nM, 10nM, 

1nM and 0nM. As the red line shows in Figure 3.2 (d) and as shown in Figure 3.3, we scanned a 

30 mm line across the phantom covering part of the fluorescent tube. The detection fibre was 

approximately 1 cm above the circular center of the cylindrical hole. 

 

Figure 3.3: Illustration of measuring position in the sensitivity test. The red arrows represent the 

laser diode and the detection fiber. 
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The experimental parameters were as follows: 1s integration time for one scanned point, 

200 KHz acquisition frequency and 10mW laser power. We collected the emitted fluorescence 

with a band-pass filter-710/20D (Chroma Technology). As shown in Figure 3.4 (a), the 

fluorescence imaging system was sensitive enough to detect 1 nM of Cy5.5 in this phantom. In 

Figure 3.4 (b), the fitted logarithmic peak amplitudes for different concentrations (1nM, 10nM, 

100nM, 1000nM) are plotted. The linearity curve shows that the amplitudes are approximately 

linear over close to three decades.   

 

Figure 3.4: (a) normalized values of different concentration as a function of scan position. The 

results show that the system was able to detect 1nm cy5.5 in the phantom; (b) the curve shows 

the fitted logarithmic peak values as a function of concentrations. The triangular markers denote 

the normalized amplitude of different concentrations. 

3.5.2 Phantom tests 

We employed the two phantoms described above to assess the impact of using the US priors on 

image reconstruction. The experimental parameters for fluorescence imaging were: 200 ms 

exposure time for each point, 200 KHz acquisition frequency, 1 mm scan steps in X-Y direction. 
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For phantom 1, laser power for absorption/fluorescence measures was 20mW/50mW, whereas 

for phantom 2 it was 10mW/20mW. We collected the emitted fluorescence with a long-pass 

filter-HQ670LP (Chroma Technology) for both cases. The fiber was about 2 mm above the top 

surface of the phantoms. The source and detector were scanned together as a pair during each 

fluorescence scan. An absorption scan was also acquired for BN of fluorescence measures to 

eliminate the experimental factors. The varying distance between the fiber and the surface of 

phantom 2 was partly corrected by this normalization (for intensity), but the expanded detection 

area when the fiber-phantom distance increased caused some imprecision for reconstruction. The 

detection area with a fiber NA of 0.37 was ~1.1 mm2 when the fiber was ~2 mm away from the 

surface of phantom 2 but expanded to ~4.2 mm2 on the edges (~4mm distance). For the US 

imaging, we used the transducer mentioned above to scan the same ROI with the same scan steps 

as the fluorescence subsystem. In the experiments, the transducer surface was approximately 4 

cm above the top surface of the phantoms and we averaged 1000 times for each scanned point. 

Figure 3.5 shows the BN (Ntziachristos & Weissleder, 2001) transmission ratios overlaid 

over the pictures taken from the camera. As shown in Figure 3.5 (a), a 25mm×45mm area has 

been scanned on phantom 1. In Figure 3.5 (b), a 27mm×37mm area has been scanned on 

phantom 2. In order to couple ultrasonic pulse-echoes and optical imaging, imaging was 

performed in water. The phantoms were put in a container, and then separated the phantoms 

from water with plastic membranes. US gel was coupled to the phantom surface and then the 

plastic membrane overlaid to remove bubbles. We injected Cy5.5 at a concentration of 1000nM 

into transparent plastic tubes in both cases. As shown in Figure 3.5 (c), the cylindrical tube had 

varying external diameters of 4.7 mm, 3 mm, and 2.4 mm. The thickness of the wall was 0.6 mm 

(not shown). We inserted 30-millimetres of the tube into phantom 1 and 34-millimetres of the 
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tube into phantom 2, respectively. For phantom 1, we used two identical tubes with fluorochome 

at the same concentration (1000nM) but located at different depths. As illustrated in Figure 3.5 (a) 

and (b), the fluorescence signals decreased from right to left, in accordance with the decreasing 

dimension of the tube.  

 

Figure 3.5: (a) The normalized fluorescence intensity of phantom 1. (b) The normalized 

fluorescence signal of phantom 2. (c) The dimensions of the plastic tube. 

For 3D image reconstruction of these two phantoms: (1) mesh of 1 mm resolution was 

built for each phantom. Nodes in each mesh were assigned with homogeneous optical properties 

(μa and μs’) using the bulk optical properties of Table 3.1. To get closer to realistic situations in 

vivo, we did not consider the heterogeneities in phantom 1 because the Born-normalization was 

expected to eliminate this effect; (2) although the surface contours of the two phantoms were 

recovered by the US subsystem, for simplicity, we built meshes having rectangular 

parallelepiped shapes for both phantoms; (3) for the reconstruction, we scaled the experimental 

Born-normalized ratios by the simulated excitation amplitudes and then used them as input to the 

forward model above (the detail of the reconstruction equations and processes can be found in 
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elsewhere (Dehghani et al., 2009); (4) for US image segmentation: we simply used an intensity 

threshold to identify inclusions in the US images which were thereafter segmented into a binary 

image. US image segmentation was performed slice by slice. Prior to segmentation, we 

multiplied the US images with a weight matrix which reduced boundary artifacts. Then we 

selected the pixels by a single thresholding procedure from this corrected US image generating a 

binary mask; the prior was defined from this mask by applying a Gaussian filter to increase the 

size of the selected region. Since US detected interfaces, in phantoms it led to a single line for 

each tube (e.g.: the two short bright lines in Figure 3.6 (a)), and the prior for the inclusion 

regions did not have a circular shape in X-Z direction but had the right width in Y direction. 

Across slices, this procedure led to consistent prior size in the volume. To account for water, the 

phantom 2 top surface was identified from US signals, and mesh properties were set so that 

optical properties for that region were set to very low absorption; (5) the US structural priors thus 

identified were implemented as a soft prior partially accounting for segmentation errors. 

Equation (3.5) was used to update the optical properties when using prior information. The 

regularization matrix L now encodes the spatial prior information for image reconstruction. The 

detail of this approach may be found elsewhere (Yalavarthy, Pogue, Dehghani, & Paulsen, 2007); 

(6) fluorescence field (ημaf) were reconstructed with and without the prior information for 

comparison. 

 )(][ 1 CMeasTTT JLLJJ Φ−Φ+=∆ −λχ  (3.5) 

 

In Figure 3.6, the US images and the fluorescence reconstruction of phantom 1 are shown. 

The coordinate and dimension of each image slice is shown in Figure 3.5 (a). In the first column 

of Figure 3.6 (a), (d), (g), the US image sections at different planes (x=20, y=14 and y=32) are 
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shown. In the second column of Figure 3.6 (b), (e), (h), the reconstructed fluorescence images 

with prior information are shown for the different slices. Accordingly, in the third column of 

Figure 3.6 (c), (f), (i), the reconstructed fluorescence images without any prior information are 

shown for the different slices. As shown in Figure 3.6 (a), the width of the two tubes recovered 

by US is approximately 10 mm which is about two times larger than its real value. This can be 

explained by the use of a transducer having 0.5 inch diameter (about 2.7 times wider than the 

tubes) and the focal point was not well targeted at the inclusions. As shown in Figure 3.6 (j), (k), 

the fluorescence intensity normalized by the maximum intensity in Figure 3.6 (e), (h), 

respectively along each dashed line decreases from right to left. This is in agreement with the 

fluorescence map shown in Figure 3.5 (a) and the varying dimension of the tube shown in Figure 

3.5 (c). 
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Figure 3.6: Representative images of the acquisition using phantom 1. The US images (a), (d), 

(g), the fluorescence reconstruction image (ημfl in mm-1) with priors (b), (e), (h), and without 

priors (c), (f), (i) are shown for image slices at x=20 (a)-(c), at y=14 (d)-(f) and at y=32 (g)-(i) 
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respectively. Intensity plots along the red (j) dashed line in Figure 3.6 (e) and along the green (k) 

dashed line in Figure 3.6 (h) are also shown. 

Figure 3.7 shows the fluorescence images overlaid on the US images. It confirms that the 

locations of the fluorescence inclusions may be accurately reconstructed and benefit from the co-

registered US priors.  

 

Figure 3.7: (a) Overlaid image at x=20. (b) Overlaid image at y=14. (c) Overlaid image at y=32. 

In Figure 3.8, the US images and the fluorescence reconstruction of phantom 2 are shown. 

The coordinate and dimension of each image section may be referred to Figure 3.5 (b). In the 

first column of Figure 3.8 (a), (d), the US image sections at different slices (x=12, y=18) are 

shown, respectively. In the second column of Figure 3.8 (b), (e), the reconstructed fluorescence 

images at slices x=12, y=18 with prior information are shown. Accordingly, in the third column 

of Figure 3.6 (c), (f), the reconstructed fluorescence images at slices x=12, y=18 without any 

prior information are shown. As shown in Figure 3.8 (g), the fluorescence intensity normalized 

by the maximum intensity in Figure 3.8 (e) along the dashed line decreases from right to left. 

This is in agreement with the results found for phantom 1. 
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Figure 3.8: Representative images using phantom 2. The US images (a) and (d), the fluorescence 

reconstruction image (ημfl in mm-1) with priors (b) and (e), and without priors (c) and (f) are 

shown for image slices at x=12 (a)-(c) and at y=18 (d)-(f). Intensity plot along the red (g) dashed 

line in Figure 3.8 (e) is also shown. 

Figure 3.9 provides the fluorescence images overlaid on the US images confirming that 

the use of US priors improves fluorescence image reconstruction.      



46 
 

 

 

Figure 3.9: (a) Overlaid image at x=12. (b) Overlaid image at y=18. 

3.5.3 In vivo results 

We further tested our system in an in-vivo environment. As shown in Figure 3.10 (a), an Apo-E 

mouse of 23-week fed on high cholesterol diet (HCD) was imaged 20 hours after intravenous 

administration of a molecular probe. We employed an Alexa-647 based probe to detect VCAM 

monocyte recruitment activity, which was reported to be a valuable biomarker and an early 

signal involved in the formation of atherosclerotic plaque and the inflammation process (Jaffer, 

Libby, & Weissleder, 2007, 2009b; U. Prahl et al., 2010; Rader & Daugherty, 2008; Sanz & 

Fayad, 2008). VCAM is expected to be expressed in aorta, heart valve and heart. However, the 1 

mm resolution acoustic scan was not precise enough to delineate the structure of the aorta. For 

our proof-of-concept study, we thus reconstructed the fluorescence emission from the heart area 

(Tardif et al., 2011).  
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Figure 3.10: (a) The BN ratio overlaid with the picture. (b) Illustration of the animal 

manipulation. 

To couple the ultrasonic pulse echoes, we performed US and fluorescence imaging in 

warm water. As shown in Figure 3.10 (b), the mouse was fit in a water container having a hole 

and connecting a tube used to deliver anesthetic gas. A transparent plastic membrane was used in 

similar fashion to phantoms with US gel used to couple the membrane to the body. The entire 

scan, including one absorption scan, one fluorescence scan and US scan, was performed under 

45 minutes in vivo. The ethics committees of Montreal Heart Institute and École Polytechnique 

de Montréal approved all animal manipulations.   

Figure 3.10 (a) shows the Born-normalized transmission ratios overlaid with the picture 

taken from the camera. As the yellow outline in Figure 3.10 (a), a 31mm×41mm area has been 

scanned on the mouse. The experimental parameters for fluorescence were: 200 ms exposure 

time for each point; 200 KHz acquisition frequency; 1 mm scan steps in X-Y direction; laser 



48 
 

 

power for absorption/fluorescence measures was 30mW/50mW, respectively. We collected the 

emitted fluorescence with a long-pass filter-HQ670LP (Chroma Technology). For US imaging, 

we used the transducer mentioned above to scan the same ROI with the same scan steps as the 

fluorescence subsystem did. In the experiment, the transducer surface was approximately 1.5 cm 

above the top surface of the mouse and we averaged 1000 times for each scanned point. For both 

fluorescence and US imaging, we detected the belly side of the mouse, which was close to the 

heart. 

For 3D fluorescence image reconstruction of in-vivo data: (1) a volume based on the 

scanned area was reconstructed; (2) a mesh of 1 mm resolution was built. Optical properties of 

the mesh were assigned μa=0.02 mm-1 and μs’=1 mm-1 for the background, and μa=0.2 mm-1 and 

μs’=1 mm-1 for the heart; (3) although the surface contour of the mouse was recovered by the US 

subsystem, for simplicity, we built a mesh having a rectangular parallelepiped shape; (4) for the 

reconstruction, we employed the dataset detected from the area denoted by the red outline as 

shown in Figure 3.10 (a), which would cover the fluorescence emitted from the heart of the 

mouse. We scaled the experimental Born-normalized ratios by the simulated excitation 

amplitudes and then used them as input to the forward model above; (5) we manually segmented 

the US image into a binary image (0: background, 1: heart) slice by slice. The heart area is 

illustrated by the red dashed outline in Figure 3.11 (a). The region reconstructed over the heart 

was relatively flat and the profile was not taken into account in this reconstruction; (6) the US 

prior constrained the reconstruction as soft a prior; (7) fluorescence field (ημfl) were 

reconstructed with and without the prior information for comparison. 

In Figure 3.11, a representative 2D fluorescence reconstruction image in X-Z section and 

the correspondent US image slice of the mouse are shown. The coordinate and dimension of the 
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image slice (y=15, 25mm in x direction) are denoted by the red dashed line (Slice 3-1) in Figure 

3.10 (a). In Figure 3.11 (a), the 2D US image slice shows the heart of the mouse. However, the 

outline of the heart and the aorta in this US image is not very clear. This can be explained by: (1) 

the transducer having a fixed focal length was not well focused on the interested spot; (2) 1mm 

resolution of motor motion was not enough for US imaging, especially small object; (3) the 

biological fact of mouse that heart was partly under rib cage posed a challenge for this 

application. In Figure 3.11 (b) and (c), the reconstructed fluorescence images with and without 

prior are shown, respectively. The improvement of the fluorescence image with prior over the 

one without demonstrates that US imaging may benefit fluorescence imaging even in an in-vivo 

environment. In Figure 3.12, the overlaid fluorescence/US image shows that the location of the 

fluorescence may be accurately reconstructed and benefit from the co-registered US priors.  

 

Figure 3.11: Representative images of slice 3-1 of the mouse: (a) The US image shows the heart 

of the mouse; (b) the fluorescence reconstruction image (ημfl in mm-1) with priors and (c) 

without. 

 

Figure 3.12: The overlaid image of slice 3-1. 
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3.5.4 Analysis of the results 

Phantom results demonstrate that the US subsystem is able to recover the boundary and the 

inclusions of the phantoms, which provides a strategy to explore structural priors for 

fluorescence reconstruction. Furthermore, the US priors significantly improved fluorescence 

reconstruction quality. To quantify the results, we compared the contrast to noise ratio (CNR) to 

evaluate the performance of the reconstruction with priors. Herein, we define that CNR = (SA-

SB)/σ, where SA and SB are the mean intensities of the ROI and background, respectively, and σ 

is the standard deviation of the background. Table 3.2 provides a resume of the results for both 

CNR1 and CNR2, which is the CNR of the reconstructions with and without priors respectively, 

showing that the use of priors resulted in CNRs 4-20 times higher than the ones without. This 

advantage is further confirmed by our in-vivo experiment, which shows that the image using US 

prior resulted in CNR 4.79 times higher than the one without.  

Table 3.2: CNR of the reconstruction images. CNR1 and CNR2 represent the CNR of the 

reconstructions with prior and the ones without priors, respectively. 

 Image section Coordinate      CNR1/CNR2  
Phantom 1 Slice 1-1  x = 20         5.78/1.31            
 Slice 1-2  y = 14         4.33/0.28            
 Slice 1-3  y = 32         5.18/0.63            
Phantom 2 Slice 2-1  x = 12         7.09 /1.41            
 
Mouse 

Slice 2-2 
Slice 3-1 

 y = 18 
 y = 15 

        3.29/0.16   
        3.26/0.68  

Herein, to evaluate quantification with the phantoms, we compared the normalized 

maximum values of ημaf in the images Figure 3.6 (e), (h) and Figure 3.8 (e) denoted in Figure 

3.13 as A, B and C, respectively. The same fluorophore concentration was used in both 

phantoms and different depths, the value of ημfl should be the same once reconstructed. In 
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phantom 1, but at different depths, error was found to be small ~4%. When comparing different 

phantoms (different optical properties and geometry), the error was ~14%. This could be 

explained by that the phantom 2 has a smaller μa and μs’, and the expanded detection area caused 

inaccuracy in reconstruction.     

 

Figure 3.13: Quantification with the two phantoms by comparing the normalized maximum 

value of ημfl in each fluorescence image slice. 

3.6 Discussion 

In this paper we have presented a combined fluorescence/US imaging system. The fluorescence 

tomography subsystem was used to explore 3D fluorescence emission; the US subsystem was 

used to detect 3D interface of both the surface and the inclusion (e.g. fluorescent tube or the 

heart of the mouse) of the object, which could provide structural image and impose constraint for 

fluorescence reconstruction. The performance of this system was quantified using two phantoms 

having different shapes, constitutions and dimensions. Phantom results showed that the 

fluorescence reconstruction image quality could be significantly improved using the US 

structural priors. Also, the US images could help to interpret the reconstructed functional images 

at different sections. As a proof-of-concept study, we further tested the system by imaging 
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VCAM activity in a model of atherosclerosis. In-vivo results indicated that this system has the 

potential to be applied in in-vivo molecular imaging study. 

Compared with previous studies, our system has achieved 3D imaging for both 

fluorescence and US imaging. Three dimensional US imaging is expected to provide richer 

structural prior information than a 2D US detector array did (Q. Zhu et al., 1999), and the raster-

scanned 3D US data sampling available in this system enabled the delineation of structural priors 

by segmenting the US image rather estimating the size of inclusion by two orthogonal image-

slices (Quing Zhu et al., 2003). We thus expect our system not to be limited to inclusions with 

regular shapes. As evidence, phantoms results also reconstructed the shapes of the fluorescent 

tubes having a decreasing diameter; and in-vivo results indicated that this system could record 

anatomical and functional images in small animals. The scanning configuration proposed here 

was automatically co-registered which further facilitated dual modality analyses. 

Furthermore, in comparison to reflection mode, which is limited by detection depth in 

diffusive media (Björn et al., 2010), fluorescence imaging in transmission mode has better 

sensitivity and detection depth. Illumination with a collimated laser beam is expected to be less 

affected by non-specific signal contamination than a broad beam system would (Frederic 

Leblond et al., 2010). Combining all the advantages mentioned above, the work presented in this 

paper exhibits a promising strategy for exploring anatomical and functional information at very 

low-cost (less than 9k$).  

The simplicity of this system brought the following main drawbacks. (1) The limited 

view by scanning a single source-detector pair achieved less information than a camera-based 

system would. (2) Raster-scanned point source imaging meant longer acquisition time compared 

with a wide illumination camera based configuration. With the experimental parameters 
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mentioned above, 1196 points, 1064 points, and 1344 points of measurement were collected for 

phantom 1, phantom 2, and the Apo-E mouse, respectively. For the in-vivo experiment, the 

acquisition including an absorption scan, a fluorescence scan and an ultrasonic scan was finished 

within 45 minutes. However, this time may vary depending on the dimension of field of view 

(FOV) and scan steps. (3) US imaging has limitations for this application. In particular US 

images are difficult to segment, which poses a challenge when trying to gather a precise atlas for 

the whole body of small animals. These difficulties were present in our experiments while trying 

to image over of the heart of the mouse since the heart, located partly under rib cage, blurred the 

US image in some sections. (4) US segmentation in some situations may lead to wrong priors 

due to these issues. The soft prior used here was however shown in other studies (Yalavarthy, 

Pogue, Dehghani, Carpenter, et al., 2007) to be more immune to the prior uncertainty.  

This dual modality approach might be further improved by simple modifications whiles 

preserving the low-cost concept. (1) We employed a single trans-illumination channel to collect 

the fluorescent photons. Adding a source channel to explore reflective emission could further 

enhance the precision for quantification of fluorescence images. (2) The method used to couple 

ultrasonic pulse-echoes added difficulties in conducting experiments due to the necessity of 

using a membrane. When manipulating animals, overlay of the plastic membrane on the animal 

to separate it from water could be a drawback. A potential solution is to detect ultrasonic signals 

from the bottom of the object. In this way, the ultrasonic transducer will still be scanned in water 

with object located above water. (3) Further improvements to optimize the scanning: a 

translation stage to adjust the focusing of the ultrasonic transducer may improve the longitudinal 

resolution; stepping motors having better resolution and higher velocity can be employed to 

increase the horizontal resolution of the US image and speed up the scanning; finally, a portable 
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projector can be used in conjunction with the camera to measure the profile of the object quickly. 

In this proof of concept work we used simple threshold to implement spatial priors but improved 

algorithms can be developed for US image processing and segmentation.  

3.7 Conclusion 

So, although US imaging provide limited structural information comparing to that of MRI or X-

ray CT, the benefits to fluorescence reconstruction are still significant. To be noticed, the multi-

spectral feature of this system has not been fully used yet. Therefore, it is expected that the 

reconstruction quality may be further improved if we add multi-spectral measures to image 

reconstruction (Zavattini et al., 2006b). Finally, the co-registration of both imaging modalities 

may facilitate the understanding of the images by investigators. The future works include 

optimizing both hardware and algorithm of this system and cardiovascular disease study with 

small animals by molecular imaging offered by this proposed system. 
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4.1 Presentation of the article 

This article (B. Li, et al., 2014) aimed to address the second objective of this thesis. Following 

the first work (article #1), we upgraded the fluorescence-US imaging system with respects to 

optical and acoustic sampling precision as well as reconstruction mechanism. The proposed data 

calibration technique and the reconstruction method were evaluated by simulations and 

phantoms. In vivo experiment with preclinical tumorous mice further validated this dual-

modality imaging approach. This article was published in Review of Scientific Instrument. 

4.2 Abstract 

US imaging, having the advantages of low-cost and non-invasiveness over MRI and X-ray CT, 

was reported by several studies as an adequate complement to FMT with the perspective of 

improving localization and quantification of fluorescent molecular targets in-vivo. Based on the 

previous work, an improved dual-modality Fluorescence-US imaging system was developed, and 

then validated in imaging study with preclinical tumor model. US imaging and a profilometer 

were used to obtain the anatomical prior information and 3D surface, separately, to precisely 

extract the tissue boundary on both sides of sample in order to achieve improved fluorescence 

reconstruction. Furthermore, a pattern-based fluorescence reconstruction on the detection side 

was incorporated to enable dimensional reduction of the dataset while keeping the useful 

information for reconstruction. Due to its putative role in the current imaging geometry and the 

chosen reconstruction technique, we developed an attenuation compensated BN method to 

reduce the attenuation effects and cancel off experimental factors when collecting quantitative 

fluorescence datasets over large area. Results of both simulation and phantom study 



61 
 

 

demonstrated that fluorescent targets could be recovered accurately and quantitatively using this 

reconstruction mechanism. Finally, in-vivo experiment confirms that the imaging system 

associated with the proposed image reconstruction approach was able to extract both functional 

and anatomical information, thereby improving quantification and localization of molecular 

targets.   

4.2.1 Key words 

Fluorescence, ultrasound, reconstruction, prior, normalization, imaging, mice, cancer  

4.3 Introduction 

By combining optical imaging with administration of exogenous fluorescent agents (Jaffer, Kim, 

et al., 2007; Waldeck et al., 2008; Wallis de Vries et al., 2009; Weissleder, Tung, Mahmood, & 

Bogdanov, 1999; Tawakol et al., 2008), disease-related molecular activities can be revealed by 

recovering fluorophore distribution in tissue. Due to its simplicity, fluorescence imaging remains 

attractive for such studies; however, there is an increasing awareness of difficulties in 

quantifying such distributions, leading to efforts towards combining it with modalities providing 

complementary information. As a result, dual-modality molecular imaging is increasingly being 

used in in-vivo studies with small animals (Aikawa et al., 2007; Ale et al., 2012b; Jaffer et al., 

2009a; Nahrendorf et al., 2009, 2010). Hybrid-modality systems have advantages over 

standalone solution by providing anatomical substrate, which in turn can be used to better 

quantify and localize fluorescent markers (Davis et al., 2007b; Y Lin et al., 2007; Yalavarthy, 

Pogue, Dehghani, Carpenter, et al., 2007). So far, X-ray CT, MRI and ultrasound (US) have been 

incorporated with fluorescence imaging; and benefits were demonstrated by several studies (Ale 

et al., 2010; Brooksby et al., 2003; Davis et al., 2008; Gruber et al., 2010b; Holboke et al., 2000; 

D. Kepshire et al., 2009; Y Lin et al., 2011b; Yuting Lin et al., 2010a; Schulz et al., 2009; Snyder 
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et al., 2009; Q. Zhu et al., 1999; Quing Zhu et al., 2003). In our previous work, a low-cost dual-

modality Fluorescence-US imaging system was developed; and both phantom and animal 

experiments demonstrated significant potential for in-vivo applications (B. Li & Lesage, 2012; B. 

Li et al., 2011).  

In this study, an improved Fluorescence-US system was developed using again 

transmission geometry but extending the detection from a single detector to a sensitive camera. 

The large detection area provided by the camera has multiple benefits: 1) it enables recording a 

large number of detector positions for each source position; 2) it can be used to integrate a 

profilometer providing, with US, a full view of the profile of sample thereby improving its 

geometric modeling. Due to the large number of detection points, a pattern-based Monte Carlo 

forward model was developed to simulate photon propagation in tissue. Inspired by other study 

(Markel et al., 2003), but adapted to non-uniform geometries, this reconstruction strategy had the 

advantage of preserving the important components of the dataset while avoiding intensive 

computation associated with a large number of detectors. It was demonstrated in several studies 

that a fast and quantitative reconstruction could be achieved by performing pattern modulated 

illumination. For example, D’Andrea et al developed a diffuse optical tomography system with 

structured light illumination (D’Andrea, Ducros, Bassi, Arridge, & Valentini, 2010). Projecting 

sinusoidal modulated light onto the surface of thick samples, reduced sampling for an 

informative dataset was achieved when compared to raster-scanned illumination; thereby a fast 

reconstruction was possible due to the reduced dimension of measurements. Ducros et al also 

reported that with the measurement-derived wavelet illumination patterns, informative 

measurements could be collected to enable a fast reconstruction (Ducros et al., 2010). As an 

extension, a virtual source pattern (VSP) method was further developed (Ducros et al., 2012). 
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This VSP method, which can get rid of DC components in illumination patterns as well as being 

capable of rejecting the undesirable sources of light, was demonstrated to significantly improve 

the reconstruction. In distinction from these studies, we kept a traditional point-based raster-

scanned illumination for fluorescence imaging in order to incorporate fluorescence imaging with 

a US transducer for a dual-modality acquisition. Instead, the pattern-based approach was 

exploited on the detection side, which was also expected to reduce the dimension and keep the 

primary components of measurements. Further, to optimize the prior information for 

fluorescence reconstruction, the US anatomy and the 3D profile was combined. First, the 

boundary of the tissue close to the US transducer side could be recovered. Second, a profilometer 

was added to retrieve the tissue boundary of the opposite side. Therefore, concatenating these 

two surfaces information, we were able to precisely define a tissue region for forward modeling. 

Thirdly, from the 3D US imaging, the inclusion/lesion could be identified anatomically, and then 

used for constraining the reconstruction. Moreover, to correct the absorption and the distance 

effects along the light travelling path, an attenuation compensated Born-normalization (ACBN) 

method is proposed. In comparison to the standard BN (Ntziachristos & Weissleder, 2001), the 

ACBN method showed increased robustness when the object was deeply embedded within 

heterogeneous media. Finally, simulation study, phantom experiment and in-vivo experiment 

were conducted. In simulation, with the proposed reconstruction mechanism and the ACBN 

method, the averaged reconstructed fluorescence yield in the lesion was at worst as close as 86% 

of the true value with a noise level of 10%. Further, the benefit of the proposed reconstruction 

technique associated with the ACBN processing was evaluated with phantom; both the raw data 

and the reconstruction results showed the enhanced robustness of the ACBN over the standard 

BN. In animal experiment, with the imaging system and the proposed algorithm, the fluorescence 
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yield was quantified and correctly localized. Results were further validated with ex-vivo 

measurement. 

4.4 Methods 

4.4.1 System design 

As illustrated in the Figure 4.1, an incident laser beam at 658nm (HL6512MG, Thorlabs) was 

first cleaned up by a band-pass filter D650/20 (Chroma Technology), then coupled into an 

optical fiber, and ultimately illuminated the bottom side of sample. The maximum power of this 

laser diode is 50mW with the coupling loss of ~40%. On the opposite side (top), the transmitted 

photons were measured at the excitation wavelength through a ND filter (NE2R20A, Thorlabs), 

or alternatively measured at the fluorescent emission wavelength through a band-pass filter 

(FF01-716/40, Semrock). Both optical filters were mounted on a filter wheel. The emitted 

photons were first reflected by a mirror, and then detected by an EMCCD camera (Nüvü 

Cameras) following the filters. The field of view of the camera could cover an area of ~90 mm × 

~90 mm that was sufficient to image the objects/animal presented in this paper. Before each 

acquisition, a ROI was chosen for the scanning of laser source. Within the ROI and using a pair 

of motorized linear stages (LSM100B, Zaber Technologies), both optical imaging and acoustic 

recording were synchronized. For the optical imaging, the laser source was scanned with 2-mm 

steps (X and Y); with a camera exposure time of 100ms, imaging could be completed with ~3 

minutes for one wavelength. For the US imaging, a single element transducer (10 MHz, diameter 

0.25″, Focus 0.46″, Olympus) was scanned on the same side as illumination with ~50 µm 

resolution of motor steps for each slice in the X direction but 1-mm interval in the Y direction 

(the notion of both X and Y directions are illustrated in the Figure 4.9). For each A-line, the US 

signal was averaged 300 times to improve SNR. The US acquisitions performed in this study 
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were completed within ~20 minutes. Both optical illumination and US imaging were conducted 

in a water tank. During in-vivo acquisition, the mouse laid on its belly with the body supported 

by an animal bed. Scanning of both the laser source and the US transducer were performed 

through a square hole cut on the animal bed. The square hole was indicated by the yellow square 

in the Figure 4.1-(b); and the view was enlarged in the Figure 4.1-(c). More, the abdomen of the 

mice was further held by a metal stick (diameter 2 mm) placed across the middle of this square 

hole, so, partly submerged in water; while the rest of the body was exposed in air, thus facing the 

camera. In this configuration, animal installation took less than 2 minutes. In addition, a heating 

device was used to keep the water temperature around 37°C; and a home-built water circulation 

system was used to homogenize bath temperature. In addition, a home-made electronic circuit 

was employed to drive the laser diode, pulse the transducer, and sample the acoustic signal via 

USB. To perform profilometry, a projector (PK102, Optoma) was added to project white-black 

stripe patterns onto the upper side of the mice to capture 3D surface information using a standard 

FFT profilometry technique (Takeda & Mutoh, 1983). With this technique, the 3D surface of the 

object could be captured within 1 second, and the height resolution was up to 1 mm. The 

precision of the profilometry was validated using a phantom having a semi-circle surface in a 

previous study (B. Li & Lesage, 2012). To confirm precision, an additional phantom with 1mm 

steps and total height of 15mm, was employed to characterize the profilometer in the chamber. 

The results demonstrated (data not shown) confirmed the 1mm resolution and each step could be 

identified in the contour retrieved by the profilometer. In this study, the forward model was built 

with 1 mm voxel resolution. The reconstruction of diffuse fluorescence imaging has a resolution 

of 2-3 mm (Gibson et al., 2005). Therefore, the 3D profiling might not induce further modeling 

errors. 
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Figure 4.1: (a) System schematics of the Fluorescence-US imaging system; (b) photo of the 

imaging system; and the window for the scanning of both the laser source and the US transducer 

is indicated by the yellow square; (c) the scanning window is showed by an enlarged view; and 

the animal installation is also illustrated.  
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4.4.2 Attenuation compensated born normalization 

A number of studies have reported that the BN method could be beneficial to reduce the effect of 

heterogeneity and cancel off experimental factors in order to gather a quantitative fluorescence 

dataset (Ntziachristos & Weissleder, 2001). This method was further validated in different 

geometries (Soubret et al., 2005; Vinegoni, Razansky, Figueiredo, Fexon, et al., 2009). However, 

spatial changes in scattering were shown to limit its application (Pyka, Schulz, Ale, & 

Ntziachristos, 2011). Moreover, fluorescence information might not be correctly extracted if the 

target was deeply embedded(Yuting Lin et al., 2010a). It was previously suggested that a well-

built forward model could take into account scattering variations (Pyka et al., 2011); but the 

scattering coefficient cannot be recovered by the CW type measurement used here (Gibson et al., 

2005). In this paper, a small modification termed ACBN, is proposed as an extension to the 

standard BN. While it remains an approximate correction, working first with a complex phantom, 

we show that the ACBN method may yield improved accuracy and robustness in a diffusive 

media with the fluorescent target embedded at different depths.   

 

Figure 4.2: Illustration of light propagating in tissue. here, sr and dr represents an arbitrary source 

and detector position, respectively; l represents one effective traveling path of the incident light 

from sr to dr ; 'l is a representative travelling path of the incident photons from sr to fluorophore; xl

is a representative traveling path of fluorescent photons from the fluorophore to dr . 
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As shown in the Figure 4.2, in the context of our current system configuration, a laser 

beam illuminates the surface of tissue at position sr , and then propagates through tissue following 

random paths. Focusing on one such path and neglecting the amount of photons travelling along 

other paths, some incident photons travel along 'l  (indicated by the red dashed line) to the 

position of fluorophore. Following the Beer Lambert’s law (L. V. Wang & Wu, 2007), the light 

intensity prior to being absorbed by the fluorophore is: 

 )'exp(0 lII axµ−=′  (4.1) 

where 0I is the incident light intensity; axµ is the background absorption coefficient at the 

excitation wavelength. Writing the initial intensity of the excited fluorescence as: 

 )'exp(' 0 lAIAII ax
fluo

o µ−==  (4.2) 

with A being the product of the extinction coefficient- ε , the quantum yield- η , and the 

concentration of the fluorophore-C. Thus, the detected fluorescence at dr can be represented as: 

 )exp(0
x

am
fluofluo lQII µ−=  (4.3) 

where Q describes experimental factors, such as excitation laser power, gain and exposing time 

of the camera as well as coupling efficiency of the optics (filter and lens); amµ is the absorption 

coefficient at the fluorescence emission wavelength; xl is the traveling path of fluorescent photons 

from the fluorophore to dr (indicated by the red dashed line). In the BN approximation, the 

detected fluorescence signal would be normalized by the photon intensity detected at the 

excitation wavelength which can be formulated as: 

 )exp(0 lQII ax
abs µ−=  (4.4) 

where l is simply defined as one effective traveling path of the incident light from sr to dr . In BN, 

for both fluorescence signal and absorption signal, the distances can be viewed as effective 
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travelling path for the incident light in the form of a modified Beer-Lambert law. Making an 

assumption that amax µµ ≈ , the BN method can be represented as: 

 )exp( lAIIBN ax
absfluo ∆−== µ  (4.5) 

where 'llll x −−=∆  describes the difference between the effective travelling path of the incident 

light and that of the excited fluorescent light, which is related to the illumination/detection 

position and/or the localization of fluorophore.   

Without a rigorous analytical analysis, the main message brought by the above simplified 

description is that the BN ratio may be affected by absorption/diffusion along the light 

propagation path and the travelling distance of the emission light. When the fluorophore is close 

to the detection position dr , we may hypothesize that 'lll x +≈ , thereby ABN ≈ . When the 

fluorophore is localized on the surface on the detection side but far from dr , BN would decay to 

zero, which still preserves the contrast for fluorescence emission. But when the fluorophore is 

embedded at depth, additional factors contribute and will be non-uniform across the detection 

plane. Moreover, the heterogeneity of the media further compromises the accuracy of the BN 

approximation. Therefore, an alternative correction technique is required in situations where 

detection is wide-field. 

Preserving the simplicity of the BN approximation, we propose to include parameters to 

correct the distance effect in the standard BN ratio spatially according to the estimation of the 

relative distances between each source position and the associated detector positions. 

Furthermore, since accurately resolving for absorption and scattering spatially in small animals is 

difficult, as an intermediate solution, a normalized absorption image will be used to compensate 

the attenuation involved in the fluorescence signal. This so-called ACBN method is described 

below. 



70 
 

 

For one illumination position- sr , the emitted photons are detected at different positions

{ } NidNdid rrr :11 ,,,, = on the camera over the sample. A standard BN ratio image according to sr

can be represented as:  

 }{ Ni
N
BN

i
BNBNBN IIII :1

1 ,,,, ==   (4.6) 

The ACBN method proposes to correct with: 

 }{ )(,,,,1 αabs
Norm

N
BN

i
BNBNACBN IIIII ⋅=   (4.7) 

where 

 { }
NidNsdisds rrrrrr

:11 ,,,,
=

−−−= α  (4.8) 

The spatial parameter α is the estimated distances from each source position to the 

associated detectors. The abs
NormI is the normalized absorption image with its maximum value being 

1. With this correction, the experimental factors remain cancelled from the original ratios. 

Besides, the normalized absorption image abs
NormI encodes the information related to the additional 

attenuation effect; and, the spatially dependent parameterα , is estimated using the distances 

from each source to the associated detectors. Thus, the compensation term approximately 

corrects the term )exp( lax∆−µ in the BN ratio in the equation (4.5). In this approach, the spatially 

dependent parameterα needs to be normalized to a given value in order to accurately recover the 

fluorescence emission but avoid over-correction. This point will be discussed below.  
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Figure 4.3: Illustration of the phantom and the inclusions. Here, S_a and S_b are the two surfaces 

of the phantom along the Z direction; F_a and F_b are two holes to insert the fluorescent tubes; 

D_a and D_b are the two heterogeneous inclusions. 

Below, a series of phantom experiment was conducted to demonstrate the issue with the 

standard BN ratio, and then evaluate the proposed ACBN method. As illustrated in the Figure 4.3 

(a), a rectangular parallelepiped phantom with two fluorescent inclusions (F_a and F_b) was 

used. Furthermore, two heterogeneous inclusions D_a and D_b were located above or below the 

two fluorescent inclusions, respectively. The dimension and the optical properties of this 

phantom are detailed in the Table 4.1.  
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Table 4.1: Dimension and optical properties of phantom. 

Inclusion Center 

position (mm) 

Dimension (mm) Optical  

properties (mm-1) 

 X Y Z Diameter X Y Z 
αµ  ,

sµ  

Bulk -- -- -- -- 61 30 20 0.02 1.0 

D_a 13 15 7 18 -- -- 6 0.005 0.5 

D_b 39 15 15 18 -- -- 6 0.04 2.0 

F_a 14 -- 13 4 -- 30 -- -- -- 

F_b 32 -- 9 4 -- 30 -- -- -- 

A fluorescent tube filled with 100nM Cy5.5 was inserted successively into the hole F_a 

or F_b of the phantom. Then, imaging was performed with illumination on S_a or S_b separately, 

to gather a series of data representing the different situations that may occur experimentally. The 

experiment is explained in the Table 4.2, which gave four different scenarios with respect to 

fluorescent target localization (F_a or F_b) and the illumination/detection side (S_a or S_b). The 

raw data with the ACBN processing are presented in the Figure 4.4 showcasing the discussion 

above. The first row of images in the Figure 4.4 shows the ROI for each case. As denoted by the 

dots, each scan was conducted with 2-mm steps for source positions in X and Y directions. For 

each image, the bar crossing the phantom along the Y direction represents the horizontal location 

of the fluorescent tube. To compare uniformly, the same laser power and camera configuration 

were used for all scans. And to avoid boundary effect, the edge of the phantom was covered by 

black tape in experiment.  
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Table 4.2: Four cases of the experiment. 

 Fluorescent tube localization Illumination side Detection side 

Case #1 F_a S_b S_a 

Case #2 F_a S_a S_b 

Case #3 F_b S_b S_a 

Case #4 F_b S_a S_b 
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Figure 4.4: Phantom images for the four cases: the first row shows the ROI for each scan; the 

second row shows the fluorescence images processed with the standard BN method; the third 

row shows the standard BN ratio images with only the measurement of the detector co-linear 

with the source; finally, the fourth row shows the fluorescence images processed with the ACBN 

method. 
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The second row in the Figure 4.4 shows the images processed with the standard BN 

method for the four cases. Each image is the summation of images for all the source positions 

and normalized with its maximum value being 1. When the object was deeply embedded, we 

observed that the fluorescence emission map recovered by the standard BN does not reflect the 

2D mapping of the fluorescent object in the phantom, hence might not provide adequate data for 

reconstruction using wide-field techniques, showcasing the necessity for attenuation correction.  

In addition, as mentioned above, the distance effect will also affect the BN ratio. To 

verify this, for each source we kept only the measurement of the detector co-linear with the 

source. The result is shown in the third row of the Figure 4.4. Comparing with the BN ratio 

images shown in the second row of the Figure 4.4, by selecting the measurement being co-linear 

with the source, the standard BN method accurately recovered the fluorescence emission 

illustrating the distance effect involved in the BN ratio. In a wide-field detection scheme, it is 

essential to control this effect.  

The fourth row of the Figure 4.4 shows that the proposed ACBN correction. This time, 

each image is the summation of images for all the source positions (i.e. all detector positions 

were kept). When the fluorescent inclusions (F_a or F_b) were closer to the detection side than 

the inclusions (D_a or D_b) were, e.g. case #1 and case #4, the emitted fluorescence could be 

accurately recovered by the ACBN method. However, when the inclusions (D_a or D_b) were 

closer to the detection side than the fluorescent inclusions (F_a or F_b) were, e.g. case #2 and 

case #3, the emitted fluorescence went through the inclusion D_a or D_b (different αµ and ,
sµ ) 

prior to being detected. In this condition, the ACBN method was also affected displaying its 

limitations. For example, in the case #2, because D_a has smaller αµ and ,
sµ than the bulk 

properties, the ACBN ratio image appears larger than the fluorescent tube does. And in case #3, 
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because the fluorescent tube is horizontally located near the edge of D_b and the D_b has a 

greater αµ and ,
sµ than the bulk properties, the fluorescent emission was non-uniformly absorbed 

by D_b along the tube, hence shows a curved shape.  

As discussed above, the parameterα needs to be normalized to a proper value for an 

accurate recovery of the fluorescence emission without over-correction. Herein, it is suggested 

that the normalization value is determined by the ratio between the distance from the center of 

the fluorescent object to the detection plane and the distance from the center of the fluorescent 

object to the illumination plane. However, to analyze the reconstruction results in a consistent 

manner, we kept using the same normalization value for the spatial parameterα  in each series of 

experiment. Specifically, in the phantom experiment, after estimating the distance ratio in this 

phantom experiment (illustrated in the Figure 4.3), the spatial parameter α was normalized to be 

1 for the Case #1 – #4. It should be kept in mind that for the in-vivo case, fluorescence may 

originate from a broad area (e.g. liver, kidney, lesion, and so on); but in this paper we would 

regard the lesion (i.e. tumour in this study) as the main fluorescent target for estimating the 

distance ratio for normalizing the parameter α. Following a similar procedure, for the in-vivo 

experiment, the parameter α was normalized to be 4, which could be estimated from the 

segmentation of the US image, as shown in the Figure 4.5 (a). 

Overall, in this phantom study, an improvement could be observed with the ACBN 

method in comparison to the standard BN method. Amongst the four cases investigated, if the 

fluorescent object was located on the detection side, e.g. case #1 and case #4, which meant the 

transmitted fluorescence did not go through the inclusion D_a or D_b, the ACBN could 

compensate the attenuation and recover the fluorescence emission. Otherwise, the inclusion D_a 

or D_b deformed the shape of the fluorescence emission, e.g. case #2 and case #3. This is most 
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likely due to the fact that the collected photons for each source position went through non-

uniform absorption and scattering. To quantify the benefit of the ACBN method over the 

standard BN, contrast was computed for all the cases. Here, the contrast is defined as (SA-SB)/SB. 

As illustrated in the first row of the Figure 4.4, SA and SB is the mean intensity of each image 

within the fluorescent tube area and the background area, respectively. As a result, on average, 

the contrast of the ACBN images is 2.5 times higher than that of the standard BN images in this 

wide-field configuration. In the next sub-section, we will further validate the benefit of the 

ACBN method in the pattern-based reconstruction mechanism.  

4.4.3 Reconstruction 

4.4.3.1 Pattern-based forward modeling 

Below, we describe a reconstruction algorithm to recover fluorescent yield using patterns on the 

detection side. It has been reported that by performing singular-value decomposition, the 

dimension of the forward problem could be reduced to keep the important components of the 

measurement required for reconstruction as well as avoid heavy computations associated with 

the large number of detection points (J. Chen, Venugopal, Lesage, & Intes, 2010; Markel et al., 

2003). In separate work, we showed that by directly projecting a series of patterns with different 

spatial frequencies onto a sample, one could implement dimension reduction during acquisition 

to achieve a high imaging through-put (Bélanger, Abran, Intes, Casanova, & Lesage, 2010). In a 

previous study, this pattern-based simulation was employed for the detection part while keeping 

the traditional point-based simulation for the illumination (B. Li & Lesage, 2012). However, all 

these studies used rectangular geometry. 

Here, we incorporated the ACBN method and the combined structural prior (discussed 

below) into the forward problem and then employed the pattern-based simulation for photons 
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propagation. Since the primary information lies in low frequency components (Venugopal, Chen, 

Lesage, & Intes, 2010), 18 low-frequency sinusoidal patterns were chosen for each detected 

image. A GPGPU-based Monte Carlo program was then used for the forward problem (Fang & 

Boas, 2009). Finally, benefitting from the combined structural prior, we applied the Monte Carlo 

simulation in the curved geometry with analytically guided choice of patterns to develop a new 

mechanism to perform reconstruction. 

4.4.3.2 A combined structural prior  

In a previous study, the US image was used to specify the domain for the forward 

modeling and was also used as a regularizer for the inverse problem (B. Li et al., 2011). 

However, with a fixed focal distance, a single element US transducer could not recover the tissue 

boundary at the opposite side of sample. To measure geometrical information, a FFT 

profilometer was used here to recover the top boundary of the tissue (Takeda & Mutoh, 1983); 

while the US imaging was used to image the fluorescent target (i.e. lesion, tumor) as well as 

recover the tissue boundary on the laser source side (bottom). Therefore, the surface information 

retrieved separately by the profilometer and the US imaging was concatenated, which results in a 

precise definition of the problem domain for the simulation of photons propagation; and the 

anatomy of the lesion recovered by the US imaging was used to constrain the reconstruction as a 

soft prior (Yalavarthy, Pogue, Dehghani, Carpenter, et al., 2007). This combined structural prior 

was achieved without increasing acquisition time.  

4.4.3.3 Inverse problem 

The computation aimed to minimize the following objective function:  

 }{ 22
χλχ LWmeas +−Φ=Ω  (4.9) 
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taking the first-order derivative with respect to χ led to the update equation: 
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The detail of the equation derivation could be found elsewhere (Yalavarthy, Pogue, 

Dehghani, & Paulsen, 2007). Here, the symbol measΦ is the experiment measurement, in our case, 

the fluorescence data processed by the ACBN method; CΦ is the simulated measurement;W is the 

sensitivity matrix obtained from Monte-Carlo simulations; χ represents the fluorescence yield 

εηC; i represents the iteration index; L is a Laplacian form matrix encoding the prior information 

of the lesion (Yalavarthy, Pogue, Dehghani, & Paulsen, 2007);λ is the regularization parameter, 

of which the value might be determined by the data-model misfit but often empirically 

(Yalavarthy, Pogue, Dehghani, & Paulsen, 2007). Its value was updated according to the 

projection error in each iteration (Srinivasan et al., 2004). Convergence was defined to be 

reached when the change in projection error between two iterations was less than 1%, or, within 

a maximum of eight iterations pre-set to prevent the estimating error from increasing (Yalavarthy, 

Pogue, Dehghani, & Paulsen, 2007).  

4.4.4 Simulations 

To evaluate the proposed reconstruction mechanism, a simulation study was conducted. 

Here, photon propagation was simulated in a volume that was created based on the mouse Tumor 

#1 (discussed in the section 4). As a representative image slice shown in the Figure 4.5 (a), the 

volume was segmented into 4 regions with 1-mm voxel resolution: air, water, tissue, and tumour. 
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Benefiting from the combined structural prior, the sensitivity matrix could be computed in a 

well-defined space; and a Laplacian form matrix was used to constrain the reconstruction as a 

soft prior (Yalavarthy, Pogue, Dehghani, & Paulsen, 2007); plus, the air and water regions were 

excluded from the inverse problem, which helped reduce the ill-posedness and thus enabled a 

more accurate reconstruction (discussed later but confirmed by simulations in the Figure 4.5 (c)).  

In simulation, photons were launched to the belly side on a point-point basis; detection 

was performed from the back side guided by patterns. Average optical properties were used for 

the entire tissue region ( αµ =0.05 mm-1; ,
sµ =2.3 mm-1) (Chaudhari et al., 2005). And the spatial 

parameter α was normalized to 4, same as the reconstructions performed with the in-vivo 

measurements below. For assessment, reconstruction accuracy was defined as the ratio between 

the averaged reconstructed value-εηC and the true value. 

 

Figure 4.5: Representative image slices. (a) The segmentation of tissue types derived from the 

combined structural prior; (b) the localization was accurately reconstructed with prior; (c) 

reconstruction without structural prior. 

As discussed above, both the ACBN processing and patterns-measurement integration 

were incorporated in the sensitivity matrix. With the sensitivity matrix, measurement was 

simulated, which leads to the following discussion. In this simulation study, different noise level 

was added to the simulated measurement after the integration between the sensitivity matrix and 
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the fluorescent field of the volume. Different scenarios were investigated. For every case, the 

reconstruction started from the same homogeneous initial estimate of εηC=5×10-4. In the first 

case (1), a 3D volume was assigned nine different values of εηC (true values) to the tumor region, 

ranging from 3×10-3 to 19×10-3 with 2×10-3 interval, respectively, and a constant value of 

εηC=1×10-3 was assigned to the normal tissue region. Measures were simulated based on the 

image volumes, separately. A noise level of 10% was added to each set of measurement. 3D 

reconstructions were done using the update equation (4.9). The reconstructed εηC in the tumor 

region is shown in the Figure 4.6 (a). The X axis represents the true value of εηC; the Y axis 

represents the reconstructed value. The averaged accuracy was 86%. For the background (normal 

tissue region), the perturbation of reconstruction amongst different initial estimates was larger; 

but the average accuracy was as good as 71%. 

In the second case (2), we varied the initial estimate but kept the true value constant. 

Specifically, eleven different sets of initial estimate of εηC varying from 0.1×10-3 to 10×10-3 

were used. While, the true value of εηC in the tumor region and normal tissue region were kept 

at 5×10-3 and 1×10-3, respectively. Noise at a level of 10% was added to each set of 

measurements. The Figure 4.6 (b) shows that the averaged accuracy for the tumor region and the 

background was 88% and 87%, respectively.  

In the third case (3), the true value of εηC was varied in both tissue regions.  Here the 

true value of εηC was varied in the background ranging from 0.5×10-3 to 5×10-3 with an identical 

interval 0.5×10-3. And the true value in the tumor region was constantly 4 times greater than that 

of background. Again, 5×10-4 was used as the initial estimate. For each simulated measurement, 

again, 10% noise was added. In the Figure 4.6 (c), it shows that the averaged ratio between the 
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reconstruction of the tumor region and that of background was 2.9, which is ~73% of the true 

ratio.  

In the fourth case (4), the true values in the tumor region and background were kept 

constant as 5×10-4 and 1×10-3, respectively and the initial estimate was still kept at 5×10-4. Here, 

we varied the noise level from 5% to 50%. The Figure 4.6 (d) shows that the accuracy slightly 

drops down with increasing noise level, but maintained an average of 85%. For the background, 

because the true value of fluorescence level assigned is lower than that of the tumor region, the 

reconstruction in that region was more sensitive to noise. As a consequence, the averaged 

accuracy in background was 55%. 

Overall, the reconstruction accuracy in the tumor region was as good as ~86% at the 

worst case using a coarse volume for the inverse problem with a noise level of 10%. The 

reconstruction in the normal tissue region had lower accuracy due to its smaller fluorescence 

level, thus being more sensitive to noise. In addition, the reconstruction in the background was 

typically overestimated because the embedded tumor region bleeding signals to the background. 

Even with priors, the fluorescence in the tumour region was underestimated and appeared larger 

in size in comparison to the segmented region. In all the cases, guided by the combined structural 

prior, the lesion localization was accurately reconstructed, which is shown in the Figure 4.5 (b). 

As a comparison, a reconstructed image slice without any prior is presented in the Figure 4.5 (c), 

which shows a deteriorated localization; besides, the reconstruction accuracy of the tumour 

region was ~60%, i.e. ~26% worse than the one with prior (Figure 4.6 (b)). Most importantly, 

linearity was achieved in all the simulation cases. Hence, quantification with in-vivo data may be 

possible. 
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Figure 4.6: (a) The true value of εηC only in the tumor region was changed; but the initial 

estimate was kept constant; (b) the true value of εηC was constant; but the initial estimate was 

changed; (c) the true values of εηC in both tissue regions were changed; and the value of the 

tumor region remained 4 times greater than that of the normal tissue region; but the but the initial 

estimate was kept constant; (d) true values in both tissue-type regions were constant, and the 

initial estimate was constant too. The reconstructed was assessed with different noise levels. 

4.4.5 Phantom reconstruction 

Following the previous discussion, here we evaluate the ACBN method associated with the 

pattern-based reconstruction using the phantom measurement. As mentioned, we inserted the 
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same fluorescent tube into the holes F_a and F_b, respectively, and imaged the phantom in four 

separate cases by rotating the phantom by 180 degrees. Theoretically, the reconstruction, in these 

four cases, would recover the fluorescence field identically. Photons were simulated in a 

homogeneous media using the bulk optical properties; this is because that the US system could 

not separate the heterogeneous inclusions from the bulk but only the fluorescent tube; 

additionally it mimics the in-vivo situation, in which some organs could not be clearly separated 

from the body.  

As detailed in the previous section, the emitted photons would go through different 

absorption and scattering events among the four cases. As shown in the Figure 4.7, the 

reconstructed field of the Case #1 has the greatest value because the photons travelling path in 

that case was subject to less absorption and scattering; in Case #2, due to the diffusion of the 

detected fluorescence emission (Figure 4.4), the reconstructed field was underestimated by the 

pattern-based reconstruction algorithm; in the Case #3 and Case #4, because of the inclusion D_b 

was located below (Case #3) and above (Case #4) the fluorescent tube, the reconstructed field 

was also underestimated to a different extent. However, Figure 4.7 shows that the reconstruction 

with measurement corrected by the ACBN method displayed a better consistency than the one 

with the standard BN method. The standard deviation of the reconstructions with the ACBN 

method was 0.15, less than the standard BN equivalent of 0.36. This phantom study indicates 

that the ACBN method might be beneficial and necessary when using wide-field fluorescence 

imaging geometries, in which case the fluorescence emission mapping of the raw data would 

affect the reconstruction. 
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Figure 4.7: The comparison of the reconstruction between the ACBN method and the standard 

BN method. 

4.5 Experiment 

With the imaging system and the associated reconstruction mechanism described previously, a 

study was targeted at preclinical tumor model to quantify fluorescence emission from tumors. 

Three nude mice were employed. One of them was used as control. The two remaining mice, 

denoted as Tumor #1 and Tumor #2, were injected with MDA-MB-231 tumour cells to 

subcutaneously implant human lung cancer to the mammary fat pad. A representative model is 

shown in the Figure 4.8. Imaging was done 3-4 weeks after the injection of the tumour cells.  

 

Figure 4.8: As a representative, the tumor is approximately indicated by the dashed circle. 
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For molecular imaging, a molecular probe IntegriSense™ 680 (PerkinElmer) was 

employed. This probe enabled imaging tumor cells by monitoring the integrin αvβ3 expression. 

As recommended, ~2 n mol of this probe was intravenously administrated for each mouse.  

In experiments, the mice laid on the belly with their back facing the camera. So, part of 

the belly was submerged in water in order to couple acoustic pulse-echoes. In acquisitions, the 

same camera configuration was used for every optical imaging session. Due to variations in 

tissue thickness, a pre-scan was done to determine laser power for each illumination point in 

order to maintain a good SNR and avoid camera saturation. The pre-evaluated laser power 

sequence was used for absorption and fluorescence imaging, with a maximum laser power of 17 

mW illuminated on an area of ~1 mm2. Each imaging session, including optical and US imaging, 

was finished within 40 minutes. During the experiment, mice body temperature was kept around 

37°C supported by the home-built water circulation system. All animal manipulations were 

approved by the ethics committee of Montreal Heart Institute.   

4.6 Results 

4.6.1 Fluorescence imaging with the ACBN method 

In the Figure 4.9, the fluorescence images processed with the ACBN method are presented. Each 

image is the summation of images for all the source scans. Again, as explained above, we chose 

the value of 4 to normalize the spatial parameterα involved in the ACBN ratio. In the Figure 4.9, 

every image was normalized to 255. As shown in the Figure 4.9 (a), the laser source was scanned 

on the points denoted by the dots with 2-mm steps along the X and Y directions. The US 

transducer was scanned over the same ROI with ~50 µm resolution in the X direction, but 1 mm 

interval in the Y direction. The dimension of the ROI was about 28 mm × 22 mm for the X and 

Y direction, respectively. The first row of the Figure 4.9 (b), (d) and (f) shows the images 
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acquired prior to the injection of the molecular probe. The second row of the Figure 4.9 (c), (e) 

and (g) shows the images acquired 24 hours after the injection. Fluorescence was clearly seen in 

post-injection scans with some signal localized in excretion organs (kidneys). And as seen in the 

Figure 4.8, the fluorescence emission was mostly located in the tumor area for both diseased 

mice while the control one did not show specific fluorescence signal.     

 

Figure 4.9: (a) The ROI of imaging was indicated by the red spots; (b)-(c) the fluorescence 

images acquired before and after injection of the molecular probe for the control; (d)-(e) the 

fluorescence images acquired before and after injection of the molecular probe for Tumor #1; (f)-
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(g) the fluorescence images acquired before and after injection of the molecular probe for Tumor 

#2. 

4.6.2 Reconstruction results 

The reconstruction of εηC is shown in the Figure 4.10. In the reconstruction, homogeneous 

global optical properties ( αµ =0.05 mm-1; ,
sµ =2.3 mm-1) were used for both excitation 

wavelength and emission wavelength to generate forward models (Chaudhari et al., 2005). In the 

inverse problem, all reconstructions started from the identical homogenous initial value of 

εηC=5×10-4. As illustrated in the Figure 4.9 (a), the US image slice was along the X direction 

and around the center of tumor in the Y direction. Guided by the combined structural prior to 

recover geometry and build a soft prior for the tumor, the results show that the localization of 

tumor was accurately reconstructed. As reported in Ref. (Yalavarthy, Pogue, Dehghani, 

Carpenter, et al., 2007), this soft prior approach helps regulate the inverse problem while 

remaining somewhat immune to the prior uncertainty. In addition, as indicated by the dashed 

square in the Figure 4.10 (a), an artifact occurred in all the US images shown in the Figure 4.10. 

This was caused by the metal stick, which was placed across the square hole of the animal bed 

along the Y direction in order to prevent the body from sinking in water.  
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Figure 4.10: (a)-(c) For Tumor #1, a representative US image slice and two representative 

fluorescence images overlaid the corresponding US image slices are shown; (d)-(f) For Tumor 

#2, a representative US image slice and two representative fluorescence images overlaid the 

corresponding US image slices are shown. 

To analyze the reconstructions, the CNR was computed for all the reconstructed images. 

Here, the CNR is defined as (SA-SB)/σ, where SA and SB are the mean intensities of the 

reconstructed fluorescence yield εηC for the tumour region and the normal tissue region, 

respectively; and σ is the standard deviation for the normal tissue region. As a result, the CNRs 

were over 40 for all cases.  

4.6.3 Ex-vivo evaluation 

Ex-vivo imaging for the mice Tumor #1 and Tumor #2 was conducted in reflection mode using a 

commercial fluorescence imaging system (IVIS Lumina II, Caliper Life Sciences). The ex-vivo 

images were normalized to 1 and are shown in the Figure 4.11 (a). As a reference of the H2O 

image, the emitted fluorescence from the tumors could be clearly observed. The ratio between 

the maximum signal amplitude of Tumor #1 and that of Tumor #2 was 1:0.61. As shown in the 

Figure 4.11 (b), the normalized reconstructed εηC of the tumor region for the mice Tumor #1 and 
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Tumor #2 is also provided. The ratio between the maximum signal amplitude of Tumor #1 and 

that of Tumor #2 was 1:0.19 with the ACBN method, but 1:0.09 with the standard BN method 

showing a better agreement of ACBN to the ex-vivo analysis.  

 

Figure 4.11: (a) Ex-vivo images of the tumors for Tumor #1 and Tumor #2. The ratio between 

the maximum reconstructed εηC of Tumor #1 and that of Tumor #2 is 1:0.61; (b) the maximum 

reconstructed εηC for Tumor #1 and Tumor #2 is shown with the ACBN method as well as the 

standard BN method. 

However, the remaining difference between the reconstruction and the ex-vivo analysis 

also exposed the limitations of the ACBN method due to the unknown optical properties of the 

imaged objects. It should be kept in mind that the unknown optical properties for different tissue 

types might induce the following issues: (1) Typically, tumor is a blood enriched region because 

of angiogenesis (Hoffman, 2002), which implies being more absorbing than the surrounding 

tissue (Alexandrakis et al., 2005). Therefore, using the same homogenous optical properties for 

all the mice having different tumor sizes results in reconstruction inaccuracies. (2) Because the 
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anatomical resolution of US image is limited, some organs remain difficult to segment. Thus 

using literature optical properties (Alexandrakis et al., 2005) (which in turn may not reflect the 

in-vivo situation) could not be accurately assigned for different organs to perform a more precise 

forward modeling.  

4.7 Discussion 

In this paper, a dual-modality Fluorescence-US molecular imaging system was presented. Using 

an EMCCD camera associated with the point-based illumination, transmission imaging could be 

conducted for both fluorescence and absorption imaging. Compared with our previous study (B. 

Li et al., 2011), both optical imaging and US imaging were optimized in terms of acquisition 

speed and sampling precision. The 3D surfaces derived from both US imaging and profilometer, 

respectively, was concatenated to extract an adequate boundary, which resulted in a precise 

separation between tissue and air/water, hence benefiting the forward modeling and inverse 

problem. In addition, we amended the BN method to compensate the attenuation involved in the 

BN approximation. With the ACBN method, fluorescence emission mapping was accurately 

recovered in phantom using wide-field detection. Finally, to take advantage of the enriched 

measurements on the detection side, a pattern-based reconstruction mechanism was employed 

showing accurate recovery of fluorescence information. A simulation study further demonstrated 

linearity, accuracy and fidelity of this reconstruction mechanism; following, using the phantom 

measurement again, an enhanced quantification of reconstruction was achieved with the ACBN 

method.  

The system was then applied in the in-vivo study with preclinical tumor model. 

Following injection of the molecular probe, specific fluorescence signal could be observed 

emitting from the tumor area. In addition, the simulated benefit of the reconstruction mechanism 
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was maintained with the in-vivo measurements: First (1), the localization of lesion was 

accurately reconstructed. On the other hand (2), the quantitative reconstruction of the mice 

Tumor #1 and Tumor #2 was in agreement with the ex-vivo result. Finally, CNRs of over ~40 

were achieved for all the cases. 

However, limitations remain. First, as shown in the phantom results, variation of 

absorption and scattering along the fluorescence propagation path compromised the accuracy of 

the ACBN method. One potential solution would be to take into account only the measurement 

relatively close to illumination, which, nonetheless, might lose some important information of 

the experimental data. Second, the limited organ contrast of US images challenged obtaining a 

precise segmentation. Because different organs contours were hardly identified from the US 

images, literature optical properties (Alexandrakis et al., 2005) could not be utilized, which 

would have helped achieve a more precise forward model. An alternative would be to employ 

time-domain measurement which could enable reconstructing optical properties (Lam, Lesage, & 

Intes, 2005; Venugopal, Chen, Lesage, et al., 2010). 

4.8 Conclusion 

In conclusion, we have explored the benefit of dual-modality Fluorescence-US molecular 

imaging system associated with the reconstruction mechanism could contribute to in-vivo 

imaging study with mice. Future work would be to extend the application to cardiovascular 

disease for small animals. 
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5.1 Presentation of the article 

This article (B. Li, et al., 2014) aimed to address the third objective of this thesis. In this work, 

we developed a dual-modality FMT-MRI system explore anatomy with high spatial resolution as 

well as molecular fluorescent information of mice. Evaluated first by phantom, and next a mouse 

corpse, it was demonstrated that the MR-anatomy could optimize the forward modeling and then 

improve the fluorescence reconstruction. Eventually, this system was applied to in vivo 

atherosclerosis imaging. This article was published in Biomedical Optics Express. 

5.2 Abstract 

Combining FMT with anatomical imaging, e.g. MRI facilitates interpreting functional 

information. Furthermore, using a heterogeneous model for light propagation has been shown in 

simulations to be superior to homogeneous modeling to quantify fluorescence. Here, we present 

a combined FMT-MRI system and apply it to heart and aorta molecular imaging, a challenging 

area due to strong tissue heterogeneity and the presence of air-voids due to lungs. First 

investigating performance in a phantom and mouse corpse, the MRI-enabled heterogeneous 

models resulted in an improved quantification of fluorescence reconstructions. The system was 

then used in mice for in vivo atherosclerosis molecular imaging. Results show that, when using 
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the heterogeneous model, reconstructions were in agreement with the ex vivo measurements. 

Therefore, the proposed system might serve as a powerful imaging tool for atherosclerosis in 

mice.  

5.3 Introduction  

One of the advantages of combining FMT with anatomical imaging is anatomical guidance for 

an improved quantification of reconstructions (Ale et al., 2010; Davis et al., 2007a; Flynn et al., 

2013; B. Li et al., 2011; Yuting Lin et al., 2010b; Radrich et al., 2012). While previous reports 

show that BN could cancel off some experimental factors, such as laser coupling loss, camera 

gain and exposing time, as well as reduce the effect of absorption heterogeneity in fluorescence 

reconstructions (Ntziachristos & Weissleder, 2001); but limitations to suppress scattering 

variations were found (Pyka et al., 2011). Furthermore, it was demonstrated in simulations that 

homogeneous forward models might induce significant quantification errors in the reconstruction, 

which could be improved by propagating light in a heterogeneous model (Juan Felipe Perez-

Juste Abascal et al., 2012). In this context, especially working with CW mode, in which 

absorption and scattering cannot be separated (Gibson et al., 2005), anatomical imaging is an 

essential addition in order to optimize forward modeling and achieve an accurate reconstruction. 

Hybrid modality imaging combining FMT with MRI, X-ray CT, or ultrasound has been 

increasingly used in human breast, prostate and preclinical cancer models (Ale et al., 2012a, 

2013; Boutet et al., 2009; Laidevant et al., 2011). However, cardiovascular imaging in small 

animals has mostly been limited to ex vivo or in vitro imaging (Sosnovik et al., 2007) due to the 

high absorption of light by the heart (Tardif et al., 2011), the presence of air gaps due to lungs 

and the heterogeneous nature of light absorption properties of tissue in this region. Furthermore, 

the aorta, which is often a target in atherosclerosis imaging (Jaffer et al., 2009a), has a relatively 
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small size leading to challenges both for optical detection and structural delineation. 

Nevertheless noninvasive in vivo imaging plays an important role in preclinical atherosclerosis 

studies (Jaffer et al., 2009a). Therefore, combining the high sensitivity of FMT with the high 

spatial resolution of MRI, a hybrid FMT-MRI system is expected to improve in vivo 

atherosclerosis imaging in small animals. 

The objectives of this study were threefold: (1) To develop a novel hybrid modality 

FMT-MRI system to explore both functional information and anatomy simultaneously; (2) to 

evaluate the benefits of using a heterogeneous model of tissues for light propagation (Juan Felipe 

Perez-Juste Abascal et al., 2012); and (3) to provide a proof of concept for in vivo atherosclerosis 

imaging of mice. To achieve these objectives, we developed a fiber-based optical probe to 

acquire conduct FMT in parallel with MRI. By addressing source fibers sequentially with a 

Galvo mirror and detecting using a single snapshot of all the detection fibers with a sensitive 

EMCCD camera, our system enabled faster optical sampling than the existing FMT-MRI 

systems (Carpenter et al., 2010; Davis et al., 2008; Y Lin et al., 2011a). The system was next 

characterized with a phantom and then with a mouse corpse containing a known fluorescent 

inclusion, thereby demonstrating quantification improvements when using heterogeneous 

modeling. Finally, the system was used to image MMP activity, an important target for 

atherosclerosis imaging (Jaffer et al., 2009a; Sanz & Fayad, 2008) in atherosclerotic (ATX) and 

control (Ctrl) mice (Sanan et al., 1998).  

5.4 System 

5.4.1 FMT system design 

As shown in Figure 5.1, a collimated laser beam at 660 nm (HL6545MG, Thorlabs) was first 

cleaned up by a band-pass filter (FF01-661/11, Semrock), and then re-directed by a galvo mirror 
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(GVS012, Thorlabs), to be focused by two lenses (LA1257-B, Thorlabs) towards an optical fiber 

matrix (FT200UMT, Thorlabs). A total of 36 fibers were used for excitation, positioned in a 

matrix covering a 15 mm × 15 mm area. Similarly, 36 fibers were employed for detection. The 

detection fibers were mounted on a metal plate, and filmed by a sensitive EMCCD camera (Nüvü 

Cameras). 

 
Figure 5.1: Schematic (top) and photograph (bottom) of the FMT system. GM: Galvo mirror; EF: 

excitation fibers; DF: detection fibers; LD: laser driver; FW: Filter wheel. 

The received light corresponding to different detection fibers was thus collected by 

distinct pixels of the EMCCD chip. The camera exposition time was set to 100 milliseconds for 

all imaging presented in this work. Detection wavelength was selected by optical filters mounted 

on a motorized filter wheel (FW103, Thorlabs). In this study, the emitted fluorescence was 
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selected by a band-pass filter, FF01-716/40 (Semrock) optimized for Cy5.5. To reach the MRI 

bore, each fiber was 6 m long, and connected to a home-made MRI-compatible optical probe. 

Light coupling loss was measured to be around 40% on average. Components were synchronized 

by a data acquisition (DAQ) card (NI USB-6353, NI). 

5.4.2 Optical probe design 

The optical probe consisted of two MRI compatible plastic plates (animal plates). The top one is 

illustrated by the schematic diagram in Figure 5.2. This plate was mounted with 18 excitation 

fibers and 18 detection fibers interlaced with a distance of 3 mm and covering a total area of 15 

mm × 15 mm. Likewise, the same geometry was employed for the bottom (not shown). As seen 

in the photograph, the animal was installed between the two plates with the ROI covered by the 

fibers. The distance between the two plates could be adjusted to allow the fibers to be brought 

into close contact with the sample. Each fiber was protected by a black rubber shrink-tube to 

prevent contamination from ambient light and to reduce crosstalk between fibers. Five holes, 

serving as fiducial markers, were made on the plate (Figure 5.2). By filling with water prior to 

MR imaging, the holes could be visualized in MR images and used as reference to localize fibers 

for the simulation of photon propagation for each source. The photograph in Figure 5.2 shows 

how the optical probe was installed on the MRI animal holder. With this planar setup, both 

transmission and reflection measurements were obtained from two sides of the animal. But only 

transmission data was used for reconstruction. A 7-Tesla MRI system with 30 cm bore (Agilent) 

was used in this study. As previously mentioned, MRI and fluorescence imaging were done 

simultaneously.  
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Figure 5.2: Schematic diagram (left, top side) and photograph (right) of the optical probe 

working in an experiment. AH: animal holder; AP: animal plate; FMR: fiducial marker. 

5.5 Reconstruction 

5.5.1 MR anatomy guided forward modeling  

 
Figure 5.3: (a) Representative axial MR slice of ATX #2; (b) segmented image; (c) resampled 

segmented image with 1 mm voxel resolution.  

Photons propagation was simulated using Monte-Carlo simulations on GPU (Fang & Boas, 

2009). To define tissue boundaries for heterogeneous photon propagation, a fast segmentation 

algorithm was used (J. Yuan, Bae, & Tai, 2010) supplemented by manual correction. The 
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segmentation process is shown in a representative slice of one mouse (ATX #2 below). As 

shown by the MR slice in Figure 5.3 (a), blood was bright with this sequence so that the heart 

and aorta could easily be segmented. The rest of the body was automatically separated into air, 

lungs, blood and muscle. The boundaries between different sections were manually corrected for 

all the slices. Lung walls could not be separated, and were regarded as muscle for photon 

propagation. Lung cavities were set to air in forward modeling. The segmented image by this 

semi-automatic method is shown in Figure 5.3 (b). The image was resampled to 1 mm voxel 

resolution for forward modeling (Figure 5.3 (c)). Literature optical properties were assigned 

according to the segmentation (Alexandrakis et al., 2005; S. A. Prahl, n.d.).  

This semi-automatic segmentation was also used in the experiment with the mouse corpse 

(images not shown). In that experiment, fat tissue was brighter in the MR images; and the 

fluorescent inclusions were approximately inserted into the liver area of the mouse corpse, where 

the heart and lungs were not included in the FOV of FMT. Because the biological composition 

was different from a living mouse and the organs were delocalized due to inserting fluorescence 

inclusions, the corpse was simply segmented to muscle and fat. 

5.5.2 MR-prior constrained reconstruction  

Image reconstruction was done by minimizing the following objective function: 

 22
χλχ LWmeas +−Φ=Ω , (5.1) 

where 2χλ L is a penalty term to regularize the reconstruction process and reduce its ill-

posedness. Then, the first-order condition,
 

,0=
∂
Ω∂
χ

leads to the following iterative minimization 

process, as detailed in Ref. (Yalavarthy, Pogue, Dehghani, & Paulsen, 2007): 
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Here, measΦ and CΦ are the experimental and simulated Born ratios (Ntziachristos & Weissleder, 

2001);W is the sensitivity matrix; χ represents the fluorescence yield εηC, in which ε, η and C 

are the extinction coefficient, quantum yield and concentration of the fluorophore. The matrix L

encodes the prior localization of fluorescence emission in Laplacian form; it is used to constrain 

reconstruction as a soft-prior (Yalavarthy, Pogue, Dehghani, & Paulsen, 2007). λ is the 

regularization parameter to adjust the strength of the penalty term; ),( rrG s
x and ),( d

m rrG are two 

Green functions, which describe the photon propagations from source ( sr ) to an arbitrary 

position in tissue ( r ), and from tissue to detector ( dr ), respectively. Finally, reconstruction was 

performed iteratively, and i represents the iteration index. Convergence was said to be achieved 

when the projection error between two iterations was below 1%. However, a maximum of eight 

iterations was imposed to avoid the estimated error increasing (Yalavarthy, Pogue, Dehghani, & 

Paulsen, 2007).  

To diminish the error in reconstruction induced by an imprecise segmentation and/or an 

inadequate knowledge on the localization of fluorescence emission, the matrix L encoding spatial 

priors was used only in the first iteration but replaced by an identity matrix in the following 

iterations. The initial value of fluorescent yield was set to be zero. It has been reported that an 

optimal λ was often determined empirically (Yalavarthy, Pogue, Dehghani, & Paulsen, 2007). 

But to avoid bias on this part, the initial value of λ was determined by an L-curve method 

(Hansen & O’Leary, 1993). As a result, the value of λ was less than 2 for all the reconstructions 

presented in this study.  
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5.6 Experiments 

5.6.1 Phantom experiment 

 
Figure 5.4: Schematic diagram of the phantom: (a) view of X-Y plane; (b) view of X-Z plane. 

The attenuation and fluorescence inclusions are denoted by Diff and Fluo, respectively. 

Table 5.1: Dimension and optical properties of the phantom. 

 Center 

position (mm) 

Dimension (mm) Optical 

properties (mm-1) 

 X Y Z Diameter X Y Z   

Bulk -- -- -- -- 30 30 20 0.02 1.0 

Diff 13 15 7 18 -- -- 6 0.005 0.5 

Fluo 14 -- 13 4 -- 30 -- -- -- 

Phantom experiments were first conducted to characterize the FMT system and the 

associated reconstruction algorithm. The dimension of the phantom is illustrated in Figure 5.4 

with detailed information provided in Table 5.1. The phantom was installed between the two 

plates with the fibers covering an area approximately illustrated by the dashed red square in 

Figure 5.4 (a). Cylindrical transparent tubes (length: 30mm, inner ⌀ : 3mm) filled with Cy5.5 

solution at concentrations of 200nM, 100nM and 50nM were inserted into ‘Fluo’ in Figure 5.4 

(b), and then imaged. For confirmation and to account for potential dilution errors, each 

αµ
,
sµ
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fluorescent tube was imaged ex vivo using a commercial epi-illumination fluorescence imaging 

system (IVIS Lumina, PerkinElmer). 

5.6.2 Mouse corpse experiment 

To mimic the in vivo environment, a mouse corpse was employed to evaluate the FMT-MRI 

system. Transparent tubes, of each having a volume of ~106µL, filled with Cy5.5 solution at 

600nM and 400nM were each inserted into approximately the same region in the body and then 

imaged by the FMT-MRI system. For MRI imaging, a T1-weighted 3D sequence was used so 

that fatty tissue was bright. Parameters were TR/TE = 5.0, 2.5 ms, FA = 30, matrix size of 256 × 

192 × 256, 4 averages, 16 minutes scan time. Spatial resolution along the X, Y and Z direction 

was 0.18 mm, 0.16 mm and 0.16 mm (Figure 5.7). The whole FMT-MRI process took ~20 

minutes for each concentration.    

5.6.3 In vivo experiment 

The FMT-MRI system was then used to evaluate in vivo molecular imaging of atherosclerosis. 

All animal manipulations were approved by the ethics committee of Montreal Heart Institute. 

Two ATX (LDLR-/-; Human Tg (apoB+/+); ~19 months old) and two Ctrl (C57/B6; ~3 months 

old) mice were imaged, labeled ATX #1, #2 and Ctrl #1, #2 in the following. The ATX mice 

have a gene deletion in the LDL receptor (Ldlr) gene and overexpress the human apolipoprotein 

B. Mice lacking the LDL receptor will develop atherosclerosis spontaneously without the need of 

high fat diet during 16 weeks (Sanan et al., 1998). 

Using those mice at advanced age (19 months) allow them to develop  a severe 

atherosclerotic plaque on a chow diet, in which the metalloproteinase’s (MMP’s)  activity would 

be higher compared to the wild type mice (C57/B6). To visualize MMPs activity induced by 
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atherosclerosis, ~16 nmol of a molecular probe (MMPSense 680, PerkinElmer) was 

intravenously administered, with the dose being proportional to the individual weight. For each 

mouse, imaging was conducted before and 24 hours after the administration of the probe. For 

FMT, the FOV of the optical probe was designed to approximately cover the heart area. For MRI, 

a 2D CINE bright blood sequence (in rapid single phase mode) was used with cardiac but no 

respiratory gating. The parameters were as follows: TR in the range 120-140 ms (one R-R 

interval), TE = 1.8 ms, FA = 30, 256 x 256 matrix leading to 0.18 x 0.14 mm resolution (see 

Figure 5.8), 30 slices of 1 mm thickness, 20 averages. For each mouse, the FMT-MRI process 

was completed in ~45 minutes. After the experiment, the mice were sacrificed and dissected; 

hearts and aortas were imaged ex vivo for evaluation. 
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5.7 Results 

5.7.1 Phantom experiment 

 
Figure 5.5: (a) A synthetic fluorescence slice of the phantom; (b) the corresponding slices of the 

reconstruction with the heterogeneous models (b), and with the homogeneous model (c), 

respectively; (d) plot of reconstructed values along the red dashed line. (e) CNR was compared 

with λ for both models. 

Phantom experiments were used to evaluate the impact of heterogeneous modeling on the 

quantification of fluorescence reconstructions. A heterogeneous model was built as illustrated in 

Figure 5.4, with optical properties assigned according to Table 5.1. The homogeneous model 

used bulk optical properties to propagate light. In both models, the fluorescent inclusion, denoted 

by ‘Fluo’ in Figure 5.4 (b), was assigned with the bulk optical properties. Identical optical 

properties were assumed at the excitation and the emission wavelengths consistent with small 

absorption changes expected with this phantom. Finally, the localization of the tubes was used as 
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a soft-prior to constrain the reconstructions of the fluorescence yield εηC. Taking the published 

values of ε and η (Talanov et al., 2006), concentration C of the embedded Cy5.5 fluorophore was 

then estimated. As shown in Figure 5.5, a representative reconstruction of the fluorescent tube 

filled with 200nM Cy5.5 solution. One slice of the phantom is illustrated in Figure 5.5 (a), with 

the fluorescent tube indicated by the white bar. The reconstructed concentration of the 

corresponding slice with the heterogeneous and homogeneous models is presented in Figure 5.5 

(b) and (c). As shown, heterogeneous modeling resulted in better localization and quantification. 

The reconstructed concentration values along the red dashed line in Figure 5.5 (a) were plotted 

for analysis (Figure 5.5 (d)). Overall, the reconstructed concentrations of the fluorescent 

inclusions with the heterogeneous models for 200nM, 100nM and 50nM were estimated at 

~260nM, ~151nM and ~83nM, respectively. Contrast to Noise Ratio was also evaluated as 

defined by CNR = (SA-SB)/σ, where SA/SB is the average value of the fluorescent 

inclusion/background respectively, σ is the standard deviation of background. With 

heterogeneous reconstructions, the CNRs were 11.6, 11.7 and 10.7 for the cases of 200nM, 

100nM and 50nM, respectively. With the homogeneous models, the CNRs were ~29 times lower 

on average. Shown in Figure 5.5 (e), different λ from 1 to 100 were used in the reconstructions. 

The homogeneous reconstructions were significantly improved with greater λ. And a better CNR 

could be consistently achieved with heterogeneous model for each λ.   
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Figure 5.6: (a) Ex vivo images of the fluorescent tubes were overlaid with transparency 

(alpha=0.5) on the photographs of tubes, respectively; (b) the average reconstructed values (both 

models) of the fluorescent tubes were normalized of the maximum being 1, to compare with the 

ex vivo measurement (reference). 

In Figure 5.6 (a), the fluorescent tubes were measured ex vivo as reference; and the 

fluorescence images were overlaid with transparency (alpha=0.5) on the photographs of the tubes. 

Then, the average reconstructed values in the fluorescent inclusions for different cases of 

concentrations were normalized to the maximum. As shown in Figure 5.6 (b), linearity was 

achieved for the reconstructions with both heterogeneous and homogeneous models. Nonetheless, 

the heterogeneous model reconstructions show a higher fidelity to the reference. When 

quantified, the standard deviation of the difference between the reconstruction with the 

heterogeneous model and the reference is ~0.01; but, drops to ~0.06 for the homogeneous 

counterpart. 
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5.7.2 Mouse corpse experiment 

 
Figure 5.7: (a) Three orthogonal MR slices are shown: axial slice (Y-Z), coronal slice (X-Y) and 

sagittal slice (X-Z). The arrow of the X axes points to tail of the mouse; and the arrow of the Z 

axes points to abdomen. The tube was indicated by the red arrow; (b) the reconstructions with 

the heterogeneous models were overlaid with transparency (alpha=0.5) on the MR slices, 

respectively; (c) the reconstructions with the homogeneous models were overlaid with 

transparency (alpha=0.5) on the MR slices, respectively. 

Results obtained with the fluorescent tube filled with 400nM Cy5.5 solution are presented as an 

example. Three orthogonal MR slices are shown in Figure 5.7 (a). For visualization, the 

reconstructed images were overlaid with transparency (alpha=0.5) on the MR slices and a 

threshold was set to reduce background intensities. With this experiment, the reconstructed 
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concentrations with the heterogeneous model for the cases of 600nM and 400nM were ~640nM 

and ~237nM with CNRs of ~7.7 and ~2.7, respectively. Again, the CNR of the reconstructions 

with the heterogeneous models were ~6.6 times better than their homogeneous counterpart. 

Linearity was compared for the reconstructions with both types of models and the standard 

deviation of the difference between the heterogeneous reconstructions and the reference was 

~0.22, but dropped to ~0.89 for the homogeneous counterpart.  

Both CNR and linearity of the reconstructions decreased when compared to the phantom 

experiment likely due to greater absorption and scattering of tissue, which deteriorated SNR of 

the corresponding measurements. The value of regularization parameter, determined by the L-

curve method, was estimated lower in this case which may reduce reconstruction contrast 

(Yalavarthy, Pogue, Dehghani, & Paulsen, 2007). Finally, although taking into account the 

heterogeneity of the mouse corpse, the forward modeling remained a considerable approximation 

due to the rough segmentation. 
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5.7.3 In vivo experiment 

 
Figure 5.8: The images in the first column are the MR slices for each mouse. Heart and part of 

aorta of ATX #1 were denoted by red arrows. In the second column, the reconstructed εηC with 

the heterogeneous models were overlaid with transparency (alpha=0.5) on the MR slices, 

respectively. Three orthogonal MR slices were chosen for each mouse: axial slice (Y-Z), coronal 

slice (X-Y) and sagittal slice (X-Z).  

Finally, the reconstructions of the four mice are shown in Figure 5.8. Because the values of ε and 

η are unknown for this molecular probe, fluorescence yield εηC instead of concentration is 

presented. As identified a posteriori by the ex vivo analysis, a considerable amount of 
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fluorescence signal was observed in the lungs. Therefore, the heart, aorta and lungs were used as 

soft-prior to constrain the reconstructions. MR image slices used for segmentation are shown in 

the first column of Figure 5.8. Here, the axial slice is approximately located in the center of the 

heart while the sagittal slice was chosen to visualize part of the descending aorta. In the second 

column of Figure 5.8, the reconstructed εηC with the heterogeneous model is overlaid with 

transparency (alpha=0.5) on the corresponding MR slices. For visualization, a threshold was set 

to reduce background intensities. Fluorescence intensity was higher in the ATX mice than the 

control ones, which might reflect the known increase MMPs activity of the ATX mice. The 

average value of εηC on the regions of heart and aorta for ATX #1, ATX #2, Ctrl #1 and Ctrl #2 

was ~0.0027, ~0.0024, ~0.0011 and ~0.0011, respectively. As with the dead mouse experiment, 

reconstructions with the homogeneous models were underestimated (data not shown).  

 

Figure 5.9: The hearts and aortas of the four mice were imaged ex vivo. In the first row, the ex 

vivo fluorescence images were overlaid with transparency (alpha=0.5) on the corresponding 
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photographs. Shown by the curves below, the average reconstructed εηC of the hearts and aortas 

for all mice were normalized with the maximum being 1 to compare with the ex vivo 

measurement.    

Reconstructions were then evaluated by ex vivo measurements (Figure 5.9). In the first 

row, fluorescence from the heart and aorta is shown for all mice confirming increase uptake in 

ATX #1 and #2. A comparison of reconstruction estimations with ex vivo measurements is also 

provided for both homogeneous and heterogeneous forward modeling (normalized to ATX #1). 

Quantitatively, the standard deviation of the difference between the reconstructions with the 

heterogeneous models and the ex vivo measurement was ~0.08, but drops to ~0.22 for the 

homogeneous counterpart. 

5.8 Discussion 

In this paper, a hybrid-modal FMT-MRI system targeted to mouse cardiovascular imaging was 

presented. Working with long fibers, emitted photons corresponding to all detection fibers for 

each source could be recorded in one single snapshot with an EMCCD camera. Hence, a full 

measurement at one wavelength for all sources (36) was completed within ~30 seconds. An 

optical probe was designed to quickly install the animal within the MRI holder. Therefore, with 

fibers on the top and bottom sides of the optical probe, transmission measures were obtained 

from both sides of the animal; and MRI was conducted simultaneously to FMT.  

One of the objectives of this study was to achieve an improved quantification of 

reconstructions with heterogeneous forward modeling. MR-anatomy enabled the construction of 

a heterogeneous model for improved simulations of photons propagation, including void regions 

created by lungs. To evaluate benefits of this approach, reconstructions with both heterogeneous 

and homogeneous models were compared using experimental measures on phantoms. The results 
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confirm that heterogeneous modeling is beneficial to reconstructions both in terms of localization 

and quantification. There results were further confirmed using a more realistic geometry using a 

mouse corpse.  

Finally, the FMT-MRI system was applied in in vivo imaging of atherosclerosis. 

Following administration of a molecular probe, specific fluorescence signal was detected, which 

reflects the MMPs activity involved in the progression of atherosclerosis. With the 

heterogeneous models, the evaluation of fluorescence yield from the hearts and aortas were well 

correlated to the ex vivo measurements, not as clearly with homogenous modeling.  

There remain limitations to this study: besides forward modeling, anatomical prior 

information could also benefit the inverse problem which was not investigated here. Second, 

although taking into account the heterogeneity of tissue, rough segmentations of the MR 

anatomies and the use of literature values for optical properties might induce modeling error. 

Time-resolved measurements may provide some help (Gao, Zhao, & Yamada, 2002) to 

reconstruct first the optical properties. Finally, we showed that a soft-prior could help obtain 

better quantitative reconstructions. Nonetheless, such priors are not always achievable in in vivo 

experimental situations. In this study, although heart and aorta are the major targets for 

atherosclerosis imaging, MMPs activated fluorescence was found more broadly from the body of 

mice. Lungs were found to have considerable fluorescence and thus included in the priors. 

However, to avoid over-constrain, the soft-priors were only used in the first iteration of 

reconstruction and replaced with an identity matrix for the following iterations. Alternatively, it 

might be expected that with an optimized forward model and a more advanced detection 

mechanism (Frederic Leblond et al., 2011) having better SNR, the reliance of prior on 

reconstruction could be alleviated.  



119 
 

 

5.9 Conclusion 

In summary, we have developed a hybrid-modal FMT-MRI system to explore both functional 

and anatomical information in mice. Using MR-derived anatomical information, the benefits of 

heterogeneous forward modeling was demonstrated in experiments encompassing phantom, 

mouse corpse and in vivo imaging of atherosclerosis. The reconstructions with the heterogeneous 

models showed higher fidelity to the ex vivo measurements when compared to the homogeneous 

model. Therefore, the proposed FMT-MRI system associated with the reconstruction method 

might serve as a tool for atherosclerosis imaging of small animals. Furthermore, due to its 

improved acquisition rate, the future application of this system will be in dual-modality 

pharmacokinetic imaging with preclinical tumorous mice.  
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CHAPTER 6 GENERAL DISCUSSION 

6.1 Article #1   

6.1.1 System characterization 

Corresponding to the first objective of the thesis, a combined fluorescence-US imaging 

system was developed. The fluorescence imaging subsystem was used to measure boundary 

fluorescent emission; the US subsystem was to delineate 3D interface of both the surface and the 

inclusion. Both fluorescence and US were performed in a raster-scanned fashion with motorized 

linear stage. For fluorescence, a single source-detector pair was scanned on the tissue surface 

with steps of 1 mm. For US, a single-element transducer was scanned in conjunction with a 

fluorescence probe. Thus, the irregular shape of tissue could be delineated and precisely co-

registered with the reconstructed fluorescence images.   

The system was characterized using two phantoms having different shapes, constitutions 

and dimensions. Phantom results showed that the fluorescence reconstruction image quality 

could be significantly improved using the US structural priors. Besides, proof-of-concept 

experiment with a mouse demonstrated the feasibility and potential of this combined imaging 

approach for in-vivo imaging with small animals. Therefore, this work exhibits a promising 

strategy for exploring anatomical and functional information at very low-cost (less than 9k$).  

6.1.2 Limitations 

Limitations are mainly due to the simplicity of this proposed system. First, the optical 

measurement recorded by scanning the single source-detector pair is less informative than a 

camera-based system would. Second, raster-scanning suggests longer acquisition time compared 

with system of camera-based detection. Moreover, our home-made US system needs to be 
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optimized towards an improved resolution of US images, which poses a challenge when trying to 

segment to gather a precise atlas for the whole body of small animals. As well, it would be even 

more difficult to image small objects in tissue, such as aorta in atherosclerotic imaging. 

6.2 Article #2 

6.2.1 System design 

Following the Article #1, the fluorescence-US imaging system was upgraded in terms of 

sampling precision and reconstruction technique. For fluorescence imaging, the illumination was 

conducted point-by-point by a pair of motorized linear stages with steps of 2 mm at X and Y 

directions. In addition, the fluorescent emission was measured by an EMCCD camera in 

transmission mode. Again, controlled by the same linear stages, a single element US transducer 

was scanned with micrometer resolution at X and Y directions. Because the US transducer has a 

fixed focal length and was focused on the lesion, a profilometer was employed to extract the 

surface of tissue, thus providing supplementary information to the US image, hence benefiting 

the forward modeling and inverse problem.  

6.2.2 Attenuation compensated born normalization and pattern based reconstruction 

As extension, we proposed to compensate the attenuation involved in the BN 

approximation. With the ACBN method, fluorescence emission mapping was accurately 

recovered in phantoms using wide-field detection, not possible with the standard Born 

normalization. Finally, to take advantage of the enriched measurements on the detection side, a 

pattern-based reconstruction mechanism was employed showing accurate recovery of 

fluorescence information. A simulation study further demonstrated linearity, accuracy and 
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fidelity of this reconstruction mechanism. Using the phantom measurements again, an enhanced 

quantification of reconstruction was achieved with the ACBN method.  

6.2.3 In-vivo imaging with preclinical tumorous mice 

The system was applied in in-vivo study with preclinical tumorous mice. Following the 

administration of a molecular probe, activity of cancer cells could be revealed. With our 

proposed computational techniques, the tumor was accurately localized. Furthermore, the 

reconstructed fluorescence was in agreement with the ex-vivo result. 

6.2.4 Limitations 

First, the accuracy of the ACBN was compromised due to the variation of attenuation 

along the fluorescence propagation path. One potential solution would be to take into account 

only the measurement being co-linear to the illumination positions, which, unavoidably, would 

lose information from the experimental data. Second, the limited resolution and tissue contrast of 

US images challenged tissue recognition and image segmentation, which in turn brought 

difficulty for a precise forward modeling.  

6.3 Article #3 

6.3.1 Advantages 

The last objective was to develop a MRI-guided FMT system targeted on atherosclerotic 

imaging with mice. To reach the MRI, long fibers were employed to collect photons in parallel to 

the MRI acquisition. With this configuration, all detection for each source could be recorded in 

one single snapshot by an EMCCD camera, thus exhibiting a fast imaging approach for this 

multi-modality imaging platform.  
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The benefits of this combined imaging system are twofold. First, the MRI anatomy 

benefited the forward model, which in this version, takes into account the heterogeneities of 

different tissue types. This benefit was evaluated by phantom and mice corpses comparing 

heterogeneous models with homogeneous ones, showing an improved quantization of 

fluorescence reconstruction when using heterogeneous modeling. Second, small objects, such as 

aorta in mice, could be visualized anatomically by MRI, thereby, guide the localization of 

fluorescence reconstruction. 

6.3.2 Atherosclerotic imaging with mice 

Finally, the FMT-MRI system was applied in in-vivo atherosclerotic imaging. Following 

administration of a molecular probe, fluorescence signal was detected, which revealed the MMPs 

activity involved in the progression of atherosclerosis. Reconstructed using the heterogeneous 

models derived from MR anatomy, the fluorescence yield from the hearts and aortas were in 

accordance with the ex vivo measurements.  

6.3.3 Limitations 

Limitations remain in this study. First, coarse segmentations of the MR anatomies and the 

inadequacy of literature values might induce modeling error. It might be expected that better 

known tissue properties derived by additional technique could optimize forward modeling. 

Besides, although a soft-prior could constrain and thus obtain better quantitative reconstructions, 

such priors are not always achievable in in vivo experiments. As in this study, heart and aorta are 

the major targets for atherosclerotic imaging, MMPs activated fluorescence was found more 

broadly from the body of mice. For example, lungs were found to have considerable amount of 

fluorescence. Furthermore, a more advanced detection mechanism could enhance the SNR of 

measurement so that the reliance of prior on reconstruction could be alleviated.  



128 
 

 

CHAPTER 7 CONCLUSION 

In this thesis, fluorescence imaging was combined with supplemental anatomical imaging 

modalities, such as US and MRI. We first presented a fluorescence-US system to explore both 

structural and functional information of imaging objects. Although low-cost, phantom results 

demonstrated that the US structural prior could still benefit the fluorescence reconstruction 

significantly. A proof-of-concept in-vivo experiment with a mouse further verified the feasibility 

of this combined imaging approach for future animal studies. Following the first work, the 

fluorescence-US imaging system was optimized with an EMCCD camera and motorized 

scanning of micrometers resolution. In addition, a profilometer was employed to measure the 3D 

surface of the imaging objects, in addition to the US anatomy. These improvements were specific 

to the issues which limited the first version of fluorescence-US system. Besides, working with 

phantoms, the ACBN method associated with the pattern based reconstruction algorithm resulted 

in improved recovery of fluorescence with respect to quantification and localization. This 

combined system was ultimately applied to in-vivo imaging with preclinical timorous mice. The 

in-vivo results exhibited good correlation with ex-vivo measurement. However, the limited 

resolution of the US images challenged the application in atherosclerotic imaging. To address 

that, we proposed a MRI-guided FMT system to explore anatomy with high spatial resolution, 

expecting to better guide fluorescence reconstruction and interpret functional information. 

Derived by the MR anatomies, the benefits of heterogeneous forward modeling were 

demonstrated in experiments encompassing phantom and mouse corpse. Finally, the system was 

applied to atherosclerotic imaging with mice. The reconstructions with the heterogeneous models 

showed higher fidelity to the ex vivo measurements when compared to the homogeneous models. 

Therefore, the proposed MRI-guided FMT system associated with the reconstruction method 
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might serve as a tool for atherosclerosis imaging of small animals. In conclusion, multi-modality 

diffuse fluorescence imaging was studied with this thesis. Different imaging modalities, such as 

US and MRI were explored as supplement for better recovery and interpretation of fluorescence 

images. Results of phantoms and in-vivo mice experiments suggested that the benefits from 

supplementary imaging modalities were unique; and significant outcome in preclinical study 

could be expected by multi-modality fluorescence imaging.  
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