275 research outputs found

    Bacterial Foraging Based Channel Equalizers

    Get PDF
    A channel equalizer is one of the most important subsystems in any digital communication receiver. It is also the subsystem that consumes maximum computation time in the receiver. Traditionally maximum-likelihood sequence estimation (MLSE) was the most popular form of equalizer. Owing to non-stationary characteristics of the communication channel MLSE receivers perform poorly. Under these circumstances ‘Maximum A-posteriori Probability (MAP)’ receivers also called Bayesian receivers perform better. Natural selection tends to eliminate animals with poor “foraging strategies” and favor the propagation of genes of those animals that have successful foraging strategies since they are more likely to enjoy reproductive success. After many generations, poor foraging strategies are either eliminated or shaped into good ones (redesigned). Logically, such evolutionary principles have led scientists in the field of “foraging theory” to hypothesize that it is appropriate to model the activity of foraging as an optimization process. This thesis presents an investigation on design of bacterial foraging based channel equalizer for digital communication. Extensive simulation studies shows that the performance of the proposed receiver is close to optimal receiver for variety of channel conditions. The proposed receiver also provides near optimal performance when channel suffers from nonlinearities

    Communication Theoretic Data Analytics

    Full text link
    Widespread use of the Internet and social networks invokes the generation of big data, which is proving to be useful in a number of applications. To deal with explosively growing amounts of data, data analytics has emerged as a critical technology related to computing, signal processing, and information networking. In this paper, a formalism is considered in which data is modeled as a generalized social network and communication theory and information theory are thereby extended to data analytics. First, the creation of an equalizer to optimize information transfer between two data variables is considered, and financial data is used to demonstrate the advantages. Then, an information coupling approach based on information geometry is applied for dimensionality reduction, with a pattern recognition example to illustrate the effectiveness. These initial trials suggest the potential of communication theoretic data analytics for a wide range of applications.Comment: Published in IEEE Journal on Selected Areas in Communications, Jan. 201

    Non-linear echo cancellation - a Bayesian approach

    Get PDF
    Echo cancellation literature is reviewed, then a Bayesian model is introduced and it is shown how how it can be used to model and fit nonlinear channels. An algorithm for cancellation of echo over a nonlinear channel is developed and tested. It is shown that this nonlinear algorithm converges for both linear and nonlinear channels and is superior to linear echo cancellation for canceling an echo through a nonlinear echo-path channel

    Artificial neural networks for location estimation and co-cannel interference suppression in cellular networks

    Get PDF
    This thesis reports on the application of artificial neural networks to two important problems encountered in cellular communications, namely, location estimation and co-channel interference suppression. The prediction of a mobile location using propagation path loss (signal strength) is a very difficult and complex task. Several techniques have been proposed recently mostly based on linearized, geometrical and maximum likelihood methods. An alternative approach based on artificial neural networks is proposed in this thesis which offers the advantages of increased flexibility to adapt to different environments and high speed parallel processing. Location estimation provides users of cellular telephones with information about their location. Some of the existing location estimation techniques such as those used in GPS satellite navigation systems require non-standard features, either from the cellular phone or the cellular network. However, it is possible to use the existing GSM technology for location estimation by taking advantage of the signals transmitted between the phone and the network. This thesis proposes the application of neural networks to predict the location coordinates from signal strength data. New multi-layered perceptron and radial basis function based neural networks are employed for the prediction of mobile locations using signal strength measurements in a simulated COST-231 metropolitan environment. In addition, initial preliminary results using limited available real signal-strength measurements in a metropolitan environment are also reported comparing the performance of the neural predictors with a conventional linear technique. The results indicate that the neural predictors can be trained to provide a near perfect mapping using signal strength measurements from two or more base stations. The second application of neural networks addressed in this thesis, is concerned with adaptive equalization, which is known to be an important technique for combating distortion and Inter-Symbol Interference (ISI) in digital communication channels. However, many communication systems are also impaired by what is known as co-channel interference (CCI). Many digital communications systems such as digital cellular radio (DCR) and dual polarized micro-wave radio, for example, employ frequency re-usage and often exhibit performance limitation due to co-channel interference. The degradation in performance due to CCI is more severe than due to ISI. Therefore, simple and effective interference suppression techniques are required to mitigate the interference for a high-quality signal reception. The current work briefly reviews the application of neural network based non-linear adaptive equalizers to the problem of combating co-channel interference, without a priori knowledge of the channel or co-channel orders. A realistic co-channel system is used as a case study to demonstrate the superior equalization capability of the functional-link neural network based Decision Feedback Equalizer (DFE) compared to other conventional linear and neural network based non-linear adaptive equalizers.This project was funded by Solectron (Scotland) Ltd

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation deals with blind modulation identification of quadrature amplitude modulations (QAM) and phase-shift keying (PSK) signals in dual-polarized channels in digital communication systems. The problems addressed in this dissertation are as follows: First, blind modulation identification of QAM and PSK signals in single noisy channels and multipath channels are explored. Second, methods for blind separation of two information streams in a dual-polarized channel and identification of the modulation types of the two information streams are developed. A likelihood-based blind modulation identification for QAM and PSK signals in a single channel with additive white Gaussian noise (AWGN) is developed first. This algorithm selects the modulation type that maximizes a log-likelihood function based on the known probability distribution associated with the phase or amplitude of the received signals for the candidate modulation types. The approach of this paper does not need prior knowledge of carrier frequency or baud rate. Comparisons of theory and simulation demonstrate good agreement in the probability of successful modulation identification under different signal-to-noise ratios (SNRs). Simulation results show that for the signals in AWGN channels containing 10000 symbols and 20 samples per symbol, the system can identify BPSK, QPSK, 8PSK and QAMs of order 16, 32, 64, 128 and 256 with better than 99% accuracy at 4 dB SNR. Under the same condition, the simulation results indicate the two competing methods available in the literature can only reach at most 85% accuracy even at 20 dB SNR for all the modulation types. The simulation results also suggest that when the symbol length decreases, the system needs higher SNRs in order to get accurate identification results. Simulations using different noisy environments indicate that the algorithm is robust to variations of noise environments from the models assumed for derivation of the algorithm. In addition, the combination of a constant modulus amplitude (CMA) equalizer and the likelihood-based modulation identification algorithm is able to identify the QAM signals in multipath channels in a wide range of SNRs. When compared with the results for the signals in AWGN channels, the combination of the CMA equalizer and the likelihood-based modulation identification algorithm needs higher SNRs and longer signal lengths in order to obtain accurate identification results. The second contribution of this dissertation is a new method for blindly identifying PSK and QAM signals in dual-polarized channels. The system combines a likelihood-based adaptive blind source separation (BSS) method and the likelihood-based blind modulation identification method. The BSS algorithm is based on the likelihood functions of the amplitude of the transmitted signals. This system tracks the time-varying polarization coefficients and recovers the input signals to the two channels. The simulation results presented in this paper demonstrate that the likelihood-based adaptive BSS method is able to recover the source signals of different modulation types for a wide range of input SNRs. Comparisons with a natural gradient-based BSS algorithm indicate that the likelihood-based method results in smaller symbol error rates. When a modulation identification algorithm is applied to the separated signals, the overall system is able to identify different PSK and QAM signals with high accuracy at sufficiently high SNRs. For example, with 20,000 symbols, the system identified BPSK and 16-QAM signals with better than 99% accuracy when the input SNR was 8dB and the polarization coefficients rotated with a rate of 1.3 ms. Higher SNRs are needed to obtain similar levels of accuracy when the polarization changes faster or when the number of input symbols is shorter. When compared with the identification results for signals in AWGN channels, the system needs higher SNRs and longer signal length to obtain accurate results for signals in dual-polarized channels

    QR factorization equalisation scheme for mode devision multiplexing transmission in fibre optics

    Get PDF
    Optical communication systems play a major role in handling worldwide Internet traffic. Internet traffic has been increasing at a dramatic rate and the current optical network infrastructure may not be able to support the traffic growth in a few decades. Mode division multiplexing is introduced as a new emerging technique to improve the optical network capacity by the use of the light modes as individual channels. One of the main issues in MDM is mode coupling which is a physical phenomenon when light modes exchange their energy between each other during propagation through optical fiber resulting in inter-symbol interference (ISI). Many studies based on Least Mean Square (LMS) and Recursive Least Square (RLS) have taken place to mitigate the mode coupling effect. Still, most approaches have high computational complexity and hinders high-speed communication systems. Blind equalisation approach does not need training signals, thus, will reduce the overhead payload. On the other hand, QR factorization shows low computational complexity in the previous research in the radio domain. The combination of these two concepts shows significant results, as the use of low complexity algorithms reduces the processing needed to be done by the communication equipment, resulting in more cost effective and smaller equipment, while having no training signal saves the bandwidth and enhances the overall system performance. To the best knowledge of the researcher, blind equalisation based on QR factorization technique has been not used in MDM equalisation to date. The research goes through the four stages of the design research methodology (DRM) to achieve the purpose of the study. The implementation stage is taken two different simulators has been used, the first one which is the optical simulator is used to collect the initial optical data then, MATLAB is used to develop the equalisation scheme. The development starts with the derivation of the system’s transfer function (H) to be used as the input to the developed equalizer. Blind equalisation based on QR factorization is chosen as a way to introduce an efficient equalization to mitigate ISI by narrowing the pulse width. The development stages include a stage where the channel estimation is taken place. Statistical properties based on the standard deviation (STD) of the powers of the input and output signals has been used for the blind equalisation’s channel estimation part. The proposed channel estimation way has the ability in estimating the channel with an overall mean square error (MSE) of 0.176588301 from the initial transmitted signal. It is found that the worst channel has an MSE of 0.771365 from the transmitted signal, while the best channel has and MSE of 0.000185 from the transmitted signal. This is done by trying to avoid the issues accompanied with the development of the previous algorithms that have been utilized for the same goal. The algorithm mentioned in the study reduces the computational complexity problem which is one of the main issues that accompany currently used tap filter algorithms, such as (LMS) and (RLS). The results from this study show that the developed equalisation scheme has a complexity of O(N) compared with O(N2) for RLS and at the same time, it is faster than LMS as its calculation CPU time is equal to 0.005242 seconds compared with 0.0077814 seconds of LMS. The results are only valid for invertible and square channel matrices
    corecore