14,731 research outputs found

    Implementation and Deployment of a Distributed Network Topology Discovery Algorithm

    Full text link
    In the past few years, the network measurement community has been interested in the problem of internet topology discovery using a large number (hundreds or thousands) of measurement monitors. The standard way to obtain information about the internet topology is to use the traceroute tool from a small number of monitors. Recent papers have made the case that increasing the number of monitors will give a more accurate view of the topology. However, scaling up the number of monitors is not a trivial process. Duplication of effort close to the monitors wastes time by reexploring well-known parts of the network, and close to destinations might appear to be a distributed denial-of-service (DDoS) attack as the probes converge from a set of sources towards a given destination. In prior work, authors of this report proposed Doubletree, an algorithm for cooperative topology discovery, that reduces the load on the network, i.e., router IP interfaces and end-hosts, while discovering almost as many nodes and links as standard approaches based on traceroute. This report presents our open-source and freely downloadable implementation of Doubletree in a tool we call traceroute@home. We describe the deployment and validation of traceroute@home on the PlanetLab testbed and we report on the lessons learned from this experience. We discuss how traceroute@home can be developed further and discuss ideas for future improvements

    Distributed coordination of self-organizing mechanisms in communication networks

    Get PDF
    The fast development of the Self-Organizing Network (SON) technology in mobile networks renders the problem of coordinating SON functionalities operating simultaneously critical. SON functionalities can be viewed as control loops that may need to be coordinated to guarantee conflict free operation, to enforce stability of the network and to achieve performance gain. This paper proposes a distributed solution for coordinating SON functionalities. It uses Rosen's concave games framework in conjunction with convex optimization. The SON functionalities are modeled as linear Ordinary Differential Equation (ODE)s. The stability of the system is first evaluated using a basic control theory approach. The coordination solution consists in finding a linear map (called coordination matrix) that stabilizes the system of SON functionalities. It is proven that the solution remains valid in a noisy environment using Stochastic Approximation. A practical example involving three different SON functionalities deployed in Base Stations (BSs) of a Long Term Evolution (LTE) network demonstrates the usefulness of the proposed method.Comment: submitted to IEEE TCNS. arXiv admin note: substantial text overlap with arXiv:1209.123

    Spoiled Onions: Exposing Malicious Tor Exit Relays

    Full text link
    Several hundred Tor exit relays together push more than 1 GiB/s of network traffic. However, it is easy for exit relays to snoop and tamper with anonymised network traffic and as all relays are run by independent volunteers, not all of them are innocuous. In this paper, we seek to expose malicious exit relays and document their actions. First, we monitored the Tor network after developing a fast and modular exit relay scanner. We implemented several scanning modules for detecting common attacks and used them to probe all exit relays over a period of four months. We discovered numerous malicious exit relays engaging in different attacks. To reduce the attack surface users are exposed to, we further discuss the design and implementation of a browser extension patch which fetches and compares suspicious X.509 certificates over independent Tor circuits. Our work makes it possible to continuously monitor Tor exit relays. We are able to detect and thwart many man-in-the-middle attacks which makes the network safer for its users. All our code is available under a free license

    Measurement-Based Monitoring and Control in Power Systems with High Renewable Penetrations

    Get PDF
    Power systems are experiencing rapid changes in their generation mixes because of the increasing integration of inverter-based resources (IBRs) and the retirement of traditional generations. This opens opportunities for a cleaner energy outlook but also poses challenges to the safe operation of the power networks. Enhanced monitoring and control based on the increasingly available measurements are essential in assisting stable operation and effective planning for these evolving systems. First, awareness of the evolving dynamic characteristics is quintessential for secure operation and corrective planning. A quantified monitoring study that keeps track of the inertial response and primary frequency response is conducted on the Eastern Interconnection (EI) for the past decade with field data. Whereas the inertia declined by at least 10%, the primary frequency response experienced an unexpected increase. The findings unveiled in the trending analysis also led to an improved event MW size estimation method, as well as discussions about regional dynamics. Experiencing a faster and deeper renewable integration, the Continental Europe Synchronous Area (CESA) system has been threatened by more frequent occurrences of inter-area oscillations during light-load high-renewable periods. A measurement-based oscillation damping control scheme is proposed for CESA with reduced reliance on system models. The design, implementation, and hardware-in-the-loop (HIL) testing of the controller are discussed in detail. Despite the challenges, the increasing presence of IBRs also brings opportunities for fast and efficient controls. Together with synchronized measurement, IBRs have the potential to flexibly complement traditional frequency and voltage control schemes for improved frequency and voltage recovery. The design, implementation, and HIL testing of the measurement-based frequency and voltage control for the New York State Grid are presented. In addition to the transmission level development, IBRs deployed in distribution networks can also be valuable assets in emergency islanding situations if controlled properly. A power management module is proposed to take advantage of measurements and automatically control the electric boundaries of islanded microgrids for maximized power utilization and improved frequency regulation. The module is designed to be adaptive to arbitrary non-meshed topologies with multiple source locations for increased flexibility, expedited deployment, and reduced cost

    Optimizing on-demand resource deployment for peer-assisted content delivery (PhD thesis)

    Full text link
    Increasingly, content delivery solutions leverage client resources in exchange for service in a peer-to-peer (P2P) fashion. Such peer-assisted service paradigms promise significant infrastructure cost reduction, but suffer from the unpredictability associated with client resources, which is often exhibited as an imbalance between the contribution and consumption of resources by clients. This imbalance hinders the ability to guarantee a minimum service fidelity of these services to the clients. In this thesis, we propose a novel architectural service model that enables the establishment of higher fidelity services through (1) coordinating the content delivery to optimally utilize the available resources, and (2) leasing the least additional cloud resources, available through special nodes (angels) that join the service on-demand, and only if needed, to complement the scarce resources available through clients. While the proposed service model can be deployed in many settings, this thesis focuses on peer-assisted content delivery applications, in which the scarce resource is typically the uplink capacity of clients. We target three applications that require the delivery of fresh as opposed to stale content. The first application is bulk-synchronous transfer, in which the goal of the system is to minimize the maximum distribution time -- the time it takes to deliver the content to all clients in a group. The second application is live streaming, in which the goal of the system is to maintain a given streaming quality. The third application is Tor, the anonymous onion routing network, in which the goal of the system is to boost performance (increase throughput and reduce latency) throughout the network, and especially for bandwidth-intensive applications. For each of the above applications, we develop mathematical models that optimally allocate the already available resources. They also optimally allocate additional on-demand resource to achieve a certain level of service. Our analytical models and efficient constructions depend on some simplifying, yet impractical, assumptions. Thus, inspired by our models and constructions, we develop practical techniques that we incorporate into prototypical peer-assisted angel-enabled cloud services. We evaluate those techniques through simulation and/or implementation. (Major Advisor: Azer Bestavros

    Optimizing on-demand resource deployment for peer-assisted content delivery

    Full text link
    Increasingly, content delivery solutions leverage client resources in exchange for services in a pee-to-peer (P2P) fashion. Such peer-assisted service paradigm promises significant infrastructure cost reduction, but suffers from the unpredictability associated with client resources, which is often exhibited as an imbalance between the contribution and consumption of resources by clients. This imbalance hinders the ability to guarantee a minimum service fidelity of these services to clients especially for real-time applications where content can not be cached. In this thesis, we propose a novel architectural service model that enables the establishment of higher fidelity services through (1) coordinating the content delivery to efficiently utilize the available resources, and (2) leasing the least additional cloud resources, available through special nodes (angels) that join the service on-demand, and only if needed, to complement the scarce resources available through clients. While the proposed service model can be deployed in many settings, this thesis focuses on peer-assisted content delivery applications, in which the scarce resource is typically the upstream capacity of clients. We target three applications that require the delivery of real-time as opposed to stale content. The first application is bulk-synchronous transfer, in which the goal of the system is to minimize the maximum distribution time - the time it takes to deliver the content to all clients in a group. The second application is live video streaming, in which the goal of the system is to maintain a given streaming quality. The third application is Tor, the anonymous onion routing network, in which the goal of the system is to boost performance (increase throughput and reduce latency) throughout the network, and especially for clients running bandwidth-intensive applications. For each of the above applications, we develop analytical models that efficiently allocate the already available resources. They also efficiently allocate additional on-demand resource to achieve a certain level of service. Our analytical models and efficient constructions depend on some simplifying, yet impractical, assumptions. Thus, inspired by our models and constructions, we develop practical techniques that we incorporate into prototypical peer-assisted angel-enabled cloud services. We evaluate these techniques through simulation and/or implementation
    • …
    corecore