375 research outputs found

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors

    Optimization of positioning capabilities in wireless sensor networks : from power efficiency to medium access

    Get PDF
    In Wireless Sensor Networks (WSN), the ability of sensor nodes to know its position is an enabler for a wide variety of applications for monitoring, control, and automation. Often, sensor data is meaningful only if its position can be determined. Many WSN are deployed indoors or in areas where Global Navigation Satellite System (GNSS) signal coverage is not available, and thus GNSS positioning cannot be guaranteed. In these scenarios, WSN may be relied upon to achieve a satisfactory degree of positioning accuracy. Typically, batteries power sensor nodes in WSN. These batteries are costly to replace. Therefore, power consumption is an important aspect, being performance and lifetime of WSN strongly relying on the ability to reduce it. It is crucial to design effective strategies to maximize battery lifetime. Optimization of power consumption can be made at different layers. For example, at the physical layer, power control and resource optimization may play an important role, as well as at higher layers through network topology and MAC protocols. The objective of this Thesis is to study the optimization of resources in WSN that are employed for positioning purposes, with the ultimate goal being the minimization of power consumption. We focus on anchor-based positioning, where a subset of the WSN nodes know their location (anchors) and send ranging signals to nodes with unknown position (targets) to assist them in estimating it through distance-related measurements. Two well known of such measurements are received signal strength (RSS) and time of arrival (TOA), in which this Thesis focuses. In order to minimize power consumption while providing a certain quality of positioning service, in this dissertation we research on the problems of power control and node selection. Aiming at a distributed implementation of the proposed techniques, we resort to the tools of non-cooperative game theory. First, transmit power allocation is addressed for RSS based ranging. Using game theory formulation, we develop a potential game leading to an iterated best response algorithm with sure convergence. As a performance metric, we introduce the geometric dilution of precision (GDOP), which is shown to help achieving a suitable geometry of the selected anchor nodes. The proposed scheme and relative distributed algorithms provide good equilibrium performance in both static and dynamic scenarios. Moreover, we present a distributed, low complexity implementation and analyze it in terms of computational complexity. Results show that performance close to that of exhaustive search is possible. We then address the transmit power allocation problem for TOA based ranging, also resorting to a game theoretic formulation. In this setup, and also considering GDOP as performance metric, a supermodular game formulation is proposed, along with a distributed algorithm with guaranteed convergence to a unique solution, based on iterated best response. We analyze the proposed algorithm in terms of the price of anarchy (PoA), that is, compared to a centralized optimum solution, and shown to have a moderate performance loss. Finally, this dissertation addresses the effect of different MAC protocols and topologies in the positioning performance. In this direction, we study the performance of mesh and cluster-tree topologies defined in WSN standards. Different topologies place different constraints in network connectivity, having a substantial impact on the performance of positioning algorithms. While mesh topology allows high connectivity with large energy consumption, cluster-tree topologies are more energy efficient but suffer from reduced connectivity and poor positioning performance. In order to improve the performance of cluster-tree topologies, we propose a cluster formation algorithm. It significantly improves connectivity with anchor nodes, achieving vastly improved positioning performance.En les xarxes de sensors sense fils (WSN), l'habilitat dels nodes sensors per conèixer la seva posició facilita una gran varietat d'aplicacions per la monitorització, el control i l'automatització. Així, les dades que proporciona un sensor tenen sentit només si la posició pot ésser determinada. Moltes WSN són desplegades en interiors o en àrees on la senyal de sistemes globals de navegació per satèl.lit (GNSS) no té prou cobertura, i per tant, el posicionament basat en GNSS no pot ésser garantitzat. En aquests escenaris, les WSN poden proporcionar una bona precisió en posicionament. Normalment, en WSN els nodes són alimentats amb bateries. Aquestes bateries són difícils de reemplaçar. Per tant, el consum de potència és un aspecte important i és crucial dissenyar estratègies efectives per maximitzar el temps de vida de la bateria. L'optimització del consum de potència pot ser fet a diferents capes del protocol. Per exemple, en la capa física, el control de potència i l'optimització dels recursos juguen un rol important, igualment que la topologia de xarxa i els protocols MAC en les capes més altes. L'objectiu d'aquesta tesi és estudiar l¿optimització de recursos en WSN que s'utilitzen per fer posicionament, amb el propòsit de minimitzar el consum de potència. Ens focalitzem en el posicionament basat en àncora, en el qual un conjunt de nodes coneixen la seva localització (nodes àncora) i envien missatges als nodes que no saben la seva posició per ajudar-los a estimar les seves coordenades amb mesures de distància. Dues classes de mesures són la potència de la senyal rebuda (RSS) i el temps d'arribada (TOA) en les quals aquesta tesi està focalitzada. Per minimitzar el consum de potència mentre que es proporciona suficient qualitat en el posicionament, en aquesta tesi estudiem els problemes de control de potència i selecció de nodes. Tenint en compte una implementació distribuïda de les tècniques proposades, utilitzem eïnes de teoria de jocs no cooperatius. Primer, l'assignació de potència transmesa és abordada pel càlcul de la distància amb RSS. Utilitzant la teoria de jocs, desenvolupem un joc potencial que convergeix amb un algoritme iteratiu basat en millor resposta (best response). Com a mètrica d'error, introduïm la dilució de la precisió geomètrica (GDOP) que mostra quant d'apropiada és la geometria dels nodes àncora seleccionats. L'esquema proposat i els algoritmes distribuïts proporcionen una bona resolució de l'equilibri en l'escenari estàtic i dinàmic. Altrament, presentem una implementació distribuïda i analitzem la seva complexitat computacional. Els resultats obtinguts són similars als obtinguts amb un algoritme de cerca exhaustiva. El problema d'assignació de la potència transmesa en el càlcul de la distància basat en TOA, també és tractat amb teoria de jocs. En aquest cas, considerant el GDOP com a mètrica d'error, proposem un joc supermodular juntament amb un algoritme distribuït basat en millor resposta amb convergència garantida cap a una única solució. Analitzem la solució proposada amb el preu de l'anarquia (PoA), és a dir, es compara la nostra solució amb una solució òptima centralitzada mostrant que les pèrdues són moderades. Finalment, aquesta tesi tracta l'efecte que causen diferents protocols MAC i topologies en el posicionament. En aquesta direcció, estudiem les topologies de malla i arbre formant clusters (cluster-tree) que estan definides als estàndards de les WSN. La diferència entre les topologies crea diferents restriccions en la connectivitat de la xarxa, afectant els resultats de posicionament. La topologia de malla permet una elevada connectivitat entre els nodes amb gran consum d'energia, mentre que les topologies d'arbre són més energèticament eficients però amb baixa connectivitat entre els nodes i baix rendiment pel posicionament. Per millorar la qualitat del posicionament en les topologies d'arbre, proposem un algoritme de formació de clústers.Postprint (published version

    A blockchain-based deep-learning-driven architecture for quality routing in wireless sensor networks

    Get PDF
    Over the past few years, great importance has been given to wireless sensor networks (WSNs) as they play a significant role in facilitating the world with daily life services like healthcare, military, social products, etc. However, heterogeneous nature of WSNs makes them prone to various attacks, which results in low throughput, and high network delay and high energy consumption. In the WSNs, routing is performed using different routing protocols like low-energy adaptive clustering hierarchy (LEACH), heterogeneous gateway-based energy-aware multi-hop routing (HMGEAR), etc. In such protocols, some nodes in the network may perform malicious activities. Therefore, four deep learning (DL) techniques and a real-time message content validation (RMCV) scheme based on blockchain are used in the proposed network for the detection of malicious nodes (MNs). Moreover, to analyse the routing data in the WSN, DL models are trained on a state-of-the-art dataset generated from LEACH, known as WSN-DS 2016. The WSN contains three types of nodes: sensor nodes, cluster heads (CHs) and the base station (BS). The CHs after aggregating the data received from the sensor nodes, send it towards the BS. Furthermore, to overcome the single point of failure issue, a decentralized blockchain is deployed on CHs and BS. Additionally, MNs are removed from the network using RMCV and DL techniques. Moreover, legitimate nodes (LNs) are registered in the blockchain network using proof-of-authority consensus protocol. The protocol outperforms proof-of-work in terms of computational cost. Later, routing is performed between the LNs using different routing protocols and the results are compared with original LEACH and HMGEAR protocols. The results show that the accuracy of GRU is 97%, LSTM is 96%, CNN is 92% and ANN is 90%. Throughput, delay and the death of the first node are computed for LEACH, LEACH with DL, LEACH with RMCV, HMGEAR, HMGEAR with DL and HMGEAR with RMCV. Moreover, Oyente is used to perform the formal security analysis of the designed smart contract. The analysis shows that blockchain network is resilient against vulnerabilities. © 2013 IEEE

    Opportunistic Angle of Arrival Estimation in Impaired Scenarios

    Get PDF
    This work if focused on the analysis and the development of Angle of Arrival (AoA) radio localization methods. The radio positioning system considered is constituted by a radio source and by a receiving array of antennas. The positioning algorithms treated in this work are designed to have a passive and opportunistic approach. The opportunistic attribute implies that the radio localization algorithms are designed to provide the AoA estimation with nearly-zero information on the transmitted signals. No training sequences or waveforms custom designed for localization are taken into account. The localization is termed passive since there is no collaboration between the transmitter and the receiver during the localization process. Then, the algorithms treated in this work are designed to eavesdrop already existing communication signals and to locate their radio source with nearly-zero knowledge of the signal and without the collaboration of the transmitting node. First of all, AoA radio localization algorithms can be classified in terms of involved signals (narrowband or broadband), antenna array pattern (L-shaped, circular, etc.), signal structure (sinusoidal, training sequences, etc.), Differential Time of Arrival (D-ToA) / Differential Phase of Arrival (D-PoA) and collaborative/non collaborative. Than, the most detrimental effects for radio communications are treated: the multipath (MP) channels and the impaired hardware. A geometric model for the MP is analysed and implemented to test the robustness of the proposed methods. The effects of MP on the received signals statistics from the AoA estimation point-of-view are discussed. The hardware impairments for the most common components are introduced and their effects in the AoA estimation process are analysed. Two novel algorithms that exploits the AoA from signal snapshots acquired sequentially with a time division approach are presented. The acquired signals are QAM waveforms eavesdropped from a pre-existing communication. The proposed methods, namely Constellation Statistical Pattern IDentification and Overlap (CSP-IDO) and Bidimensional CSP-IDO (BCID), exploit the probability density function (pdf) of the received signals to obtain the D-PoA. Both CSP-IDO and BCID use the statistical pattern of received signals exploiting the transmitter statistical signature. Since the presence of hardware impairments modify the statistical pattern of the received signals, CSP-IDO and BCID are able to exploit it to improve the performance with respect to (w.r.t.) the ideal case. Since the proposed methods can be used with a switched antenna architecture they are implementable with a reduced hardware contrariwise to synchronous methods like MUltiple SIgnal Classification (MUSIC) that are not applicable. Then, two iterative AoA estimation algorithms for the dynamic tracking of moving radio sources are implemented. Statistical methods, namely PF, are used to implement the iterative tracking of the AoA from D-PoA measures in two different scenarios: automotive and Unmanned Aerial Vehicle (UAV). The AoA tracking of an electric car signalling with a IEEE 802.11p-like standard is implemented using a test-bed and real measures elaborated with a the proposed Particle Swarm Adaptive Scattering (PSAS) algorithm. The tracking of a UAV moving in the 3D space is investigated emulating the UAV trajectory using the proposed Confined Area Random Aerial Trajectory Emulator (CARATE) algorithm

    Security, trust and cooperation in wireless sensor networks

    Get PDF
    Wireless sensor networks are a promising technology for many real-world applications such as critical infrastructure monitoring, scientific data gathering, smart buildings, etc.. However, given the typically unattended and potentially unsecured operation environment, there has been an increased number of security threats to sensor networks. In addition, sensor networks have very constrained resources, such as limited energy, memory, computational power, and communication bandwidth. These unique challenges call for new security mechanisms and algorithms. In this dissertation, we propose novel algorithms and models to address some important and challenging security problems in wireless sensor networks. The first part of the dissertation focuses on data trust in sensor networks. Since sensor networks are mainly deployed to monitor events and report data, the quality of received data must be ensured in order to make meaningful inferences from sensor data. We first study a false data injection attack in the distributed state estimation problem and propose a distributed Bayesian detection algorithm, which could maintain correct estimation results when less than one half of the sensors are compromised. To deal with the situation where more than one half of the sensors may be compromised, we introduce a special class of sensor nodes called \textit{trusted cores}. We then design a secure distributed trust aggregation algorithm that can utilize the trusted cores to improve network robustness. We show that as long as there exist some paths that can connect each regular node to one of these trusted cores, the network can not be subverted by attackers. The second part of the dissertation focuses on sensor network monitoring and anomaly detection. A sensor network may suffer from system failures due to loss of links and nodes, or malicious intrusions. Therefore, it is critical to continuously monitor the overall state of the network and locate performance anomalies. The network monitoring and probe selection problem is formulated as a budgeted coverage problem and a Markov decision process. Efficient probing strategies are designed to achieve a flexible tradeoff between inference accuracy and probing overhead. Based on the probing results on traffic measurements, anomaly detection can be conducted. To capture the highly dynamic network traffic, we develop a detection scheme based on multi-scale analysis of the traffic using wavelet transforms and hidden Markov models. The performance of the probing strategy and of the detection scheme are extensively evaluated in malicious scenarios using the NS-2 network simulator. Lastly, to better understand the role of trust in sensor networks, a game theoretic model is formulated to mathematically analyze the relation between trust and cooperation. Given the trust relations, the interactions among nodes are modeled as a network game on a trust-weighted graph. We then propose an efficient heuristic method that explores network heterogeneity to improve Nash equilibrium efficiency

    Verification of Localization via Blockchain Technology on Unmanned Aerial Vehicle Swarm

    Get PDF
    Verification of the geographic location of a moving device is vital. This verification is important in terms of ensuring that the flying systems moving in the swarm are in orbit and that they are able to task completion and manage their energy efficiency. Cyber-attacks on unmanned aerial vehicles (UAV) in a swarm can affect their position and cause various damages. In order to avoid this challenge, it is necessary to share with each other the positions of UAV in the swarm and to increase their accuracy. In this study, it is aimed to increase position accuracy and data integrity of UAV by using blockchain technology in swarm. Experiments were conducted on a virtual UAV network (UAVNet). Successful results were obtained from this proposed study

    Lightweight mobile and wireless systems: technologies, architectures, and services

    Get PDF
    1Department of Information and Communication Systems Engineering (ICSE), University of the Aegean, 81100 Mytilene, Greece 2Department of Information Engineering and Computer Science (DISI), University of Trento, 38123 Trento, Italy 3Department of Informatics, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki, 574 00 Macedonia, Greece 4Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), 08860 Barcelona, Spain 5North Carolina State University (NCSU), Raleigh, NC 27695, US

    The Hunter: Tracking Randomly Moving WBAN Targets

    Get PDF
    Wireless Sensor Networks are often large networks comprised of nodes that monitor through sensors interesting targets. Wireless Body Area Networks are always small networks that often monitor the health of a single human subject. Although WBANs are limited in size, the information they monitor is urgent and important. Information from a WBAN producer may be transmitted over a WSN to the intended consumer
    corecore