258 research outputs found

    Submicron Systems Architecture Project : Semiannual Technical Report

    Get PDF
    The Mosaic C is an experimental fine-grain multicomputer based on single-chip nodes. The Mosaic C chip includes 64KB of fast dynamic RAM, processor, packet interface, ROM for bootstrap and self-test, and a two-dimensional selftimed router. The chip architecture provides low-overhead and low-latency handling of message packets, and high memory and network bandwidth. Sixty-four Mosaic chips are packaged by tape-automated bonding (TAB) in an 8 x 8 array on circuit boards that can, in turn, be arrayed in two dimensions to build arbitrarily large machines. These 8 x 8 boards are now in prototype production under a subcontract with Hewlett-Packard. We are planning to construct a 16K-node Mosaic C system from 256 of these boards. The suite of Mosaic C hardware also includes host-interface boards and high-speed communication cables. The hardware developments and activities of the past eight months are described in section 2.1. The programming system that we are developing for the Mosaic C is based on the same message-passing, reactive-process, computational model that we have used with earlier multicomputers, but the model is implemented for the Mosaic in a way that supports finegrain concurrency. A process executes only in response to receiving a message, and may in execution send messages, create new processes, and modify its persistent variables before it either exits or becomes dormant in preparation for receiving another message. These computations are expressed in an object-oriented programming notation, a derivative of C++ called C+-. The computational model and the C+- programming notation are described in section 2.2. The Mosaic C runtime system, which is written in C+-, provides automatic process placement and highly distributed management of system resources. The Mosaic C runtime system is described in section 2.3

    Optimizing hardward granularity in parallel systems

    Get PDF

    Submicron Systems Architecture Project: Semiannual Technical Report

    Get PDF
    No abstract available

    Hypergraph-Based Interconnection Networks for Large Multicomputers

    Get PDF
    This thesis deals with issues pertaining to multicomputer interconnection networks namely topology, technology, switching method, and routing algorithm. It argues that a new class of regular low-dimensional hypergraph networks, the distributed crossbar switch hypermesh (DCSH), represents a promising alternative high-performance interconnection network for future large multicomputers to graph networks such as meshes, tori, and binary n-cubes, which have been widely used in current multicomputers. Channels in existing hypergraph and graph structures suffer from bandwidth limitations imposed by implementation technology. The first part of the thesis shows how the low-dimensional DCSH can use an innovative implementation scheme to alleviate this problem. It relies on the separation of processing and communication functions by physical layering in order to accommodate high wiring density and necessary message buffering, improving performance considerably. Various mathematical models of the DCSH, validated through discrete-event simulation, are then introduced. Effects of different switching methods (e.g., wormhole routing, virtual cut-through, and message switching), routing algorithms (e.g., restricted and random), and different switching element designs are investigated. Further, the impact on performance of different communication patterns, such as those including locality and hot-spots, are assessed. The remainder of the thesis compares the DCSH to other common hypergraph and graph networks assuming different implementation technologies, such as VLSI, multiple-chip technology, and the new layered implementation scheme. More realistic assumptions are introduced such as pipeline-bit transmission and non-zero delays through switching elements. The results show that the proposed structure has superior characteristics assuming equal implementation cost in both VLSI and multiple-chip technology. Furthermore, optimal performance is offered by the new layered implementation

    Experimental analysis of computer system dependability

    Get PDF
    This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance

    On the Area of Hypercube Layouts

    Get PDF
    This paper precisely analyzes the wire density and required area in standard layout styles for the hypercube. The most natural, regular layout of a hypercube of N^2 nodes in the plane, in a N x N grid arrangement, uses floor(2N/3)+1 horizontal wiring tracks for each row of nodes. (The number of tracks per row can be reduced by 1 with a less regular design.) This paper also gives a simple formula for the wire density at any cut position and a full characterization of all places where the wire density is maximized (which does not occur at the bisection).Comment: 8 pages, 4 figures, LaTe

    Performance analysis of wormhole routing in multicomputer interconnection networks

    Get PDF
    Perhaps the most critical component in determining the ultimate performance potential of a multicomputer is its interconnection network, the hardware fabric supporting communication among individual processors. The message latency and throughput of such a network are affected by many factors of which topology, switching method, routing algorithm and traffic load are the most significant. In this context, the present study focuses on a performance analysis of k-ary n-cube networks employing wormhole switching, virtual channels and adaptive routing, a scenario of especial interest to current research. This project aims to build upon earlier work in two main ways: constructing new analytical models for k-ary n-cubes, and comparing the performance merits of cubes of different dimensionality. To this end, some important topological properties of k-ary n-cubes are explored initially; in particular, expressions are derived to calculate the number of nodes at/within a given distance from a chosen centre. These results are important in their own right but their primary significance here is to assist in the construction of new and more realistic analytical models of wormhole-routed k-ary n-cubes. An accurate analytical model for wormhole-routed k-ary n-cubes with adaptive routing and uniform traffic is then developed, incorporating the use of virtual channels and the effect of locality in the traffic pattern. New models are constructed for wormhole k-ary n-cubes, with the ability to simulate behaviour under adaptive routing and non-uniform communication workloads, such as hotspot traffic, matrix-transpose and digit-reversal permutation patterns. The models are equally applicable to unidirectional and bidirectional k-ary n-cubes and are significantly more realistic than any in use up to now. With this level of accuracy, the effect of each important network parameter on the overall network performance can be investigated in a more comprehensive manner than before. Finally, k-ary n-cubes of different dimensionality are compared using the new models. The comparison takes account of various traffic patterns and implementation costs, using both pin-out and bisection bandwidth as metrics. Networks with both normal and pipelined channels are considered. While previous similar studies have only taken account of network channel costs, our model incorporates router costs as well thus generating more realistic results. In fact the results of this work differ markedly from those yielded by earlier studies which assumed deterministic routing and uniform traffic, illustrating the importance of using accurate models to conduct such analyses

    Submicron Systems Architecture Project: Semiannual Technial Report

    Get PDF
    No abstract available

    An Empirical Comparison of Area-Universal and Other Parallel Computing Networks

    Get PDF
    This paper provides empirical comparison of the communication capabilities of two area-universal networks, the fat-tree and the fat-pyramid, to the popular mesh and hypercube networks for parallel computation. While area-universal networks have been proven capable of simulating, with modest slowdown, any computation of any other network of comparable area, prior work has generally left open the question of how area-universal networks compare to other networks in practice. Comparisons are performed using techniques of throughput and latency analysis that have previously been applied to k-ary n-cube networks and using various existing models to equate the hardware cost of the networks being compared. The increasingly popular wormhole routing model is used throughout
    corecore