141 research outputs found

    Effective relaying mechanisms in future device to device communication : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in School of Food and Advanced Technology at Massey University, Palmerston North, New Zealand

    Get PDF
    Listed in 2020 Dean's List of Exceptional ThesesFuture wireless networks embrace a large number of assorted network-enabled devices such as mobile phones, sensor nodes, drones, smart gears, etc., with different applications and purpose, but they all share one common characteristic which is the dependence on strong network connectivity. Growing demand of internet-connected devices and data applications is burdensome for the currently deployed cellular wireless networks. For this reason, future networks are likely to embrace cutting-edge technological advancements in network infrastructure such as, small cells, device-to-device communication, non-orthogonal multiple access scheme (NOMA), multiple-input-multiple out, etc., to increase spectral efficiency, improve network coverage, and reduce network latency. Individual devices acquire network connectivity by accessing radio resources in orthogonal manner which limits spectrum utilisation resulting in data congestion and latency in dense cellular networks. NOMA is a prominent scheme in which multiple users are paired together and access radio resources by slicing the power domain. While several research works study power control mechanisms by base station to communicate with NOMA users, it is equally important to maintain distinction between the users in uplink communication. Furthermore, these users in a NOMA pair are able to perform cooperative relaying where one device assists another device in a NOMA pair to increase signal diversity. However, the benefits of using a NOMA pair in improving network coverage is still overlooked. With a varierty of cellular connected devices, use of NOMA is studied on devices with similar channel characteristics and the need of adopting NOMA for aerial devices has not been investigated. Therefore, this research establishes a novel mechanism to offer distinction in uplink communication for NOMA pair, a relaying scheme to extend the coverage of a base station by utilising NOMA pair and a ranking scheme for ground and aerial devices to access radio resources by NOMA

    Adaptive Aggregate Transmission for Device-to-Multi-Device Aided Cooperative NOMA Networks

    Get PDF
    The integration of device-to-device (D2D) communications with cooperative non-orthogonal multiple access (NOMA) can achieve superior spectral efficiency. However, the mutual interference caused by D2D communications may prevent NOMA from divering its high spectral efficiency advantage. Meanwhile, the low adaptability of the fixed transmission strategy can decrease the reliability of the cell-edge user (CEU). To further improve the spectral efficiency, we investigate a device-to-multi-device (D2MD) assisted cooperative NOMA system, where two cell-center users (CCUs) and one CEU are paired as a D2MD cluster. Specifically, the base station directly serves the two CCUs while communicating with the CEU via one CCU. Moreover, we propose an adaptive aggregate transmission scheme using dynamic superposition coding, pre-designing the decoding orders and prior information cancellation for the D2MD assisted cooperative NOMA system to enhance the reliability of the CEU. We provide the closed-form expressions for the outage probability, diversity order, outage throughput, ergodic sum capacity, average spectral efficiency, and spectral efficiency scaling over Nakagami-m fading channels under perfect and imperfect successive interference cancellation. The numerical results validate the correctness of the analytical derivations and the effectiveness of the proposed scheme

    Energy-efficient non-orthogonal multiple access for wireless communication system

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a potential solution for enhancing the throughput of next-generation wireless communications. NOMA is a potential option for 5G networks due to its superiority in providing better spectrum efficiency (SE) compared to orthogonal multiple access (OMA). From the perspective of green communication, energy efficiency (EE) has become a new performance indicator. A systematic literature review is conducted to investigate the available energy efficient approach researchers have employed in NOMA. We identified 19 subcategories related to EE in NOMA out of 108 publications where 92 publications are from the IEEE website. To help the reader comprehend, a summary for each category is explained and elaborated in detail. From the literature review, it had been observed that NOMA can enhance the EE of wireless communication systems. At the end of this survey, future research particularly in machine learning algorithms such as reinforcement learning (RL) and deep reinforcement learning (DRL) for NOMA are also discussed

    Exploiting Secrecy Performance of Uplink NOMA in Cellular Networks

    Get PDF
    Funding Information: This work was supported in part by the Air Force Office of Scientific Research under Award FA9550-20-1-0090, and in part by the National Science Foundation under Grant CNS-2034218.Peer reviewedPublisher PD

    D3.2 First performance results for multi -node/multi -antenna transmission technologies

    Full text link
    This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.Fantini. R.; Santos, A.; De Carvalho, E.; Rajatheva, N.; Popovski, P.; Baracca, P.; Aziz, D.... (2014). D3.2 First performance results for multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Coordinated direct and relay transmission with NOMA and network coding in Nakagami-m fading channel

    Get PDF
    Although the use of coordinated direct and relay transmission (CDRT) in non-orthogonal multiple access (NOMA) can extend the coverage, its duplicated transmission reduces the spectrum efficiency (SE) of NOMA. To improve the SE, we propose a spectrum-efficient scheme for NOMA-based CDRT over Nakagami-m fading channels. In this scheme, the base station (BS) connects with a cell-center user (CCU) directly while communicating with a cell-edge user (CEU) via a relay and the CCU. Then, the relay and the CCU use network coding to process and retransmit the signals sent by the BS first and the CEU later. Finally, the BS and the relay simultaneously broadcast downlink signals. We derive the closed-form expressions for the average SE, the user fairness index and the energy efficiency (EE) as well as the asymptotic average SE using both perfect and imperfect successive interference cancellation (SIC). Simulations verify the correctness of our theoretical analysis and the superiority of the proposed scheme in SE and EE

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond
    corecore