4,544 research outputs found

    Performance of Buildings under Earthquakes in Barcelona, Spain

    Get PDF
    The seismic risk of the buildings of Barcelona, Spain, is analyzed by using a method based on the capacity spectrum. The seismic hazard in the area of the city is described by means of the reduced 5% damped elastic response spectrum. Obtaining fragility curves for the most important building types of an urban center requires an important amount of information about the structures and the use of nonlinear structural analysis tools. The information on the buildings of Barcelona was obtainedby collecting, arranging, improving, and completing the database of the housing and current buildings. The buildings existing in Barcelona are mainly of two types: unreinforced masonry structures and reinforced concrete buildings with waffled slab floors. In addition, the Arc-View software was used to create a GIS tool for managing the collected information to develop seismic risk scenarios. This study shows that the vulnerability of the buildings is significant and therefore, in spite of the medium to low seismic hazard in the area of the city, the expected seismic risk is considerable

    Urban seismic risk index for MedellĂ­n, Colombia, based on probabilistic loss and casualties estimations

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11069-015-2056-4MedellĂ­n is the second largest city of Colombia with more than 2 million inhabitants according to the latest census and with more than 240,000 public and private buildings. It is located on an intermediate seismic hazard area according to the seismic zonation of Colombia although no destructive earthquakes have occurred having as a consequence low seismic risk awareness among its inhabitants. Using the results of a fully probabilistic risk assessment of the city with a building by building resolution level and considering the dynamic soil response, average annual losses by sectors as well as casualties and other direct effects are obtained and aggregated at county level. Using the holistic evaluation module of the multi-hazard risk assessment CAPRA platform, EvHo, a comprehensive assessment that considered the social fragility and lack or resilience at county level is performed making use of a set of indicators with the objective of capturing the aggravating conditions of the initial physical impact. The urban seismic risk index, USRi, is obtained at county level which is useful to communicate risk to decision-makers and stakeholders besides making easy identifying potential zones that can be problematic in terms of several dimensions of the vulnerability. This case study is an example of how a multidisciplinary research on disaster risk reduction helps to show how risk analysis can be of high relevance for decision-making processes in disaster risk management.Peer ReviewedPostprint (author's final draft

    An efficient methodology to estimate probabilistic seismic damage curves

    Get PDF
    The incremental dynamic analysis (IDA) is a powerful methodology that can be easily extended for calculating probabilistic seismic damage curves. These curves are metadata to assess the seismic risk of structures. Although this methodology requires a relevant computational effort, it should be the reference to correctly estimate the seismic risk of structures. Nevertheless, it would be of high practical interest to have a simpler methodology, based for instance on the pushover analysis (PA), to obtain similar results to those based on IDA. In this article, PA is used to obtain probabilistic seismic damage curves from the stiffness degradation and the energy of the nonlinear part of the capacity curve. A fully probabilistic methodology is tackled by means of Monte Carlo simulations with the purpose of establishing that the results based on the simplified proposed approach are compatible with those obtained with the IDA. Comparisons between the results of both approaches are included for a low- to midrise reinforced concrete building. The proposed methodology significantly reduces the computational effort when calculating probabilistic seismic damage curves.Peer ReviewedPostprint (author's final draft

    Seismic site classification from the horizontal-to-vertical response spectral ratios: use of the Spanish strong-motion database

    Get PDF
    Normally, the average of the horizontal-to-vertical (H/V) ratios of the 5% damped response spectra of ground motions is used to classify the site of strong-motion stations. In these cases, only the three-orthogonal as-recorded acceleration components are used in the analysis, and all the vector compositions that can generate a different response for each period oscillator are excluded. In this study, the Spanish strong-motion database was used to classify the sites of accelerometric stations based on the predominant periods through the average horizontal-to-vertical spectral ratios (HVSR) of recorded ground motions. Moreover, the directionality effects using the vector composition of the horizontal components of ground motions were also considered in the estimations of H/V ratios. This consideration is a relevant novelty compared to the traditional H/V ratios methods. Only earthquakes with magnitudes above 3.5 and hypocentral distances below 200 km were selected, which resulted in 692 ground-motion records, corresponding to 86 stations, from events in the period between 1993 and 2017. After the analysis, a predominant-period site classification was assigned to each station. On the whole, the obtained mean and standard deviation values of the spectral ratios are comparable to those shown by other researchers. Therefore, the advantages of the proposed procedure, which takes the directionality effects into account, can be summarized as follows: (a) The obtained information is richer and gives enables more sophisticated and realistic analyses on the basis of percentiles and (b) it is easier to detect anomalous stations, sites, and/or accelerograms. Moreover, the method eliminates the effect of directionality as a contributor to epistemic uncertainty.Peer ReviewedPostprint (published version

    Comparing observed damages and losses with modelled ones using a probabilistic approach: the Lorca 2011 case

    Get PDF
    A loss and damage assessment was performed for the buildings of Lorca, Spain, considering an earthquake hazard scenario with similar characteristics to those of a real event which occurred on May 11th, 2011, in terms of epicentre, depth and magnitude while also considering the local soil response. This low-to moderate earthquake caused severe damage and disruption in the region and especially on the city. A building by building resolution database was developed and used for damage and loss assessment. The portfolio of buildings was characterized by means of indexes capturing information from a structural point of view such as age, main construction materials, number of stories, and building class as well as others related to age and vulnerability classes. A replacement cost approach was selected for the analysis in order to calculate the direct losses incurred by the event. Seismic hazard and vulnerability were modelled in a probabilistic way, considering their inherent uncertainties which were also taken into account in the damage and loss calculation process. Losses have been expressed in terms of the mean damage ratio of each dwelling and since the analysis has been performed on a geographical information system platform, the distribution of the damage and its categories was mapped for the entire urban centre. The simulated damages and losses were compared with the observed ones reported by the local authorities and institutions that inspected the city after the event.Peer ReviewedPostprint (author's final draft

    Earthquake risk assessment methods of unreinforced masonry structures: Hazard and vulnerability

    Get PDF
    Seismic risk management of the built environment is integrated by two main stages, the assessment and the remedial measures to attain its reduction, representing both stages a complex task. The seismic risk of a certain structure located in a seismic zone is determined by the conjunct of the seismic hazard and its structural vulnerability. The hazard level mainly depends on the proximity of the site to a seismic source. On the other hand, the ground shaking depends on the seismic source, geology and topography of the site, but definitely on the inherent earthquake characteristics. Seismic hazard characterization of a site under study is suggested to be estimated by a combination of studies with the history of earthquakes. In this Paper, the most important methods of seismic vulnerability evaluation of buildings and their application are described. The selection of the most suitable method depends on different factors such as number of buildings, importance, available data and aim of the study. These approaches are classified in empirical, analytical, experimental and hybrid. For obtaining more reliable results, it is recommends applying a hybrid approach, which consists of a combination between methods depending on the case. Finally, a recommended approach depending on the building importance and aim of the study is described.Technical University of BraunschweigPolytechnical University of Guadalajar

    Turkish voter response to government incompetence and corruption related to the 1999 earthquakes

    Get PDF
    The two major earthquakes which struck northwestern Turkey in 1999, caused enormous amounts of death and destruction, and exposed rampant government corruption involving construction and zoning code violations, as a factor magnifying the disaster. The opposition parties and one of the incumbent parties which participated in previous national governments and held power in current and past municipal administrations were responsible for that. The other two incumbent parties came to power only a short time before the earthquakes and controlled almost none of the local administrations in the disaster zone. They on the other hand, were responsible for the incompetence shown in providing relief, for involvement in corruption related to those efforts, and for failing to prosecute the businessmen who constructed the shoddy buildings and the corrupt officials who permitted them. How voters responded to these in the 2002 parliamentary elections is investigated, using cross-provincial data, controlling for other social, political and economic factors. The fact that different groups of parties were responsible for different types of corruption and mismanagement provided us with a unique data to differentiate between voter responses to corruption and incompetence, and to corruption which has occurred before and after the earthquakes. Our results show that voters punished all of the political parties which participated in governments during the previous decade. The party in charge of the ministry responsible for disaster relief, and parties that controlled more of the city administrations in the quake zone were blamed more. The newly formed Justice and Development Party (AKP) was the main beneficiary of the votes lost by these parties. Our results corroborate the view in the corruption literature that voters react drastically only when the corruption is massive, the information on it highly-credible and well-publicized, involves large number of political parties, not accompanied by competent governance, and a non-corrupt alternative is available.

    Would RC wide-beam buildings in Spain have survived Lorca earthquake (11-05-2011)?

    Get PDF
    Lorca earthquake (11-05-2011) is most destructive event recorded in Spain, causing nine fatalities and other severe consequences. Its important intensity was rather unexpected, and serious concern arose regarding risk of building stock in Spain. This paper analyzes performance, under Lorca earthquake, of RC buildings with one-way slabs with wide beams. This construction type is chosen for its high vulnerability and for being vastly widespread in Spain. This study is conducted on 3 and 6-story prototype representative buildings. These buildings are designed for three major seismic zones in Spain: low seismicity, moderate seismicity (as Lorca) and medium seismicity (as Granada). Seismic performance under Lorca earthquake is numerically investigated through nonlinear time-history analyses. Results show that buildings designed without any seismic provision (i.e. those in low seismicity zones) do not survive Lorca record, even with cooperation of masonry infill walls. Buildings with seismic design (i.e. those in Lorca and Granada zones) can survive Lorca earthquake only with collaboration of infill walls. To raise reliability of these conclusions, a sensitivity analysis to most influencing parameters is conducted.Postprint (author's final draft

    Ground-Shaking Scenarios and Urban Risk Evaluation of Barcelona using the Risk-UE Capacity Spectrum Based Method

    Get PDF
    The Capacity Spectrum Based Method (CSBM) developed in the framework of the European project Risk-UE has been applied to evaluate the seismic risk for the city of Barcelona, Spain. Accordingly, four damage states are defined for the buildings, the action is expressed in terms of spectral values and the seismic quality of the buildings, that is, their vulnerability, is evaluated by means of capacity spectra. The probabilities of the damage states are obtained considering a lognormal probability distribution. The most relevant seismic risk evaluation results obtained for Barcelona, Spain, are given in the article as scenarios of expected losses
    • …
    corecore