1,125 research outputs found

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Overcoming TCP Degradation in the Presence of Multiple Intermittent Link Failures Utilizing Intermediate Buffering

    Get PDF
    It is well documented that assumptions made in the popular Transmission Control Protocol\u27s (TCP) development, while essential in the highly reliable wired environment, are incompatible with today\u27s wireless network realities in what we refer to as a challenged environment. Challenged environments severely degrade the capability of TCP to establish and maintain a communication connection with reasonable throughput. This thesis proposes and implements an intermediate buffering scheme, implemented at the transport layer, which serves as a TCP helper protocol for use in network routing equipment to overcome short and bursty, but regular, link failures. Moreover, the implementation requires no modifications to existing TCP implementations at communicating nodes and integrates well with existing routing equipment. In a simulated six-hop network with five modified routers supporting four challenged links, each with only 60% availability, TCP connections are reliably established and maintained, despite the poor link availability, whereas 94% fail using standard routing equipment, i.e., without the TCP helper protocol

    Connectivity and Data Transmission over Wireless Mobile Systems

    Get PDF
    We live in a world where wireless connectivity is pervasive and becomes ubiquitous. Numerous devices with varying capabilities and multiple interfaces are surrounding us. Most home users use Wi-Fi routers, whereas a large portion of human inhabited land is covered by cellular networks. As the number of these devices, and the services they provide, increase, our needs in bandwidth and interoperability are also augmented. Although deploying additional infrastructure and future protocols may alleviate these problems, efficient use of the available resources is important. We are interested in the problem of identifying the properties of a system able to operate using multiple interfaces, take advantage of user locations, identify the users that should be involved in the routing, and setup a mechanism for information dissemination. The challenges we need to overcome arise from network complexity and heterogeneousness, as well as the fact that they have no single owner or manager. In this thesis I focus on two cases, namely that of utilizing "in-situ" WiFi Access Points to enhance the connections of mobile users, and that of establishing "Virtual Access Points" in locations where there is no fixed roadside equipment available. Both environments have attracted interest for numerous related works. In the first case the main effort is to take advantage of the available bandwidth, while in the second to provide delay tolerant connectivity, possibly in the face of disasters. Our main contribution is to utilize a database to store user locations in the system, and to provide ways to use that information to improve system effectiveness. This feature allows our system to remain effective in specific scenarios and tests, where other approaches fail

    NDN, CoAP, and MQTT: A Comparative Measurement Study in the IoT

    Full text link
    This paper takes a comprehensive view on the protocol stacks that are under debate for a future Internet of Things (IoT). It addresses the holistic question of which solution is beneficial for common IoT use cases. We deploy NDN and the two popular IP-based application protocols, CoAP and MQTT, in its different variants on a large-scale IoT testbed in single- and multi-hop scenarios. We analyze the use cases of scheduled periodic and unscheduled traffic under varying loads. Our findings indicate that (a) NDN admits the most resource-friendly deployment on nodes, and (b) shows superior robustness and resilience in multi-hop scenarios, while (c) the IP protocols operate at less overhead and higher speed in single-hop deployments. Most strikingly we find that NDN-based protocols are in significantly better flow balance than the UDP-based IP protocols and require less corrective actions

    SECURE AND EFFICIENT INFORMATION MANAGEMENT IN DELAY(DISRUPTION) TOLERANT NETWORK

    Get PDF
    In environments like international military coalitions on the battlefield or multi-party relief work in a disaster zone, multiple teams are deployed to serve different mission goals by the command-and-control center (CC). They may need to survey damages and send information to the CC for situational awareness and also transfer messages to each other for mission purposes. However, due to the damaged network infrastructure in the emergency, nodes need to relay messages using the store and forward paradigm, also called Delay-tolerant Networks (DTNs). In DTN, the limited bandwidth, energy, and contacts among the nodes, and their interdependency impose several challenges such as sensitive data leakage to malicious nodes, redundant data generation, limited and delayed important message delivery, non-interested messages in storage, etc. We aim to focus on solving these challenges. We propose message fragmentation for secure message transfer because existing public-private-key cryptographic approaches may not work due to the unavailability of Public Key Infrastructure (PKI). Besides, to ensure more message delivery, redundant fragments are generated. However, too much redundancy may consume the energy and bandwidth of the nodes while transferring similar messages. Hence, we propose to send diverse content and limit the redundancy. Again, the dynamic environment we consider is prone to many adverse and sudden events. We aim to respond to these events by sending the event-related message to the CC fast with the help of intermediate nodes. The nodes are interested in certain types of content defined by their mission and interest. Therefore, we target to learn nodes\u27 interests using Reinforcement Learning so that the nodes can populate themselves with the messages according to their mission requirements and increase the collaboration among them. Our future work will include machine learning techniques for predicting important places where node encounters the most and to cache data for each other according to their interest, encounter frequency, and encounter locations --Abstract, p. i

    Energy-efficient Transitional Near-* Computing

    Get PDF
    Studies have shown that communication networks, devices accessing the Internet, and data centers account for 4.6% of the worldwide electricity consumption. Although data centers, core network equipment, and mobile devices are getting more energy-efficient, the amount of data that is being processed, transferred, and stored is vastly increasing. Recent computer paradigms, such as fog and edge computing, try to improve this situation by processing data near the user, the network, the devices, and the data itself. In this thesis, these trends are summarized under the new term near-* or near-everything computing. Furthermore, a novel paradigm designed to increase the energy efficiency of near-* computing is proposed: transitional computing. It transfers multi-mechanism transitions, a recently developed paradigm for a highly adaptable future Internet, from the field of communication systems to computing systems. Moreover, three types of novel transitions are introduced to achieve gains in energy efficiency in near-* environments, spanning from private Infrastructure-as-a-Service (IaaS) clouds, Software-defined Wireless Networks (SDWNs) at the edge of the network, Disruption-Tolerant Information-Centric Networks (DTN-ICNs) involving mobile devices, sensors, edge devices as well as programmable components on a mobile System-on-a-Chip (SoC). Finally, the novel idea of transitional near-* computing for emergency response applications is presented to assist rescuers and affected persons during an emergency event or a disaster, although connections to cloud services and social networks might be disturbed by network outages, and network bandwidth and battery power of mobile devices might be limited

    Design, Implementation and Evaluation of an In-House Controller for Software Defined Networking with Applications

    Get PDF
    Over the past several decades, there has been a dramatic improvement in net- working technologies. Network devices and protocols are becoming more powerful and complex. The vertical structure of the network protocol layers also leads to a coupled control plane and data plane in data frames. To solve this issue from a structural level, researchers introduced a new architecture of networking, the Software Defined Networking (SDN). By decoupling the control plane and data plane from a frame level and aggregating the protocols into software run in a centralized controller dynamically, engineers obtained a new way to build and control a network dynamically in real time. Meanwhile, with the development of Internet of Things (IoT), data volume from mobile devices and low power terminals are dramatically increasing. However, the traditional cloud computing is still in a relatively centralized architecture, which causes huge traffic volume of IoT applications in the network. To this end, researchers proposed the concept of Edge Computing, which utilizes the capacity of the edge nodes in the network to process data and aggregate data from terminals. This research introduces In-House Controller of SDN which has a distributed characteristic and deployed within SDN nodes to minimize the costs in control plane communication. The In-House controller also enables data processing and aggregation capacity in access points which host these functionalities as SDN applications. To research the system performance of the In-House controller in different application scenarios, in this work, following applications were studied: Data flow aggregation of Message Queue Telemetry Transport (MQTT) protocol in Internet of Things, an MQTT proxy in edge switch which is aggregating short MQTT flows from multiple clients into a long MQTT flow to reduce the control plane traffic overhead in TCP. A novel delay tolerant network architecture and a new convergence layer over MQTT protocol in opportunistic networking. Using in-house controller as host and event scheduler for Delay Tolerant Network (DTN) modules and convergence layers which run as applications guest applications in the controller. With the study of applications, this research also proposed a generalized framework named as SDN Docker which support dynamically docking and un-docking applications in network devices with the help of the In-House controller

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Locating and Protecting Facilities Subject to Random Disruptions and Attacks

    Get PDF
    Recent events such as the 2011 Tohoku earthquake and tsunami in Japan have revealed the vulnerability of networks such as supply chains to disruptive events. In particular, it has become apparent that the failure of a few elements of an infrastructure system can cause a system-wide disruption. Thus, it is important to learn more about which elements of infrastructure systems are most critical and how to protect an infrastructure system from the effects of a disruption. This dissertation seeks to enhance the understanding of how to design and protect networked infrastructure systems from disruptions by developing new mathematical models and solution techniques and using them to help decision-makers by discovering new decision-making insights. Several gaps exist in the body of knowledge concerning how to design and protect networks that are subject to disruptions. First, there is a lack of insights on how to make equitable decisions related to designing networks subject to disruptions. This is important in public-sector decision-making where it is important to generate solutions that are equitable across multiple stakeholders. Second, there is a lack of models that integrate system design and system protection decisions. These models are needed so that we can understand the benefit of integrating design and protection decisions. Finally, most of the literature makes several key assumptions: 1) protection of infrastructure elements is perfect, 2) an element is either fully protected or fully unprotected, and 3) after a disruption facilities are either completely operational or completely failed. While these may be reasonable assumptions in some contexts, there may exist contexts in which these assumptions are limiting. There are several difficulties with filling these gaps in the literature. This dissertation describes the discovery of mathematical formulations needed to fill these gaps as well as the identification of appropriate solution strategies
    • …
    corecore