
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2007

Overcoming TCP Degradation in the Presence of Multiple Overcoming TCP Degradation in the Presence of Multiple

Intermittent Link Failures Utilizing Intermediate Buffering Intermittent Link Failures Utilizing Intermediate Buffering

Duane F. Harmon

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Digital Communications and Networking Commons

Recommended Citation Recommended Citation
Harmon, Duane F., "Overcoming TCP Degradation in the Presence of Multiple Intermittent Link Failures
Utilizing Intermediate Buffering" (2007). Theses and Dissertations. 3135.
https://scholar.afit.edu/etd/3135

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F3135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3135?utm_source=scholar.afit.edu%2Fetd%2F3135&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

OVERCOMING TCP DEGRADATION IN THE PRESENCE OF MULTIPLE
INTERMITTENT LINK FAILURES UTILIZING INTERMEDIATE BUFFERING

THESIS

Duane F. Harmon, Major, USAF

AFIT/GE/ENG/07-11

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

AFIT/GE/ENG/07-11

OVERCOMING TCP DEGRADATION IN THE PRESENCE OF MULTIPLE
INTERMITTENT LINK FAILURES UTILIZING INTERMEDIATE BUFFERING

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Duane F. Harmon, BSEE

Major, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Acknowledgments

I would like to thank my family for placing their lives on hold for the 21 months

required to complete the AFIT academic program. Their continual love and support

grounded me during the entirety of this academic assignment.

 I would also like to thank the AFIT faculty, especially Maj Scott Graham and Dr.

Kenneth Hopkinson for their insight, re-vectoring, and assistance during the completion

of this thesis. Maybe an old dog can learn new tricks.

Duane F. Harmon

v

Table of Contents

Page

Acknowledgments..v

Table of Contents... vi

List of Figures .. ix

List of Tables ... xi

Abstract ... xii

I. Introduction ..1–1
1.1 Background ...1–1
1.2 Problem Statement ..1–2
1.3 Research Approach ...1–4
1.4 Assumptions, Limitations, and Resulting Implications1–5
1.5 Summary ...1–7

II. Literature Review ...2–1
2.1 Chapter Overview ...2–1
2.2 Network Protocol Stack ..2–1

2.2.1 Application Layer ..2–2
2.2.2 Transport Layer..2–2
2.2.3 Network Layer ...2–3
2.2.4 Link Layer..2–4
2.2.5 Physical Layer..2–5

2.3 Transmission Control Protocol (TCP) ..2–5
2.3.1 Sliding Windows..2–7
2.3.2 Congestion Control ..2–8

2.4 Challenged Environment...2–10
2.5 TCP Performance in a Challenged Environment ..2–11
2.6 Relevant Research...2–12

2.6.1 Selective Acknowledgement..2–12
2.6.2 Snoop ...2–13
2.6.3 Split TCP..2–14
2.6.4 TCP Bulk Repeat ...2–15
2.6.5 Strategic Buffering...2–16

2.7 Summary ...2–17

vi

III. Model Description..3–1
3.1 Chapter Overview ...3–1
3.2 OPNET Modeler ...3–1
3.3 Model Introduction ...3–2
3.4 Model Requirements ...3–3
3.5 Proxy Router Architecture ..3–6
3.6 Intercepted Packet Formats ...3–10

3.6.1 IP Datagram Packet Format ...3–11
3.6.2 TCP Segment Packet Format ...3–12
3.6.3 Proxy Packet Format..3–12

3.7 Link Proxy...3–13
3.7.1 Init State ...3–15
3.7.2 Wait State...3–15
3.7.3 Handle_Packet State ..3–15
3.7.4 Await_response State...3–17
3.7.5 Manager_msg State..3–17
3.7.6 Handle_Timer State ...3–17
3.7.7 Connection Record...3–18
3.7.8 Proxy_Handle_Data Routine ...3–18
3.7.9 Proxy_handle_ACK Routine ...3–22
3.7.10 Round Trip Time Estimation and Timeout Calculation3–26
3.7.11 Event Timers and Timeout Events...3–26
3.7.12 Link Failure Detection ...3–28

3.8 Memory Pool Manager ...3–29
3.8.1 Init State ...3–30
3.8.2 Wait State...3–30
3.8.3 Manage State..3–31
3.8.4 Remote Stimulus State...3–31
3.8.5 Endsim State ..3–31

3.9 Link Failure Model ...3–32
3.10 Summary ..3–32

IV. Evaluation Methodology, Analysis, and Results..4–1
4.1 Chapter Overview ...4–1
4.2 Methodology ...4–1

4.2.1 System Boundaries...4–2
4.2.2 System Services ...4–2
4.2.3 Workload..4–3
4.2.4 Performance Metrics..4–4

vii

4.2.5 Parameters..4–5
4.2.6 Factors..4–6
4.2.7 Experimental Design..4–6
4.2.8 Experimental Parameter Settings...4–7

4.3 Investigative Questions Answered..4–9
4.3.1 Question 1 ..4–9
4.3.2 Question 2 ..4–16
4.3.3 Question 3 ..4–24
4.3.4 Questions 4 and 5...4–32

4.4 Summary ...4–37

V. Conclusions and Recommendations...5–1
5.1 Chapter Overview ...5–1
5.2 Conclusions of Research...5–1
5.3 Recommendations for Future Research ..5–4

5.3.1 Proxy Router Model Modifications ...5–4
5.3.2 Challenged Link Limits ...5–7
5.3.3 Security Considerations ...5–8
5.3.4 Custodial TCP Flow Control ...5–8
5.3.5 Scalability ..5–9
5.3.6 Environmental Assumption Relaxation ...5–10

5.4 Summary ...5–11

Bibliography ..BIB-1

Vita ...VITA-1

viii

List of Figures

Page

Figure 1.1: ETE Path Probability for Multiple Challenged Links1–3

Figure 2.1: The Internet Protocol Stack..2–2

Figure 2.2: Congestion Control Algorithm Effects on cwnd Parameter.........................2–9

Figure 3.1: Example Challenged Network Topology ...3–3

Figure 3.2: Central Processor Router Architecture...3–7

Figure 3.3: Central Processor Router Architecture with Central Proxy3–8

Figure 3.4: Central Processor Router Architecture with Link Proxies3–9

Figure 3.5: Custom OPNET Router..3–10

Figure 3.6: IP Header Format ...3–11

Figure 3.7: TCP Header Format..3–12

Figure 3.8: Proxy Header Format ...3–13

Figure 3.9: Link Proxy Process Model ...3–14

Figure 3.10: Proxy_handle_data Flow Chart ..3–21

Figure 3.11: Proxy_handle_ACK Flow Chart ..3–25

Figure 3.12: Memory Pool Manager Process Model ..3–30

Figure 4.1: Single challenged link topology...4–10

Figure 4.2: TCP Aborts Observed for Single Challenged Link using Standard
Router Configuration ...4–11

Figure 4.3: TCP Sender Congestion Window Behavior for Single Challenged
Link with 20% Probability of Failure and 200 msec Failure Interval4–13

Figure 4.4: TCP Receiver Segment Arrival and Accompanying Router 1 Link
Proxy Buffer Usage for Single Challenged Link with 20% Probability of
Failure and 200 msec Failure Interval (Seed 137) ...4–16

Figure 4.5: Average FTP Transfer Time of 20MB File over Single Challenged
Link with Standard Routers ...4–18

Figure 4.6: Variance of Average FTP Transfer Time of 20MB File over Single
Challenged Link with Standard Routers ..4–18

Figure 4.7: Average FTP Transfer Time of 20MB File over Single Challenged
Link with Link Proxy Routers ...4–20

ix

Figure 4.8: Variance of Average FTP Transfer Time of 20MB File over Single
Challenged Link with Link Proxy Routers ..4–20

Figure 4.9: Improvement in Mean FTP Transfer Time of 20MB File over
Single Challenged Link through Use of Link Proxy Routers ..4–22

Figure 4.10: Improvement in Utilized ETE Bandwidth over Single Challenged
Link Using Link Proxy Routers...4–23

Figure 4.11: Multiple Challenged Link Topology..4–24

Figure 4.12: TCP Aborts Observed for Four Challenged Link using Standard
Router Configuration ...4–25

Figure 4.13: Average FTP Transfer Time of 20MB File over Four Challenged
Links using Standard Routers ..4–27

Figure 4.14: Variance of Average FTP Transfer Time of 20MB File over Four
Challenged Links using Standard Routers...4–27

Figure 4.15: Average FTP Transfer Time of 20MB File over Four Challenged
Links using Link Proxy Routers ..4–29

Figure 4.16: Variance of Average FTP Transfer Time of 20MB File over Four
Challenged Links using Link Proxy Routers ...4–29

Figure 4.17: Improvement in Mean FTP Transfer Time of 20MB File over
Four Challenged Links through Use of Link Proxy Routers ...4–30

Figure 4.18: Improvement in Utilized ETE Bandwidth over Four Challenged
Links Using Link Proxy Routers ...4–32

Figure 4.19: Fairness Evaluation Topology..4–33

Figure 4.20: Router 2 – Router 3 Link Bandwidth Utilization of Flow 14–35

Figure 4.21: Router 2 – Router 3 Link Bandwidth Utilization of Flow 24–35

Figure 4.22: Mean FTP Transfer Time of 20MB File over Single Challenged
Link (40% POF) with Mixed Router Topology...4–36

x

List of Tables

Page

Table 3.1: Link Proxy Action Decision Matrix ... 3–16

Table 3.2: Link Proxy Event timers... 3–27

Table 4.1: Performance Metrics... 4–4

Table 4.2: System Under Test Parameters... 4–5

Table 4.3: Experiment Factors... 4–6

xi

AFIT/GE/ENG/07-11

Abstract

It is well documented that assumptions made in the popular Transmission Control

Protocol’s (TCP) development, while essential in the highly reliable wired environment,

are incompatible with today’s wireless network realities in what we refer to as a

challenged environment. Challenged environments severely degrade the capability of

TCP to establish and maintain a communication connection with reasonable throughput.

This thesis proposes and implements an intermediate buffering scheme, implemented at

the transport layer, which serves as a TCP helper protocol for use in network routing

equipment to overcome short and bursty, but regular, link failures. Moreover, the

implementation requires no modifications to existing TCP implementations at

communicating nodes and integrates well with existing routing equipment. In a

simulated six-hop network with five modified routers supporting four challenged links,

each with only 60% availability, TCP connections are reliably established and

maintained, despite the poor link availability, whereas 94% fail using standard routing

equipment, i.e., without the TCP helper protocol.

xii

OVERCOMING TCP DEGRADATION IN THE PRESENCE OF
INTERMITTENT LINK FAILURES UTILIZING INTERMEDIATE BUFFERING

I. Introduction

1.1 Background

Information superiority is achieved only when timely and accurate information is

placed in the hands of the warfighter who needs it. Such distribution of information can

only be realized by networking every soldier, sailor, and airman into a vast network,

spanning the globe. The Department of Defense (DoD) vision for a global network is

realized in the concept of the Global Information Grid (GIG). The GIG is the globally

interconnected end-to-end (ETE) set of information systems, processes, and personnel for

collecting, storing, processing and disseminating information to it’s personnel and

automated systems [1]. Information sharing and near real-time information has become

a force multiplier and as outlined in the 2006 DoD Chief Information Officer Strategic

Plan [2], the DoD is transforming to become a Net-Centric force. This is a departure

from the traditional platform and organization centric operations of the past. The impetus

for the transition is the evolutionary increase in available information and the ever

increasing need of the warfighter to access near real-time data for situational awareness

and mission accomplishment. The ultimate goal of the transition to a Net-Centric force is

ensuring timely and accurate information is available to the correct person (or machine),

in any place, at the proper time.

The hardware infrastructure required to support the Net-Centric force is

necessarily a hybrid of wired and wireless domains. Wired infrastructure at stateside and

1−1

forward encampments must communicate with deployed forces using wireless

communication devices. Supporting the hybrid network are hundreds of individual

communication protocols coexisting in harmony to provide a robust and reliable network

over which information is collected, requested, and disseminated. In the modern military,

mobility is a key requirement and forward deployment to harsh environments with no

infrastructure is common. At these forward tactical edge locations, the reliability and

performance of the network is stressed via the use of notoriously unreliable wireless

communications. To become truly Net-Centric, the underlying network architecture must

adapt to and overcome the physical realities of the unreliable wireless medium and

ultimately provide a reliable communications infrastructure to the warfighter with

minimal restrictions.

1.2 Problem Statement

Communication requires the successful transmission of data between two points,

or nodes, within the network. At the tactical edge of the GIG, where the warfighter is

deployed, communication is frequently required with a node out of immediate range and

thus reachable only through forwarding the message through several “hops.” Data must

traverse many point-to-point links to reach the intended destination. Several of these

point-to-point links will be wireless, making traditional ETE communication problematic,

especially if several of the links are challenged. As shown in Figure 1.1, when multiple

challenged links exist in an ETE communication path, the probability of an uninterrupted

path drops significantly with the increase in number of challenged links present. For

1−2

example, if four wireless hops are required and each hop is experiencing only 90%

availability, then the probability of an ETE uninterrupted path is only 65.6%.

Figure 1.1: ETE Path Probability for Multiple Challenged Links

The dominant method of communication over the GIG will be via packet

switched networks using the ubiquitous Internet Protocol (IP), and the well known

Transmission Control Protocol (TCP), an ETE protocol primarily designed to ensure

reliable delivery of packets. TCP has been highly optimized based on assumptions

specific to wired networks. Key among these assumptions is the fact that loss in wired

networks is primarily a result of congestion at routers, as opposed to bit errors. In wired

links, bit error rates are often measured in magnitudes of 10-8 or 10-9. In stark contrast,

wireless communication bit errors rates approach 10-2 (or even 10-1 in some cases) as a

result of spectrum interference, fading channels and other naturally occurring sources of

noise. Unfortunately, packet errors due to such events are erroneously interpreted as

1−3

network congestion by TCP, causing a reduction in transmission attempts precisely when

they may be needed most. As a result, data throughput in the wireless domain is

significantly degraded. Compounding this reality is the fact that current network

architecture does not provide any intermediate buffering of packets which have

successfully traversed earlier links and are currently experiencing difficulty overcoming a

particular link. Thus, the probability of successful ETE transmission of packets in the

unreliable wireless medium drops off precipitously.

This research focuses on the use of intelligent intermediate buffers to overcome

individual point-to-point wireless link transmission errors, effectively hiding localized

non-congestion errors from the TCP connection endpoints and preventing the reduction

of data throughput for the ETE TCP communication. Additionally, the desirable feature

of not requiring modifications to the communicating TCP endpoints is maintained to

avoid requiring a specific TCP implementation.

1.3 Research Approach

A relatively new area of study is that of so-called challenged networks. In a

challenged network, connections between nodes are frequently disconnected and

reconnected, possibly due to environmental conditions or even on a scheduled basis. An

example of the latter is a non-stationary satellite that has known windows of availability.

In challenged networks, the throughput of TCP connections is severely degraded due to

periods of link non-availability, referred to here as link-wink [3]. In a military

environment, link-wink could be the result of many environmental factors such as

jamming, spectrum interference, aircraft turbulence, or covertness.

1−4

Wireless network throughput can be improved by correcting the erroneous

reduction in TCP transmission attempts using three general strategies; ETE proposals,

split-connection proposals, and link layer proposals [4]. ETE proposals modify the

network layer TCP protocols to explicitly notify the TCP sender of congestion before

invoking TCP congestion control. Split-connection proposals mask congestion control

invoking triggers from the TCP sender by performing some form of buffering and

filtering action at intermediate nodes. Link layer proposals improve link layer protocols

for reduced error rates and local resend actions.

This research combines aspects of split-connection and link-layer schemes to

challenged networks with short periods of non-availability. These schemes are extended

to accommodate ETE connections with multiple wireless hops, any of which could be

severely challenged with low availability or high bit error rates. Specifically, TCP-aware

transport layer buffering using a split-connection scheme over each challenged wireless

link is evaluated. In effect, each router connecting a wireless link along the ETE TCP

connection acts as a local proxy for the TCP communication endpoints.

1.4 Assumptions, Limitations, and Resulting Implications

Many forms of traffic will coexist over the GIG. This investigation targets File

Transfer Protocol (FTP)-like TCP traffic and large file transfers between two

communication points. Other forms of communication such as User Datagram Protocol

(UDP) traffic or bi-directional communication utilizing TCP are not specifically

investigated, but are also expected to benefit from intermediate buffering. The

communication channel investigated in this thesis assumes disruption periods can be very

1−5

frequent, but only for short durations on the order of milliseconds to seconds. Longer

duration link-wink is non conductive to TCP connections and requires fundamental

modifications to the TCP timeouts which drive the timescale over which TCP can

effectively function. However, the applied approach applies to transfers experiencing

longer duration outages if TCP’s time constants are extended. Jain et al. [5], present a

thorough discussion of the routing and connection support implications for very-long

duration (hours or days) disconnected nodes and situations where an ETE path may never

exist.

A key feature of this research is that an attempt is made to overcome TCP’s

limitations in an environment where TCP is extremely likely to fail. TCP is used by a

majority of applications and any expectation of a readily accepted modification to TCP

for battlefield use is unlikely. Accordingly, the proposed scheme within this thesis

requires no modifications to the TCP protocol or the communicating endpoints as it

focuses on adding complexity to the network routing infrastructure rather than the edge.

This research suggests that modifications to the endpoints will improve performance

further, but such modifications are left for future research.

It is assumed that a route between the communicating endpoints exists, at least on

an intermittent basis. No communication scheme can overcome a lack of communication

path. Static routing is utilized in this research; however the developed model should be

applicable to other routing schemes, perhaps with some adaptation. It is also assumed

that the data and acknowledgment communication paths are symmetrical, which is

reasonable for short duration transfers. The nodes in this research are stationary, yet no

1−6

mobility limitations are placed on the model. The developed model can be applied to

mobile scenarios if properly matched routing and link-layer protocols are utilized. Of

final note is the assumption that link-wink does not invoke routing re-establishment

algorithms since the outage duration is for a short period only and will be available again

momentarily.

1.5 Summary

This chapter outlines the motivation and limitations of this thesis research.

Chapter Two provides a review of pertinent concepts, further details of the problems of

TCP in a challenged environment, and a review of literature applicable to this research.

Chapter Three presents a detailed discussion of the developed model along with the

design decisions implemented within the model. Chapter Four describes the

methodology used in this research, experiments utilized, analysis of results, and

conclusions concerning buffering of TCP data streams in a challenged network. Chapter

Five summarizes the motivation, research methodology, results and observations,

conclusion of this research, and offers suggestions for future research activities.

1−7

II. Literature Review

2.1 Chapter Overview

This chapter provides the reader with a brief introduction to the background

knowledge required for a thorough understanding of this research. It is assumed that the

reader has a general knowledge of computers and computing networking. In-depth

discussion of the specific domain of this research is contained herein as well as specific

parameters of interest. A brief overview of the network protocol stack is presented,

followed by a detailed discussion of the network layer TCP protocol. The concept of a

challenged network is then introduced with a discussion of TCP shortcomings in such an

environment. A discussion of some published research pertaining to this thesis is then

introduced and followed by a discussion of this thesis research and its contributions.

2.2 Network Protocol Stack

 A network, simply defined, is a collection of communicating entities connected

together by communication links. The communicating entities or communication links

need not be homogeneous, however each communicating pair must share a common

communication protocol to communicate effectively. Modern networks may consist of

millions of communicating devices and intermediate nodes, using various types of

communication links and a vast array of communication protocols. In order to provide a

structure for network design, development, and maintenance, network designers have

defined a protocol stack comprised of various layers. This thesis focuses on the internet

protocol stack shown in Figure 2.1. Each layer of the protocol stack interacts with the

2−1

layer immediately above or below it. A higher layer uses the services of layers beneath

it, and provides service to layers above it.

Figure 2.1: The Internet Protocol Stack

2.2.1 Application Layer

The application layer is the “raison de existence”, or why the network exists at all.

Typical examples of applications are web browsing, email, file sharing, or

teleconferencing. These applications are located on hosts which communicate with one

another, via the network, using protocols such as HTTP(web browsing), FTP(file

transfer), or SMTP(e-mail). Communicating applications exchange information via

messages using the transport layer. This research is presented using the client-server

communication model; however it applies equally well to peer-to-peer and hybrid

communication models.

2.2.2 Transport Layer

The transport layer exists to transport messages between the applications located

on the hosts at the network endpoints. To an application, the transport layer abstracts

away the communication details and behaves as if it were directly connected to the

2−2

communication partner. Messages can be quite large and must be broken into segments

for efficient delivery. For the message to be understood, every segment may need to be

delivered. The internet uses TCP and UDP to transport messages either reliably or

unreliably between hosts. The transport layer uses the services of the network layer to

perform its obligations.

2.2.3 Network Layer

Hosts within a network can be separated by a vast distance with many

intermediate nodes, called routers, between them. The network layer is charged with

moving each transport layer segment from the source host to the destination host by

forwarding (or routing) it in the most efficient manner possible. Each segment is

encapsulated within a network layer entity called a datagram. Thus, the network layer is

charged with finding a suitable path, composed of individual links, and moving

datagrams from the source host to the destination host. Each intermediate node must

determine where to forward a datagram by examining the destination address and

choosing an outbound link which will move the datagram closer to its destination. By

“closer”, we often mean topologically closer, as opposed to physically closer.

The dominant network layer protocol is the well-known Internet Protocol (IP) and

is essentially an addressing scheme where a host address is also a unique identifier of that

host. The IP addressing scheme implies a hierarchical topology, where a static routing

table suffices. To adapt to link failures, it is necessary to incorporate some redundant

links, and to implement adaptive routing protocols that sense the presence or absence of

links and respond by changing the routing tables. As links fail, successful routes may or

2−3

may not be discovered by the network layer, leaving no guarantee of successful datagram

delivery. Hence the requirement for the transport layer to provide its own reliable

message delivery guarantee between hosts.

There are many routing protocols in existence. This research is not concerned

with the routing protocols and merely assumes static routing. Hence, no particular

routing protocol need be identified.

2.2.4 Link Layer

After the Network Layer determines which node to forward the packet to, the link

layer provides a mechanism to move datagrams between adjacent nodes. The link layer

uses the services of the physical layer, which provides an abstraction of a “bit pipe” in

which bits are introduced at one end and received on the other end. It is the responsibility

of the link layer to handle bit errors, presenting the abstraction of an error free packet

delivery system from one node to another.

Frequently, multiple nodes share a common link; e.g., a radio channel, or a multi-

tapped bus. This is especially true at the extremities of a network. Such an arrangement

offers connection flexibility, but introduces the possibility of packet collisions, and must

therefore have a mechanism, or protocol, to allocate the use of the channel. For

increased performance, nodes can also be connected via a dedicated link, which avoids

the possibility of collisions. A datagram may encounter many types of individual links

on its path from source to destination. The specific protocol, such as Ethernet, ATM, or

PPP, is chosen to optimize the transmission medium and link properties. The model

2−4

developed in this thesis uses PPP between adjacent nodes; however it is equally

applicable to other link layer protocols.

2.2.5 Physical Layer

The physical layer is responsible for physically transmitting information between

geographically separated nodes. Here, bits are transformed into some form of

electromagnetic energy, which can be propagated from one node to another through a

channel. Examples of channels include optical fiber, twisted-pair copper wire, free-space

optical wireless, or radio frequency transmissions. Each of these requires differing

protocols in order to function. However, each presents the abstraction of a “bit pipe” to

the link layer above. The physical layer protocol is dependent on the type of link and

transmission medium.

2.3 Transmission Control Protocol (TCP)

 The transport layer can provide reliable or unreliable delivery of segments over a

network layer, which does not provide any guarantee of datagram delivery. TCP,

originally defined in RFC 793, is the connection-oriented transport layer protocol that

guarantees reliable, in-order delivery of segments between communicating source and

destination hosts, despite the underlying unreliable network services [6, 7]. An additional

goal of TCP is to maintain some sort of general fairness between information flows.

TCP establishes an ETE connection between the source and destination hosts

(communicating partners). During connection establishment, each host records state

information pertaining to its communicating partner and maintains this information

throughout the active connection. Specific connection state information consists of

2−5

receive and send buffer size and content, sequence numbers and acknowledgement

numbers, and congestion control parameters (timers and variables). Intermediate nodes

of the network layer maintain no state information pertaining to a TCP connection.

A TCP connection is established via a three-way handshake between a client host,

hereafter referred to as the receiver, and the server host, hereafter referred to as the

sender. During the handshake, each host records the IP address and port number of its

communication partner, establishes initial sequence numbers, and creates send and

receive buffers. The sender’s send buffer contains the data to be transferred to the

receiver. The receiver’s receive buffer is initially empty and is populated as segments are

received. The receive buffer is emptied as in-order data is delivered to the application

layer above.

The sender sends segments to the receiver and receives acknowledgments from

the receiver. Acknowledgements are generally sent for every segment and are

cumulative. The number of unacknowledged segments in transit is dynamic and is based

on the sender’s perception of the network congestion state as discussed below.

In a non-challenged network, segments generally arrive in order at the receiver

and cumulative acknowledgements arrive in order at the sender. If segments are lost,

subsequent segments may arrive at the receiver, creating a “gap” in the received sequence

numbers. When a gap is detected in the sequence numbers, the receiver does not

acknowledge the segments received after the gap, but rather continues to send duplicate

cumulative acknowledgements for the next expected in-sequence byte number, i.e., the

first segment lost in the gap. The sender identifies lost segments through receipt of

2−6

duplicate acknowledgements. In addition, if all segments are lost, the sender must have

some way of knowing this. Discovery of such an event is enabled via a timeout timer and

the lack of any acknowledgements within a derived timeout interval triggers a series of

retransmissions.

In the underlying unreliable network, segments and acknowledgments can be lost

due to many factors such as spectrum interference, high bit error rates, packet collisions,

or buffer overflows (due to congestion). Optimal TCP performance depends on its ability

to estimate network performance and adapt. As TCP sends data and receives

acknowledgments, it maintains estimates of round trip time (RTT) and RTT variance,

which it then uses as a basis for various timers and timeouts. If TCP estimates the

condition of the network poorly, it becomes sub optimal in one of two ways. Either it

retransmits too often, congesting the network with duplicate messages, or it fails to

transmit when conditions are favorable, losing the opportunity and delaying successful

delivery of the message.

2.3.1 Sliding Windows

TCP incorporates several constructs in its quest to optimize network resources.

The Sliding Window, referred to as send window is designed to prevent a sender from

overwhelming either the receiver, or any intermediate link, by only allowing a limited

number of packets outstanding, or “in flight.” The TCP sender maintains a dynamically

adjusted send window that slides "to the right" as time elapses. The left edge of the

window slides right as data is acknowledged by the receiver. The right edge of the

window advances (to the right) as the receiver advertises available receive buffer space

2−7

within an acknowledgement. Thus the total window width is set by the receiver, to

prevent receiver buffer overflows, and is called the offered window. The receiver’s

receive buffer will be reduced by the occurrence of lost segments or mis-ordered segment

arrivals. From the sender’s viewpoint, the offered window contains sent, but not yet

acknowledged segments, and the number of segments that can be sent immediately if

allowed by the congestion window (cwnd as discussed in 2.3.2). TCP attempts to reach

an optimal point at which the number of unacknowledged segments is equal to the offered

window. In challenged networks, the fact that the amount of unacknowledged segments

cannot exceed the offered window is a critical limiting factor in TCP performance.

2.3.2 Congestion Control

In addition to the aforementioned TCP features that ensure the receiver’s buffer is

not overwhelmed, TCP maintains a congestion window parameter, cwnd, to reduce

congestion in the network and reduce the possibility of router buffer overflows enroute to

the receiver. In effect, cwnd is a measure of the number of unacknowledged bytes that

can be in transmission without causing network congestion. TCP utilizes slow start,

congestion avoidance, fast retransmit, and fast recovery algorithms as part of the

congestion control mechanism. Each of these algorithms modifies cwnd in differing

ways. Figure 2.2 provides a graphical representation of the effect of congestion control

algorithms on the cwnd parameter in response to congestion events.

2−8

Figure 2.2: Congestion Control Algorithm Effects on cwnd Parameter

2.3.2.1 Slow Start and Congestion Avoidance

In classic TCP implementations, cwnd is initially set at one or two packets (1460

or 2920 bytes) and is incremented by 1460 bytes every time an acknowledgement is

received. The upper bound of the slow start algorithm is reached when cwnd reaches the

slow start threshold parameter, ssthresh, typically set at 65535 KB by default. The slow

start ramp-up is often referred to as an exponential increase phase. Once the cwnd

parameter has incremented to that of ssthresh, the TCP sender enters the congestion

avoidance phase, where cwnd is incremented by 1460 bytes (the largest allowable

datagram payload for Ethernet) each round trip time.

2.3.2.2 Fast Retransmission / Rapid Recovery

If three duplicate acknowledgments are received at the sender, the sender assumes

a segment is lost and immediately tries to resend what is interpreted as a lost segment

without waiting for the retransmission timer to expire. The ssthresh and cwnd parameters

are set to one half of the cwnd value and the sender enters congestion avoidance

2−9

immediately upon retransmission of the lost segment. Slow start is not invoked due to

the fact that receipt of the duplicate acknowledgments indicates data is still arriving at the

receiver.

2.3.2.3 Timeout and Retransmission

As a sender sends data, it sets a timeout time by which an acknowledgement

should be received. The timeout period is set by using a current estimate of RTT with an

allowance for variance. If an acknowledgment for outstanding segments has not been

received by the timeout expiration, it is interpreted as a network trouble indication and

the cwnd parameter is set to 1460 bytes while all unacknowledged segments are resent

according to the slow start algorithm. Repeat timeouts result in an exponential backoff

between retransmission attempts via a doubling of the timeout timer to a maximum of 64

seconds. If repeat timeouts persist for a period of 9 minutes, the TCP connection is

terminated by the sender.

2.4 Challenged Environment

As mentioned previously, in the underlying unreliable network, TCP segments

and acknowledgments can be lost due to many factors such as spectrum interference, high

bit error rates, packet collisions, or buffer overflows (congestion). Regardless of the loss

mechanism, segments are lost/dropped and the state information at the communicating

endpoints changes. Ideally, the endpoints adapt properly to handle loss events. This is

especially critical for the endpoint that is actively sending data and is expecting

acknowledgements. This thesis investigates overcoming a challenged environment

where each wireless link in a multi-hop wireless environment experiences high losses.

2−10

Thus, availability of the link is reduced and the opportunity for successful TCP

communication is significantly degraded.

2.5 TCP Performance in a Challenged Environment

Well tuned to a high reliability environment, TCP performance degrades

significantly in the presence of high link losses. TCP responds to lost data packets by

invoking the congestion control mechanisms discussed previously. The response is based

on assumptions that loss is the result of buffer overflow at intermediate routers between

the source and destination of the TCP communication flow. TCP’s congestion control

mechanism incorporates a fairness doctrine and immediately reduces the load of

intermediate routers by reducing its transmission attempts. In theory, other TCP

connections using the same intermediate routers will implement their own congestion

control mechanisms, rectifying the temporary overflow situation, and resulting in

network wide recovery in a more or less fair fashion.

In a challenged environment, losses are more likely to be attributable to wireless

communication difficulties and thus invocation of congestion control mechanisms is an

improper response of the TCP sender. TCP is unable to discriminate between wireless

communication difficulties and true network congestion, leading to the aforementioned

degradation. Therefore, some implementation changes to TCP are required to operate

effectively in the challenged environment.

Additionally, TCP requires a three-way handshake between an initiator and

receiver for connection establishment. When links are non-challenged, connection

establishment segments are easily received. In a heavy loss environment however,

2−11

connection initiation segments can be easily lost, potentially resulting in a connection

establishment delay, or even worse, a connection establishment abort.

2.6 Relevant Research

2.6.1 Selective Acknowledgement

The TCP Selective Acknowledgement (SACK) option, defined and documented

in RFC 2018 [8], is designed to overcome multiple losses in a single transmission

window by explicitly notifying the sender which segments in the byte stream have been

delivered and which segments remain outstanding. In the SACK scheme, an

acknowledgement with three contiguous blocks of received segments can be conveyed to

the sender, allowing the sender to interpret which segments to resend. Ultimately, this

reduces the recovery time in the event of multiple losses and reduces overhead of

unnecessary retransmissions.

The SACK concept is utilized in this thesis to identify a single contiguous missing

series of bytes, but only between specialized intermediate routers. No attempt is

currently made to utilize SACK between the communicating endpoints.

As discussed in the sliding windows context, the amount of unacknowledged data

in flight is upper bounded by the advertised receive window. The SACK concept allows

a potential avenue to overcome this limit when intermediate proxy routers are used, but

the TCP sender may require modification. Consideration was given to the possibility of

allowing the specialized intermediate routers to send SACKs to the TCP sender,

especially since the SACK option allows reneging, but concern over the impact to the

TCP timer state data necessitated postponing this option. It is strongly encouraged that

2−12

any follow-on work attempt to utilize SACK to its maximum potential, despite the

requirement of TCP sender modification.

2.6.2 Snoop

The Snoop protocol [9] is a local loss enhancement in wireless networks that

places a snoop agent in the wireless access point. Hence, the snoop agent sees all

segments related to a communicating pair from connection establishment through

connection termination. The Snoop protocol maintains per-connection state and caches

packets locally for possible retransmission in the event of a loss and retransmits lost

segments locally as required. Under this scheme, duplicate acknowledgements are

handled locally if the missing segment is cached and duplicate acknowledgements are

destroyed to keep the sender from misinterpreting congestion due to link layer loss. The

key desirable feature of the Snoop protocol is that the ETE TCP semantics are not

modified, however it does require that the SACK option be set for optimal performance.

The authors’ [9] simulations achieved speedups up to 20 times over “regular TCP.”

For the interested reader, an 802.11 (WiFi) implementation of the Snoop protocol

using the OPNET simulation suite was presented by Chi Ho Ng et al. [10]. The outlined

implementation was for a single wireless link between the endpoint and wireless access

point, as Snoop was intended to be used. The authors’ [10] claim a significant TCP

performance increase, up to 68 times in a 30% packet error rate environment, utilizing the

Snoop protocol. These results are somewhat misleading as the implemented loss

mechanism prevented key control segments loss.

2−13

Several features of the Snoop protocol are included within this thesis, however the

Snoop protocol was designed for use in a single wireless access point. This thesis uses a

modified Snoop protocol at each specialized intermediate router within the network,

allowing for localized error recovery within the network itself, not simply in the final

wireless hop. Additionally, this research makes no assumption that critical control

segments such as connection establishment and termination segments are immune from

loss.

2.6.3 Split TCP

Split TCP [11] was introduced for mobile ad hoc networks and TCP connections

that suffer from mobility losses. In such an environment, route failures are common and

the channel capture effect unfairly hinders rapidly changing TCP flows. Under Split

TCP, each node acts as a proxy, accepting temporary custody of a segment via a local

acknowledgement, and forwards the segment on to the destination. In effect, each ETE

connection is split into several shorter localized TCP connections. Split TCP requires

modifications to the TCP sender that allow more data to be in flight via an ETE window

and a congestion window. The specific methods and algorithms utilized in this scheme

were not discussed. The authors’ [11] simulations show that fairness among TCP

connections is increased and throughput of individual TCP connections increased by as

much as 40%.

 The forwarding concept of Split TCP that continually moves data toward the

destination and the local acknowledgement are similar to this thesis, but the splitting of

the ETE connections into multiple smaller connections and modifying the TCP sender

2−14

differs greatly. Without implementation details, it is difficult to compare and contrast the

approaches further.

2.6.4 TCP Bulk Repeat

TCP Bulk Repeat [12] is an ETE scheme proposed for improving TCP

performance in a heavy loss environment. In this scheme, the TCP sender is modified by

performing a bulk retransmission of all outstanding packets in the send window in the

event of a loss, setting a fixed retransmission timeout rather than the standard exponential

backoff used in TCP-Reno, and restricting a reduction of the cwnd parameter to error-

induced cases only. Error induced loss is discriminated from congestion by using an

expected data rate calculation and noting the difference from the achieved rate. Under

the TCP Bulk Repeat scheme, throughput is increased by shortening the recovery period

after a loss event, but at the cost of a higher overhead of unnecessarily resent segments.

The authors’ [12] simulations show an increase in throughput performance of TCP Reno

and TCP Westwood by an order of magnitude in high error rate (>5%) cases with the

most notable performance increase in bursty error cases.

 TCP Bulk Repeat differs greatly from this research primarily due to the fact that

the scheme modifies the TCP sender only, where necessary TCP connection state

information is available for calculations and modification. This thesis research however

applies changes to intermediate nodes in the network.

 The TCP Bulk Repeat concept of retransmitting all non-acknowledged packets in

the send window is used in this thesis, but only in the case of a timeout event. This thesis

could benefit by applying the fixed retransmission timeout scheme rather than using an

2−15

exponential backoff approach, but such a modification is left for future consideration due

to fairness concerns to other existing TCP flows.

2.6.5 Strategic Buffering

 Reynolds introduces mathematical models of TCP FTP transmission time over a

single challenged link with and without strategic buffering at intermediate routers [3].

The models, as well as testbed simulations, showed that strategic buffering within the

network could reduce TCP transmission time by handling loss events closer to the source

of loss. The implementation used in the simulations used an inefficient bulk repeat

retransmission scheme that resends all buffer contents every 10 msec. The

retransmission scheme assumes dedicated use of the challenged link and is inherently

unfair in a shared medium environment. Additionally, the scheme modified the TCP

sender to interpret intermediate acknowledgments from strategic buffering routers similar

to the selective acknowledgment scheme discussed earlier.

 This study is a continuation effort derived from the initial work of Reynolds. The

problem formulation and concept of adding complexity to the network routing

mechanisms to accommodate strategic buffering is similar. This work however,

investigates multiple challenged links in a simulation environment with refined

retransmission mechanisms that do not assume dedicated use of a link, i.e., this approach

is capable of fairness, although the extent of fairness achieved has not been studied.

Additionally, this effort makes no modifications to the TCP sender, adding only

complexity to the network that is transparent to TCP implementations.

2−16

2.7 Summary

This chapter provides a short introduction to TCP performance and how it

degrades in a challenged environment. Several published works that address TCP’s

performance were discussed and their similarity to and differences from this work were

highlighted. The primary contribution of this work is to develop and evaluate a model for

supporting FTP-like TCP communication in a multiple hop scenario with multiple

challenged links. This is the first known attempt to improve and analyze TCP

performance in a multiple hop environment where each link has significantly reduced

availability, perhaps as low as 60 percent.

2−17

III. Model Description

3.1 Chapter Overview

This chapter introduces the relevant design details of the model built for this

thesis. It should be noted that the reader can skip this chapter if the design philosophy

and specific implementation details are not of interest.

The model was developed using OPNET 12.0 and includes many of the details

outlined in Snoop TCP with concepts from SACK, Split TCP, and TCP Bulk Repeat.

The driving scenario for this model is a TCP connection over several challenged wireless

hops between communicating endpoints where traditional TCP implementations will

simply fail. Much of the model is focused on reliability between successive hops and

adherence to a custodial buffering principle, without any modification to the TCP sender

and receiver. Increasing reliability between successive hops requires introducing

complexity to the network while preserving the ETE semantics of existing TCP

implementations.

3.2 OPNET Modeler

OPNET Modeler [13] is a simulation tool for modeling and simulation of

computer networks. OPNET modeler provides a discrete event simulation engine, a

graphical user interface, and hundreds of basic device models that can be utilized and

modified as needed for network simulation as well as providing the ability to create

custom models for research activities.

3−1

3.3 Model Introduction

This study analyzes the value of adding reliability at the network layer via a

transport layer “helper” protocol. A key performance question is whether the increase in

TCP byte stream throughput and decrease in ETE delay in a challenged link environment

(when compared to standard network implementations) justifies the additional cost and

complexity of such a network.

The developed protocol is considered a transport layer helper protocol. The

protocol is transport layer aware as it requires access to network layer datagram header

information and acts on TCP segments contained within them. Additionally, the

developed protocol supports the transport layer TCP protocol using the services provided

by the network layer. The support reinforces transport layer reliability and provides a

mechanism to detect and recover from loss events. However, the support does not violate

the ETE requirements of TCP and the TCP endpoints are unaware of the presence of the

helper protocol.

 The developed model supports networks such as the one shown in Figure 3.1.

This network is representative of a modern-day military network environment where

forward deployed ground and air forces, remote sensors platforms, and loitering aircraft

communicate in a shared medium wide area network. Reach-back to higher levels of

command is also provided by wireless links and the network contains some wired

infrastructure.

3−2

Figure 3.1: Example Challenged Network Topology

The complexity within the network is introduced via customized routers,

symbolized by a star pattern in the figure. It is envisioned that such a router is introduced

at the end of wireless backbone links, enabling localized recovery due to challenged link

characteristics. Thus, for the topology displayed in Figure 3.1, a specialized router would

be located in satellites, AWACS and UAV platforms, the satellite control station link, and

strategic tracked ground vehicles.

3.4 Model Requirements

Specific model implementation is discussed in detail throughout this chapter,

however high level model requirements are highlighted here to provide a context for the

remaining detailed model discussion.

As discussed in Chapter Two, non-congestion losses (channel failures) in a

wireless network are perceived by a TCP sender as congestion losses. When losses are

improperly categorized as congestion, TCP invokes its congestion control algorithms,

3−3

reducing throughput and extending the transmission period of TCP communication. The

goal of the developed model is to insulate an unmodified TCP sender from non-

congestion losses while still preserving ETE TCP semantics. Non-congestion loss events

should be handled as close to the source of loss as possible without intervention from the

TCP sender. This is achieved through the use of specialized routers, referred to here as

intermediate link proxies due to their ability to act on behalf of a sender. The use of

these proxies along a multi-hop intermittent path should increase the reliability of the

ETE connection and enable TCP communication in a degraded environment where TCP

would otherwise fail due to timeout conditions, exponential retransmission backoff, and

eventual unconditional connection termination.

Intermediate link proxies will require high-speed memory be available within

the host router for buffering TCP segments. Potentially hundreds of simultaneous TCP

flows could be utilizing a link proxy, hence memory usage by a particular TCP flow

should be minimized such that unnecessary segments are removed from a local cache as

quickly as possible. Accordingly, some means of communication should exist between

link proxies that provides intermediate acknowledgements (accepting custody of the

datagram) for immediate feedback and subsequent release of upstream memory. This is

best accomplished via custom intermediate acknowledgement packets between link

proxy routers.

Detection of loss events should occur as quickly as possible to facilitate rapid

recovery, increase link utilization rates, and improve individual TCP flow throughput. A

link proxy’s immediate proximity to the potentially challenged link can be used to

3−4

monitor the link itself via estimates of round trip time to the next link proxy router in the

transmission flow direction as well as an estimate of round trip time to the transmission

endpoint. Variance of the round trip time can be determined and used to minimize the

impact of slight variations in round trip time and the negative impact of premature

timeout handling.

For optimal performance after a loss event, a link proxy should respond

immediately by resending the lost data (from its local cache) to the destination on behalf

of the source. In a shared medium, the recovery of a loss event should be “polite” in

some sense, taking care not to dominate the use of the link and degrade multiple TCP

flows passing over the link. Politeness is introduced via an exponential backoff

mechanism between repeated resend events, implemented in the same manner in which a

TCP sender politely backs off due to a congestion event. This mechanism allows

buffered segments from each TCP flow over the link to be resent, providing maximum

fairness to each flow trying to utilize the degraded link.

Duplicate acknowledgements that indicate a loss event should be destroyed (when

loss events are locally detected and locally handled) to eliminate the possibility that the

TCP sender will receive them and perceive the loss as congestion, thereby reducing its

congestion window. The net effect of detecting the loss locally, handling the required lost

segment retransmission, and destroying the duplicate acknowledgments is complete

masking of the non-congestion channel failure from the TCP sender. The sole exception

to this case is SYN-ACK segments that are used during TCP connection establishment.

3−5

Such segments do not invoke congestion control algorithms and should always be

forwarded when observed.

In a challenged environment, it is highly probable that acknowledgements from

the TCP receiver are lost. A link proxy should not cache such acknowledgement

segments, as doing so would imply the requirement to resend them in the event of no

intermediate feedback between link proxy routers. Blind retransmission of TCP receiver

acknowledgments can potentially invoke TCP sender congestion control and its resulting

performance drop. A better mechanism for handling lost TCP receiver acknowledgments

is for the link proxy router to store a small amount of acknowledgment state information

for the flow and determine if acknowledgements are lost via comparing any newly

received receiver acknowledgment information with stored state data. When lost

acknowledgments are detected, a link proxy should regenerate them, stimulating the

TCP sender into increasing the congestion window and allowing for increased sender

throughput.

It should be highlighted that under no circumstances should link proxy routers

generate TCP receiver segment acknowledgments without first discovering that the

receiver has in fact acknowledged the segment in question. Doing so would violate the

ETE semantics of TCP, erroneously advancing the TCP sender send window.

3.5 Proxy Router Architecture

The architecture of typical low-cost routers is a central processor with small

queues on the inbound and outbound links as shown in Figure 3.2. All IP datagrams

arriving at the router are inspected and routed by a single processor. Once the outbound

3−6

link is determined, the switching fabric routes the datagram to the proper outbound link

for transmission. Datagrams can be dropped within the router by queues reaching their

size limitations due to an arrival rate of datagrams in excess of the service rate of the

central routing processor or outbound link transmissions.

Figure 3.2: Central Processor Router Architecture

Two central routing processor router architectures were investigated for use this

research. The first architecture is shown in Figure 3.3 and features a single proxy

processor that works in concert with the central routing processor. This architecture

features a single simple proxy approach that works in tandem with the network layer

routing. Using this architecture allows easier design and software coding since only a

single module is required in the router that provides all TCP flow proxy capability and

memory management. The centralized proxy architecture could become a severe

3−7

performance bottleneck however, especially in the presence of hundreds of high

throughput TCP flows.

Figure 3.3: Central Processor Router Architecture with Central Proxy

The distributed proxy architecture displayed in Figure 3.4, places a proxy on each

link, hence the reference to proxies as “link proxies”. The architecture increases the

model complexity and increases the amount of state data that must be maintained for TCP

flow support. The distributed architecture was used in this study for two primary reasons.

First, a future inclusion of a distributed memory pool management algorithm that will

best utilize limited memory resources within the router can be easily evaluated using the

developed model. Second, additional research at AFIT is investigating optimal inter-

router buffer management algorithms. The distributed link proxy scheme can interface

with such an algorithm for follow-on research.

3−8

Figure 3.4: Central Processor Router Architecture with Link Proxies

The OPNET model for the customized link proxy router is shown in Figure 3.5.

The function of the router is unchanged and the existing standard network layer IP

routing remains unchanged from the standard OPNET model. Within the standard router,

four of the link layer PPP links have been modified by the insertion of a transport layer

link proxy between the link receiver/transmitter pair and the IP routing process. In

essence, every datagram designated to travel over the link is inspected by the link proxy.

A decision is made to process the datagram, if any action is necessary, or simply forward

the datagram immediately. A centralized memory pool manager is included to provide

efficient memory pool management with limited centralized memory resources. The

memory pool manager communicates only with the link proxies within the router. The

transmitter/receiver pairs model the physical layer and are unchanged from the standard

OPNET PPP model.

3−9

Figure 3.5: Custom OPNET Router

3.6 Intercepted Packet Formats

 The location of the link proxy allows every datagram passing over the PPP link

to be intercepted and potentially acted upon by the link proxy. This thesis research

focuses strictly upon FTP-like TCP connections and thus simply forwards all other traffic

unhindered. The model architecture allows for action upon other communication

protocols as well, but such expansion is left for follow-on research.

3−10

3.6.1 IP Datagram Packet Format

Every datagram coming from or destined for the PPP link carries an IP header as

shown in Figure 3.6. A link proxy requires some critical information from the IP header

in order to determine proper processing actions. Critical IP header field data includes the

protocol identifier (identifying the type of payload carried by the datagram), 32 bit source

and destination IP addresses of the datagram originator and intended receiver, and the

datagram length.

Protocol identifiers 0-137 and 253-255 are currently utilized (TCP is identified by

a value of six), leaving 138-252 for potential use. The developed model assumes that a

new protocol identifier can be assigned to allow proxy capable routers to communicate

with one another. The particular assignment number used in the developed model is 150

and is defined in OPNET external header file ip_higher_layer_proto_reg_sup.h for global

recognition.

Figure 3.6: IP Header Format

3−11

3.6.2 TCP Segment Packet Format

 The standard TCP header format is shown in Figure 3.7. TCP connections are

ETE, so a TCP connection is uniquely identified by the port number of the source and

destination hosts found in the TCP header and the source and destination IP addresses

found in the IP header. All information within the TCP header is considered critical for

link proxy use and will be discussed in detail as it is used in the model. The

encapsulated TCP segment data is not inspected by link proxies and is simply buffered

with the TCP segment itself.

Figure 3.7: TCP Header Format

3.6.3 Proxy Packet Format

Communication between proxy capable routers is carried within IP datagrams

with only the data carried in the header format identified in Figure 3.8. Three types of

messages are conveyed between adjacent proxy routers. The most common message is

an intermediate acknowledgment, or IACK, which is generated upon receipt of new data

3−12

and travels back toward the data sender to be intercepted by the link proxy that last

handled the TCP segment. Persist query messages are sent downstream toward the TCP

receiver to query flow status and probe for lost acknowledgments. Persist response

messages are generated upon receipt of a query and are sent upstream towards a TCP

source to be intercepted by the query initiator. While a small amount of overhead is

introduced as a result of the inter-proxy messages, the impact is minimal and ultimately

improves inter-proxy performance for overcoming loss events.

Figure 3.8: Proxy Header Format

3.7 Link Proxy

 The link proxy process model is displayed in Figure 3.9. The Init state

instantiates the process with proper initial state variables, both user defined and standard,

and creates data structures necessary for link proxy algorithm execution. Upon

completion of the Init state, a link proxy enters the Wait state until an event requiring

action occurs. Departure from the wait state is dependent on the discrete event that

awakened the link proxy for action. Datagram arrival transitions the model to the

Handle_Packet state where the link proxy determines what action, if any, should be

performed on the arriving datagram. If the arriving datagram requires memory allocation

3−13

from the memory pool, the link proxy enters the Await response state in anticipation of a

memory allocation response message from the memory pool manager, follow-up

handling of the initiating datagram, and a return to the wait state. Unsolicited message

arrival directly from the memory pool manager transitions the model to the Manager_msg

state where the link proxy takes appropriate action and returns to a wait state. The

Handle_Timer state is entered upon the expiration of a self-scheduled interrupt event,

returning to the wait state upon timer event action completion. Finally, the Endsim state

is activated at the completion of a simulation for graceful memory recovery.

Figure 3.9: Link Proxy Process Model

3−14

3.7.1

3.7.2

3.7.3

Init State

 A link proxy is initialized by a wake-up event initiated by the memory pool

manager. The wakeup message contains a pointer to the particular link proxies’ shared

memory allocation structure built by the memory pool manager. Upon receipt of the

wake-up, the Init state identifies itself and its parent process and reads its settable

attributes for the simulation. The link proxy then initializes internal statistics variables

and creates a list structure for storing TCP connection records.

Wait State

The wait state is a simple holding point for awaiting the arrival of a discrete event

that requires attention in the link proxy. Interrupt types are classified as stream, self, or

end of simulation interrupts. Any interrupt to the link proxy process model must fall into

one of the three categories and the process model passes to the Handle_Packet (stream),

Handle_Timer(self), or Endsim(endsim) states depending on interrupt type.

Handle_Packet State

 Link proxies inspect every datagram that passes through them, however not

every datagram requires proxy actions to be performed. Table 3.1 highlights the

datagram payload types that require processing by the link proxy according to the input

interface on which the datagram is received. The appropriate handling routine

(handle_data or handle_ack) is also identified in the table. If the datagram carries a TCP

or proxy message payload, then the Handle_Packet routine determines what flow the

arriving datagram is attributed to and processes or forwards the segment according to the

TCP flags, proxy message type, presence of data, and arriving interface. If the arriving

3−15

segment is the first encountered for a particular flow, a flow record is constructed to

maintain per-connection state information for all future segments passing through the

link proxy. If the arriving datagram carries any other payload type other than TCP or

proxy message, then the datagram is immediately forwarded with no further action.

Messages from the memory pool manager are not classified or handled within the

Handle_Packet state, but are included in table 3.1 for completeness.

Table 3.1: Link Proxy Action Decision Matrix
Payload Type Arriving Interface Link Proxy Action

TCP segment SYN From ip (routed) Process (handle_data)
TCP segment SYN From link receiver Forward
TCP segment SYN-ACK From ip (routed) Process (handle_data)
TCP segment SYN-ACK From link receiver Process (handle_ack)
TCP segment DATA From ip (routed) Process (handle_data)
TCP segment DATA From link receiver Process (handle_ack)
TCP segment ACK From ip (routed) Forward
TCP segment ACK From link receiver Process (handle_ack)
Proxy message IACK From ip (routed) Forward
Proxy message IACK From link receiver Process (handle_ack)
Proxy message Persist

Query
From ip (routed) Process (generate

persist response)
Proxy message Persist

Query
From link receiver Forward

Proxy message Persist
Response

From ip (routed) Forward

Proxy message Persist
Response

From link receiver Process (handle_ack)

Memory Pool Manager
message

All From manager Process

Other (not listed) N/A Any Forward

3−16

3.7.4

3.7.5

3.7.6

Await_response State

 The await response state is a by-product of using a distributed link proxy

architecture model with a central memory pool scheme. If a datagram arrives carrying a

TCP segment that should be cached, the link proxy cannot simply allocate new memory

for cache purposes and must solicit a memory allocation from the memory pool manager.

The solicitation and response is performed within the router, currently modeled with no

delay, and the link proxy completes the handle_data routine from within the

Await_response state.

Manager_msg State

 It is anticipated that more TCP flows will pass through a proxy router than

memory can be allocated for. Should the memory pool manager decide that the amount

of memory allocated to a specific flow within the link proxy needs to be reduced to meet

other demands, the method of conveying the reduction is a message arrival from the

manager and entry into the Manager_msg state. Should this event occur, then TCP

segments currently cached in excess of the reduced allocation will be purged according to

a purging policy yet to be developed, and localized loss event recovery will not be

possible for the purged segments. The specifics of how to handle purged packets is left

for follow on research, but the mechanisms for doing so have already been included.

Handle_Timer State

 Upon expiration of a timeout or persist timer, the model will transition to the

Handle_Timer state where a determination must be made of which timer event expired.

Additionally, many TCP flows can be passing through the same router, so a

3−17

determination of the particular TCP flow for which the timer expiration event occurred

must be determined. Once these two critical pieces of information are determined, the

link proxy either generates a persist query message to probe the link, resends all cached

TCP segments for the flow, or deletes a flow connection record, depending on timer type.

3.7.7

3.7.8

Connection Record

 Link proxies can support multiple simultaneous TCP connections and state

information is maintained for every communicating pair. The unique 4-tuple of source

and destination IP addresses and port numbers is sufficient to discriminate among flows.

Key information is maintained for a flow in a connection record that records the known

state of a flow for loss event recovery and connection management purposes. Of note is

that a link proxy must maintain the most recently noted sequence numbers and data

lengths for data traveling from both source to destination and destination to source in

order to generate valid acknowledgement messages on behalf of the destination when

acknowledgments are lost. Additional recorded state information consists of the last in-

sequence sequence number and data length, acknowledgement numbers (including

IACKs), and receive windows. Timer events, derived from maintained estimates for RTT

and RTT variance both to the next link proxy (if it exists) and the destination are also

maintained for loss event discovery and recovery purposes.

Proxy_Handle_Data Routine

TCP’s Connection establishment segments (SYN and SYN-ACK) and data

segments are intercepted and cached by link proxies before forwarding them on the link.

3−18

As noted in Table 3.1, only routed datagrams destined for an outbound link are acted

upon by the handle_data routine of a link proxy.

A flow chart of actions performed in the proxy_handle_data routine on datagrams

meeting the Table 3.1 requirements is displayed in Figure 3.10. Every received segment

for a TCP flow is compared to currently cached segments and only those segments not

already acknowledged by the destination are forwarded. Should a link proxy intercept a

segment already acknowledged, due to a sender timeout event, then the proxy destroys

the datagram and generates an acknowledgement on behalf of the destination. Only one

acknowledgement may be generated for a particular segment because creation of multiple

identical acknowledgments will be interpreted as duplicate acknowledgments, invoking

sender congestion control algorithms. If the received segment has already been

acknowledged via an IACK from a downstream link proxy, but not yet acknowledged by

the destination, then the link proxy forwards the segment without caching it.

 If the received segment is a new segment and memory has been allocated by

the central memory pool manager for buffering the TCP flow, then the segment is cached

and forwarded. An IACK is then generated and sent upstream toward the last link proxy

to cache the segment. Under normal circumstances, all received segments will be in-

sequence, however it is possible that segments will be received out of order due to loss

events. In these circumstances, the generated IACK will include a selective

acknowledgement field that conveys the cumulative IACK and the first post-gap byte

received.

3−19

If a received segment is already cached, indicating that an IACK or ACK has not

been received upstream, then the cached segment state information is updated as having

been received and forwarded multiple times for use by the handle_ack routine. The

segment is then forwarded and an IACK is generated for the upstream link proxy.

To facilitate loss event detection, timeout and persist events are scheduled if a

timeout event does not exist. Unlike the Snoop protocol, the timeout timer is not

extended (i.e. incrementally increased) with every forwarded segment, it need only exist.

Extending the timeout timer with every forwarded segment would mask loss events

longer than desired in a severely challenged environment where links are down for even

short durations.

Finally, if the intercepted segment header carries a FIN flag, indicating that the

sender has nothing more to send, an internal state flag is set for use by the handle_ack

routine for flow record termination.

3−20

Figure 3.10: Proxy_handle_data Flow Chart

3−21

3.7.9 Proxy_handle_ACK Routine

Feedback datagrams are intercepted and used to clear cached segments and detect loss

events. Feedback events consist of ACKs, IACKs, and persist response messages, each

of which arrives for differing reasons, yet are used very similarly. A flow chart of actions

performed in the proxy_handle_ack routine on datagrams meeting the Table 3.1

requirements is displayed in Figure 3.11.

All TCP segments transitioning through a proxy router may be intercepted by up

to two link proxies, depending on internal routing. TCP can place acknowledgements

for received data within its own data segments traveling to its communication partner.

Thus, while transitioning through a proxy router, segments carrying data will be

intercepted and handled by the proxy_handle_ACK routine on the incoming link and

proxy_handle_data on the outbound link. The developed OPNET model focuses on FTP-

like TCP traffic, thus acknowledgements will be received that should not be interpreted

as duplicate acknowledgments since the receiver is not sending data. In such a case, only

the required state data required for potential acknowledgement creation is recorded

before the segment is forwarded for routing.

For the typical case of TCP acknowledgment only segment, or proxy IACK

message, then the appropriate RTT and RTT variance calculations are performed. No

such calculations are performed for proxy persist response messages. If the received

feedback event carries new TCP acknowledgment or proxy IACK updates, then the new

update is saved in the flow state data and acknowledged segments are removed from the

link proxy buffer. If the update is for TCP acknowledgements, then perceived lost TCP

3−22

acknowledgments are generated on behalf of the receiver and forwarded to the sender.

New TCP acknowledgements are forwarded and proxy IACKs are destroyed.

If the feedback event is a proxy persist response message, then all flow segments

remaining in the cache are immediately resent and marked as duplicate resends. These

actions are necessary because a persist response is received only in direct response to a

persist query message that probed the link for status. Any cached segment that is not

acknowledged in the response was lost in transit between link proxy routers. Proxy

persist responses are destroyed at the acting link proxy.

 When the feedback event is a TCP acknowledgment segment or proxy IACK

message that carries no new information and is thus a repeat, the link proxy interprets the

repeat as a loss event. If the repeat message is expected by the link proxy, then internal

state data is updated to reduce the expected repeat count and the repeat message is

destroyed. If the repeat message was unexpected, then handling is dependent on the type

of feedback event that was received. If the received message is a proxy persist response,

all unacknowledged segments are resent immediately and state data is updated to note the

resend and estimate of the number of repeat acknowledgements that could be seen.

Otherwise, the feedback event was a duplicate TCP acknowledgement or proxy

IACK requiring a partial or complete resend of the flow cached segments. If lost

segments are locally cached, then they are resent and marked as such in local state data.

The feedback event message is then destroyed to avoid possible congestion control

algorithm actions at the TCP sender. If lost segments are not locally cached, then only

duplicate TCP acknowledgements are forwarded for action upstream.

3−23

Once all acknowledgement information has been gleaned from the feedback

event, link proxy timeout event decisions must be made. If the TCP flow FIN flag was

noted by proxy_handle_data and TCP acknowledgements have been received for all

forwarded data, then a terminate event is scheduled for 60 seconds in the future to destroy

the connection record. Not immediately destroying the connection record allows for

handling any loss event messages that should arrive or TCP connection endpoint resends

of flow termination messages. If the feedback event emptied the cache, then the

retransmission timeout event needs to be cancelled. Otherwise, date remains in the cache

and the retransmission timeout needs to be extended. Unless all forwarded segments

have been acknowledged by the TCP receiver, a persist event needs to be scheduled to

probe the link for the missing TCP acknowledgement information.

3−24

Figure 3.11: Proxy_handle_ACK Flow Chart

3−25

3.7.10

3.7.11

Round Trip Time Estimation and Timeout Calculation

Every link proxy maintains estimates for RTT and RTT variance to both the next

link proxy and TCP destination for every flow it supports. This model employs the RFC

2988 [14] approach to calculating smoothed RTT and variance giving some weight to the

most recent measurement but heavily weighting a historical trend. The alpha and beta

values used in estimation are .125 and .25 respectively. RTT estimation is only

performed when an acknowledgement is received with a matching cache entry.

Additionally, if the cached segment is marked as resent, then the segment is not used for

RTT calculation due to ambiguity (Karn’s Algorithm [7]). Acknowledgement RTT and

variance are used to calculate retransmission timeout (RTO) values for automatic resend

events by summing the RTT and four times the variance. Including the variance

component minimizes the potential for unnecessary resends. In the event of a timeout

event, the RTO is doubled as it is in the TCP sender in order to minimize overwhelming

the challenged link. The reader is reminded that a basic assumption of the model is that

no link layer retransmission mechanism exists and thus all datagrams scheduled for

transmission over a link are sent regardless of success or failure.

Event Timers and Timeout Events

 Three types of timer-based events are maintained for each TCP flow in a link

proxy. The timer types as well as initiation, extension, and cancellation of each are

outlined in Table 3.2.

3−26

Table 3.2: Link Proxy Event timers
Timer type Initiation Extension Cancellation
Retransmit Data segment

forwarded and no
retransmission exists

Acknowledgment receipt
and cache not empty

Cache empty

Persist Data segment
forwarded and no
persist event exists

Acknowledgment
Receipt and all
forwarded segments not
TCP acknowledged

All forwarded
segments TCP
acknowledged

Terminate FIN set and cache
empty

N/A N/A

Retransmission Timer 3.7.11.1

A retransmission timer is used to retransmit all cached segments on a failed link.

The retransmission timeout event is initiated when a data segment is forwarded and a

retransmission timeout event does not yet exist. It is extended whenever an

acknowledgement for the flow is received and the cache is not yet empty. The

retransmission timeout event is cancelled when no segments are cached for a flow. The

developed model uses the minimum of the calculated RTT values to calculate the

retransmission event time, in effect using a developed knowledge of the link proxy

position in the ETE flow. A 1 msec floor is placed on the retransmission timer to

minimize the effects of small variance link.

3.7.11.2 Persist Timer

 A persist timer is used to probe a questionable link when an expected outstanding

acknowledgment has not been received from the TCP receiver. The model uses a default

10 msec persist timer rather than a tuned value based on acknowledgments from the

receiver. The persist timer is initiated when a data segment is forwarded and a persist

3−27

event does not exist. The timer is extended when a new acknowledgement is received

and all segments have not been acknowledged by the TCP receiver. It is cancelled when

all forwarded segments are TCP acknowledged. Note that an empty cache is not

sufficient to cancel the persist timer as IACKs are not a substitute for true TCP

acknowledgements. The TCP sender cannot interpret IACKs and thus requires a true

TCP acknowledgement to advance the send window.

Persist timer expiration results in generation of a persist query that is forwarded

downstream towards the TCP receiver. A persist query functions as a probe of the link

and the downstream link proxy requesting an IACK and TCP receiver acknowledgement

update. A received generated persist response will update the receiving link proxy with

the most recent status of the nearest downstream link proxy and thus suggest the need for

resending lost segments or generating lost acknowledgements.

3.7.11.3 Terminate Timer

The termination event timer is used to destroy a TCP flow connection record once

the sender sets the FIN flag and all forwarded segments are acknowledged by the TCP

receiver. The termination event timer is never extended or cancelled once set. The

developed model does not currently generate a default terminate timer that will destroy

connection records and unacknowledged segments in the event of a TCP sender

unilaterally terminating a TCP connection without first setting a FIN flag.

3.7.12 Link Failure Detection

Loss events are discovered by link proxies via duplicate acknowledgements and

event timer expirations. Duplicate acknowledgement handling was discussed previously,

3−28

but event timer expiration requires further discussion. Upon expiration of a

retransmission timer, all cached segments are automatically resent by a link proxy. It is

entirely possible that all of the retransmitted segments may be lost or destroyed in the

transmission. Each successive retransmission timeout results in an increased backoff of

the retransmission timer.

Once all forwarded segments are acknowledged by IACKs, retransmission

timeout events are no longer needed. However, it is possible that acknowledgements

from the TCP receiver could be lost, resulting in a timeout event at the TCP sender.

Thus, a persist event timer is used to probe the link and query for updated information

from the downstream link proxy. Lost TCP receiver acknowledgements are discovered

and regenerated as necessary via this method. Persist events also function as simple

probes of a challenged link when the retransmission timer is in a wait period between

successive retransmission events.

3.8 Memory Pool Manager

 Each proxy router contains a central memory pool manager to coordinate shared

memory pool usage of link proxies within the router. The inclusion of a memory pool

manager allows future research expansion capability beyond this work. The OPNET

process model for the memory pool manager is displayed in Figure 3.12 and each state is

discussed in the following text.

3−29

Figure 3.12: Memory Pool Manager Process Model

3.8.1 Init State

The Initialize state is initiated by the event simulation. Upon activation, the

manager identifies itself and its parent process and reads its settable attributes for the

simulation. The manager then initializes internal statistics variables and creates a list

structure for storing link records. A shared memory allocation structure is initialized for

each link proxy and a wakeup message with the link’s shared memory pointer is sent to

each for proper initialization.

3.8.2 Wait State

The wait state is a simple holding point for awaiting the arrival of a discrete event

that requires attention in the memory pool manager. Interrupt types are classified as

stream, remote, or end of simulation interrupts. Any interrupt to the memory pool

manager process model must fall into one of the three categories and the process model

3−30

passes to the Manage (stream), Remote_Stimulus(remote), or Endsim(endsim) states

depending on interrupt type.

3.8.3 Manage State

Communication between OPNET object models occurs primarily with

communication packets between the objects. The manage state receives all requests from

link proxies and handles generation of the appropriate response. Incoming requests

handled include memory allocation requests and connection termination notices. The

developed model simply supports memory allocation requests in blocks of ten packets up

to the user specified available memory limit. Requests are supported on a first come first

served basis and no connection priority scheme currently exists.

3.8.4 Remote Stimulus State

Whenever a link proxy uses or clears cache memory, it generates a remote

stimulus event allowing the memory manager to perform reallocation algorithms. The

remote stimulus state handles the memory reallocation procedure and updates local state

information necessary for maintaining prioritized flow performance. The current model

does not perform any reallocation actions, however the model is easily modifiable for

anticipated follow-on research activities.

3.8.5 Endsim State

The Endsim state is activated at the completion of a simulation and serves as a

state to handle graceful memory recovery actions.

3−31

3.9 Link Failure Model

A challenged link is modeled via evaluating link status on a constant interval as

designated by the user. The probability of a link failing is user settable. A link is either

up for the interval period or it is down. Every wireless link performs an independent

status evaluation at the beginning of an interval. The developed model allows datagrams

to transit a challenged link unhindered when the link is up. The model also allows

datagrams to be placed on a failed link and destroyed “in transit” when the link is down.

3.10 Summary

Chapter Three presented the proxy router and link proxy concepts used to

overcome a challenged link environment. The developed model is presented in detail

from the router level down to the individual link proxy level. The challenged link model

utilized in this research effort is also presented. Chapter Four introduces the network

simulation methodology and results of the research effort.

3−32

IV. Evaluation Methodology, Analysis, and Results

4.1 Chapter Overview

The methodology for evaluating the model presented in Chapter Three is

presented in this chapter. The investigative questions are introduced along with a

context of the entire system under test and selected parameters influencing the System

Under Test (SUT). The experimental design for each investigative question is introduced

followed by an analysis of the obtained results.

4.2 Methodology

This research is a combination of proof of concept and comparative analysis of

improvement over an existing TCP protocol. The focused goal is to improve throughput

for FTP-like TCP data stream transmissions in a challenged network. These streams

consist of a single ETE TCP connection over which large amounts of data are sent. An

additional goal is to ensure neither fair access to the network nor throughput for other

TCP byte streams suffer as a result of the changes introduced. The hypothesis is that

introducing link proxies on each challenged link in a multi-hop network will improve

network throughput and reduce ETE delay for TCP streams.

 Specific questions this study will answer include:

1- Can implementing link proxy routers hide non-congestion losses from a TCP

sender without modifications to the TCP endpoints?

2- Does implementing link proxy routers improve throughput in a challenged

environment when compared to TCP Reno?

4−1

3- Does implementing link proxy routers improve throughput in a multi-hop

challenged environment?

4- Does implementing link proxy routers negatively affect non-modified routers

within the network?

5- Does supporting TCP byte streams with link proxy routers negatively affect

fairness of other TCP byte streams within the network?

4.2.1 System Boundaries

The introduction of link proxy routers allows the network to support TCP ETE

communication without altering ETE semantics of the TCP protocol or the

implementation of the protocol at the TCP communication pair. Therefore, the system

under study consists of a defined network topology along with the physical equipment

and protocols. Also included within the system boundary is the environment, or

“weather” within the network, including wireless link characteristics and all traffic within

the network. Primary limitations of the system under study are a static topology and

stationary nodes. Accordingly, routing algorithms are outside of the scope of the SUT.

4.2.2 System Services

The System Under Test exists for the sole purpose of transporting data packets

between sources and destinations. A key design goal is for packets to be transported in

the most efficient and reliable manner possible, with minimum ETE delay. Once a

packet enters the system, it is either delivered to a host or not. A packet is not delivered

if it is dropped by the network as a result of either a buffer overflow, a bad checksum

(due to transmission error), or time to live (TTL) counter expiration. The packet could

4−2

also simply be lost due to router malfunction. If a packet is delivered to a host, it is either

the correct host or not. If the packet arrives at the correct host, it is considered

successfully delivered as long as the checksum is correct.

4.2.3 Workload

The workload for a network is the amount of traffic submitted to the network for

delivery. An individual packet travels from a source to a specific destination, yet the

network also carries other traffic for which resource contention is an issue. Differing

protocols can be used for packet transmission as the packet traverses through the

network.

For this study, all traffic within the network is synthetic FTP traffic where files

are transferred between source/destination pairs using the network layer TCP protocol.

Each file transfer consists of many packets that comprise segments of a TCP byte stream.

The number of individual packets and their size change, but a given TCP connection is

responsible for moving a total aggregate amount of data between source and destination

pairs.

Note the network load for this study consists of only the synthetic connection

establishment and FTP traffic specifically noted in the tested scenarios. No background

load exists within the network. Accordingly, conclusions derived in this thesis are

suggestive only and larger network simulations with increased background load should

be performed by any follow-on activity.

4−3

4.2.4 Performance Metrics

Table 4.1 displays the metrics of interest in this study. Each metric, its definition,

and a description of the metric’s use are outlined in the table. Since the system under test

is relatively large in scope, various network layer metrics are used to analyze the system.

Some of the metrics are derived metrics.

Table 4.1: Performance Metrics
Metric Definition Use Units

Link Capacity The maximum (analytical)
rate at which data can
traverse adjacent nodes

Theoretical maximum
amount of data that can
flow across a link

Bits per
second

Link
Throughput

The measured rate at which
data traverses adjacent nodes

Measured amount of
data flow between
adjacent nodes

Bits per
second

Link Utilization The ratio of link throughput
to link capacity

Measure of efficiency of
the link

None

Mean delay
(packet)

Mean delay for a packet sent
between a source/destination
pair measured from the time
the first bit of the packet is
sent to the time the last bit is
received

Measure of one way
traversal time for a
packet to traverse the
network

Seconds

Mean delay
(byte stream)

Mean delay for the complete
TCP byte stream between a
source/destination pair
measured from the time the
first bit of the first packet is
sent to the time the last bit of
the final packet is received

Measure of delay for a
file to traverse the
network

Seconds

Total bytes sent
(byte stream)

The aggregate number of sent
bytes (including overhead)
for a specific TCP
source/destination byte
stream

Raw data for rate
determination.

Bytes

Total bytes
delivered (byte
stream)

The aggregate number of
bytes delivered (including
overhead) for a specific TCP
source/destination byte
stream

Raw data for rate
determination

Bytes

4−4

4.2.5 Parameters

Many parameters affect performance of the system under test. These parameters

are classified as system parameters if they directly contribute to network performance or

as workload parameters if they are characteristics of the workload. For ease of review,

the parameters are displayed in Table 4.2 along with their effect on the system.

Table 4.2: System Under Test Parameters
Parameter Units System /

Workload
Main Effect

Number of nodes Nodes System Packet delay from router processing
(queuing delay)

Distance between
adjacent nodes

Meters System Packet propagation delay

Transmission
medium

N/A System Resource contention (wireless
shared/wired dedicated) and specific
physical layer protocols

Bit Error Ratio
(BER)

None System Link layer error rate due to channel
effects

Link capacity Bits per
second

System Upper bound on traffic carrying
capacity between adjacent nodes

Service rate of a
router

Bits per
second

System Transmission delay at a node

Buffer size Bytes System Amount of data that can be queued
without dropping packets

Packet Size
(maximum)

Bytes System Influences upper bound on transmission
delay and affects queue capacity

Window size Packets System Number of unacknowledged packets in
transmission at a time between sender
and receiver

Congestion
control scheme

N/A System Sender side backoff mechanism strategy
to reduce packet input rate to network

Resource
utilization

N/A
(ratio)

System Influences queuing delay and dropped
packet probability

Packet
acknowledgment

N/A System (Cumulative, Selective, Intermediate)
Directly impacts number of
acknowledgments required and potential
for wasted capacity due to unnecessary
resends

4−5

Transport,
Network, Link,
and Physical
layer protocols

N/A System Influences transmission time and
reliability of transmission

File size Bytes Workload ETE delay of full transmission
Network offered
load

N/A
(ratio)

Workload Resource contention affects
transmission time, congestion, fairness

4.2.6 Factors

Factors selected for investigation during this study are summarized in Table 4.3.

The primary focus of this research is implementing a link proxy capable router adjacent

to each challenged link in the network and evaluating the throughput differences from a

standard router. The level at which wireless connections are challenged is modeled as a

combination of the link failure probability and loss interval period to determine the

degree of improvement at varying degrees of challenge.

Table 4.3: Experiment Factors
Factor Levels

Link Proxy
Capability Status

1) Enabled
2) Disabled

Link Failure
Probability

1-9) 0% - 40% in 5% increments

Loss Interval Period 1-54) 40 – 1100 msec in 20 msec increments

4.2.7 Experimental Design

The strategy for completing this study is to examine the effects of each factor on

system performance with a full factorial experiment using the factors highlighted in Table

4-3. A standard static network configuration is implemented with link proxy routers

enabled or disabled. Using each link proxy configuration, nine levels of link failure

probability are simulated with fifty-four levels of loss interval period. Without

replications, this requires 972 experiments for each network configuration. Thirty

4−6

replications, using unique seeds, are used for each experiment to reduce the variance of

the collected data.

The magnitude of data collection for each experiment is significant. In order to

answer the study goals, ETE delay statistics are collected for every packet and complete

TCP byte stream of every source/destination tuplet. Additionally, statistics are collected

for every link and node within the network to provide insight into the study goals.

4.2.8 Experimental Parameter Settings

Three simulation scenarios were investigated for this study to answer the

questions raised earlier in this chapter. All simulations were performed using the OPNET

simulation tool and the models presented in Chapter Three. All links in the model are

100Mbit PPP links with speed of light propagation and zero inherent BER. The

maximum transmission unit for the PPP links is set at 1500 bytes. Challenged links

contain the link failure model (packet discarder) introduced in Chapter Three and

introduce no additional delay for packets traversing the link during a non-loss period.

All routers used in the simulations are link proxy routers where each link proxy

can be independently enabled or disabled. Disabled link proxies simply pass all packets

through the proxy unhindered and without inspection. The routers are central-CPU based

with a service rate of 50,000 packets per second and infinite queues. Static routing is

utilized to remove overhead traffic associated with routing protocols. The router settings

ensure that there are no congestion losses in the network and only loss events introduced

by challenged links affect the TCP sender.

4−7

Each link proxy router is configured with 1.5MB of centrally managed memory

for link proxy use. Link proxies are modeled with no delay. It is fully understood that

claiming zero delay is somewhat unreasonable, but this study focused on the proof of

concept rather than full implementation details.

ETE communication is modeled using TCP Reno [15], which introduced

congestion control to TCP along with loss event fast retransmit and fast recovery

mechanisms. All TCP receive window buffers are 65535 bytes. General TCP

implementations use a cumulative acknowledgment scheme with a maximum

acknowledgment delay of 200 msec or two segments. During slow start, a TCP Reno

receiver will wait 200 msec before responding to the very first segment from the sender.

A link proxy router however will interpret such a long delay as channel loss, resending

the segment in question. The arrival of the resent segment meets the two segment

maximum delay requirement, forcing a receiver acknowledgment and providing an

almost 200 msec performance gain for link proxy routers. Accordingly, to avoid an

unfair evaluation advantage (artificial gain due to TCP endpoint settings) for link proxy

routers, a maximum delay of 1 msec or two segments is utilized.

The slow start initial congestion window is 1500 bytes and the three duplicate

acknowledgments invoke congestion control. Karn’s algorithm is followed, discounting

resent segments in ETE RTT calculations. Initial retransmission timeout is set at 1 sec

and varies between a minimum 0.5 sec and maximum 64 sec value as computed by the

TCP sender. A maximum of three connection attempts is allowed by a TCP connection

initiator during connection establishment. Once a connection has been established, 6

4−8

back-to back data retransmissions timeouts are allowed by a TCP sender before a

connection is terminated.

 It should be noted that the majority of these TCP parameters are user selectable

and several other “flavors” of TCP exist. The results of this study may not be directly

attributable to other forms of TCP and direct comparison to other TCP parameter settings

should be exercised with caution.

4.3 Investigative Questions Answered

4.3.1 Question 1

Can implementing link proxy routers hide non-congestion losses from a TCP

sender without modifications to the TCP endpoints? In order to answer this question, the

topology displayed in Figure 4.1 is simulated using the factors described in Table 4.3.

The scenario consists of a client initiating a TCP connection at simulation time 15

seconds and requesting an FTP transfer of a 20MB file from a remote server. Two link

proxy routers are used to support a single challenged link in a three-hop path between the

client and server. Execution for this scenario consists of performing 29,160 runs using an

OPNET command line execution input generated by a script batch file. The script

specifies the unique scenario settings to include seed value, probability of link failure,

and link failure interval.

4−9

Figure 4.1: Single challenged link topology

As discussed in Chapter Two, challenged links introduce two primary

complications to TCP connections. First, connection establishment requires a three-way

handshake between an initiator and receiver. When links are non-challenged, the

datagrams carrying the connection establishment segments are easily received. In a

heavy loss environment however, connection initiation segments can be easily lost,

potentially resulting in a connection establishment delay or even worse, an abort. Once a

connection is established, data segments and acknowledgments must both traverse the

challenged link. In a heavy loss environment, many of both types of segments are lost.

The combination of lost data segments (and the resulting lack of receiver generated

acknowledgments) and loss of generated acknowledgments can cause the TCP sender to

abort the connection once six back-to-back retransmission timeout events have occurred.

Figure 4.2 displays the number of TCP aborts recorded for the scenario when the

challenged link was not supported with link proxy routers. Every abort is a result of the

failure of the communicating endpoints to establish a connection and initiate an FTP

transfer. The z-axis is the total number of TCP aborts for the 30 independent runs for

4−10

each probability of failure and failure interval pairing. The x-axis is the failure interval

and the y-axis is the probability of failure of the challenged link.

Figure 4.2: TCP Aborts Observed for Single Challenged Link using Standard Router
Configuration

Connection aborts occur for link probabilities of 25% and greater. The greatest

number of failures are observed at 40% probability of failure and 460 msec link failure

interval. 9% of the failures are observed at the 460 msec interval and another 35% of the

total failures are observed between 580 and 740 msec intervals. 56% of the failures are

attributed to five seed values which appear to stress the connection establishment process.

While no direct conclusions are drawn with respect to the differing interval periods, there

4−11

does appear to be a difference in TCP behavior depending on the timescale of the dropout

periods.

In stark contrast, when proxy routers are utilized on the challenged link, there are

absolutely no TCP abort events for the factor test points, as a direct result of the buffering

strategy implementation design decision to buffer all TCP traffic, regardless of ETE

connection state. TCP connection establishment segments are buffered and treated like

established connection data segments, allowing TCP communication support, even

during connection establishment.

For non-aborted FTP transfers, a TCP sender’s congestion window behavior, with

and without use of link proxy routers, is as shown in Figure 4.3. The y-axis represents

the congestion window, in bytes, of the TCP sender and the x-axis represents simulation

time. Recall that the TCP sender allows the amount of unacknowledged data in the

network to be the minimum of the receiver’s advertised window, which is generally

65535 bytes, and the congestion window. The congestion window increases when an

acknowledgment is received, however the amount of increase is dictated by the mode

(slow start or congestion avoidance) in which TCP is operating. Three duplicate

acknowledgments result in 50% reduction in the congestion window (not shown) and a

sender retransmission timeout results in the congestion window resetting to 1460 bytes.

4−12

Figure 4.3: TCP Sender Congestion Window Behavior for Single Challenged Link with
20% Probability of Failure and 200 msec Failure Interval

 Using standard routers, acknowledgments for outstanding transmitted data are not

arriving at the TCP sender, causing retransmission timeout events. Acknowledgments

are failing to arrive because datagrams carrying data to the receiver and

acknowledgments from the receiver are lost. After a retransmission timeout, the TCP

sender re-enters slow start and increases the amount of allowed outstanding segments

with every received acknowledgment. In this particular example, eight retransmission

timeouts occur with three of the timeout recoveries reentering the congestion avoidance

phase. The other five retransmission timeouts fail to receive any acknowledgments and

the retransmission timer backs off exponentially. The combination of time spent waiting

for retransmission timeouts and slowly rebuilding the congestion window severely

hampers TCP ETE throughput performance.

4−13

TCP sender congestion window performance remains nearly identical when the

ETE path between the sender and receiver is unchallenged. Minute differences exist as a

result of additional queuing delay from the slight overhead increase of intermediate

acknowledgements, however theses differences are indistinguishable. This point is

displayed in Figure 4.3 for the initial congestion window climb from 1460 to 120000

bytes.

By design, proxy routers do not insulate the TCP sender from genuine challenged

link blackout periods exceeding the calculated TCP sender retransmission timeout timer.

For this particular example, five consecutive failure periods resulted in a total link failure

of one second, surpassing the TCP sender calculated retransmission timer and invoking

slow start congestion avoidance and its corresponding congestion window reset to 1460

bytes.

When a proxy router is utilized, TCP segments are temporarily buffered at the

router adjoining the challenged link. By maintaining round trip time estimates to the next

router, using intermediate acknowledgments, and with persist queries, the link proxy

discovers the loss events immediately and resend lost segments at the point of loss as

soon as the link is discovered operational. Lost acknowledgments are also regenerated on

behalf of the TCP receiver, allowing the TCP sender to increase the congestion window

quickly. Maintaining the congestion window in excess of the receive window ensures that

the maximum amount of outstanding data, as controlled by the receiver, remains in the

network for delivery. In effect, the TCP sender has been insulated from challenged link

4−14

non-congestion loss events, avoiding the invocation of congestion response handling and

an immediate drop in TCP ETE throughput.

 Figure 4.4 displays the accompanying TCP segment arrivals at the receiver and

outbound link proxy buffer usage at Router 1. The gaps in segment arrival at the

receiver are due to the single challenged link failure. When the challenged link is not

experiencing loss, buffer usage is generally limited to one or two segments. When the

challenged link fails, all segments traveling over the link, including proxy intermediate

acknowledgments and persist queries/responses, are lost. Link proxy cache buffer usage

climbs to 44 segments (64240 bytes) when the link fails and quickly drops back to

minimal use once the link is discovered to be functional with receipt of intermediate or

receiver acknowledgments. The peak usage matches the obligation of the TCP sender not

to allow more outstanding data in the network than the TCP receiver makes allowance for

in the receive window advertisement.

4−15

 Figure 4.4: TCP Receiver Segment Arrival and Accompanying Router 1 Link Proxy
Buffer Usage for Single Challenged Link with 20% Probability of Failure and 200 msec

Failure Interval (Seed 137)

4.3.2 Question 2

Does implementing link proxy routers improve throughput in a challenged

environment when compared to TCP Reno? Using the data collected answering question

one, it is possible to determine if ETE TCP throughput is increased using link proxy

routers. The average transfer time for non-aborted FTP transfers, using standard routers,

is displayed in Figure 4.5 and the variance associated with the data is displayed in Figure

4.6. Note that the average FTP transfer time does not account for the impact of delayed

connection establishment resulting from challenged link failure periods. The z-axis is the

4−16

average transmission time for the successful FTP attempts (30 independent runs) for each

probability of failure and failure interval pairing. The x-axis is the failure interval and the

y-axis is the probability of failure of the challenged link. Under perfect conditions,

transmission of the 20MB file, defined as the total time taken from the time the first byte

is received to the last byte is received, requires 1.734 seconds.

The primary trend is the shorter the link failure interval, the greater the impact to

ETE TCP communication. Increasing the probability of link failure also increases the

communication time. FTP TCP traffic tends to burst as each round of transmission by the

TCP sender consists of several segments sent back to back. Acknowledgments from the

receiver also tend to cluster as the data arrives in rapid succession followed by a brief

respite before the next transmission round. In the scenario under consideration, ETE

delay for a segment is approximately 5.25 msec. Accordingly, failure intervals from 40 –

1100 msec will result in the loss of essentially all data and acknowledgment segments in

a transmission round. Decreasing the loss interval period also increases the number of

failure periods for consideration.

The increase in communication time from the baseline 1.734 seconds is primarily

attributed to three factors. First, increasing the probability of failure reduces the

challenged link capacity available for use. Second, the TCP sender spends a significant

amount of time waiting for a timeout event to occur and thus take note that a loss has

occurred. Third, higher probabilities of failure of the link increase the risk of back to

back losses, causing the TCP sender to exponentially increase the backoff time between

successive retransmission timeout events.

4−17

Figure 4.5: Average FTP Transfer Time of 20MB File over Single Challenged Link with
Standard Routers

Figure 4.6: Variance of Average FTP Transfer Time of 20MB File over Single
Challenged Link with Standard Routers

4−18

The valleys noted in the transfer time results of Figure 4.5 are the result of TCP

timer settings used in the scenario. The minimum retransmission timeout timer value is

set at 500 msec and multiples of 500 msec (500 msec and 1000 msec) show dips in FTP

transmission time. Curious dips are noted at 720 and 820 msec and appear to be a

harmonic effect of the 500 msec timer.

The variance of the transfer time data spiked at 400 for 40% probability of failure

and 40 msec failure interval. Several of the probabilities of failure and interval

combination variance values are greater than 100, suggesting that more data samples

should be collected for a higher confidence in the mean values, especially for intervals

less than 200 msec.

In contrast, the mean transfer time for FTP transfers using link proxy routers is

displayed in Figure 4.7 and the variance associated with the data is displayed in Figure

4.8. Under perfect conditions, transmission of the 20MB file requires 1.734 seconds.

The longest mean transfer time noted was 3.356 seconds (versus 43.1 seconds using

standard routers), recorded for 40% probability of failure and 100 msec failure interval.

4−19

Figure 4.7: Average FTP Transfer Time of 20MB File over Single Challenged Link with
Link Proxy Routers

Figure 4.8: Variance of Average FTP Transfer Time of 20MB File over Single
Challenged Link with Link Proxy Routers

4−20

The limited increase in communication time from the baseline 1.734 seconds is

primarily attributed to a link proxy’s ability to quickly discover that the challenged link

is available for use and retransmit lost segments. Link proxy faster discovery and

recovery of loss events keep the TCP sender from unwittingly waiting for timeout events

to occur before loss discovery. Additionally, avoiding TCP sender timeout events

reduces the probability (and impact) of back to back timeout events incurring the

exponential backoff congestion control mechanism between successive retransmission

timeout events.

The valleys noted in the transfer time results of standard routers are again noted

when utilizing link proxy routers. This reinforces the idea that the valleys are the result

of TCP timer settings. Of particular note, the degree of impact of the timers is

significantly reduced from an order of seconds to milliseconds. Though reduced, the

impact is still present because link proxy routers do not fully insulate a TCP sender from

persistent link failures exceeding the sender’s retransmission timeout timer.

The variance of the transfer time data spiked at 4.26 for 40% probability of failure

and 1100 msec failure interval. The low variance of the observed data suggests that the

results are well behaved and additional samples are not required. The increase in

variance, particularly for the larger intervals, is a result of the small total file transfer size

relative to the link outage duration. For the 1100 msec failure interval, only two link

availability opportunities are required for successful file transmission. However, the

reduced probability of having those opportunities results in a wider range of observed file

transfer times.

4−21

The overall improvement observed for each probability of failure and link failure

interval pair is displayed in Figure 4.9. The most dramatic impact is noted for link failure

intervals less than 500 msec and increased link probability of failure rates. These results

are inline with the previously discussed findings that a link proxy can quickly recover

from short duration outages and recover faster than a TCP sender alone would even

discover that segments are lost. Quicker discovery of the available bandwidth is

immediately seized upon and used. Though not as dramatic, an improvement still exists

for timeout intervals greater than 500 msec for the same reason.

Figure 4.9: Improvement in Mean FTP Transfer Time of 20MB File over Single
Challenged Link through Use of Link Proxy Routers

4−22

Mean ETE TCP throughput, defined as the amount of data transferred divided by

the mean transfer time, is calculated for each probability of failure, link failure interval,

and router type pairing. Available ETE bandwidth is reduced as a result of the

challenged link bottleneck. The difference in utilized ETE bandwidth, adjusted for the

challenged link expected available bandwidth bottleneck is displayed in Figure 4.10. As

expected, using link proxy routers enables increased bandwidth usage across the board

due to near-immediate loss event detection. The most notable gains were again noted for

intervals less than 500 msec with a downward trend as the interval nears 500 msec. Dips

in performance gains are again found at 500, 700, and 840 msec, corresponding to the

TCP sender timer settings.

Figure 4.10: Improvement in Utilized ETE Bandwidth over Single Challenged Link
Using Link Proxy Routers

4−23

4.3.3 Question 3

Does implementing link proxy routers improve throughput in a multi-hop

challenged environment? The topology displayed in Figure 4.11 is simulated using the

factors described in Table 4.3 to answer this question. The scenario consists of a client

initiating a TCP connection at simulation time 15 seconds and requesting an FTP transfer

of a 20MB file from a remote server. Five link proxy routers are used to support four

challenged links in a six-hop path between the client and server. ETE connectivity

follows the four challenged link curve plotted in Figure 1.1 and ranges from full

connectivity to 13% connectivity. Execution for this scenario consists of performing

29,160 runs using an OPNET command line execution input generated by a script batch

file. The script specifies the unique scenario settings to include seed value, probability of

link failure, and link failure interval.

Figure 4.11: Multiple Challenged Link Topology

Figure 4.12 displays the number of TCP aborts recorded for the scenario when the

challenged links are not supported with link proxy routers. Aborts result from both

failures of the communicating endpoints to establish a connection and initiate an FTP

4−24

transfer as well as unconditional aborts by the TCP sender during file transfer. No

distinction is made between the two cases as both are considered communication failures.

Figure 4.12: TCP Aborts Observed for Four Challenged Link using Standard Router
Configuration

Connection aborts occur for individual link failure probabilities as low as 5%.

Every interval experiences between 1.3 and 2.8 percent of the total number of aborts.

Intervals less than 500 msec experience the greatest number of aborts and in general, the

shorter the failure interval, the greater the probability of an abort. Unlike the single

challenged link scenario, seed value does not appear to influence abort results.

Impressively, using link proxy routers on the challenged links enabled ETE TCP

communication to succeed for every probability of failure and link failure interval

simulated, even for the 40% probability of failure case where 94% of all standard router

4−25

communications failed. ETE connectivity in the simulation is reduced to 13% for 40%

individual link failure probability, so lack of any TCP communication aborts is very

encouraging.

The average transfer time for non-aborted FTP transfers, using standard routers, is

displayed in Figure 4.13 and the variance associated with the data is displayed in Figure

4.14. Under perfect conditions, transmission of the 20MB file requires 1.737 seconds.

As was the case for a single challenged link, the primary trend is the shorter the link

failure interval, the greater the impact to ETE TCP communication. Increasing the

probability of link failure also increases the communication time. Note that the results

are somewhat skewed by the large number of unsuccessful FTP transfers. The presented

data represents the “lucky” TCP connections.

The increase in communication time from the baseline 1.737 seconds is attributed

to same three factors previously discussed, however the effect is much more pronounced

over multiple challenged links. Back to back TCP sender timeout events and the

exponential increase of backoff time between successive retransmission timeout events

are severely hampering ETE throughput performance.

The same valleys noted in the transfer time results of Figure 4.5 are again present

at 500 and 1000 msec. Additional valleys are present in the data at 640 msec and

between 820 and 960 msec; however they are artifacts of the data arising from the

discount of non-successful TCP connections. The variance of the transfer time is quite

high for almost every probability of failure and interval pairing, suggesting that more data

samples should be collected for a higher confidence in the mean values.

4−26

Figure 4.13: Average FTP Transfer Time of 20MB File over Four Challenged Links
using Standard Routers

Figure 4.14: Variance of Average FTP Transfer Time of 20MB File over Four
Challenged Links using Standard Routers

4−27

The mean transfer time for FTP transfers using link proxy routers is displayed in

Figure 4.15 and the variance associated with the data is displayed in Figure 4.16. Under

perfect conditions, transmission of the 20MB file requires 1.737 seconds. The longest

mean transfer time noted was 26.6 seconds, recorded for 40% probability of failure and

10 msec failure interval.

At individual link failure probabilities of 25% and greater, corresponding to ETE

availability of 32% and less, peaks in ETE mean transfer time are noted at approximately

10 msec intervals. The peaks become more pronounced as individual link failure

probabilities increase. Close inspection of the simulation data reveals several test points

with ETE transfer times greater than 2 standard deviations from the mean.

 The variance of the transfer time data is well behaved for link failure

probabilities less than 35%, with occasional minor spikes at the aforementioned 10 msec

intervals. For 35% and 40% link failure probability of failure however, mean transfer

time variance spikes are directly correlating with the noted increase in ETE transfer time.

Future effort should be expended to determine the source of ETE transfer time increase.

4−28

Figure 4.15: Average FTP Transfer Time of 20MB File over Four Challenged Links
using Link Proxy Routers

Figure 4.16: Variance of Average FTP Transfer Time of 20MB File over Four
Challenged Links using Link Proxy Routers

4−29

The overall improvement observed for each probability of failure and link failure

interval pair is displayed in Figure 4.17. Note the order of magnitude improvement in

several cases. Again, the greatest improvement is noted for link failure intervals less than

500 msec and increased individual link probability of failure rates. For comparison

purposes, we must remove simulation events, which resulted in TCP failure using

standard routers in the case of link proxy routers. This removal, while critical for side by

side comparison, reduces the presented impact, especially for higher probability of

failure.

Figure 4.17: Improvement in Mean FTP Transfer Time of 20MB File over Four
Challenged Links through Use of Link Proxy Routers

4−30

The difference in utilized ETE bandwidth, adjusted for the expected ETE

bottleneck introduced by the four challenged links is displayed in Figure 4.18. As

expected, using link proxy routers again enables increased bandwidth usage across the

board due to near-immediate loss event detection. Dips to zero or near-zero improvement

are introduced by exclusion of TCP communication failures using standard routers.

Excluding failures from the calculation leaves very few standard router file transfers

available for ETE throughput calculation, most of which experienced little or no

communication disruption. Likewise, the throughput greater than one artifact noted at

35% probability of failure and 1060 msec failure interval is introduced by the ability to

use only three standard router data points, two of which exhibit poor performance.

Again, the most notable gains occurred in intervals less than 500 msec with a

downward trend as the interval nears 500 msec. The downward trend however is not as

notable as in the single challenged link case because the combination of failed link

probing and forward custodial buffering principle ensures that available bandwidth is

used if data is available for link transit.

4−31

Figure 4.18: Improvement in Utilized ETE Bandwidth over Four Challenged Links
Using Link Proxy Routers

4.3.4 Questions 4 and 5

Does implementing link proxy routers negatively affect non-modified routers

within the network? Does supporting TCP byte streams with link proxy routers

negatively affect fairness of other TCP byte streams within the network? To

appropriately answer these questions, the topology shown in Figure 4.19 was simulated

using a subset of the factors described in Table 4.3. The scenario consists of a three

clients simultaneously initiating a TCP connection at simulation time 15 seconds and

simultaneously requesting an FTP transfer of a 20MB file from three remote servers.

TCP communication sessions exist between Client 1 and Server 1(flow 1), Client 2 and

Server 2 (flow 2), and Client 3 and Server 3 (flow 3). A mixed router topology is used

with standard routers (Routers 1 and 4) and link proxy routers (Routers 2 and 3)

supporting a single challenged link. Simulations are performed using challenged link

4−32

probability of failure ranging from 0 to 40 % at 10% intervals and 40 to 500 msec failure

interval at 20 msec increments. Each probability of failure and failure interval pair is

simulated with 30 repetitions via unique seeds.

Figure 4.19: Fairness Evaluation Topology

The simulation topology tests the ability of standard and link proxy routers to

work together supporting TCP flows in a static routing environment. Other routing

schemes are outside the scope of this effort, however link proxy routers make no

modification to routing algorithm processing, allowing the simplification. The topology

also allows an evaluation of fairness between the three TCP flows transiting the network.

In this scenario, fairness is defined as flow 1 bandwidth utilization between routers 2 and

3 suffering no degradation as a result of the presence of link proxy routers supporting

4−33

TCP flows 2 and 3. Additionally, TCP flows 2 and 3, transiting the challenged link,

should exhibit near-identical bandwidth utilization between the same routers and total

communication time performance across varying degrees of challenged link degradation.

The baseline performance for all three flows in this scenario is determined by

simulation with no failures across the challenged link. Flow 1 requires 5.101 seconds for

the 20MB file transfer and flows 2 and 3 each require 5.174 seconds. Bandwidth

utilization between routers 2 and 3 is 32.9%, 32.4%, and 32.4% for flows 1, 2, and 3

respectively.

At increasing challenged link probabilities of failure, the challenged link effective

bandwidth is reduced, placing less demand on downstream routers. As displayed in

Figure 4.20, once the challenged link suffers reduced availability, flow 1 readily uses

more available bandwidth on the link between routers 2 and 3. Accordingly, the

bandwidth used by flow 2 is represented by Figure 4.21. Note that the y-axis is plotted in

reverse order for easy viewing. Bandwidth utilization by flow 3 is indistinguishable from

that of flow 2.

4−34

Figure 4.20: Router 2 – Router 3 Link Bandwidth Utilization of Flow 1

Figure 4.21: Router 2 – Router 3 Link Bandwidth Utilization of Flow 2

4−35

For all simulation test points, as the probability of failure of the challenged link

increases, flow 1 ETE file transfer time diminishes due to additional bandwidth becoming

available for use on the link between routers 2 and 3. Accordingly, flows 2 and 3 require

additional transfer time from restricted shared bandwidth on the challenged link. This is

indeed the observed trend and as Figure 4.22 shows, transfer time performance of flows 2

and 3 is virtually identical, showing no preferential treatment among flows.

Figure 4.22: Mean FTP Transfer Time of 20MB File over Single Challenged Link (40%
POF) with Mixed Router Topology

4−36

4.4 Summary

This chapter presents the results of simulations with challenged links using both

standard and link proxy routers. A demonstration is made of the developed model’s

ability to decouple channel loss from congestion loss, without modification to a TCP

sender. Additionally, the ability to mix standard and link proxy routers without

negatively impacting non-buffered flows within the network is demonstrated.

Comparisons of ETE network channel bandwidth utilization were presented for single

and multiple challenged link scenarios, showing that the developed model discovers and

utilizes available bandwidth on problematic links. The next chapter discusses the

relevant conclusions of this research and suggestions for future research.

4−37

V. Conclusions and Recommendations

5.1 Chapter Overview

This chapter presents the final conclusions of this thesis and discovers

implications for future challenged network environments. Several suggestions for future

research, including model modifications, are also discussed.

5.2 Conclusions of Research

It should be anticipated that potential adversaries will attempt to deny our country

the use of information superiority assets. Enemy jamming of communications

frequencies will impact existing wireless communication assets on the battlefield. Packet

switched communication networks in such a domain can utilize an intermediate buffering

strategy as outlined in this study to overcome short (and, with TCP modifications, long)

disruption periods within the challenged environment.

This research has shown that successful TCP communication is severely

hampered when multiple challenged links exist between two communicating endpoints.

Introducing even a low probability of failure on each link manifests degradation of ETE

TCP connectivity and connection maintenance issues. TCP’s ability to even establish a

connection is highly questionable in such environments without network assistance.

Link-layer solutions to solve the challenged environment problem may not be sufficient

to overcome the situation where multiple challenged links exist, especially for long

duration outages in the millisecond region. Accordingly, adding complexity to network

routing infrastructure in the form of intermediate buffering will be required for future

5−1

reliable TCP communication in challenged environments. It appears that even a modest

investment of memory cost can provide a significant improvement in performance,

provided that reasonable protocols can be sufficiently tuned to the environment. A

transport layer TCP aware helper protocol using methods such as the developed model

employs can successfully overcome end to end connectivity as low as 10%.

Implementing link proxy routers can hide some, but not all, non-congestion

losses from a TCP sender without modifications to the TCP endpoints. Short individual

link failure outages are easily discovered and handled locally by link proxy routers,

resulting in masking non-congestion losses from the TCP sender. The ability to conceal

longer link failure channel losses however is highly dependent on the TCP sender settings

for minimum allowed retransmission timer value. Any combination of individual link

failures, especially a rolling failure from destination to source, exceeding the TCP

sender’s calculated retransmission value will result in invocation of the slow start

congestion control algorithm and an immediate throughput loss.

While using link proxies will not always prevent an unmodified TCP sender from

invoking congestion control, ETE TCP communication throughput is improved in both

single and multiple challenged link environments for investigated failure intervals. Over

a single challenged link, mean communication time using standard routers required up to

thirteen times that required using link proxy routers. When four challenged links are

simulated, a performance gain of more than five times is noted. The performance gain

over four challenged links is an under-estimation due to data exclusion of TCP

communication failures using standard routers. A link proxy router’s direct connection

5−2

to the challenged link allows near real-time loss discovery for TCP flows transiting the

link. Upon loss detection, a link proxy can politely resend all locally cached segments

lost on the challenged link. Performing a resend action locally avoids requiring the TCP

sender to idly wait for a retransmission timeout when no acknowledgments are going to

be received. Additionally, a segment has already incurred propagation and queuing

delays to arrive at the point of loss. Handling loss retransmission locally avoids re-

incurring such costs.

Integrating link proxy routers into the network does not appear to negatively

affect standard routers within the network. The proposed protocol does not change

routing protocol semantics and is hidden from network layer processing. Additionally,

TCP flows supported by link proxy routers enjoy no special advantage or preference by

the network once the challenged link has been successfully navigated. On the contrary,

supported flows receive their fair share of non-challenged link resources because

segments are present for routing and eventual delivery when they would be lost

otherwise. Failure to handle loss events locally places additional burden on the network

as a whole, requiring resource utilization re-transporting lost segments to the challenged

link, only to be potentially lost again.

 Utilizing link proxy routers adds overhead to the network in the form of

intermediate acknowledgements, persist request messages, and persist response

messages. These messages are extremely small in nature and the impact to the overall

health of a network is negligible. The overhead is worth paying however in that it

5−3

supports communication where it would otherwise fail, negating the purpose of portions

of the network altogether.

5.3 Recommendations for Future Research

While performing this study, several topics of concern surfaced that should be given

consideration in future research. Most of these topics are related to expansion of the

developed model for increased performance, however, security considerations, flow

control, and scalability should all be considered.

5.3.1 Proxy Router Model Modifications

The following features should be considered for link proxy router model and

protocol implementation.

5.3.1.1 Inter-Router Congestion Control

As discussed in Chapter Two, TCP assumes that loss events occur only at

intermediate routers within the network. TCP invokes congestion control in response to

such loss events and reduces the number of outstanding segments within the network.

Using the proposed link proxy routers prevents a TCP sender from invoking congestion

control by masking invocation mechanisms, however genuine network congestion within

network routers is also masked.

Segments dropped at a router due to congestion will not be acknowledged via

intermediate or receiver acknowledgments. Lack of an acknowledgment is interpreted by

the sending link proxy as a loss event causing an immediate resend of the lost segments.

Such behavior is a partial disregard for the requirements of TCP RFC standards which

endeavor to prevent network over-utilization, i.e., reduce congestion within the network.

5−4

In effect, utilizing the existing link proxy router impairs a TCP sender’s ability to

misinterpret channel losses as congestion, but is also masking congestion from the TCP

sender when it truly exists.

This discrepancy can possibly be alleviated by including an additional field in

intermediate acknowledgments and persist response messages that advertises current

routing buffer congestion notification status. Such information can be used to

discriminate congestion loss from channel loss, invoking a small backoff before

resending lost segments.

Alternately, congestion could be explicitly estimated or measured, perhaps

following the work of Stuckey [16], and used to invoke congestion control directly.

5.3.1.2 Window Scaling Support

Current classical TCP implementations allow the amount of unacknowledged data

within the network to be the minimum of the sender derived congestion window

parameter or advertised offered window value. Unfortunately, the 16 bit offered window

field in a TCP header packet limits the offered window to 65535 bytes. Simulations

performed for this study show that the 655535 byte threshold is quickly reached by the

TCP sender, artificially limiting TCP throughput when network capacity exists.

Consideration should be given to enabling support for utilizing the RFC 1323 [17]

window scale option, which would enable more data to be in transit between

communication endpoints. Such support also requires both TCP sender and receiver

capability support, as window scaling requires additional state data maintenance and

exchange by the communicating endpoints.

5−5

5.3.1.3 Buffer Management

The developed model uses a simplified memory management approach that

allocates available memory to TCP flows a first come first served basis. This study

ensured ample memory was made available such that memory resource contention was

never an issue. The developed model also provides no support for unconditionally

aborted TCP flow discovery and memory reclamation, though such modifications can be

easily implemented. It is unreasonable however to expect link proxy routers to provide

infinite buffer capacity. Accordingly, the centralized memory manager built into the

model requires a proper memory management routine be developed for efficient

allocation of limited memory resources.

Proper memory management however requires some form of flow priority

knowledge be made available. It is unclear at this time what means of conveying such

priority to a link proxy router should be used, but consideration should be given to

establishing a new TCP option to convey such information to the routers. Establishing a

new option would require communication endpoint modifications.

5.3.1.4 Fault Tolerance

Link proxy routers provide a loose form of TCP segment custody acceptance as

segments pass through a network. Receipt of a destination or intermediate

acknowledgement for the data carried in a segment is sufficient to know that the

destination, or a link proxy router closer to the destination, has received the segment in

its entirety. Receipt of acknowledgements updates flow state data that is used for

forwarding or discarding duplicate resent segments from a TCP sender.

5−6

It is theoretically possible that downstream buffer management algorithms

however may dictate that intermediately acknowledged segments be purged from buffers.

If such an event occurs at a link proxy experiencing loss events, it is entirely possible

that the only cached segment within the network is lost, requiring an eventual resend

from the TCP sender. Presently, the developed model provides no capability to re-buffer

segments that have been intermediately acknowledged. Such segments are simply

forwarded and subjected to potential loss with no localized link proxy recovery

mechanism.

Link proxy router fault tolerance should be implemented to deal with

intentionally dropped segments of this type. Should a link proxy unconditionally purge

unacknowledged segments as instructed by the memory manager, it should generate a

negative acknowledgment message to upstream link proxies indicating such. Receipt of

such a message can be used to “roll-back” the intermediate acknowledgment state data

for proper segment buffering. Should this message be lost as a result of channel loss,

subsequently received intermediate acknowledgments would show that a gap in received

data exists, necessitating data resends.

5.3.2 Challenged Link Limits

The ability of link proxy routers to overcome multiple challenged links was

investigated with probabilities of failure down to 40%. Consideration should be made to

find a breaking point at which link proxy routers no longer perform adequately. It is

theoretically possible for link proxy routers to support a TCP connection that never has a

functioning ETE connection without short duration outages. For example, four links

5−7

failing out of phase in a rolling pattern from source to destination would never have ETE

connectivity, but link proxy routers could handle such a situation with ease.

Investigating a breaking point may highlight unknown weaknesses in the developed

model that should be pursued for additional ETE TCP connection reliability.

5.3.3 Security Considerations

Information security has not been addressed in this thesis. A fundamental

assumption made in this study is that IP and TCP header information is readily available

for inspection within intermediate routers. It should be stressed that inspection of TCP

payload data within segments is not required. Many forms of data encryption exist and

an exhaustive survey of standards was not performed. Future consideration should be

given to transport layer encryption standards such as IPsec, outlined in RFC 4301 [18],

which encrypts IP datagrams between communication endpoints, making TCP header

information unavailable.

Another concern is physical custody of routers with intermediate buffering

capability. For the purposes of this study, it is envisioned that link proxy routers will be

utilized within strategically placed backbone routers under military jurisdiction.

5.3.4 Custodial TCP Flow Control

Link proxy buffer capacity enables the concept of routers accepting custody, or

responsibility for delivery, of a received TCP segment. Link proxy routers observe new

TCP flows and allocate buffer space to support them. If challenged links are

experiencing little or no channel losses, buffer space usage is extremely minimal.

Moderate and heavy channel losses however would require considerable buffer capacity,

5−8

especially if multiple high capacity TCP flows, possibly using window scaling, are

utilizing the challenged link.

A link proxy router, being aware of local link performance and individual TCP

flow buffer capacity requirements, could advertise to upstream routers that buffer

capacity is decreasing. Such an advertisement could be made by modifying the TCP

header window size field in acknowledgments to match remaining available buffer space.

Upon receipt of these acknowledgments, link proxy routers could inspect and utilize the

information for the purpose of deciding when to “back off” on segment transmissions. In

this fashion, each link proxy enroute to the destination can buffer a significant amount of

data within the network, ready to use available bandwidth as soon as it becomes

available.

An additional side benefit of implementing this strategy is that advertising a

window size of zero places a TCP sender into a persist state, avoiding congestion control

invocation. Additional network overhead is required however to recover from

advertising zero window size since probes will need to be made to discover that capacity

is available.

5.3.5 Scalability

This thesis focused on using link proxy routers in a non-congestion environment.

It is highly suggested that future research explicitly address scenarios where network

congestion exists. Link proxies currently perform timeout event handling on a per-flow

basis; however it is anticipated that some mechanism will be required to support timeout

event handling for a large numbers of TCP flows. Upon a short duration link failure, all

5−9

flows transiting the link will experience a timeout event resulting in a mass resend of all

cached segments in the link proxy. Repeated timeout events will resend even more

cached segments as additional segments arrive from upstream. Fairness among TCP

flows could be an issue in such an environment and should be investigated further.

5.3.6 Environmental Assumption Relaxation

Several assumptions made during implementation of this thesis can be relaxed in

future research. An expansion of model support for additional transport layer TCP

functionality such as interactive communication as well and UDP buffering support

should be given consideration. Integrating routing protocols other than static should be

investigated with heavy consideration given to mobile routing environment supportive

algorithms. Such algorithms may gain momentum when appropriately linked with this

transport layer helper protocol.

The protocol implemented in this thesis is claimed to be shared medium capable,

but no investigation has been made to support such. A link proxy is located between the

network layer routing protocol and link layer transmission protocol, placing no

restrictions on either. In theory, accommodations are made to enforce a form of

politeness that does not overburden the link layer and dominate the medium in event of a

loss.

Finally, this thesis was performed with no processing delay component associated

with actions required by a link proxy in supporting a flow. Some form of processing

delay should be modeled which places realistic limits on the number of transactions that

can be performed by a link proxy within a finite period of time. Memory functions such

5−10

as reading and writing tend to dominate computing transactions and the delay associated

with buffering activities could be abysmally slow. The distributed link proxy router

architecture should help somewhat in this regard, but the true performance gain from link

such routers can only be measured with a processing delay component.

5.4 Summary

This thesis demonstrates that future network infrastructure should provide some

form of intermediate buffering capability at nodes adjacent to challenged links. TCP’s

capability to establish and maintain a connection in the presence of a single or multiple

challenged links can be severely degraded, especially when short duration link failures on

the order of 200 msec or less are highly probabilistic. A transport layer TCP helper

protocol with intermediate buffering capability, implemented in network routers, can

significantly improve TCP’s reliability and performance in such environments.

The forward deployed warfighter requires a reliable network infrastructure

capable of providing timely and accurate information, from any source. The GIG is

required to provide such reliability and this research shows that appropriately applied

intermediate buffering is a reliability and performance enabler. The DoD should consider

placing intermediate buffer capable routers, such as those developed for this thesis,

within strategically forward deployed assets in its transition to a Net-Centric force.

5−11

VI. Bibliography

1. Department of Defense, Department of Defense Directive 8100.1 - Global
Information Grid Overarching Policy. September 19, 2002.

2. John G. Grimes, DoD Chief Information Officer, 2006 Department of Defense
Chief Information Officer Strategic Plan - Version 1, 2006.

3. Reynolds, M.B., Mitigating TCP Degredation Over Intermittent Link Failures
Using Intermediate Buffers, in Department of Electrical and Computer
Engineering. 2006, Air Force Institute of Technology: Wright-Patterson AFB.

4. Hari, B., et al., A comparison of mechanisms for improving TCP performance
over wireless links. IEEE/ACM Trans. Netw., 1997. 5(6): p. 756-769.

5. Sushant, J., F. Kevin, and P. Rabin, Routing in a delay tolerant network, in
Proceedings of the 2004 conference on Applications, technologies, architectures,
and protocols for computer communications. 2004, ACM Press: Portland,
Oregon, USA.

6. Postel, J., IETF RFC 793: Transmission Control Protocol. September 1981.

7. Stevens, W.R., TCP/IP Illustrated Volume 1. August 2004 - 25th Printing:
Addison Wesley.

8. M. Mathis, J.M., S. Floyd, A. Romanow, IETF RFC 2018: TCP Selective
Acknowledgement Options. October 1996.

9. Hari, B., et al., Improving TCI/IP performance over wireless networks, in
Proceedings of the 1st annual international conference on Mobile computing and
networking. 1995, ACM Press: Berkeley, California, United States.

10. Chi Ho Ng, J.C., Ljiljana Trajkovic. Performance Evaluation of TCP over WLAN
802.11 with Snoop Performance Enhancing Proxy. in OPNETWORK. 2002.
Washington, D.C.

11. Swastik Kopparty, S.V.K., Michalis Faloutsos, and Satish K. Tripathi. Split TCP
for Mobile Ad Hoc Networks. in Proceedings of IEEE GLOBECOM. 2002.
Taipei.

12. Guang Yang, R.W., Mario Gerla, M. Y. Sanadidi. TCP Bulk Repeat for Heavy
Random Losses: A Performance Analysis. in International Symposium on
Performance Evaluation of Computer and Telecommunication Systems
(SPECTS'04). 2004. San Jose, CA.

13. www.opnet.com.

14. V. Paxson, M.A., IETF RFC 2988: Computing TCP's Retransmission Timer.
November 2000.

15. M. Allman, V.P., W. Stevens, IETF RFC 2581: TCP Congestion Control. April
1999.

BIB-1

http://www.opnet.com/

BIB-2

16. Stuckey, N., Stochastic Estimation in Control of Queues Within a Computer
Network, in Department of Electrical and Computer Engineering. 2007, Air Force
Institute of Technology: Wright-Patterson AFB.

17. V. Jacobson, R.B., D. Borman, IETF RFC 1323: TCP Extensions for High
Performance. May 1992.

18. S. Kent, K.S., IETF RFC 4301: Security Architecture for the Internet Protocol.
December 2005.

VITA-1

Vita

Major Duane F. Harmon graduated from Niceville Senior High School in

Niceville, Florida. He entered undergraduate studies at the University of South Alabama,

where he graduated with a Bachelor of Science in Electrical Engineering in March 1996.

He was commissioned through the Detachment 432-AFROTC at the University of

South Alabama and assigned to the ICBM System Program Office at Hill AFB where he

served as the Lead Engineer for ICBM Codes and Targeting Software. In February 1999,

he was assigned to the 84th Test and Evaluation Squadron at Tyndall AFB, Florida as the

Lead Missile Engineer responsible for evaluating weapon integration and post-launch

support for the F-15 and F-16. In April 2001, he was handpicked to be the F-15 Flight

Commander, responsible for the unit’s Operational Test and Evaluation of F-15 Suite 4

and Suite 5 Operational Flight Programs and integrated weapon system evaluation. In

July 2002, he reported to the 413th Flight test Squadron at Edwards AFB where he served

as a Project Officer responsible for electronic warfare testing for the United States and

allied services. In May 2005, he entered the Graduate School of Engineering and

Management, Air Force Institute of Technology. Upon graduation, he will be assigned to

the Air Force Research Laboratory at Wright Patterson AFB, OH.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From – To)

22-03-2007 Master’s Thesis May 2005 – March 2007

5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE

5b. GRANT NUMBER

Overcoming TCP Degradation in the Presence of Multiple
Intermittent Link Failures Utilizing Intermediate Buffering 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Harmon, Duane F., Major, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GE/ENG/07-11

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Dr. David R. Luginbuhl (703) 696-6207
AFOSR
875 North Randolph Street

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

Arlington, VA 22203-1768
david.luginbuhl@afosr.af.mil
12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 It is well documented that assumptions made in the popular Transmission Control Protocol’s
(TCP) development, while essential in the highly reliable wired environment, are incompatible
with today’s wireless network realities in what we refer to as a challenged environment.
Challenged environments severely degrade the capability of TCP to establish and maintain a
communication connection with reasonable throughput.
 This thesis proposes and implements an intermediate buffering scheme, implemented at the
transport layer, which serves as a TCP helper protocol for use in network routing equipment to
overcome short and bursty, but regular, link failures. Moreover, the implementation requires no
modifications to existing TCP implementations at communicating nodes and integrates well with
existing routing equipment. In a simulated six-hop network with five modified routers
supporting four challenged links, each with only 60% availability, TCP connections are reliably
established and maintained, despite the poor link availability, whereas 94% fail using standard
routing equipment, i.e., without the TCP helper protocol.
15. SUBJECT TERMS
TCP, buffering, network layer, transport layer, congestion control, OPNET, channel loss

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Scott Graham, Major, USAF

c. THIS
PAGE

U

17. LIMITATION
OF ABSTRACT

UU

18.
NUMBER
 OF a.

REPORT

U

b.
ABSTRACT PAGES

120

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4918
Scott.Graham@afit.edu

U

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Overcoming TCP Degradation in the Presence of Multiple Intermittent Link Failures Utilizing Intermediate Buffering
	Recommended Citation

	AIR FORCE INSTITUTE OF TECHNOLOGY
	
	I. Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Research Approach
	1.4 Assumptions, Limitations, and Resulting Implications
	1.5 Summary

	II. Literature Review
	2.1 Chapter Overview
	2.2 Network Protocol Stack
	2.2.1 Application Layer
	2.2.2 Transport Layer
	2.2.3 Network Layer
	2.2.4 Link Layer
	2.2.5 Physical Layer

	2.3 Transmission Control Protocol (TCP)
	2.3.1 Sliding Windows
	2.3.2 Congestion Control
	2.3.2.1 Slow Start and Congestion Avoidance
	2.3.2.2 Fast Retransmission / Rapid Recovery
	2.3.2.3 Timeout and Retransmission

	2.4 Challenged Environment
	2.5 TCP Performance in a Challenged Environment
	2.6 Relevant Research
	2.6.1 Selective Acknowledgement
	2.6.2 Snoop
	2.6.3 Split TCP
	2.6.4 TCP Bulk Repeat
	2.6.5 Strategic Buffering

	2.7 Summary

	III. Model Description
	3.1 Chapter Overview
	3.2 OPNET Modeler
	3.3 Model Introduction
	3.4 Model Requirements
	3.5 Proxy Router Architecture
	3.6 Intercepted Packet Formats
	3.6.1 IP Datagram Packet Format
	3.6.2 TCP Segment Packet Format
	3.6.3 Proxy Packet Format

	3.7 Link Proxy
	3.7.1 Init State
	3.7.2 Wait State
	3.7.3 Handle_Packet State
	3.7.4 Await_response State
	3.7.5 Manager_msg State
	3.7.6 Handle_Timer State
	3.7.7 Connection Record
	3.7.8 Proxy_Handle_Data Routine
	3.7.9 Proxy_handle_ACK Routine
	3.7.10 Round Trip Time Estimation and Timeout Calculation
	3.7.11 Event Timers and Timeout Events
	3.7.11.1 Retransmission Timer
	3.7.11.2 Persist Timer
	3.7.11.3 Terminate Timer

	3.7.12 Link Failure Detection

	3.8 Memory Pool Manager
	3.8.1 Init State
	3.8.2 Wait State
	3.8.3 Manage State
	3.8.4 Remote Stimulus State
	3.8.5 Endsim State

	3.9 Link Failure Model
	3.10 Summary

	IV. Evaluation Methodology, Analysis, and Results
	4.1 Chapter Overview
	4.2 Methodology
	4.2.1 System Boundaries
	4.2.2 System Services
	4.2.3 Workload
	4.2.4 Performance Metrics
	4.2.5 Parameters
	4.2.6 Factors
	4.2.7 Experimental Design
	4.2.8 Experimental Parameter Settings

	4.3 Investigative Questions Answered
	4.3.1 Question 1
	4.3.2 Question 2
	4.3.3 Question 3
	4.3.4 Questions 4 and 5

	4.4 Summary

	V. Conclusions and Recommendations
	5.1 Chapter Overview
	5.2 Conclusions of Research
	5.3 Recommendations for Future Research
	5.3.1 Proxy Router Model Modifications
	5.3.1.1 Inter-Router Congestion Control
	5.3.1.2 Window Scaling Support
	5.3.1.3 Buffer Management
	5.3.1.4 Fault Tolerance

	5.3.2 Challenged Link Limits
	5.3.3 Security Considerations
	5.3.4 Custodial TCP Flow Control
	5.3.5 Scalability
	5.3.6 Environmental Assumption Relaxation

	5.4 Summary

