94 research outputs found

    Design of a Haptic Interface for Medical Applications using Magneto-Rheological Fluid based Actuators

    Get PDF
    This thesis reports on the design, construction, and evaluation of a prototype two degrees-of-freedom (DOF) haptic interface, which takes advantage of Magneto-Rheological Fluid (MRF) based clutches for actuation. Haptic information provides important cues in teleoperated systems and enables the user to feel the interaction with a remote or virtual environment during teleoperation. The two main objectives in designing a haptic interface are stability and transparency. Indeed, deficiencies in these factors in haptics-enabled telerobotic systems has the introduction of haptics in medical environments where safety and reliability are prime considerations. An actuator with poor dynamics, high inertia, large size, and heavy weight can significantly undermine the stability and transparency of a teleoperated system. In this work, the potential benefits of MRF-based actuators to the field of haptics in medical applications are studied. Devices developed with such fluids are known to possess superior mechanical characteristics over conventional servo systems. These characteristics significantly contribute to improved stability and transparency of haptic devices. This idea is evaluated and verified through both theoretical and experimental points of view. The design of a small-scale MRF-based clutch, suitable for a multi-DOF haptic interface, is discussed and its performance is compared with conventional servo systems. This design is developed into four prototype clutches. In addition, a closed-loop torque control strategy is presented. The feedback signal used in this control scheme comes from the magnetic field acquired from embedded Hall sensors in the clutch. The controller uses this feedback signal to compensate for the nonlinear behavior using an estimated model, based on Artificial Neural Networks. Such a control strategy eliminates the need for torque sensors for providing feedback signals. The performance of the developed design and the effectiveness of the proposed modeling and control techniques are experimentally validated. Next, a 2-DOF haptic interface based on a distributed antagonistic configuration of MRF-based clutches is constructed for a class of medical applications. This device is incorporated in a master-slave teleoperation setup that is used for applications involving needle insertion and soft-tissue palpation. Phantom and in vitro animal tissue were used to assess the performance of the haptic interface. The results show a great potential of MRF-based actuators for integration in haptic devices for medical interventions that require reliable, safe, accurate, highly transparent, and stable force reflection

    Design and performance evaluation of a prototype MRF-based haptic interface for medical applications

    Get PDF
    This paper describes the construction and stability and transparency evaluation of a prototype two degrees-of-freedom (DoF) haptic interface, which takes ad-vantage of magneto-rheological fluid (MRF)-based clutches for actuation. These small-scale clutches were designed in our lab, and their evaluation were reported previously [1],[2]. MRF-based actuators exhibit superior characteristics,which can significantly contribute to transparency and stability of haptic devices. Based on these actuators, a distributed antagonistic configuration is used to develop the2-DoF haptic interface. This device is incorporated in a master–slave teleoperation setup intended for medical per-cutaneous interventions and soft-tissue palpation. Preliminary studies on the stability and transparency of the haptic interface in this setup using phantom and ex vivo samples show the great potential of MRF-based actuators for integr-tion in haptic devices that require reliable, safe, accurate,highly transparent, and stable force reflection

    Design of a New Bilayer Multipole Electromagnetic Brake System for a Haptic Interface

    Get PDF
    This paper deals with the design, simulation and experimental verification of a new bilayer multipole electromagnetic brake. The design utilizes the superposition principle of magnetic flux across the inner and outer layers of axially-oriented electromagnetic poles to provide gradual braking about the single axis of rotation. The braking principle exploits the Coulomb friction between the two rigid contact surfaces. Compared with conventional, multi-pole, multi-layer type radial brakes in haptic applications, the proposed design provides high fidelity of free motion through an absolutely disconnected rotor. The design also provides a wide operating range by delaying the saturation limit of a magnetic circuit for a wide range of input power. In this paper, the analytical model of the brake is derived and compared with the FEM-based simulation results. The optimal design obtained from multi-objective optimization was experimentally verified for its capability in haptic applications.This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program-Artificial intelligence bio-robot medical convergence project) (20001257, Artificial intelligence algorithm based vascular intervention robot system for reducing radiation exposure and achieving 0.5 mm accuracy)—funded by the Ministry of Trade, Industry and Energy(MOTIE, Korea), the Ministry of Health and Welfare(MOHW), the Ministry of Science and ICT (MSIT) and the Korean Evaluation Institute of Industrial Technology (KEIT); the Technology Innovation Program (10052980, Development of micro-robotic system for surgical treatment of chronic total occlusion)—funded by the Ministry of Trade, Industry and Energy (MI, Korea); and the WC300 R&D Program (S2482672)—funded by the Small and Medium Business Administration (SMBA, KOREA)

    Magneto-Rheological Actuators for Human-Safe Robots: Modeling, Control, and Implementation

    Get PDF
    In recent years, research on physical human-robot interaction has received considerable attention. Research on this subject has led to the study of new control and actuation mechanisms for robots in order to achieve intrinsic safety. Naturally, intrinsic safety is only achievable in kinematic structures that exhibit low output impedance. Existing solutions for reducing impedance are commonly obtained at the expense of reduced performance, or significant increase in mechanical complexity. Achieving high performance while guaranteeing safety seems to be a challenging goal that necessitates new actuation technologies in future generations of human-safe robots. In this study, a novel two degrees-of-freedom safe manipulator is presented. The manipulator uses magneto-rheological fluid-based actuators. Magneto-rheological actuators offer low inertia-to-torque and mass-to-torque ratios which support their applications in human-friendly actuation. As a key element in the design of the manipulator, bi-directional actuation is attained by antagonistically coupling MR actuators at the joints. Antagonistically coupled MR actuators at the joints allow using a single motor to drive multiple joints. The motor is located at the base of the manipulator in order to further reduce the overall weight of the robot. Due to the unique characteristic of MR actuators, intrinsically safe actuation is achieved without compromising high quality actuation. Despite these advantages, modeling and control of MR actuators present some challenges. The antagonistic configuration of MR actuators may result in limit cycles in some cases when the actuator operates in the position control loop. To study the possibility of limit cycles, describing function method is employed to obtain the conditions under which limit cycles may occur in the operation of the system. Moreover, a connection between the amplitude and the frequency of the potential limit cycles and the system parameters is established to provide an insight into the design of the actuator as well as the controller. MR actuators require magnetic fields to control their output torques. The application of magnetic field however introduces hysteresis in the behaviors of MR actuators. To this effect, an adaptive model is developed to estimate the hysteretic behavior of the actuator. The effectiveness of the model is evaluated by comparing its results with those obtained using the Preisach model. These results are then extended to an adaptive control scheme in order to compensate for the effect of hysteresis. In both modeling and control, stability of proposed schemes are evaluated using Lyapunov method, and the effectiveness of the proposed methods are validated with experimental results

    Development of MR Clutch for a Prospective 5-DOF Robot

    Get PDF
    This paper presents an improved design approach for the construction of a Magneto-Rheological (MR) clutch intended to be used in a prospective 5 degrees of freedom robot. The MR clutch features embedded Hall sensors for intrinsic torque control. After a brief description of the MR clutch principles, the details of the mechanical design are discussed. Simulation and preliminary experimental results demonstrate the main characteristics and advantages of the proposed MR clutch

    Magneto-Rheological Fluid Device as Artificial Feel Force System on Aircraft Control Stick

    Get PDF
    The conventional feel system in any aircraft occupies large space in the cockpit and has complicated designs. The primary objective of this research is to develop an artificial feel force system that can overcome some drawbacks of the current feel force system. A novel feel system using magneto-rheological (MR) fluid is constructed to precisely control the shear stress under the magnetic field. To validate the functionality of the MR artificial feel system, the final system is fabricated and multiple tests are performed to acquire force-velocity characteristics that are compared to the mathematical model derived. In addition, the reference model of the force feedback control is simulated for the feel force application. Both experimental and simulation results are compared to validate the derived system model. The system response time and the sampling rates are evaluated and compared to the conventional system at the end. It is concluded from the research that the developed artificial feel system can precisely control and acts as a fail proof system when incorporated with a modern fly-by-wire aircraft system

    Analyse de performances des actionneurs à fluide magnétorhéologique pour les interfaces haptiques

    Get PDF
    Les interfaces haptiques sont des dispositifs permettant un retour en force, qui est généralement fait par l’entremise de moteurs électriques. Les interfaces haptiques peuvent être utilisées en formation pour simuler des environnements virtuels, par exemple, des organes virtuels pour la formation de chirurgien. Cependant, les moteurs électriques font face à un dilemme technique entre la densité de couple et une réponse dynamique, limitant ainsi les performances des interfaces haptiques. Les actionneurs magnétorhéologiques, composé d’une source de puissance et d’embrayages à fluide magnétorhéologique, ont démontré leur potentiel face à ce dilemme technique. En effet, une multitude d’embrayages magnétorhéologique peuvent se partager une seule source de puissance. Les actionneurs magnétorhéologiques ont donc une excellente densité de couple tout en ayant de bonnes performances dynamiques. Ce projet de recherche présente une analyse de performances des actionneurs magnétorhéologique pour les interfaces haptique. Les performances des actionneurs magnétorhéologique ont été comparées avec les moteurs électriques présentement utilisés dans la plupart des interfaces haptiques. Des critères de performances ont été établis à l’aide de la littérature scientifique. Un modèle dynamique d’une interface haptique a été développé et utilisé pour faire une analyse sur les performances des actionneurs magnétorhéologiques et des moteurs électriques. Un banc de test a été développé pour valider le modèle et les résultats obtenus en simulation. Les résultats démontrent que les actionneurs magnétorhéologiques permettent une meilleure génération d’environnement virtuel. L’amortissement des actionneurs magnétorhéologiques doit être adressé pour augmenter la variété d’environnements virtuels pouvant être générés

    Smart portable rehabilitation devices

    Get PDF
    BACKGROUND: The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). METHODS: In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. RESULTS: Laboratory tests of the devices demonstrated that they were able to meet their design objectives. The prototypes of portable rehabilitation devices presented here did demonstrate that these concepts are capable of the performance their commercially available but non-portable counterparts exhibit. CONCLUSION: Smart, portable devices with the ability for real time monitoring and adjustment open a new era in rehabilitation where the recovery process could be dramatically improved

    Design of a six degree-of-freedom haptic hybrid platform manipultor

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2010Includes bibliographical references (leaves: 97-103)Text in English; Abstract: Turkish and Englishxv, 115 leavesThe word Haptic, based on an ancient Greek word called haptios, means related with touch. As an area of robotics, haptics technology provides the sense of touch for robotic applications that involve interaction with human operator and the environment. The sense of touch accompanied with the visual feedback is enough to gather most of the information about a certain environment. It increases the precision of teleoperation and sensation levels of the virtual reality (VR) applications by exerting physical properties of the environment such as forces, motions, textures. Currently, haptic devices find use in many VR and teleoperation applications. The objective of this thesis is to design a novel Six Degree-of-Freedom (DOF) haptic desktop device with a new structure that has the potential to increase the precision in the haptics technology. First, previously developed haptic devices and manipulator structures are reviewed. Following this, the conceptual designs are formed and a hybrid structured haptic device is designed manufactured and tested. Developed haptic device.s control algorithm and VR application is developed in Matlab© Simulink. Integration of the mechanism with mechanical, electromechanical and electronic components and the initial tests of the system are executed and the results are presented. According to the results, performance of the developed device is discussed and future works are addressed

    磁性流体を用いたバックドライブ可能な油圧アクチュエータの開発

    Get PDF
    早大学位記番号:新7478早稲田大
    corecore