145 research outputs found

    Throughput and range characterization of IEEE 802.11ah

    Full text link
    The most essential part of Internet of Things (IoT) infrastructure is the wireless communication system that acts as a bridge for the delivery of data and control messages. However, the existing wireless technologies lack the ability to support a huge amount of data exchange from many battery driven devices spread over a wide area. In order to support the IoT paradigm, the IEEE 802.11 standard committee is in process of introducing a new standard, called IEEE 802.11ah. This is one of the most promising and appealing standards, which aims to bridge the gap between traditional mobile networks and the demands of the IoT. In this paper, we first discuss the main PHY and MAC layer amendments proposed for IEEE 802.11ah. Furthermore, we investigate the operability of IEEE 802.11ah as a backhaul link to connect devices over a long range. Additionally, we compare the aforementioned standard with previous notable IEEE 802.11 amendments (i.e. IEEE 802.11n and IEEE 802.11ac) in terms of throughput (with and without frame aggregation) by utilizing the most robust modulation schemes. The results show an improved performance of IEEE 802.11ah (in terms of power received at long range while experiencing different packet error rates) as compared to previous IEEE 802.11 standards.Comment: 7 pages, 6 figures, 5 table

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Performance Analysis of Mobility Impact on IEEE 802.11ah Standard with Traffic Pattern Scheme

    Get PDF
    Internet of Things (IOT) offers a new dimension of technology and information where connectivity is available anywhere, anytime, and for any purpose. IEEE 802.11 Wireless Local Area Network group is a standard that developed to answer the needs of wireless communication technology (WI-Fi). Recently, IEEE 802.11 working group released the 802.11ah technology or Wi-Fi HaLow as a Wi-fi standard. This standard works on the 1 GHz frequency band with a broader coverage area, massive device and the energy efficiency issues. This research addresses, the influence of Random Walk, Gauss-Markov, and Random Waypoint mobility model on 802.11ah with different traffic pattern scheme are analyzed. The design of the simulation system is done by changing of node density. Based on the result, it can be concluded that the overall performance of the network with all of the parameter scenarios is decreasing along with increasing the Stations. In the node density scenario, the Random Waypoint mobility model has the best performance with an average delay is about 0.65805 s, throughput is about 0.53811Mbps, PDR is about 96.75%, and energy consumption is about 5.2530 Joule

    Capacity Analysis of IEEE 802.11ah WLANs for M2M Communications

    Full text link
    Focusing on the increasing market of the sensors and actuators networks, the IEEE 802.11ah Task Group is currently working on the standardization of a new amendment. This new amendment will operate at the sub-1GHz band, ensure transmission ranges up to 1 Km, data rates above 100 kbps and very low power operation. With IEEE 802.11ah, the WLANs will offer a solution for applications such as smart metering, plan automation, eHealth or surveillance. Moreover, thanks to a hierarchical signalling, the IEEE 802.11ah will be able to manage a higher number of stations (STAs) and improve the 802.11 Power Saving Mechanisms. In order to support a high number of STAs, two different signalling modes are proposed, TIM and Non-TIM Offset. In this paper we present a theoretical model to predict the maximum number of STAs supported by both modes depending on the traffic load and the data rate used. Moreover, the IEEE 802.11ah performance and energy consumption for both signalling modes and for different traffic patterns and data rates is evaluated. Results show that both modes achieve similar Packet Delivery Ratio values but the energy consumed with the TIM Offset is, in average, a 11.7% lower.Comment: Multiple Access Communications 201

    Performance Evaluation of Wireless Medium Access Control Protocols for Internet of Things

    Get PDF
    The Internet of Things makes the residents in Smart Cities enjoy a more efficient and high-quality lifestyle by wirelessly interconnecting the physical and visual world. However, the performance of wireless networks is challenged by the ever-growing wireless traffic data, the complexity of the network structures, and various requirements of Quality of Service (QoS), especially on the Internet of Vehicle and wireless sensor networks. Consequently, the IEEE 802.11p and 802.11ah standards were designed to support effective inter-vehicle communications and large-scale sensor networks, respectively. Although their Medium Access Control protocols have attracted much research interest, they have yet to fully consider the influences of channel errors and buffer sizes on the performance evaluation of these Medium Access Control (MAC) protocols. Therefore, this thesis first proposed a new analytical model based on a Markov chain and Queuing analysis to evaluate the performance of IEEE 802.11p under imperfect channels with both saturated and unsaturated traffic. All influential factors of the Enhanced Distributed Channel Access (EDCA) mechanism in IEEE 802.11p are considered, including the backoff counter freezing, Arbitration Inter-Frame Spacing (AIFS) defers, the internal collision, and finite MAC buffer sizes. Furthermore, this proposed model considers more common and actual conditions with the influence of channel errors and finite MAC buffer sizes. The effectiveness and accuracy of the developed model have been validated through extensive ns-3 simulation experiments. Second, this thesis proposes a developed analytical model based on Advanced Queuing Analysis and the Gilbert-Elliot model to analyse the performance of IEEE 802.11p with burst error transmissions. This proposed analytical model simultaneously describes transmission queues for all four Access Categories (AC) queues with the influence of burst errors. Similarly, this presented model can analyse QoS performance, including throughputs and end-to-end delays with the unsaturated or saturated load traffics. Furthermore, this model operates under more actual bursty error channels in vehicular environments. In addition, a series of simulation experiments with a natural urban environment is designed to validate the efficiency and accuracy of the presented model. The simulation results reflect the reliability and effectiveness of the presented model in terms of throughput and end-to-end delays under various channel conditions. Third, this thesis designed and implemented a simulation experiment to analyse the performance of IEEE 802.11ah. These simulation experiments are based on ns-3 and an extension. These simulation experiments' results indicate the Restricted Access Window (RAW) mechanism's influence on the throughputs, end-to-end delays, and packet loss rates. Furthermore, the influences of channel errors and bursty errors are considered in the simulations. The results also show the strong impact of channel errors on the performance of IEEE 802.11ah due to urban environments. Finally, the potential future work based on the proposed models and simulations is analysed in this thesis. The proposed models of IEEE 802.11p can be an excellent fundamental to optimise the QoS due to the precise evaluation of the influence of factors on the performance of IEEE 802.11p. Moreover, it is possible to migrate the analytical models of IEEE 802.11p to evaluate the performance of IEEE 802.11ah

    Node Density Performance Analysis on IEEE 802.11ah Standard for VoIP Service

    Get PDF
    The growing of internet and IoT application makes large number of devices will be connected each other to exchange data communication. IEEE made standard of WLAN technology to support the needs. But from the existing standard technologies, there are still deficiencies in delivering the data package for communication. IEEE 802.11ah was made as a new standard of Wi-Fi technology that supports wireless networking scenarios and solving the problem of capacity, coverage and power consumption in IoT era. The wireless access network is very attractive for best-effort data package transmission, but VoIP service on the wireless network is very critical due to its real-time communication characteristic. This research addresses the performance analysis of 802.11 ah standard against VoIP services. To determine the influence of node density in 802.11ah standard, the simulation is done by changing the number of station that access the channel via RAW mechanism. The simulation is performed using network simulator NS3 version 3.23. Based on the result, it can be concluded that the evaluation of IEEE 802.11ah standard in the node density scenario accompanied by the changing of RAW station and RAW group number, the use of MCS 5 with 2 MHz bandwidth resulting better network performance than MCS 7 with 1 MHz bandwidth. Using MCS 5 obtained delay value of 0.241761 s on average, the throughput value of 0,5648 Mbps on average, and the PDR value of 19.84 % on average

    A Feasibility Analysis of the Use of IEEE 802.11ah to extend 4G Network Coverage

    Get PDF
    The 4G LTE network has been launched in many countries including Indonesia, and all telecommunications operators are competing to expand their service coverage. Due to various reasons, there are a lot of areas that remains uncovered by the 4G LTE network. With the increase in cellular traffic, operators must continue to improve their service coverage. One of the scenarios to expand the service coverage is by offloading the traffic to a more cost-effective 802.11ah network in which one 802.11ah access point can serve thousands of mobile devices and support the Machine-to-Machine (M2M)/Internet of Things (IoT) communication. This study simulates the effect of the number of nodes on MCS performance evaluation of the 802.11ah protocol. The simulation is conducted by utilizing NS3 software to evaluate the throughput, delay, packet delivery ratio and energy consumption. This study also simulates 802.11ah coverage prediction to expand the LTE networks by utilizing Atoll Radio Planning Software. The results show that the performance obtained by varying the number of nodes/users from 100 to 1000 nodes is technically acceptable. In addition, the service coverage of 802.11ah network can solve the problem of blank spot area

    Analytical Study of the Distance Change on IEEE 802.11ah Standard using Markov Chain Model

    Get PDF
    This research proposed a model of Enhanced Distributed Channel Access (EDCA) scheme which is one of the techniques used in reducing collision and usually prioritized due to its contention window to determine the impact of distance change on the IEEE 802.11 ah standard. The proposed model was analyzed using the Markov Chain approach to determine the effect of distance change on collisions levels while the numerical were simulated using MATLAB. Moreover, the Markov chain solution was used to evaluate parameters such as throughput, energy consumption, and delay. The results showed the increment in RAW slot duration and the distance change for each station can reduce the performance on the standard and the scenario when the RAW slot duration was changed by 50 ms performed better than 100 ms and 250 ms
    corecore