2,841 research outputs found

    Performance enhancement of a GIS-based facility location problem using desktop grid infrastructure

    Full text link
    This paper presents the integration of desktop grid infrastructure with GIS technologies, by proposing a parallel resolution method in a generic distributed environment. A case study focused on a discrete facility location problem, in the biomass area, exemplifies the high amount of computing resources (CPU, memory, HDD) required to solve the spatial problem. A comprehensive analysis is undertaken in order to analyse the behaviour of the grid-enabled GIS system. This analysis, consisting of a set of the experiments on the case study, concludes that the desktop grid infrastructure is able to use a commercial GIS system to solve the spatial problem achieving high speedup and computational resource utilization. Particularly, the results of the experiments showed an increase in speedup of fourteen times using sixteen computers and a computational efficiency greater than 87 % compared with the sequential procedure.This work has been developed under the support of the program Formacion de Personal Investigador, grants number BFPI/2009/103 and BES-2007-17019, from the Conselleria d'Educacio of the Generalitat Valenciana and the Spanish Ministry of Science and Technology.García García, A.; Perpiñá Castillo, C.; Alfonso Laguna, CD.; Hernández García, V. (2013). Performance enhancement of a GIS-based facility location problem using desktop grid infrastructure. Earth Science Informatics. 6(4):199-207. https://doi.org/10.1007/s12145-013-0119-1S19920764Anderson D (2004) Boinc: a system for public-resource computing and storage. Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing. IEEE Computer Society, Washington DC, pp 4–10Available scripts webpage: http://personales.upv.es/angarg12/Campos I et al (2012) Modelling of a watershed: a distributed parallel application in a grid framework. Comput Informat 27(2):285–296Church RL (2002) Geographical information systems and location science. Comput Oper Res 29:541–562Clarke KC (1986) Advances in geographic information systems, computers. Environ Urban Syst 10:175–184Dowers S, Gittings BM, Mineter MJ (2000) Towards a framework for high-performance geocomputation: handling vector-topology within a distributed service environment. Comput Environ Urban Syst 24:471–486Geograma SL (2009). Teleatlas. http://www.geograma.com . Accessed September 2009GRASS Development Team (2012) GRASS GIS. http://grass.osgeo.org/Hoekstra AG, Sloot PMA (2005) Introducing grid speedup: a scalability metric for parallel applications on the grid, EGC 2005, LNCS 3470, pp. 245–254Hu Y et al. (2004) Feasibility study of geo-spatial analysis using grid computing. Computational Science-ICCS. Springer Berlin Heidelberg, 956–963Huang Z et al (2009) Geobarn: a practical grid geospatial database system. Adv Electr Comput Eng 9:7–11Huang F et al (2011) Explorations of the implementation of a parallel IDW interpolation algorithm in a Linux cluster-based parallel GIS. Comput Geosci 37:426–434Laure E et al (2006) Programming the grid with gLite. CMST 12(1):33–45Li WJ et al (2005) The Design and Implementation of GIS Grid Services. In: Zhuge H, Fox G (eds) Grid and Cooperative Computing. Vol. 3795 of Lecture Notes in Computer Science 10. Springer, Berlin, pp 220–225National Geographic Institute (2010) BCN25: numerical cartographic database. http://www.ign.es/ign/main/index.do . Accessed April 2010Open Geospatial Consortium, Inc (2012) Open GIS Specification Model, http://www.opengeospatial.org/Openshaw S, Turton I (1996) A parallel Kohonen algorithm for the classification of large spatial datasets. Comput Geosci 22:1019–1026Perpiñá C, Alfonso D, Pérez-Navarro A (2007) BIODER project: biomass distributed energy resources assessment and logistic strategies for sitting biomass plants in the Valencia province (Spain), 17th European Biomass Conference and Exhibition Proceedings, Hamburg, Germany, pp. 387–393Perpiñá C et al (2008) Methodology based on Geographic Information Systems for biomass logistics and transport optimization. Renew Energ 34:555–565Shen Z et al (2007) Distributed computing model for processing remotely sensed images based on grid computing. Inf Sci 177:504–518Spanish Ministry of Agriculture, fisheries and food (2009). http://www.magrama.gob.es/es/ . Accessed March 2009Spanish Ministry of Environment (2008). http://www.magrama.gob.es/es/ . Accessed May 2008University of California. List of BOINC projects. http://boinc.berkeley.edu/projects.phpXiao N, Fu W (2003) SDPG: Spatial data processing grid. J Comput Sci Technol 18:523–53

    Implementing GIS for Facilities Management at the California Institute of Technology

    Get PDF
    Most of the time managing facilities involve storing, querying, and updating spatial data. GIS is a perfect tool for building a database. The Facilities Department at the California Institute of Technology (Caltech) needed a method for more effective and efficient management of their facilities. Their map was not georeferenced nor interactive and did not have sufficient metadata. Their most current CAD files lacked accuracy. For any project, the Facilities Department faced many problems, including time spent searching for information, organizing data, difficulties finding accurate location of facilities, duplication of work, and difficulties in adding and updating data. Therefore, the project objective was to move CAD files to GIS. This involved georeferencing CAD files, converting CAD data to geodatabase feature classes, geodatabase design, and base map creation and design. These tasks were useful in assigning geographic coordinates to spatial data, providing better management of data, base map creation and design, and accuracy enhancement of CAD features. This project provided a basic understanding of how to work with CAD files in GIS, and outlined procedures and methodologies for geodatabase design and creating a base map for the facilities from CAD data

    A review of GIS-based information sharing systems

    Get PDF
    GIS-based information sharing systems have been implemented in many of England and Wales' Crime and Disorder Reduction Partnerships (CDRPs). The information sharing role of these systems is seen as being vital to help in the review of crime, disorder and misuse of drugs; to sustain strategic objectives, to monitor interventions and initiatives; and support action plans for service delivery. This evaluation into these systems aimed to identify the lessons learned from existing systems, identify how these systems can be best used to support the business functions of CDRPs, identify common weaknesses across the systems, and produce guidelines on how these systems should be further developed. At present there are in excess of 20 major systems distributed across England and Wales. This evaluation considered a representative sample of ten systems. To date, little documented evidence has been collected by the systems that demonstrate the direct impact they are having in reducing crime and disorder, and the misuse of drugs. All point to how they are contributing to more effective partnership working, but all systems must be encouraged to record how they are contributing to improving community safety. Demonstrating this impact will help them to assure their future role in their CDRPs. By reviewing the systems wholly, several key ingredients were identified that were evident in contributing to the effectiveness of these systems. These included the need for an effective partnership business model within which the system operates, and the generation of good quality multi-agency intelligence products from the system. In helping to determine the future development of GIS-based information sharing systems, four key community safety partnership business service functions have been identified that these systems can most effectively support. These functions support the performance review requirements of CDRPs, operate a problem solving scanning and analysis role, and offer an interface with the public. By following these business service functions as a template will provide for a more effective application of these systems nationally

    GIS and ant algorithm for multi-objective siting of emergency facilities

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Virtual Worlds and Conservational Channel Evolution and Pollutant Transport Systems (Concepts)

    Get PDF
    Many models exist that predict channel morphology. Channel morphology is defined as the change in geometric parameters of a river. Channel morphology is affected by many factors. Some of these factors are caused either by man or by nature. To combat the adverse effects that man and nature may cause to a water system, scientists and engineers develop stream rehabilitation plans. Stream rehabilitation as defined by Shields et al., states that restoration is the return from a degraded ecosystem back to a close approximation of its remaining natural potential [Shields et al., 2003]. Engineers construct plans that will restore streams back to their natural state by using techniques such as field investigation, analytical models, or numerical models. Each of these techniques is applied to projects based on specified criteria, objectives, and the expertise of the individuals devising the plan. The utilization of analytical and numerical models can be difficult, for many reasons, one of which is the intuitiveness of the modeling process. Many numerical models exist in the field of hydraulic engineering, fluvial geomorphology, landscape architecture, and stream ecology that evaluate and formulate stream rehabilitation plans. This dissertation will explore, in the field of Hydroscience , the creation of models that are not only accurate but also span the different disciplines. The goal of this dissertation is to transform a discrete numerical model (CONCEPTS) into a realistic 3D environment using open source game engines, while at the same time, conveying at least the equivalent information that was presented in the 1D numerical model

    Mapping Arizona: 2005 report on geographic information systems

    Get PDF
    tableOfContents: 1. Introduction -- 2. GIS in action -- 3. AGIC overview -- 4. AGIC initiatives -- 5. Appendixabstract: This report is divided into five major sections. The Introduction provides a brief overview of this document, its contents and purpose. It offers insight into the various Arizona organizations that play key roles in the efforts to improve the use of GIS technology. GIS in Action offers a look at GIS technology, how it works and how it is being used daily around Arizona to solve complex problems and improve the lives of citizens. AGIC Overview explains the history of the Arizona Geographic Information Council (AGIC), reviews AGIC accomplishments to date, and offers a look at what's to come. It outlines the council composition, mission, and how AGIC serves Arizona. AGIC Initiatives describes AGIC's plans and what members are doing to accomplish six major initiatives: Core Data Resource; Arizona Preparedness; AGIC GeoData Portal; the Arizona Map; Arizona Height Modernization; Education and Outreach. The Appendix includes additional information about AGIC committees and contact

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Interoperability of Traffic Infrastructure Planning and Geospatial Information Systems

    Get PDF
    Building Information Modelling (BIM) as a Model-based design facilitates to investigate multiple solutions in the infrastructure planning process. The most important reason for implementing model-based design is to help designers and to increase communication between different design parties. It decentralizes and coordinates team collaboration and facilitates faster and lossless project data exchange and management across extended teams and external partners in project lifecycle. Infrastructure are fundamental facilities, services, and installations needed for the functioning of a community or society, such as transportation, roads, communication systems, water and power networks, as well as power plants. Geospatial Information Systems (GIS) as the digital representation of the world are systems for maintaining, managing, modelling, analyzing, and visualizing of the world data including infrastructure. High level infrastructure suits mostly facilitate to analyze the infrastructure design based on the international or user defined standards. Called regulation1-based design, this minimizes errors, reduces costly design conflicts, increases time savings and provides consistent project quality, yet mostly in standalone solutions. Tasks of infrastructure usually require both model based and regulation based design packages. Infrastructure tasks deal with cross-domain information. However, the corresponding data is split in several domain models. Besides infrastructure projects demand a lot of decision makings on governmental as well as on private level considering different data models. Therefore lossless flow of project data as well as documents like regulations across project team, stakeholders, governmental and private level is highly important. Yet infrastructure projects have largely been absent from product modelling discourses for a long time. Thus, as will be explained in chapter 2 interoperability is needed in infrastructure processes. Multimodel (MM) is one of the interoperability methods which enable heterogeneous data models from various domains get bundled together into a container keeping their original format. Existing interoperability methods including existing MM solutions can’t satisfactorily fulfill the typical demands of infrastructure information processes like dynamic data resources and a huge amount of inter model relations. Therefore chapter 3 concept of infrastructure information modelling investigates a method for loose and rule based coupling of exchangeable heterogeneous information spaces. This hypothesis is an extension for the existing MM to a rule-based Multimodel named extended Multimodel (eMM) with semantic rules – instead of static links. The semantic rules will be used to describe relations between data elements of various models dynamically in a link-database. Most of the confusion about geospatial data models arises from their diversity. In some of these data models spatial IDs are the basic identities of entities and in some other data models there are no IDs. That is why in the geospatial data, data structure is more important than data models. There are always spatial indexes that enable accessing to the geodata. The most important unification of data models involved in infrastructure projects is the spatiality. Explained in chapter 4 the method of infrastructure information modelling for interoperation in spatial domains generate interlinks through spatial identity of entities. Match finding through spatial links enables any kind of data models sharing spatial property get interlinked. Through such spatial links each entity receives the spatial information from other data models which is related to the target entity due to sharing equivalent spatial index. This information will be the virtual properties for the object. The thesis uses Nearest Neighborhood algorithm for spatial match finding and performs filtering and refining approaches. For the abstraction of the spatial matching results hierarchical filtering techniques are used for refining the virtual properties. These approaches focus on two main application areas which are product model and Level of Detail (LoD). For the eMM suggested in this thesis a rule based interoperability method between arbitrary data models of spatial domain has been developed. The implementation of this method enables transaction of data in spatial domains run loss less. The system architecture and the implementation which has been applied on the case study of this thesis namely infrastructure and geospatial data models are described in chapter 5. Achieving afore mentioned aims results in reducing the whole project lifecycle costs, increasing reliability of the comprehensive fundamental information, and consequently in independent, cost-effective, aesthetically pleasing, and environmentally sensitive infrastructure design.:ABSTRACT 4 KEYWORDS 7 TABLE OF CONTENT 8 LIST OF FIGURES 9 LIST OF TABLES 11 LIST OF ABBREVIATION 12 INTRODUCTION 13 1.1. A GENERAL VIEW 14 1.2. PROBLEM STATEMENT 15 1.3. OBJECTIVES 17 1.4. APPROACH 18 1.5. STRUCTURE OF THESIS 18 INTEROPERABILITY IN INFRASTRUCTURE ENGINEERING 20 2.1. STATE OF INTEROPERABILITY 21 2.1.1. Interoperability of GIS and BIM 23 2.1.2. Interoperability of GIS and Infrastructure 25 2.2. MAIN CHALLENGES AND RELATED WORK 27 2.3. INFRASTRUCTURE MODELING IN GEOSPATIAL CONTEXT 29 2.3.1. LamdXML: Infrastructure Data Standards 32 2.3.2. CityGML: Geospatial Data Standards 33 2.3.3. LandXML and CityGML 36 2.4. INTEROPERABILITY AND MULTIMODEL TECHNOLOGY 39 2.5. LIMITATIONS OF EXISTING APPROACHES 41 INFRASTRUCTURE INFORMATION MODELLING 44 3.1. MULTI MODEL FOR GEOSPATIAL AND INFRASTRUCTURE DATA MODELS 45 3.2. LINKING APPROACH, QUERYING AND FILTERING 48 3.2.1. Virtual Properties via Link Model 49 3.3. MULTI MODEL AS AN INTERDISCIPLINARY METHOD 52 3.4. USING LEVEL OF DETAIL (LOD) FOR FILTERING 53 SPATIAL MODELLING AND PROCESSING 58 4.1. SPATIAL IDENTIFIERS 59 4.1.1. Spatial Indexes 60 4.1.2. Tree-Based Spatial Indexes 61 4.2. NEAREST NEIGHBORHOOD AS A BASIC LINK METHOD 63 4.3. HIERARCHICAL FILTERING 70 4.4. OTHER FUNCTIONAL LINK METHODS 75 4.5. ADVANCES AND LIMITATIONS OF FUNCTIONAL LINK METHODS 76 IMPLEMENTATION OF THE PROPOSED IIM METHOD 77 5.1. IMPLEMENTATION 78 5.2. CASE STUDY 83 CONCLUSION 89 6.1. SUMMERY 90 6.2. DISCUSSION OF RESULTS 92 6.3. FUTURE WORK 93 BIBLIOGRAPHY 94 7.1. BOOKS AND PAPERS 95 7.2. WEBSITES 10

    Development of Augmented Reality Underground Facility Management System using Map Application Programming Interface and JavaScript Object Notation Communication

    Get PDF
    With the rapid development of IT in the modern society, various kinds of information such as smart information age are provided in real time regardless of time and place. Especially, various IT devices and mobile devices using the ubiquitous concept are being widely used in real life and helping to make life convenient. Currently, various ubiquitous services and management schemes are being tried in the government business field. This paper was performed to propose an augmented reality-based system construction and service environment plan for the management of underground facilities such as gas, electricity, communication, water supply, sewerage, heating, and oil pipelines. To do this, the author used Map API and JSON communication technique. JSON can be used in JavaScript programs without parsing or serialization. Also, JSON is a text-based way to represent JavaScript object literals, arrays, and scalar data. As a result, it can be transmitted in a format that can be interpreted in fields that utilize various types of data. Using this JSON, an augmented reality-based underground facility management system was implemented. In other words, it is a system that can find and modify the location of underground objects without drawing drawings in the field through communication between the tablet and the server. Especially, it suggested a method to provide and manage the location information of GIS (NGIS, KLIS) system and the facilities embedded in the underground, and attribute information by replacing the location mark used in existing underground facilities. Through the augmented reality based underground facility management system, it is expected to be effective in terms of practicality, economics, real - time network, information provision and management, and prevention of major accidents. In addition, it will be an effective method for updating and maintaining information related to underground facilities. Finally, by applying the augmented reality-based underground facility management system, it is possible to precisely measure the underground facility survey and condition for an existing buried pipe or a new public pipeline. Through augmented reality technology, it is possible to check the facilities of obstacles as if they were right in front of you. In addition, facility management, history management, and on-site management are possible at once, and it is characterized by convergence with other IT and quick decision-making by integrating the management system
    corecore