7 research outputs found

    Experimental Characterisation and Modelling of Atmospheric Fog and Turbulence in FSO

    Get PDF
    Free space optical (FSO) communication uses visible or infrared (IR) wavelengths to broadcast high-speed data wirelessly through the atmospheric channel. The performance of FSO communications is mainly dependent on the unpredictable atmospheric channel such as fog, smoke and temperature dependent turbulence. However, as the real outdoor atmosphere (ROA) is time varying and heterogeneous in nature as well as depending on the magnitude and intensity of different weather conditions, carrying out a proper link assessment under specific weather conditions becomes a challenging task. Investigation and modelling the ROA under diverse atmospheric conditions is still a great challenge in FSO communications. Hence a dedicated indoor atmospheric chamber is designed and built to produce controlled atmosphere as necessary to mimic the ROA as closely as possible. The experimental results indicate that the fog attenuation is wavelength dependent for all visibility V ranges, which contradicts the Kim model for V < 0.5 km. The obtained result validates that Kim model needs to be revised for V < 0.5 km in order to correctly predict the wavelength dependent fog attenuation. Also, there are no experimental data and empirical model available for FSO links in diverse smoke conditions, which are common in urban areas. Therefore, a new empirical model is proposed to evaluate the wavelength dependent fog and smoke attenuation by reconsidering the q value as a function of wavelength rather than visibility. The BER performance of an FSO system is theoretically and experimentally evaluated for OOK- NRZ, OOK-RZ and 4-PPM formats for Ethernet line data-rates from light to dense fog conditions. A BER of 10-6 (Q-factor ≈ 4.7) is achieved at dense fog (transmittance, T = 0.33) condition using 4-PPM than OOK-NRZ and OOK-RZ modulation schemes due to its high peak-to-average power ratio albeit at the expense of doubling the bandwidth. The effects of fog on OOK-NRZ, 4-PAM and BPSK are also experimentally investigated. In comparison to 4-PAM and OOK-NRZ signals, the BPSK modulation signalling format is more robust against the effects of fog. Moreover, the effects of using different average transmitted optical communication powers Popton the T and the received Q-factor using the OOK-NRZ modulation scheme are also investigated for light and dense fog conditions. The results show that for an FSO system operating at a Q-factor of 4.7 (for BER = 10-6), the required Q-factor is achieved at T of 48% under the thick fog condition by increasing Popt to 1.07 dBm, whereas the values of T are 55% and ~70% for the transmit power of 0.56 dBm and -0.7 dBm, respectively. The experimental characterisation and investigation of the atmospheric turbulence effect on the Ethernet and Fast-Ethernet FSO link is reported using different modulation schemes. The experiment is carried out in a controlled laboratory environment where turbulence is generated in a dedicated indoor atmospheric chamber. The atmospheric chamber is calibrated to mimic an outdoor turbulence conditions and the measured data are verified against the theoretical predictions. The experiment also demonstrates methods to control the turbulence levels and determine the equivalence between the indoor and outdoor FSO links. The results show that the connectivity of Ethernet and Fast-Ethernet links are highly sensitive to atmospheric turbulence. The results also show that the BPSK and OOK-NRZ modulation signalling formats are more robust against the weak atmospheric turbulence conditions than PAM signal

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    Advanced adaptive compensation system for free-space optical communications

    Get PDF
    Massive amounts of information are created daily in commercial fields like earth observation, that must be downloaded to earth ground stations in the short time of a satellite pass. Today, much of the collected information must be dropped due to lack of bandwidth, and laser downlinks can offer tenths of gigabits throughput solving this bottleneck limitation. In a down-link scenario, the performance of laser satellite communications is limited due to atmospheric turbulence, which causes fluctuations in the intensity and the phase of the received signal leading to an increase in bit error probability. In principle, a single-aperture phase-compensated receiver, based on adaptive optics, can overcome atmospheric limitations by adaptive tracking and correction of atmospherically induced aberrations. However, under strong-turbulence situations, the effectiveness of traditional adaptive optics systems is severely compromised. In such scenarios, sensor-less techniques offer robustness, hardware simplicity, and easiness of implementation and integration at a reduced cost, but the state-of-the-art approaches still require too many iterations to perform the correction, exceeding the temporal coherence of the field and thus falling behind the field evolution. This thesis proposes a new iterative AO technique for strong turbulence compensation that reduces the correction time, bridging the limitation of similar systems in lasercom applications. It is based on the standard sensor-less system design, but it additionally uses a short-exposure focal intensity image to accelerate the correction. The technique combines basic principles of Fourier optics, image processing, and quadratic signal optimization to correct the wave-front. This novel approach directly updates the phases of the most intense focal-plane speckles, maximizing the power coupled into a single-mode fiber convexly. Numerical analyses show that this method has a robust and excellent performance under very strong turbulence. Laboratory results confirm that a focal speckle pattern can be used to accelerate the iterative compensation. This technique delivers nearly twofold bandwidth reduction compared with standard methods, and sufficient signal gain and stability to allow high throughput data transmission with nearly error-free performance in emulated satellite downlink scenarios. A property highlight is the in-advance knowledge of the required number of iterations, allowing on-demand management of the loop bandwidth in different turbulent regimes. Besides remaining conceptually and technically simple, it opens a new insight to iterative solutions that may lead to the development of new methods. With further refinement, this technique can surely contribute to making possible the use of iterative solutions in laser communicationsSatélites de observación de la tierra diariamente generan gigantescas cantidades de datos que deben ser enviados a estaciones terrenas. La mayoría de la información recolectada debe desecharse debido al reducido tiempo visible de un satélite en movimiento y el limitado ancho de banda de transmisión. Enlaces ópticos pueden solucionar esta limitación ofreciendo multi-gigabit de ancho de banda. Sin embargo, el desempeño de un downlink laser está limitado por la turbulencia atmosférica, la cual induce variaciones en la intensidad y la fase de la señal recibida incrementando la probabilidad de error en los datos recibidos. En principio, un receptor basado en una apertura simple utilizando óptica adaptativa puede corregir las aberraciones de fase inducidas por la atmósfera, mejorando el canal de transmisión. Sin embargo, la eficiencia de los sistemas de óptica adaptativa tradicionales se ve seriamente reducida en situaciones de turbulencia fuerte. En tales escenarios, técnicas iterativas ofrecen mayor robustez, simplicidad de diseño e implementación, así como también facilidad de integración a un costo reducido. Desafortunadamente, dicha tecnología aún requiere demasiadas iteraciones para corregir la fase distorsionada, excediendo el tiempo de coherencia del frente de onda. Esta tesis propone una nueva técnica iterativa de óptica adaptativa capaz de reducir el tiempo de convergencia en escenarios de turbulencia fuerte. La técnica utiliza el diseño tradicional de los sistemas de corrección iterativos, agregando el uso de una imagen focal de intensidad para acelerar el proceso de corrección del campo distorsionado. En dicha técnica se combinan principios básicos de óptica de Fourier, procesamiento de imagen, y optimización cuadrática de la señal para corregir el frente de onda. De esta forma, la fase de los puntos focales de mayor intensidad (speckles) puede modificarse directamente y con ello maximizar de forma convexa la potencia acoplada en fibra. Los análisis numéricos demuestran robustez y un excelente desempeño en escenarios de turbulencia fuerte. Los resultados de laboratorio confirman que el moteado de intensidad puede utilizarse para acelerar la corrección iterativa. Esta técnica utiliza la mitad del ancho de banda requerido con la técnica tradicional, al mismo tiempo que ofrece suficiente ganancia y estabilidad de la señal para lograr enlaces ópticos con muy baja probabilidad de error. Al mismo tiempo, la técnica propuesta permite conocer con anticipación el número total de iteraciones y posibilita la administración bajo demanda del ancho de banda requerido en diferentes escenarios de turbulencia. Esta tesis ofrece una mirada diferente a los métodos iterativos, posibilitando el desarrollo de nuevos conceptos y contribuyendo al uso de soluciones iterativas en comunicaciones laser por espacio libre.Postprint (published version

    Modeling and estimation of scattering attenuation and scintillation effects on optical wireless communication systems in South Africa.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Optical wireless communication (OWC) is a viable complementary solution for next-generation communication networks saddled with meeting the great demands of high data rates and fast internet connectivity. Its numerous advantages include: high data throughput; secure transmission; license-free spectrum; relative low cost of deployment; flexible network connectivity; etc. However, OWC system performance is severely degraded by atmospheric conditions such as fog and scintillation. Most of the proposed FSOC and hybrid FSOC systems in the literature are limited in their capacity to predict the extent to which atmospheric disturbances will impact on the performance of FSOC links in each location where they are to be deployed. This is because of the complexities involved in accessing and analyzing the information on the unique meteorological and climatic characteristics of the locations of interest prior to FSOC link deployment. This important information is necessary for determining the fade margin required by FSOC systems to withstand atmospheric disturbances in various locations of deployment. The effects of other atmospheric conditions such as gas absorption, molecular scattering, and aerosol absorption on the transmission wavelengths of interest (850 and 1550 nm) are negligible, and as such, were not considered in this study. This research, therefore, focuses on the investigation and modeling of scattering attenuation and irradiance fluctuations based on the unique climatic peculiarities of nine major cities in each of the provinces of South Africa where OWC links are to be deployed. These cities are Bloemfontein, Cape Town, Durban, Johannesburg, Kimberley, Mafikeng, Mbombela, Polokwane, and Port Elizabeth. Meteorological data of visibility, wind speed, relative humidity, temperature, fractional sunshine, and atmospheric pressure from 1st January 2010 till 30th June 2018, for each of the locations of interest, are statistically processed and used in the investigation, estimation, and modeling of atmospheric phenomena affecting the performance of OWC signals. To achieve this, visibility modeling and prediction for OWC systems are performed using regression analysis. The results obtained show that various simple and multiple linear regression models reliably forecast visibility from other meteorological parameters considered in this study. The model's selection may be influenced not only by its performance but also by the parameters' availability. While caution is taken to avoid model over-specification, multiple linear regression models are preferable over simple regression models. The significance of the results obtained is the validated alternatives the simple and multiple linear regression models provide while saving costs and avoiding the complexities of measuring FSO visibility in the investigated locations. The relationship between atmospheric visibility and aerosol scattering attenuation has been established by various aerosol scattering models based on the Mie scattering theory. This is made possible because the radii of aerosol particles in the atmosphere are approximately equal to the infra-red wavelengths of optical signals. Thus, the cumulative distribution of visibility and aerosol scattering attenuations based on the Ijaz fog and Kim models for transmission wavelengths of 850 and 1550 nm in nine cities in South Africa are presented. The Ijaz fog and Kim models are also used in computing the probabilities of exceedance, deceedance, and encountering of different aerosol scattering attenuations for 850 and 1550 nm. The impact of these specific attenuations on free space optical communication (FSOC) link performance are investigated for all the various locations of interest. The results show that during foggy weather, the optical signals transmitted at 1550 nm encounter more scattering attenuation than those transmitted at the 850 nm wavelength. The reverse is the case during clear weather periods. Modeling of the minimum required visibility cumulative distribution functions (CDF) during foggy and clear weather conditions for both optical wavelengths is also presented. These CDFs are employed in evaluating the FSOC link availabilities in various cities in South Africa

    Performance of wireless optical telecommunication systems in the presence of fading and interference

    Get PDF
    Postojeći komunikacioni sistem u domenu RF elektromagnetnog spektra nije u mogućnosti da zadovolji sve potrebe brzog i obimnog prenosa podataka, koje se javljaju usled ekspanzije i sve veće upotrebe IoT uređaja, 5G i B5G mreža, kao i raznovrsnih aplikacija i multimedijalnog sadržaja. Optička bežična komunikacija (OWC), koja koristi veliki opseg nelicenciranog dela spektra, se pokazala kao dobra alternativa za ublažavanje nedostataka konvencionalnog sistema za prenos podataka koji radi u RF domenu. FSO (Free Space Optics) tehnologija predstavlja jednu od vrsta optičkih bežičnih komunikacija, ima veliku upotrebu u LAN i MAN mrežama , bežičnom video nadzoru, koristi se u medicinske svrhe, u svemirskoj komunikaciji, za rešavanje problema poslednje milje itd. Primena bežičnih komunikacija, znatno može da doprinese performansama sistema, i to u smislu spektralne i energetske efikasnosti kao i u smislu pouzdanosti. U disertaciji je u cilju utvrđivanja optimalnog scenarija prijema signala, kao i određivanja optimalnih vrednosti parametara takvog prenosa, izvršena analiza karakteristika bežičnog optičkog prenosa signala u prisustvu turbulencije i efekta greške pozicioniranja, koji se odvija pod kompozitnim uticajem navedenih smetnji. Za posmatrane scenarije prenosa razmatrane su standardne mere performansi sistema, kao što su srednja verovatnoća greške po bitu, posmatrana za odgovarajuće modulacione formate, kao i verovatnoća otkaza. Predstavljena su analitička i numerička rešenja problema, a uticaji pojedinih parametara sistema na performanse bežičnog optičkog prenosa prikazani su i grafički
    corecore