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ABSTRACT

M assive amounts of information are created daily in commercial fields like earth observation, that
must be downloaded to earth ground stations in the short time of a satellite pass. Today, much
of the collected information must be dropped due to lack of bandwidth, and laser downlinks can

offer tenths of gigabits throughput solving this bottleneck limitation. In a down-link scenario, the performance
of laser satellite communications is limited due to atmospheric turbulence, which causes fluctuations in the
intensity and the phase of the received signal leading to an increase in bit error probability. In principle, a
single-aperture phase-compensated receiver, based on adaptive optics, can overcome atmospheric limitations
by adaptive tracking and correction of atmospherically induced aberrations. However, under strong-turbulence
situations, the effectiveness of traditional adaptive optics systems is severely compromised. In such scenarios,
sensor-less techniques offer robustness, hardware simplicity, and easiness of implementation and integration at
a reduced cost, but the state-of-the-art approaches still require too many iterations to perform the correction,
exceeding the temporal coherence of the field and thus falling behind the field evolution.

This thesis proposes a new iterative AO technique for strong turbulence compensation that reduces the
correction time, bridging the limitation of similar systems in lasercom applications. It is based on the standard
sensor-less system design, but it additionally uses a short-exposure focal intensity image to accelerate the
correction. The technique combines basic principles of Fourier optics, image processing, and quadratic signal
optimization to correct the wave-front. This novel approach directly updates the phases of the most intense
focal-plane speckles, maximizing the power coupled into a single-mode fiber convexly.

Numerical analyses show that thismethod has a robust and excellent performance under very strong turbulence.
Laboratory results confirm that a focal speckle pattern can be used to accelerate the iterative compensation. This
technique delivers nearly twofold bandwidth reduction compared with standard methods, and sufficient signal
gain and stability to allow high throughput data transmission with nearly error-free performance in emulated
satellite downlink scenarios. A property highlight is the in-advance knowledge of the required number of
iterations, allowing on-demand management of the loop bandwidth in different turbulent regimes. Besides
remaining conceptually and technically simple, it opens a new insight to iterative solutions that may lead to the
development of new methods.

A specific challenge remains to be the real-time functioning of the technique. A first approach for the dynamic
wave-front correction was proposed and partially validated, but several potential alternatives are on the table. A
dedicated control algorithm must be developed accordingly. With further refinement, this technique can surely
contribute to making possible the use of iterative solutions in laser communications.
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PROLOGUE

F ree-space optical communications (FSOC) is the solution to today’s and future bandwidth requirements
in several civil and military telecommunications areas. This claim was arguably twenty years ago when
the technology andmethods were not mature enough to confidently assure the viability of this technology

against the robust performance of RF systems. Since then, and especially in the last decade, free-space laser
communications (Lasercomm) has evolved at a very fast paced. Nowadays, it orients to be complementary with
RF systems, using laser wireless for backbone applications and RF as a backup hybrid system and end-user
links, especially in remote areas.

Commercial applications like earth observation demand very high throughput channels to download the
massive amount of information collected by different satellite payloads. Radio channels are limited in bandwidth;
thus several satellite passes are required which results in the necessity of onboard large storage capacity. A huge
operational and economical benefit may result from the possibility of solving this bandwidth limitation. The
use of laser links can provide sufficient bandwidth, but it also faces natural-imposed constraints. This limitation
is associated with strong turbulence, particularly at lower satellite elevations. Establishing a robust laser link
under such conditions is important because most of the flying time of a satellite occurs below 30° (or 60° Zenith
angle). At such elevations, the laser beam travels long distances and the cumulative effect of the turbulence
induces strong amplitude and phase distortion in the wave-front. These distortions affect the beam focusing
leading to signal fading. High data throughput above 10 Gbps, require a stable and efficient single-mode fiber
coupling that allows the integration of fiber-based components, like optical amplifiers and coherent receivers.
By integrating coherent systems advance modulation formats can be used, further increasing the transmission
data rates. Undoubtedly, beam wave-front correction is required to improve the power coupling, reduce the
signal variance, and benefit from the satellite seeing and downloading time. Consequently, technologies like
adaptive optics become relevant.

Adaptive optics (AO) is a technique that corrects the wave-front distortions induced by the atmosphere. It
essentially senses the distortionwith awave-front sensor and corrects it with a wave-front compensator. The state
of the art systems are generally a heritage from astronomy; thus they are designed for more friendly turbulence
regimes and suffer performance deterioration when facing strong turbulence. Alternatively, sensor-less systems
do not use complex and expensive wave-front sensors and iteratively optimize a performance metric, like power
coupled into the fiber. This technology is attractive for laser communications because it adaptatively maintain
high quality signal coupling, while being technically robust and simple. The principal problem is related to the
number of iterations required, which imply wave-front correction times that exceed the field coherence time.

The German Aerospace Center (DLR), and particularly the optical communications group at the Institute of
Communications and navigation (IKN), has been involved for more than two decades in the study and solutions
of problems related to free-space optical propagation and communications. My doctoral work originates from a
DLR project linked with the need to compensate the phase wave-front distortions induced by strong turbulence
in satellite-to-earth laser downlinks, and benefits from the extensive gathered experimental experience of this
group. This institution offers me unique facilities and laboratories to evaluate my findings and allow me to gain
technical expertise in the field. The doctorate program of the Department of Signal Theory and Communications
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of the Polytechnic University of Catalonia (UPC), under the supervision of Prof. Belmonte, gives me the ideal
scientific background and guidance in line with my project interest. This group has vast experience in optical
communications through the atmosphere, and Prof. Belmonte has experience developing alternatives adaptive
optics concepts for laser communications.

Framed within the above-described problem, previous attempts of strong turbulence compensation with
existing AO systems, have been addressed with partial success. In particular, iterative solutions have not really
evolved further from known approaches. Consequently, this thesis engages in the challenge of proposing a
new iterative adaptive optics method capable of solving the intrinsic time constraints of similar state of the
art solutions. It seeks to demonstrate that with reduced bandwidth, sufficient signal enhancement allows high
throughput data transmission. By doing so, this work tries to contribute with the possibility of establishing
robust laser links at lower satellite elevations. Last but not least, this work intends to offer a new insight to
iterative solutions, hopefully encouraging further development in the field.
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C h a p t e r 1

INTRODUCTION

T his chapter introduces the topic of this doctoral thesis and gives a conceptual overview of the effects
of the turbulence in a propagating beam, the turbulence compensation methods, and communication
systems involved in FSOC. The objective of this chapter is to introduce the reader to the topic and the

main areas addressed in detail in the following chapters. This chapter also presents the thesis objectives and
outline.
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1.1 The need for free-space optical communications

Free-space optical communications (FSOC) is rapidly becoming a key enabling technology for terrestrial,
aerial, and space communication networks. The fast progress of FSOC in the last decade and the recent
boost in research and commercialization of this technology has been driven by the rising demand in satellite
communication bandwidth and security.

The field of earth observation (EO) is nowadays experiencing a rocketing demand in the communication
bandwidth. Advanced payloads, like high-resolution cameras and synthetic aperture radar (SAR) systems,
generate massive amounts of information with daily volumes of 8 Tbpd (Terabits per day); estimating an
increment to 20 Tbpd by 2020 [6]. The download of such amount of information is limited by the short contact
time between the satellite and the ground station, and the radio channel capacity. Today, the most mature and
stable technology to download remote sensing information is radio link in X-band reaching up to 500 Mbps per
channel, or even 1 Gbps using orthogonal channels. Here, Quadrature Phase Shift Keying (QPSK) is a robust,
often adopted, carrier modulation scheme [6]. To fulfill future demand, the International Telecommunications
Union has allocated the Ka band (1500MHz bandwidth) to provide up to 3.5 Gbps downstreamwith orthogonal
channels [7]. However, the Ka band is affected more by the atmosphere and special care has to be taken with the
interference between flying platforms within the same spectrum. Because of the steady increase in the generated
data volume, this technology will soon be reaching its limits. Consequently, earth observation may certainly
benefit from stable and efficient laser downlinks between satellites and earth optical ground stations.

Optical systemswork at frequency ranges four orders of magnitude above the highest practical radio frequency
used in satellite communications. This terahertz-wide bandwidth offers the possibility of huge throughputs and
the capacity of multiplexing several gigahertz channels. Additionally, if one compares with the RF counterpart,
the short optical wavelength (typically 1064 and 1550 nanometers) allows equal signal gain with reduced optical
antenna size (i.e. telescope diameter) which saves weight in satellite payloads [8]. Optical systems also require
less transmission power, extending the life span of the satellite. The use of narrow beams results in better
power efficiency over long distances and minimum risk of interference, making it attractive for security sensitive
applications. The later also implies that no standardization is required, except for power safety concerns [9].

A huge operational and economical benefit may result from the possibility of using laser links instead of the
RF counterpart. The increment in bandwidth can minimize the storage requirements in the satellite and extend
its life span. This approach faces an important limitation that reduces the link availability. This limitation is
related to the strong turbulence at low LEO satellite elevations. Establishing a robust laser link under such
conditions is important because most of the flying time of LEO satellite occurs below 30° (or 60° Zenith angle).
At such elevations, the laser beam travels long distances and the cumulative effect of the turbulence induces
strong amplitude and phase distortion in the wave-front. Because of wave-front distortions, the focusing of the
beam results affected, leading to signal fading. High data throughput requires a stable and efficient single-mode
fiber (SMF) coupling that allows the integration of fiber based components, like optical amplifiers and coherent
receivers. Consequently, beam wave-front correction is required to improve the power coupling, reduce the
signal variance, and thus benefit from the satellite seeing and downloading time.

The following sections give a brief conceptual overview of the involved challenges and possible solutions,
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leading to the main objectives of this thesis.

1.2 Atmospheric channel limitations for lasercoms

A laser beam propagating from ground-to-satellite (uplink) or satellite-to-ground (downlink) through the atmo-
sphere face unique constraints associated with cloud blockade, absorption and scattering losses, and mainly due
to turbulence induced wave-front distortions.

Clouds attenuate the power of a laser downlink reducing the link availability. Ice clouds attenuate up to
15 dB/Km [10], while water clouds represent between 30 and 600 dB/km link power attenuation [11, 12].
This phenomenon varies by region and geographical position, thus Optical Ground Stations (OGS) should
preferably be located on a mountain top or in the Mediterranean and sub-tropic latitudes where clear skies are
more frequent [13]. To assure 100% availability, ground station diversity is used [14]. This concept implies
the distribution of the OGS in different locations, ensuring that when clouds block some stations, others are
available.

Atmospheric absorption and scattering occur when the laser beam interacts with various gas molecules and
aerosols particles. Beer’s law describes the losses due to these factors being wavelength dependent [15], from
which the atmosphere has the so-called atmospheric transmission windows. For the particular field of FSOC, the
preferred wavelengths span 780 - 850 nm (nanometer) and 1520 - 1600 nm. Today’s widely adopted wavelength
is 1550 nm due to the synergy with available transponders, amplifier, and detectors used in terrestrial fibered
networks. Luckily, 1550 nm coincides with a low atmospheric absorption region (0.2 dB/Km). More details
are given in chapter. 2.

The atmospheric turbulence represents the main limitation in free-space optical communications (FSOC),
and can be considered significative from ground level until the Tropopause (20 Km height), see Fig. 1.1. The
turbulence originates from heating and cooling of the earth’s surface during the day and the consequent energy
transfer to the air that eventually acquires motion [16]. Large spatial scale motion gradually breaks up into
smaller pockets of air of random sizes and temperature, called eddies. The differences in temperature alter the
air refractive index thus when a wave-front propagates through these eddies it suffers from localized alterations
in amplitude and phase. A laser uplink experiences the effect of the turbulence at the very moment it is emitted
from the OGS, thus it starts to spread and accumulate distortions from the beginning leading to larger losses
compared with the downlink case. As the source of distortion is close to the emitter, uplinks wave-fronts are
modeled as spherical waves [17]. The downlink beam propagates from the satellite with minimal losses until the
20 Km height. Alongside this path, the beam diverges as it propagates and the wave-front can be considered as
a plane wave by the time it reaches the Tropopause. From this point onward, until reaching the OGS, the beam
downlink experiences losses and distortions. These perturbations in the wave-front can be physically described
by Kolmogorov model [18]. The size difference between the eddies and the beam results in different effects on
the beam wave-front.

Beamwanderσ2
BW occurswhen eddies are larger than the beam size, having a net effect of randomdeflection of

the propagation direction. This phenomenon is amajor problem in uplinks since deviations of the beam trajectory
at the beginning of the path results in several hundred meters displacements at the receiver satellite position.
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Fig. 1.1: Representation of the atmospheric effects in an optical uplink/downlink.

Considering that a receiver aperture diameter is generally small and assumed as point source receiver, this
wandering of the beam produces slowly varying large dynamic range of the acquired signal power, see Fig. 1.1.

Beam spreading occurs when the eddies are smaller than the beam size, inducing diffraction and scattering
that distort the received wave-front.

Beam scintillation σ2
I happens when the eddies have sizes in the order of the beam dimensions. As mentioned

before, the eddies will act as lenses that will redistribute the beam energy, resulting in temporal and spatial
irradiance fluctuations of the received signal. This atmospheric effect is critical in FSOC uplinks where it gets
combined with the beam wander effects, impairing the communication performance. A method to mitigate the
scintillation effects and reduce the signal fading is called aperture averaging. This method is beneficial in FSOC
downlinks scenarios where OGS apertures are large, typically between 40 cm and 1 meter; thus the aperture
acts as a spatial filter of the irradiance and reduces the induced signal fluctuations. Uplinks use small receiver
apertures (≤ 10 cm) with little averaging effects; hence scintillation becomes a problem to solve.

Loss of spatial coherence of the beam also occurs when eddies have sizes in the order of the beam dimensions.
The beam experiences localized phase delays the alter the coherence of the propagating field. To quantify this
effect, Fried derived one of the most used parameters in atmospheric optics, the atmospheric coherent width r0

(Fried parameter). This metric describes the long-term turbulence impact on imaging systems [19]. Wave-front
distortions result from the cumulative effect of the turbulence, which is particularly strong at low elevations
since the laser beam must travel long distances. Consequently, the spatial coherence of the wave-front near the
zenith of an OGS will be larger (large r0) than near the horizon (small r0). By comparing r0 with the diameter
of the receiver telescope aperture D, the metric D/r0 indicates the degree of decorrelated regions embraced by
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the aperture, which is proportional to the degree of energy dispersion of the focused beam (speckled intensity
pattern). This particularly important and critical factor in laser communications downlinks induces variations of
the sensed power signal with a large dynamic range, which fluctuates in a time scale of a couple of milliseconds
quantified with the atmospheric coherent time τ0 (time between fully decorrelated field). This power fluctuation
develops into severe signal fading that impair the performance of the data transmission [16, 20]. The averaging
effect that benefits ground reception against scintillated fields comes at the expense of having larger portions of
the spatially distorted beamwave-front embraced by the aperture. Thismeans that larger D/r0 are representatives
of stronger turbulence effects in the received downlink signal. Instead, laser uplinks are very little affected by
the decoherence of the wave-front, since the receiver apertures are smaller than the coherence width of the
wave-front and only tilt angle of incidence is present.

All of these different metrics can be calculated from the refractive index structure parameter C2
n , which

quantifies the strength of the index of refraction fluctuation of the atmosphere at different heights. This profile
must be measured for the particular conditions of the OGS locations and different models are generally used,
like the Hufnagel-Valley. Details of the calculation and derivation of these parameters are given in chapter. 2.

The achievement of an efficient FSOC uplink and downlink involves different technical challenges and
these cases must be treated independently. This work focuses on the downlink case.

1.3 Communication systems in free-space optics

The optical communication systems employed in FSOC are the same to those used in fibered networks, and
the main difference rests on the free-space channel. In every communication system, the transmitter modulates
the information on a carrier whose properties are optimal for the transmission channel. The channel induces
unwanted effects in the signal which, once received, is demodulated to retrieve the information. The performance
of the communication depends on the right selection of themodulation/detection technique, based on the channel
characteristics. Detection techniques are vast, but they can be categorized into twomain groups: Direct detection
(incoherent) and coherent detection.

Direct detection (DD) systems collect and focus the received beam to a photodetector, which directly reacts
to the received signal power and converts it into an electrical signal. The principal advantage of direct detection
is its simplicity and the possibility of using larger photodetectors, so fiber coupling or adaptive compensation
systems are not required. The modulation format generally adopted is intensity modulation (IM), where the
carrier is switched on and off based on the digital data ’0’ and ’1’ (On-Off keying OOK), respectively. Due to
this, this type of scheme is known as intensity modulation/direct detection (IMDD). The detection of one and
zeros is performed in the electrical domain using thresholding; details are presented in Sec. 2.2.2.1. This is the
simplest modulation format, yet the most widely implemented in FSOC. As mentioned before, the turbulence
induces amplitude modulation (scintillation) and phase distortions (spatial field decoherence). The IMDD
scheme is insensitive to phase distortions since it only reacts to the changes on the beam wave-front intensity,
hence it is affected by strong scintillation. Because phase distortions do not impact on this communication
scheme, the receiver aperture can be enlarged to benefit from aperture averaging.

The IMDD scheme is generally employed for data rates up to 10 Gbps where larger photodetectors can
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still be used [21]. This data rate is not uniform in LEO downlinks scenarios. Typically, a LEO downlink to
an OGS starts the acquisition process at 5° elevation from the horizon and the communication process from
the 10° elevation towards the zenith. From the total seeing time of the satellite, 64% of the time occurs at
elevations between 5° and 20°, where longer optical paths imply higher power losses and stronger impact of the
atmospheric turbulence (strong scintillation). A conservative estimation of the use of IMDD for LEO downlinks,
only considering atmospheric attenuation effects, limits the data rates below 1 Gbps during 64% of the seeing
time, reaching the 10 Gbps at around 70° of elevation [21].

Higher data rates and better spectral efficiency can be achieved with coherent systems. These systems
modulate the amplitude, frequency, phase, and polarization of the carrier with the so-called IQ-modulator,
composed of two Mach-Zehnder modulators (MZM) operating in different configurations. The signal carrier
(laser) is split and delayed, sent to each MZM, and modulated with the information signal. After that, the
modulated carrier is combined, amplified and sent to the free-space channel; details in Sec. 2.2.1. In reception,
the received signal is combined with that of a local oscillator (LO). After combining both signals, the carrier is
down-converted to baseband (homodyne), or to an intermediate frequency (Heterodyne-Intradyne) from which
further signal processing is performed to extract the information. One of the main advantages of coherent
reception is that the power of the local oscillator signal can be incremented to improve the detection of weak
signals. In addition, the fact of being able to combinemodulation states like amplitude and phase simultaneously,
allows to encode several bits within few symbols, thus the spectral efficiency is drastically increased [22, 23].
Two very efficient modulation formats are BPSK and QPSK, where 2 and 4 states of the carrier phase (symbols)
are changed to represent 1 and 2 bits per symbol, respectively.

In the absence of turbulence, like inter-satellite links, homodyne detection is possible since the precise
synchronization of the received and LO signal can be performed with a fine Phase Locked Loop (PLL) stage. In
the presence of turbulence, the wave-front phase distortions make this task increasingly difficult, and practically
impossible under strong turbulence regimes. Consequently, heterodyne and mainly intradyne receivers are
adopted. Here, the downconversion of the carrier frequency to a lower intermediate frequency allows the
use of digital signal processing for the correction of the atmospherically induced phase distortions in the data
signal [24]. However, an efficient single mode fiber (SMF) coupling is required for the implementation of such
coherent schemes. Due to this, phase wave-front distortions become relevant as they affect the efficiency of
fiber coupling, especially in regimes of strong turbulence. This has been one of the main factors limiting the
use of such high-efficient schemes in FSOC.

The table 1.1 shows different satellite missions of Asia, USA, and Europe employing lasercoms. Clearly,
IMDD has been the preferred scheme in most of the missions. Paying attention to the data rates, most of
them perform bellow 1 Gbps, except for the OSIRISv3 (DLR) mission that reached 10 Gbps data downstream.
TerraSAR-X (DLR) and EDRS/Copernicus (ESA) are the very fewmission testing BPSK coherent transmission,
mostly for inter-satellite links. Other modulation schemes are Pulse Position Modulation (PPM) [25, 26] and
Differential Phase Shift Keying (DPSK) [27], not discussed here.

To fully benefit from the spectral efficiency of coherent BPSK or QPSK schemes in all the flying path
of a LEO satellite downlink, the adaptive compensation of the turbulence-induced wave-front distortions
needs to be addressed.
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 ASIA USA EUROPA 

FSOC 
Satellite 
Missions 

1994:  
ETS-VI  
(NICT)  

GEO-GND  
0.8-0.5µm, 1Mbps 

 

IMDD 

1995:  
GOLD  

(NASA JPL)  
GEO-GND  

0.8/0.5µm, 1Mbps 

IMDD 

2001:  
SILEX  
(ESA)  

GEO-LEO, GEO-GND 
GEO-Air  

0.8µm, 50Mbps 

IMDD 

2006:  
OICETS 

(JAXA/NICT)  
LEO-GEO, LEO-

GND  
0.8µm, 50 Mbps 

IMDD 

2000:  
STRV-2  
(BMDO),  

LEO-GND, Failure 
0.8µm, 1.2Gbps 

IMDD 

2008:  
TerraSAR-X  

(DLR)  
LEO-LEO, LEO-GND 

1.06µm, 5.6Gbps 

Homd. 
BPSK 

2011:  
HY-2  

(China)  
LEO-GND  

1.5µm, 504Mbps 

IMDD 

2008:  
NFIRE  
(MDA)  

LEO-LEO  
1.06µm 5.6Gbps 

Homd. 
BPSK 

2011:  
BTLS  

(Russia)  
ISS-GND  

1.55µm/0.85µm, 125Mbps 

IMDD 

2014: 
SOCRATES/SOTA 

(NICT)  
LEO-GND 

0.98/1.5µm, 10Mbps 

IMDD 

2013: LLCD  
(NASA GSFC)  
Lunar-GND  

1.5µm, 622Mbps 

PPM 

2013-2016: 
EDRS/Copernics  

(ESA)  
GEO-LEO, GEO-GND 

1.06µm, 1.8Gbps 

Homd. 
BPSK 

2016:  
QKD satellite  

(China)  
BB84 

0.85/0.532/0.671µm 

 

2014:  
OPALS  

(NASA JPL)  
ISS-GND  

1.5µm, 30-50Mbps 

IMDD 

2016-2019:  
OSIRISv1-3  

(DLR)  
LEO-GND  

1.5µm, 20M-10Gbps 

IMDD 

2017: 
RISESAT/VSOTA 

(NICT)  
LEO-GND 

0.98/1.5µm, 1kbps 

IMDD 

2015:  
OCSD-A  

(Aero. Corp.)  
LEO-GND, Failure 
1.5µm, 5-50Mbps 

IMDD 

2017:  
EDRS-C  

(ESA) 
GEO-LEO  

1.06µm, 1.8Gbps 
  

Homd. 
BPSK 2019:  

JDRS  
(JAXA)  

GEO-GND 
1.5µm, 1.8Gbps 

 

DPSK 

2016:  
OCSD-B&C  
(Aero. Corp.)  

LEO-LEO, LEO-GND  
1.5µm, 5-200Mbps 

IMDD 

2018:  
LCRD  

(NASA GSFC)  
GEO-LEO, GEO-GND 
1.5µm, 2.8G/622Mbps 

  

DPSK 
/PPM 

 

Table 1.1: List of satellite mission equipped with laser links, highlighting the modulation format and data rate.
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1.4 Adaptive turbulence compensation in lasercoms

The main challenge to establish a high-performance optical link is the atmospheric turbulence. As mentioned
before, when the propagating laser beam passes through a region affected by turbulence, changes in the index of
refraction distort the phase-front leading to intensity fluctuations (focal speckles). Ideally, a plane phase-front
passing through the focusing optics of the receiver telescope results in a perfect airy pattern, and coupling into
a single-mode fiber is achieved with a theoretical coupling efficiency of ≈ 81 %. When the turbulence distorts
the phase-front, the focused light results in a spreading spot, the power fluctuates randomly every millisecond,
and an efficient focusing cannot be achieved. This randomly varying speckle limits the use of higher modulation
schemes like BPSK and QPSK, which require an efficient single mode fiber (SMF) coupling.

Adaptive optics (AO) techniques can be used to improve the performance of laser communication links. Its
main task involves sensing the phase wave-front of the received beam and controlling the shape of a deformable
mirror (DM),where the beam is reflected, in order to compensate andminimize the phase distortions. This allows
the focusing of the beam energy at the fiber core position. The DM is a micro-mechanical device composed
of a flexible membrane and an array of actuators that deform the membrane to mimic the distorted phase. The
distorted phase is estimated after capturing the beam with a wave-front sensor (WFS), and post-processing the
intensity information. Direct measurement of the phase is not possible and has to be estimated through intensity
measurements. As the field evolves in time, these systems run in a real-time closed-loop following the field
evolution dynamically. An AO system typically consists of a wave-front sensor, a separated tilt mirror to correct
for the angle of incidence of the beam, a deformable mirror to correct the higher order phase distortions, and a
control algorithm running in a PC o similar platform.

In FSOC, a perfect wave-front correction is not required, like in imaging applications or astronomy. Instead,
a partial phase correction seeks to overcome coupling losses that may limit the feasibility of communication
due to link budget limitations and strong fading. The partial correction of the wave-front distortions needs to
consider a trade-off between power coupled into a SMF and complexity of the AO system. The received beam
from LEO satellite downlink shows various degrees of phase distortions, phase singularities (abrupt 2π phase
dislocation), and scintillation levels during the satellite pass. The time required for the wave-front correction
is defined by the coherence time of the field τ0, and it ranges between 2 and 0.5 milliseconds for elevation
between 5 and 60 degrees, respectively [28]. These values include the effect of the slew rate of the satellite and
the atmospheric wind. For a geostationary (GEO) satellite communications an important limiting factor is the
low received power. Thus, an AO system for satellite optical communications must be efficient in all turbulent
regimes, particularly robust under strong wave-front fluctuations, and able to work with low received power.

Adaptive optics systems applied in astronomy, the closest comparable scenario, use traditional WFS like
Shack-Hartmann (SH) and interferometers. Both approaches fall within the category of direct methods and
perform satisfactorily as long as the turbulence level is moderate (up to 30 degrees elevation). The low beam
elevation involved in FSOC makes the phase sensing process very difficult due to the strong scintillation and the
occurrence of branch points. When a SH system is used in such scenarios, the phase estimation leads to errors
and the performance deteriorates [29], this is because branch points deviate the focusing of the lenslet array to
the CCD region corresponding to a neighboring lenslet, leading to a wrong estimation of the local tilt [30–33].
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A system based on an interferometer usually involves complex hardware that needs to be carefully adjusted
and also has difficulties with scenarios of low received power, like GEO-earth downlinks. Both approaches are
seriously limited by phase singularities and/or strong scintillation. Another approach involves working on the
focal plane, one method is called phase diversity and curvature sensors, where images in focus and defocus are
combined to recover the phase distribution [34–36]. This involves the capture of more than one image during
the correlation time, which happens to be in the order of milliseconds, and implies the use of very fast infrared
cameras which need to be able to work in the kilohertz range. Details of these sensors are given in Sec. 3.1.3.

Alternatively, the WFS can be suppressed by driving the DM using a direct system performance metric opti-
mization, also known as sensor-less adaptive optics. Here, the control of the wave-front corrector is performed
by a blind (model-free) optimization of a system performance metric, e.g., power in the bucket, the Strehl
ratio, or the power coupled in the fiber. Two different blind search approaches are generally considered. The
zonal approach randomly changes the states of single DM actuators in searching for optimal power coupling;
the modal approach shapes all actuators at once, following an orthogonal modal basis (e.g., Zernike polyno-
mials) [37]. Because of the development of efficient control algorithms such as stochastic parallel gradient
descent (SPGD) [38,39], and their implementation using parallel processing hardware based on very-large-scale
integration (VLSI) micro-electronics, plus the progress in the development of high-bandwidth wave-front phase
controllers such as micro-mechanical systems (MEMS)-based deformable mirrors, it is now feasible to develop
AO systems for FSOC without a WFS [40, 41]. These methods have as a main drawback the longer response
time for convergence, since each actuator of the DM is randomly moved until the convergence is reached [42].
Typical iteration numbers for a good coupling efficiency range from 500 to 1000 and even 3000, which are not
suitable for scenarios of high turbulence with time constraints in the millisecond range. Recent progress has
reduced the number of iterations to around 100 [37], but still, the system must have effective loop bandwidths
above 100 kHz. These bandwidths requirements are limited by the capacities of today’s DM and the complexity
of control systems running at such frequencies.

To the present, the SH-based solution remains to be the preferred WFS adopted by the FSOC community,
mainly due to its technological maturity and relative hardware complexity. Using this technique, successful
optical downlinks achieving Gigabits data rates under weak to moderate turbulence have been recently demon-
strated [43–47]. However, the sensor-less approach is attractive for free-space optical communications
due to its robustness under all levels of turbulence strengths. It also offers hardware simplicity, power
efficiency, and easy integration in existing AO systems. A reduction in the convergence time may bridge
this fundamental limitation making possible its use in FSOC systems.

1.5 Thesis objectives

The German Aerospace Center (DLR), and particularly the optical communications group at the Institute of
Communications and navigation (IKN), has been involved for more than two decades in the study and solution
of problems related to free-space optical propagation and communications. My doctoral work originates from
a DLR project seeking to establish a robust laser downlink from LEO satellites used for applications like earth
observation (EO), as well as Aircraft-to-Ground and GEO-to-Ground links. Taking a direct-to-earth downlink
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Fig. 1.2: Standard AO solutions employed in FSOC perform efficiently in weak and moderate turbulence, which tends to occur above the 30° elevations
of a beam downlink. At lower elevations, the turbulence effect are stronger and an alternative AO system is required.

from LEO satellites as an example, it involves different link elevations with varying distances and turbulence
regimes. As introduced in the previous sections, the main limitation is represented by the scenarios of strong
turbulence at lower elevations (<30°) where the turbulence is considered strong. Under such turbulence regimes,
the degree of amplitude and phase distortions in the beam wave-front seriously impair the communication
performance. Considering that LEO satellites remain approximately 64% of the flying time below 20°, the full
potential of laser communications cannot be used unless the problem of wave-front correction is effectively
addressed. By improving the quality of the received beam, focusing of the light into a single mode fiber and the
consequent implementation of advanced modulation schemes, like BPSK and QPSK, is entirely feasible. The
possibility of using such modulation schemes allows transmission rates higher than 10 Gbps. Knowing that the
amount of generated information in applications like EO is expected to reach 20 Tb/day by 2020, and that RF
systems are reaching their limits, the necessity of a robust optical solution is evident.

As introduced before, adaptive optics is used in many fields to correct wave-front distortion, but the standard
techniques, like Hartmann-based AO systems, were designed for scenarios of moderate turbulence and more
relaxed time constraints. The level of scintillation, wave-front distortion, and phase singularities present in FSOC
impose limitations on those systems. Alternatively, iterative AO systems offer a good set of characteristics like
robustness in all turbulent regimes, hardware simplicity, easiness of integration and calibration, and low cost.
The principal limitation here is the long convergence time of the iterative process, which typically follows a
blind optimization of the power coupled in the fiber and thus it requires AO loops running at 100 KHz or more;
definitively non-practical with the state-of-the-art DM’s. Existing AO systems still are not fully reliable under
strong turbulence conditions. In particular, iterative solutions have not really evolved further and instead they
have been combined with conventional wave-front sensors, increasing the hardware complexity.
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The general objective of this thesis is to develop an adaptive optics solution for weak to strong turbulence
compensation focused on scenarios of laser downlinks between satellite/aircraft and earth ground stations.
The goal is to achieve SMF coupling with sufficient efficiency, meaning an improved gain and reduced signal
variance, allowing the use of advanced coherent modulation formats to achieve very high data throughput.
The solution needs to fulfill the requirements of an optical ground stations (OGS) for communications, which
requires a simple, robust, cost-effective, easy to integrate and calibrate AO system.

In line with these requirements, the proposed method does not use costly and complex wave-front sensors.
Instead, it benefits from the image information of the existing OGS tracking camera (speckled intensity pattern)
and the power coupled in the fiber, to perform a modal iterative correction of the distorted wave-front. The
proposed technique uses the spatial information of the speckle pattern and quadratic optimization of the coupled
power to reduce the convergence time of the iterative process within today’s DM capabilities. The final algorithm
can be classified as non-stochastic, non-blind but well-defined, resulting in a flexible and tractable AO method.

This thesis seeks to demonstrate the above-mentioned claims and intends to offer a new insight to iterative
solutions, hopefully encouraging further development in the field. The individual objectives to be addressed in
this work are described as follow:

• Analysis and modeling of the proposed speckle-based compensation method: First, the short-exposure
focal speckle pattern needs to be understood from the point of view of its intensity distribution. The
standard literature provides vast information of the speckle statistics treated as a whole, but there is less
information on the behavior of each single speckle, thus information of how the total intensity distributes
on each spot is needed. It is assumed that only the most intense speckle spots need to be treated to
achieve sufficient wave-front compensation [48,49]. The new technique departs from this assumption and
it is modeled and mathematically detailed, explaining the processes behind the possibility of using the
speckled intensity image to accelerate an iterative wave-front correction. The goal here is to show that
the unknown phase field in the pupil plane and the measured focal plane intensity pattern can be directly
linked, thus the speckle information can be used for the compensation of the field. Most importantly, this
work seeks to demonstrate that, in this model, the compensation process fulfill conditions of a convex
problem and each speckle can be adjusted with the quadratic optimization of the coupled power in the
fiber.

• Numerical analysis of the technique: A key characteristic of the technique is the optimization of each
speckle phase with only three power measurements (three iterations per speckle); this allows reducing
the total number of iterations proportionally to the number of treated speckles. The first objective here
is to verify this assumption and quantify the SMF coupling efficiency improvement with each corrected
speckle. As initially mentioned, efficient and stable fiber coupling allows the use of coherent modulation
formats to achieve very high data transmission throughput. The second objective seeks to estimate the
performance of the method in typical turbulent scenarios. The technique needs to be tested in scenarios
of weak to strong turbulence evaluating the signal gain and reduction in the signal variance within the
pre-established number of iterations.

• Experimental evaluation of the adaptation technique: The main objective in the experimental evaluation
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of the technique is to validate the assumptions and simulations previously made. A real-time working
prototype is out of the scope of this thesis. The laboratorywork tries to demonstrate that the speckle pattern
can be used to iteratively compensate the distorted field in different turbulent regimes, following a well-
defined, tractable, and non-blind approach. Mostly, it is intended to confirm that the model is technically
feasible and the system performance follows the expected trend with the correction of each focal speckle.
Additionally, the experiments tray to quantify the impact of the noise and laboratory hardware constraints
in the method, generally associated with technical limitations in the system implementation. Finally, it
is expected to obtain a better understanding of the processes involved to help in future developments and
the improvement of the technique and model.

• Experimental validation in a communication scenario: The final objective of this thesis involves the
validation of the AO system in a communication scenario. A coherent QPSK transmitter and receiver
is integrated with the AO system and the improvement in the channel quality is quantified trough mea-
surements of BER. The main goal is to verify that, in the presence of turbulence, the AO system can
sufficiently correct the induced wave-front distortion allowing a better SMF coupling and the consequent
multi-gigabit transmission. An in-depth investigation of coherent communications with adaptive optics
is out of the scope of this thesis; instead it is intended to demonstrate that the technique can, in principle,
cope with similar turbulent scenarios.

1.6 Thesis outline

This thesis is organized in seven chapters, included this introductory chapter. The general theoretical background
needed for this work is presented in Chapter 2. A discussion of different adaptive optics systems for FSOC is
given in Chapter 3. Each one of the objectives mentioned above is addressed in chapters 4 to 6, respectively.
The final conclusions are discussed in chapter 7. The main content of each chapter is detailed as follows:

• Chapter 2 provides a detailed theoretical background of the atmospheric effects on a propagating laser
beam. Here, all the relevant atmospheric parameters, conceptually introduced in chapter 1, are mathemat-
ically detailed and explained. The communication scenario and the building blocks of a typical system
are introduced. A description of the signal evolution from the transmission to the reception stage, as well
as the noise sources, is given. The incoherent and coherent modulator are presented, as well as their
correspondent demodulator. The standard metrics of BER, Strehl ratio, SNR, SMF coupling efficiency
are mathematically introduced, including the induced effect of the turbulent channel.

• Chapter 3 describes the standard adaptive optic system and main components. It gives an overview of
the relevant direct and indirect AO systems, describing their working principle and limitations in a FSOC
scenario. Finally, this chapter provides a comparison of these systems from the perspective of lasercoms.

• Chapter 4 presents the proposed speckle-based sequential iterative method for phase wave-front com-
pensation. First, an analysis of the speckled intensity pattern is performed, focusing on the intensity
distribution among the individual speckles. Then, the mathematical framework and processes of the
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adaptation technique and system are described. The main stages of the method for a plausible imple-
mentation are detailed. A numerical analysis of the performance is also presented in this chapter. The
technique is evaluated in terms of the SMF coupling efficiency versus loop bandwidth utilization (number
of required iterations), considering different turbulent scenarios typical of FSOC. Finally, a preliminary
concept for the dynamic correction of correlated fields is proposed and numerically evaluated.

• Chapter 5 presents the laboratory proof of concept. The optical setup, built to emulate a LEO downlink
scenario, is described. A characterization of the main hardware components is performed to define the
constraints and turbulence range for the experiments. The system is evaluated with decorrelated and
correlated fields in a non-real time regime, and the experiments target the validation of the numerical
analyses and the working principle presented in chapter 4, thus the same type of analyses are performed.
This includes an analysis of the loop bandwidth utilization of the method, and the performance against
signal noise. Finally, the proposed concept for the dynamic correction of correlated fields is experimentally
evaluated.

• Chapter 6 focuses on the integration of the AO system with a QPSK transmission system to test the
method in a communication scenario. First, an overview of the coherent QPSK transmitter and receiver
is presented, describing the main processes involved. Then, the integration of both system is explained
and the main building blocks of the coherent transmitter and receiver are described. Measurements of
BER are carried out considering a non-real time functioning of the system, and performing the correction
of uncorrelated and correlated fields. An analysis of the power requirements of the AO system versus the
communication system is also presented. Finally, an estimation of the BER performance in scenarios of
strong turbulence is carried out.

• Chapter 7 presents the final conclusions for each one of the initial objectives and the future work required
to improve the results obtained in this thesis.



C h a p t e r 2

FREE-SPACE LASER DOWNLINKS

Laser beams propagating through the atmosphere are affected by different phenomena that alter the
characteristics of the received wave-front. As introduced in the previous chapter, the impact of the
atmosphere on the beam wave-front can be quantified through several metrics, and the understanding

of them contributes to the development of an efficient solution.
When high data rates are intended in satellite-to-ground downlinks scenarios, an efficient and stable single-

mode fiber coupling is required. These wave-front amplitude and phase distortions induce strong fading in the
coupled signal, resulting in unacceptable bit error rates.

This chapter presents the challenges of free-space laser communications focusing on satellite-to-ground
links. It details the relevant turbulent effects affecting the laser beam wave-front, and it provides an overview of
the state-of-the-art optical transmission and reception systems employed in FSOC. The chapter also discusses
the benefits of beam wave-front compensation by quantifying the potential performance improvement through
communications metrics like SMF coupling efficiency, SNR, and BER.
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2.1 Atmospheric channel effects

The earth atmosphere is composed of a variety of gases, molecules, and particles trapped by its gravitational
field. It extends up to 700 Km stratified in several layers. The heaviest concentration of particles occurs up to
20 Km, which covers the Troposphere (≈ 11 Km) and the Tropopause (≈ 20 Km). When an infrared laser beam
travels through the atmosphere towards an optical ground station (OGS), it is affected by the linear phenomenon
of absorption, scattering, and refractive-index fluctuations due to atmospheric turbulence. Figure 2.2 represents
a propagating laser beam from the source to the optical detector, affected by the atmosphere.

Fig. 2.1: Representation of a free-space laser beam affected by the atmosphere. Design based on [1].

In a laser communication scenario, absorption and scattering as well as beam divergence attenuate the
received laser beam power, but the stronger deterioration of the performance of the communication is produced
by the atmospheric turbulence, inducing phase wave-front distortions and intensity scintillation that evolve into
signal fading.

Fig. 2.2: Representation of the transmitter, channel, and receiver in an FSOC system.

Figure 2.2 depicts a transmitted modulated signal ETX(t), being affected in amplitude and phase αch(t) by the
channel, leading to a received signal

ERX(t) = ETX(t)αch(t) (2.1)

αch(t) = αatm(t)exp( jφpt(t)) (2.2)

where the term φpt(t) represents a slowly varying phase offset of the signal induced by the so-called phase
wave-front piston. The combined effects of constant power attenuation due to absorption, scattering, and
beam divergence, together with the temporal amplitude fluctuations originated by scintillation effects and phase
wave-front distortions, are represented in αatm(t). The following sections further detail these concepts.
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2.1.1 Absorption and scattering

Absorption occurs when the energy of the photon is transferred to a gaseous molecule inducing kinetic energy.
Scattering is produced by certain air molecules and particles that are smaller (Rayleigh scattering) or of similar
size (Mie scattering) to the laser wavelength. The later affects the forward propagation direction of the beam,
and both phenomena are strongly dependent on the wavelength [20]. The overall effect produces the attenuation
of the beam and induces its divergence increasing the phase-front radius of curvature.

Fig. 2.3: Transmittance for the wavelength range of interest

Both phenomena are generally grouped as transmittance representing the atmospheric transmission over a
distance z. The transmittance τ is described by Beer’s law as

τ = exp[−αe(λ)z], (2.3)

where αe(λ) is the extinction coefficient composed of the absorption and scattering coefficients. Figure 2.3
shows the transmittance curve for the wavelength range 0.9-2.6 µm. The infrared spectra of the atmospheric
transmission was acquired with the Gemini observatory above the two identical 8 m telescopes at Mauna
Kea (Hawai) and Cerro Pachon (Chile), thus providing full coverage over the two hemispheres [50]. The
transmittance is high for the λ = 1.55 µm and λ = 1.064 µm wavelengths of interest.

The power loss at the position of the receiver is related, among other factors, to the beam divergence. The
divergence of the beam increases with the propagation distance resulting in an illuminated area larger than the
telescope aperture. The power loss can be quantified through the geometrical attenuation as

αdiv = 10log10

(
πΦ2

bz2

4Arx

)
[dB] (2.4)

where Φb ≈ λ/(πwb) is the beam divergence angle, the term wb is the beam waist radius, and Arx is the receiver
aperture size [51]. Note that this attenuation can be reasonably assumed as constant for a given link distance.
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2.1.2 Refractive index structure parameter

Random microscopic temperature fluctuations at different altitudes modify the refractive index of the media,
introducing changes in the wave-front characteristics. Temperature fluctuations are originated by air motion
due to winds and convection [20], where layers of air with different temperature and density are mixed, creating
continuous screens of spatially and temporally varying refractive index. Kolmogorov’s theory described these
effects in terms of large L0 and small l0 scale turbulent cells (eddies), see Fig. 2.2, fromwhere energy is cascaded
and finally dissipated [18]. These cells act as a series of lenses that deflect regions of the beam alongside the
transmission path. When a wave-front propagates through these turbulent layers, it experiences localized delays
distorting its phase. The degree of the wave-front deterioration is related to the cumulative effect of the different
refractive indices along the optical trajectory and thus longer paths represent the worst scenario. Tatarskii
employed Kolmogorov’s model to completely define the wave propagation through a turbulent medium [52].

The refractive index structure function Dn(ρ1,ρ2) characterizes the fluctuation of the refractive index n(ρ) at
different vector locations ρ [53]

Dn(ρ1,ρ2) = 〈|n(ρ1) − n(ρ2)|
2〉, (2.5)

where 〈 〉 represents the statistical average. Kolmogorov suggested that within the inertial sub-range l0 < ρ < L0

point separated a certain scale size exhibit statistical homogeneity and isotropy. Therefore, the refractive index
structure function depends only on the separation between points ρ = ρ2 − ρ1, and Dn(ρ1,ρ2) = Dn(ρ). Within
the range defined by the large L0 and small l0 scale turbulent cells, the Dn(ρ) is described by Kolmogorov’s
two-thirds power law

Dn(ρ) = C2
n (h)ρ

2/3, l0 < ρ < L0 (2.6)

where C2
n (h) is known as the refractive index structure parameter and indicates the strength of the turbulence at

a height h. Kolmogorov predicted turbulent power law distribution as

Φn(κ) = 0.033C2
n κ
−11/3, κ0 < κ < κl (2.7)

with spatial frequency κ11/3, being κ = 2π/l and l the size of the turbulent eddy. Here, k0 = 2π/L0 and
kl = 2π/l0 are the boundaries of the spatial spectrum. Roddier defined the phase power spectrum Φn(κ) as [54]

Φn(κ) = 9.7 × 10−3k2C2
n (h)dhκ−11/3 (2.8)

with k = 2π/λ being the wave number, and dh the turbulent layer width. The Φn(κ) can be related to the
statistical long term coherence width r0 of the distorted wave-front, which is of great practical utility when
it comes to evaluating the impact of the atmosphere in a propagating laser beam. Details are presented in
Sec. 2.1.3.1.

A measure of the amount of local refractive index inhomogeneities is represented with the index of refraction
structure parameter C2

n (h), which quantifies the turbulence strength over the height h. This parameter is
measured alongside the optical path based upon the location of the optical ground station (OGS), resulting in
several models adapted to the particular conditions of the place. The most popular model is the Hufnagel-Valley
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(HV) model

C2
n (h) = 0.00594(v0/27)2(10−5h)10exp(−h/1000)

+ 2.7 × 10−16exp(−h/1500) + Aexp(−h/100),
(2.9)

where h is in meters, v0 is the rms wind speed in meters per second, and A is the nominal value of C2
n (0) at the

ground in m−2/3. The v0 is calculated as

v0 =

[
1

15 × 103

∫ 20 × 103

5 × 103
V2(h)dh

]1/2

, (2.10)

where V2(h) is described by the modified Bufton wind model, which includes the term for the satellite slew rate

V(h) = vsrh + vg + 30exp

[
−

(
h − 9400

4800

)2
]
. (2.11)

Here, vg is the wind speed at ground level, and vsr represents the slew rate due to satellite displacement respect
to the ground station,

vsr =
Vsat
L

L2 + H2
sat + 2ReHsat

2L(Hsat + Re)
(2.12)

L =
[
(Hsat + Re)

2 − R2
ecos2(α)

]1/2
− Resin(α) (2.13)

The calculation of vsr requires the satellite velocity Vsat, satellite altitude above the ground station Hsat, and
the earth radius Re = 6378 Km. Based on the link elevation α [rad], the satellite distance L is approximated.
Figure 2.4 shows the turbulence strength profile HV5/7 for a satellite-to-ground link. The simulation assumes
daylight conditions A = 1.7 × 10−14, and rms wind v0 = 21 m/s.

Fig. 2.4: Turbulence strength profile HV5/7.

The behavior of the C2
n (h) varies during the day. The strongest optical turbulence happens near the ground

with values of 10−13 (nighttime) or 10−14 (daytime) m−2/3. The general behavior of C2
n (h) involves a decrease

with h above uniform ground at a rate h−4/3, and h−1/3 above complex terrain (mountains). At night the C2
n (h)

decreases at a rate h−2/3. Sunrise and Sunset experience absence of temperature gradient thus minimum values
of C2

n (h).
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2.1.3 Propagation effects

Turbulence-induced refractive index fluctuations are the primary phenomena affecting laser communications
by induced signal attenuation and fluctuation. The C2

n (h) parameter is crucial to characterize the effects of
the atmospheric turbulence in a propagating beam. The atmospheric coherence width r0 indicates the degree
of coherence of an aberrated phase wave-front. The coherence time τ0 quantifies how rapid the wave-front
decorrelates, which is required to design a compensation system. The beam scintillation index σ2

I indicates the
degree of irradiance fluctuation at the receiver plane. The phase piston φpt occur spatially in the wave-front at
a slower rate, and it induces signal phase shifts that may affect coherent communications. These concepts were
introduced in Sec. 1.2 and the following sections offer further details.

2.1.3.1 Atmospheric coherence width - Fried parameter

The atmospheric coherence width , commonly known as Fried parameter r0, it is a widely adopted metric to
evaluate the degree of distortion of the wave-front. It measures the coherence of the beam transversely and it
has units of length usually expressed in centimeters. In practice, it defines the diameter of a circular area over
which the rms wave-front aberration is equal to 1 radian.

Considering an optical Field P(ρ, L) after propagating a distance L to the receiver plane, with ρ being a
vector position in the traverse plane, the mutual coherence function (MCF) of the field can be defined as

Γ2(ρ1,ρ2, L) = 〈P(ρ1, L)P
∗(ρ2, L)〉, (2.14)

where ρ1 and ρ2 are points in the receiver transverse plane, and ∗ denotes complex conjugate. For identical
point ρ1 = ρ2, the MCF determines the mean irradiance of the received field. The loss of spatial coherence of
the field can also be estimated from the MCF. The modulus of the complex degree of coherence (DOC) can be
calculated as

DOC(ρ1,ρ2, L) = C(ρ1,ρ2, L) =
|Γ2(ρ1,ρ2, L)|√

Γ2(ρ1,ρ1, L)Γ2(ρ2,ρ2, L)
(2.15)

C(ρ1,ρ2, L) = exp
[
−

1
2

D(ρ1,ρ2, L)
]
, (2.16)

where D(ρ1,ρ2, L) is the wave structure function that, in a similar manner to the refractive index structure
function of Eq. (2.5), it quantifies the variance of the wave amplitude and phase at different points, represented
independently as

D(ρ1,ρ2, L) = Dχ(ρ1,ρ2, L) + DS(ρ1,ρ2, L). (2.17)

In Eq. (2.17) the first term Dχ(ρ1,ρ2, L) is the log-amplitude structure function due to scintillation, and
DS(ρ1,ρ2, L) is the phase structure function, which becomes dominant. Due to Kolmogorov assumptions of
isotropy and homogeneity, the structure function depends only on the separation between points ρ = ρ2 − ρ1,
and D(ρ1,ρ2, L) = D(ρ, L). From Eq. (2.16), the spatial coherence radius ρ0 is defined by the 1/e point of the
DOC or D(ρ0, L) = 2 [20].

Considering that an optical wave propagating from a satellite at an altitude H � 20 Km, enters the
atmospheric layer (at ≈ 20 Km) closely resembling a plane wave, the plane wave model is often assumed for
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laser downlinks. With this, the wave structure function can be expressed as [20]

D(ρ, L) = 2.91k2ρ5/3sec(ζ)
∫ H

h0

C2
n (h)dh (2.18)

where ρ is the separation between observation point, ζ = π/2 − α [rad] is the zenith angle, the satellite altitude
H = L(α)cos(ζ), and the wavelength of the light source λ is implicit in the wave number k = 2π/λ. To have a
D(ρ0, L) = 2, the coherence radius can be derived from Eq. (2.18) as

ρ0 =
©« cos(ζ)

1.45k2
∫ H

h0
C2
n (h)dh

ª®¬
3/5

. (2.19)

The atmospheric coherence width r0 is equal to r0 = 2.1ρ0 and results from the integration over theC2
n (h) profile

for a particular distance between the ground station altitude h0 and the satellite altitude H,

r0 =

[
0.423k2sec(ζ)

∫ H

h0

C2
n (h)dh

]−3/5

(2.20)

In Eq. (2.20), the r0 increases proportionally to λ6/5 of the laser beam and decreases with the zenith angle. From
the initial definition of the phase power spectrum, Eq. (2.8) can be written in as

Φn(κ) = 0.023r−5/3
0 κ−11/3 (2.21)

recalling κ11/3 as a spatial frequency with κ = 2π/l and l the size of the turbulent eddy. Since phase distortions
are dominant over log-amplitude fluctuations, DS(ρ) in Eq. (2.17) can be expressed as [55]

DS(ρ) = 2
∫ ∞

0
Φn(κ) (1 − cos (2πκρ)) dκ (2.22)

Fried simplified this expression for small ρ as [19]

DS(ρ � L0) = 6.88
(
ρ

r0

)5/3
, (2.23)

which converges for larger ρ to twice the wave-front phase variance σ2
S

DS(ρ � L0) = 2σ2
S . (2.24)

In laser communications, a widely used metric relates the telescope aperture diameter D with the r0 in the
so-called normalized aperture D/r0, which indicates the number of uncorrelated zones within the aperture size
in the pupil plane. At the focal plane of the optical system, this metric can be used to approximate the number of
dispersed focal intensity speckles M ≈ (D/r0)

2 of the focused beam, due to atmospheric phase distortion. The
higher the D/r0, the more disperse the focal energy and thus it is more difficult to couple the light into a fiber. A
value for the r0 and D/r0 for a LEO downlink at different satellite elevations is shown in Fig. 2.5. Considering a
standard OGS telescope aperture D = 40 cm for LEO optical ground stations, the expected values of normalized
aperture for satellite elevations from 10° to 90° range between D/r0 = 6 and D/r0 = 2, respectively. For GEO
satellites, the telescope apertures are typically D ≥ 1 m, the link elevations are above 30°, and turbulence is
weak, hence large r0 are expected.
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Fig. 2.5: Fried parameter and normalized aperture for different LEO-downlink elevations, considering a laser wavelength λ = 1.55 µm, D = 40 cm,
and the HV5/7 C2

n profiles of Fig. 2.4.

2.1.3.2 Greenwood time constant - Coherence time

The coherence time of the field τ0 is an important design parameter of a wave-front compensation system. This
parameter represents the time scale over which the phase wave-front can be considered to remain correlated,
with tolerable changes. Thus, the parameter τ0 defines the available time for the system to compensate for the
distorted beam. The field can be considered partially coherent within τ0 and uncorrelated for a time t > τ0.
Taylor’s frozen turbulence hypothesis considers a static field within this time frame, and this assumption is used
in wave-front compensation systems to define the required correction bandwidth. The reciprocal of τ0 is the
Greenwood frequency or bandwidth required for the compensation system. Likewise the r0, the coherence time

Fig. 2.6: Coherence time for a range of LEO-downlink elevations, considering a laser wavelength λ = 1.55 µm and the change in the rms wind due to
beam slew rate.
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is calculated with the turbulence profile as,

τ0 =

[
2.91k2

∫ L

0
C2
n (h)V

5/3(h)dh
]−3/5

, (2.25)

where k is the wave number, L is calculated with Eq. (2.13), and V(h) is the transverse wind speed as a function
of the propagation distance to the satellite. Alternatively, the τ0 can be approximated with the r0 and the rms
wind speed v0 as [56]

τ0 =
0.314r0

v0
. (2.26)

As shown in Fig. 2.6, the expected time scale of τ0 for laser downlinks in a moving satellite, ranges between
1.5 and 0.5 milliseconds for an increasing link elevation [28]. Note that the τ0 reduces towards the zenith due
to the increment in the slew rate of the beam.

2.1.3.3 Scintillation

Irradiance fluctuations (scintillation) in the receiver photodetector affects a communication link since the receiver
needs to cope with a large dynamic range of the received power. The scintillation index defines the normalized
irradiance variance of the optical wave,

σ2
I =
〈I2〉 − 〈I〉2

〈I〉2
=
〈I2〉

〈I〉2 − 1
(2.27)

where I [W/m2] is the irradiance of the optical wave or the intensity at the entrance pupil of the measurement
system [57], and 〈 〉 indicates the ensemble average. Note that the ensemble average is also the long-time
average for ergodic processes. The scintillation index for a plane wave under weak turbulence is equal to the
Rytov variance σ2

R, which defines the turbulence regime as weak (σ2
R � 1) and strong (σ2

R > 1)

σ2
I = σ

2
R = 2.25k7/6sec11/6(ζ)

∫ H

h0

C2
n (h)(h − h0)

5/6dh. (2.28)

In Eq. (2.28), k is the wave number, and ζ is the zenith angle. The weak fluctuation theory is applicable for
elevations above 30 degrees where turbulence moves towards the weak regime. The σ2

R can also be written
as [58]

σ2
R ≈ 1.23C2

n k(7/6)L(11/6) (2.29)

where L is the path length between the transmitter and receiver, given by Eq. (2.13). Scintillation develops
faster at lower elevations (below 30°) due to the long path and more accumulated turbulence effects. Here, the
Rytov approximation overestimates the scintillation index and the model must be extended. The scintillation
index σ2

I for all turbulence regimes, considering plane wave propagation and Kolmogorov turbulence ( l0 = 0
and L0 = ∞), is calculated as

σ2
I = exp


0.49σ2

R(
1 + 1.11σ12/5

R

)7/6 +
0.51σ2

R(
1 + 0.69σ12/5

R

)5/6

 − 1 (2.30)
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Fig. 2.7: Scintillation index for different LEO-downlink elevations, considering a laser wavelength λ = 1.55 µm, and rms wind v0 = 21 [m/s]. A
comparison with the Rytov variance shows the overestimation below 30° elevations.

Figure 2.7 depicts the scintillation index for a laser downlink of λ = 1.55 µm, at different satellite elevations,
considering theC2

n profile with a v0 = 21 [m/s]. Scintillation is particularly important in uplinks, since a satellite
receivers use smaller apertures. Larger OGS apertures produce an averaging effect that attenuates the effects of
the scintillation in laser downlinks. The reduction in the scintillation with the increment in the aperture size can
be calculated as [20]

σ2
I (D) = 8.70k7/6(H − h0)

5/6sec11/6(ζ)

x Re
∫ H

h0

C2
n (h)

[(
kD2

16L
+ i

h − h0
H − h0

)5/6

−

(
kD2

16L

)5/6]
dh,

(2.31)

where the ground station height h0 = 0, L is calculated with Eq. (2.13), and H = Lcos(ζ). A simpler
expression [58], extended from Eq. (2.30) and valid for plane wave propagation in horizontal and slant path, is
written as follows

σ2
I (D) = exp


0.49σ2

R(
1 + 0.65d2 + 1.11σ12/5

R

)7/6 +
0.51σ2

R

(
1 + 0.69σ12/5

R

)−5/6

1 + 0.90d2 + 0.62d2σ
12/5
R

 − 1 (2.32)

where d is related to the aperture diameter as

d =
√

kD2/4L (2.33)

Figure 2.8 shows the reduction in the scintillation with the increment in D for weak, moderate, and strong
turbulence, associated to link elevations of 70◦, 30◦, and 10◦, respectively. The curves are calculated with
Eq. (2.31) and the C2

n considers a rms wind v0 = 21 [m/s].

2.1.3.4 Irradiance probability density function

An important parameter for the design of a free-space communication system is not only the variance of the
irradiance σ2

I but also its distribution. Scintillation produces signal losses that may lead to fading and ultimate
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Fig. 2.8: Scintillation index variation with the aperture size D, and for LEO-downlink elevations spanning weak to strong turbulence. The simulation
considers a laser wavelength λ = 1.55 µm, and rms wind v0 = 21 [m/s].

interrupt the communication. The shape of the irradiance probability density function (PDF) indicates, to some
extent, the reliability of the communication system which is directly associated with the tail of the distribution.
For communication systems, underestimating this region has a negative impact on the performance as more
errors occur in the detection process [58].

Depending on the turbulence regime, the log-normal or the gamma-gamma distribution represents the
irradiance fluctuations. Log-normal distribution is used for weak turbulent regimes and it is defined as

pI (I) =
1

Iσ2
I (D)
√

2π
exp

−
(
ln

(
I
〈I 〉

)
+ 1

2σ
2
I (D)

)2

2σ2
I (D)

 , I > 0 (2.34)

where σ2
I (D) is the above-described aperture averaged scintillation index, and 〈I〉 is the mean intensity. When

the strength of turbulence increases, log-normal PDF underestimates the behavior of the tail as compared with
experimental data. The gamma-gammadistribution is used underweak and strong turbulence conditions [59–61].
It assumes that small-scale irradiance fluctuations are modulated by large-scale irradiance fluctuations of the
propagating wave, each one represented as an independent gamma distribution [58].

pI (I) =
2 (α1β1)

(α1+β1)/2

Γ (α1) Γ (β1)
I(α1+β1)/2−1Kα1−β1

(
2
√
α1β1I

)
, I ≥ 0 (2.35)

In Eq. (2.35), Γ(x) is the Gamma function and Ka denotes the modified Bessel function of the second kind and
order "a". Note that the parameters α1 and β1 indicates the number of small/large scale eddies of the turbulent
environment and are directly related to the atmospheric turbulence conditions as [59]

α1 =

exp
©«

0.49σ2
R(

1 + 0.65d2 + 1.11σ12/5
R

)7/6

ª®®¬ − 1


−1

(2.36)
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β1 =

exp
©«
0.51σ2

R

(
1 + 0.69σ12/5

R

)−5/6

1 + 0.90d2 + 0.62d2σ
12/5
R

ª®®¬ − 1


−1

(2.37)

where d stands for the averaging effect of the aperture, Eq. (2.33), and the Rytov variance σ2
R can be calculated

with Eq. (2.28). The pI (I) is used to estimate the bit-error-ratio (BER) in a communication system affected by
the turbulence, see Sec. 2.3.3.

2.1.3.5 Phase piston

Besides the high order transverse phase distortions in the beam wave-front, an additional phase fluctuation
alongside the propagation path is present. These phase changes are constant in the transverse plane, and thus
they do not alter the energy distribution of a focused beam. Instead, these phase changes are translated into the
signal affecting its phase, requiring some degree of compensation when working with coherent communication
systems.

The impact of the phase piston φpt in coherent data transmission during a Lasercom downlink was evaluated
by [62]. Here, the one-dimensional temporal power spectrum Lpst( f ) for a single turbulent layer is derived
considering Taylor frozen turbulence hypothesis, resulting in

Lpst( f ) ≈
0.055(2π)−2/3

(
2π
λ

)2
C2
n∆hV5/3 f −8/3

1 + 37.5D3
(
f
V

)3 (2.38)

where ∆h represents the thickness of the turbulent layer, f is the piston frequency, V is the wind velocity, and
D is the aperture diameter. In aggrement with [63], the authors in [62] concluded that, in an scenario
of FSOC downlink working with coherent reception, the induced phase due to atmospheric piston is
negligible since laser phase noise dominates. However, coherent receivers perform digital signal processing
to compensate the slow (≈ 4 Hz) and constant phase noise induced by atmospheric piston effects.

2.1.4 Emulation of the beam wave-front in a turbulent channel

To emulate the effects of the turbulent channel in the beam wave-front, the thin screen turbulent model is
widely used. Regarding the dynamic range of the irradiance fluctuations of a focused beam in a Laser downlink
scenario, the phase wave-front variance is considered to be the dominant factor over wave-front scintillation [58].
The reason is that laser downlinks require larger telescope apertures that produce an averaging of the intensity
scintillation, but exposes the optical system to a larger amount of field phase decoherence. Consequently, the
emulation of the turbulent channel effects can be done assuming a complex field with unitary amplitude A(r) = 1
and an aberrated phase ϕ(r) as

P(r) = A(r)exp( jϕ(r)), (2.39)

where r indicates a spatial coordinate. In this model, the aberrated phase can be created with the single-screen
phase method [54] which is well-suited for horizontal beam propagation. It is also widely used in slant-path
scenarios to approximate the effects of the turbulence in the wave-front. It is generally adopted because it
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gives more control over the type and magnitude of the aberrations involved, as it is purely based on the Zernike
polynomials orthogonal basis [64]. Also, it is simple to implement and allows fast generation of a large number
of uncorrelated fields. The general idea for the generation of single-phase screens is that a phase wave-front
ϕ(r) in the pupil plane can be modeled as a sum of nz Zernike polynomials Z l(r), each one weighted with a
Zernike coefficient cl, and pondered for the scenario D/r0 under test as

ϕ (r) =

(
D
r0

)5/6 nz∑
l=0
(clZ l (r)) . (2.40)

In Eq. 4.35 the weights are represented by a set of Karhunen-Loève coefficients, generated using the diagonalized
covariance matrix of the Zernike polynomials. Details are given in Sec. 4.3.1 for the numerical analyses.

2.2 Lasercom system in free-space

The transmission and reception of digital information over a free-space optical channel, requires the encoding of
the data in a suitable carrier (modulation), transfer of the signal through the channel, and finally reception, de-
modulation, and decoding of the data. The modulation formats can be broadly classified in binary and multilevel
(M-ary) schemes. Binary modulation refers to the encoding of the intended transmit signal, i.e. zeros and ones,
only in two level states of the wave carrier. The resultant modulation schemes can be differentiated based on
the modified carrier property, namely the amplitude (amplitude-shift keying ASK), frequency (frequency-shift
keying FSK), phase (phase-shift keying PSK), and polarization (polarization-mode-shift keying PMSK). In
addition, M-ary schemes use more than two carrier states to encode several bits into the so-called symbols, e.g.
two bits can be encoded in four phase states of the wave carrier (Quadrature phase-shift keying QPSK). In FSOC,
the transmitter and receiver systems use the same well-known methods adopted in fibered communications, but
atmospheric channel effects induce unwanted fluctuations in the received signal. As explained in Sec. 1.3, the
preferred scheme in FSOC is IMDD-OOK, but BPSK and QPSK can deliver substantial benefit in terms of
spectral efficiency, provided the sufficient mitigation of the atmospheric channel effects. The following sections
explain only the mentioned schemes. Figure 2.9 shows the main building block of a laser communication system
in free-space.

Fig. 2.9: Block diagram of a free-space optical system and main subsystems, including the transmitter, channel, and receiver, as well as main subsystems.
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The data is mapped and prepared for the constellation of the intended modulation format using a Digital
Signal Processing (DSP) stage. To drive the modulator, the digital signal is converted into the analog domain
using a digital-to-analog converter (DAC). The modulator is fed with a laser carrier Ein(t), on which it encodes
the digital information by altering the carrier amplitude, phase, frequency, polarization, or a combination of
them. Then, the modulated carrier signal Eout(t) is amplified ETX(t) and transmitted through the free-space
using a telescope-based optical system. While the beam propagates over the free-space channel, it results
affected in amplitude and phase by the atmospheric phenomena introduced in Sec. 2.1. The receiver system
captures the incoming beam with another telescope-based optical system; if necessary, it adapts and corrects
beam distortions using a wave-front correction stage, and delivers the received signal ERX(t) to the demodulator.
The demodulator retrieves the encoded signal IRX(t) which is then amplified with a transimpedance amplifier
(TIA) and converted into the digital domain using a analog-to-digital (ADC). Finally, and depending on the
modulation format, a DSP processes the signal to recover the synchronization, compensate for additional signal
imbalances, and correct induced phase and amplitude variations to retrieve the data.

The most adopted binary modulation scheme in FSOC is the intensity modulation and direct detection
(IMDD). The standard technique is known as on-off Keying (OOK), where the carrier is modulated on and
off based on the transmitted 1’s and 0’s, respectively. The received optical signal is then converted into the
electrical domain with a front-end photodetector and, after sampling, the bits are recovered using a threshold-
based decision circuit. Recently, coherent systems have been deployed and are being considered to achieve
higher data transmission rates. For example, binary PSK (BPSK) and quadrature PSK (QPSK) are coherent
modulation techniques that require the superposition of the received signal with the one of a local oscillator
(LO) for demodulation. These systems have more spectral efficiency and sensitivity than IMDD, at the expense
of higher complexity.

Before describing the modulation and demodulation processes of the carrier, let’s present the signals involved
in the whole transmission chain. The signal carried fed into the modulator, shown in Fig. 2.9, can be defined as

Ein(t) =
√

Psexp ( j [wst + φls(t)]) (2.41)

with signal input power Ps and frequency ws = 2πvs. A laser does not have a pure spectrum at the desired
frequency but instead there exist phase noise that widens it. This effect is characterized by the laser linewidth
∆v (at full width half maximum) and can be modeled as a laser phase variation φls(t) represented by Gaussian
random process of zero mean and variance defined by σ2

ls = 2π∆v(t). In this work, it is only considered a
carrier modulated in amplitude a(t) and/or in phase φs(t), thus the output signal from the modulator Eout(t) can
be written as

Eout(t) = a(t)
√

Psexp ( j [wst + φs(t) + φls(t)]) (2.42)

Amplification is required to deal with the expected signal losses, particularly the ones associated with the
atmospheric channel. A widely used amplifier is the Erbium-Doped Fiber Amplifier (EDFA), which amplifies
the C-band (λ = 1530 nm−1565 nm) and it is well suited for the transmission wavelength λ = 1550 nm used in
fibered optical communications. The amplification process provides a signal gain Ga but also introduces noise
nase due to the spontaneous emission process of the laser. Assuming Ga = 1 for mathematical simplicity, the
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output signal from the transmitter toward the free-space channel can be written as

ETX(t) = a(t)
√

Psexp ( j [wst + φs(t) + φls(t)]) + nase (2.43)

As initially introduced in Eq. 2.1, the received signal ERX(t) must consider the effects of the atmosphere in the
beam propagation

ERX(t) = ETX(t)αatm(t)exp( jφpt(t)) (2.44)

where αatm(t) represents the signal attenuation and temporal fluctuations induced by the beam divergence,
atmosphere scintillation, and higher order phase distortion; where exp( jφpt(t)) considers the atmospheric piston
effects in the signal phase. The induced signal fading due to scintillation can be mitigated using aperture
averaging. The wave-front phase piston becomes relevant in coherent transmission, as it induces a slow change
of the signal phase easily corrected with digital signal processing. The signal deterioration due to wave-front
phase aberrations represents the main limitation in laser downlinks, particularly in scenarios of strong
turbulence, and require the use of a wave-front compensation system. This work focuses on this particular
challenge.

The demodulation process introduces additional noise originated mainly in the photodetectors and amplifi-
cation stages. These additive noise sources are mainly thermal noise nT (dominant in direct detection) and shot
noise nns (dominant in coherent detection), which will combine with nase as

nAG = nase + nT + nns (2.45)

In addition, when considered a coherent system, a local oscillator signal is combined with the received signal.
This adds a complex term Ilo(t) =

√
Ploexp(− j(wlot + φlo)) where Plo, wlo, and φlo are the power, angular

frequency, and phase of the LO signal. The resultant signal current previous the ADC process is

IRX(t) ∝ αatm(t)a(t)
√

PsPloexp
(
j
[
wbt + ∆φ(t) + φls(t) + φpt(t)

] )
+ nAG, (2.46)

where wb = (ws − wlo) represents the beat frequency in a synchronous receiver, and ∆φ = (φs − φlo) the
correspondent phase shift between both signals. Then, as mentioned above, the overall signal needs to be
amplified with the TIA, sampled with an ADC, and sent to the DSP for data recovery. The following subsections
detail the generation of these signals in the transmission/reception process. Amplification and sampling stages
are omitted.

2.2.1 Modulator

The modulation process implies the controlled change of some signal carrier properties in order to represent
bits of information. As mentioned before, the most common method is to represent ones and zeros with changes
in the carrier amplitude. Also, the same bits can be represented with π changes in the carrier phase (BPSK), or
even encoding pairs of bits within additional phase changes of the carried; e.g. with for phase levels (QPSK).
To achieve such modulations, an electro-optic phase modulator is used and combined.

When a nonlinear crystal material of length L is exposed to an electric field F, an electro-optic effect occurs
that modifies the material refractive index n. As shown in Fig. 2.10, this electric field can be generated by
applying a voltage U to a pair of electrodes located at the sides of the crystal and separated a distance d [65].
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Fig. 2.10: schematic of a Pockels cell and representation of the π phase shift withUπ .

A beam of light passing through this material experiences a phase shift φ = 2πn(F)L/λ, where λ is the
free-space wavelength. Considering only the linear refractive index variation (Pockels effect), the change of φ
is also linear with respect to the external voltage U as

φ = π
n3reffLF

λ
= π

n3reffL
λ

U
d
, (2.47)

where reff is an electro-optic coefficient [65]. In practice, this device consists of an optical waveguide built over
a substrate, often a Lithium niobate (LiNbO3) crystal material, see Fig. 2.10. The required voltage to induce a
phase change of π in the propagating wave is equal to Uπ = λd/(Ln3reff), typically 4 Vpp (Volts peak-to-peak)
for LiNbO3, thus Eq. (2.47) can be written as

φ(t) = π
U(t)
Uπ

, (2.48)

and the transfer function T(t) can be expressed as

T(t) =
Eout(t)
Ein(t)

= exp ( jφ(t)) = exp
(
jπ

U(t)
Uπ

)
(2.49)

If a voltage U(t) = Uπ is applied in Eq. (2.49), the carrier Ein(t) will experience a phase shift φ(t) = π and result
in an output signal Eout(t) = −Ein(t), leading to a BPSK modulation of the input signal.

To implement an amplitude and phase modulation of a carrier signal, two electro-optic phase modulators are
combined in aMach-Zehnder interferometer configuration, leading to the well-knownMach-Zehnder modulator
(MZM). In this configuration, two 3 dB couplers/combiners are used to divide and combine the input/output
signal sent to eachmodulator, see Fig. 2.11. In the upper arms, a phase bias φb can be adjusted with a bias voltage
Ub to implement the different modulation formats. The half-split input optical electric field Ein(t) on each arm
is altered in phase with the applied voltages U1,2(t) and the resulting fields E1 and E2 are then recombined to
obtain Eout(t). The MZN modulator can be described in matrix notation as

Eout =

[
1
√

2
1
√

2

] [
exp ( j (φ1(t) + φb)) 0

0 exp ( jφ2(t))

] [ 1√
2

1√
2

]
Ein, (2.50)

where the field transfer function TMZM is equal to

TMZM =
Eout(t)
Ein(t)

=
1
2
(exp ( j (φ1(t) + φb)) + exp ( jφ2(t))) (2.51)
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Fig. 2.11: Schematic of Mach-Zehnder modulator and Field/Power transfer functions. Biased operating points allow amplitude and phase modulations
in push-pull and push-push modes, respectively.

with
φ1,2(t) = π

U1,2(t)
Uπ

. (2.52)

Amplitude modulation on-off keying (OOK) is achieved by setting the MZM in push-pull mode, that is
setting a Ub = −Uπ/2 to the quadrature point and working with a peak-to-peak swing voltage U(t) = Uπ and
U1 = −U2 = U(t)/2, see Fig. 2.11. In this mode, the phase term in Eq. (2.51) remains constant and only the
amplitude is altered with the cosine term as

Eout(t) = Ein(t)cos
(
π

U(t)
2Uπ

)
. (2.53)

Phase modulation BPSK is achieved in push-pushmode by setting a Ub = −Uπ to the null operating point, with
a peak-to-peak swing voltage U(t) = 2Uπ and U1 = U2 = U(t). Note that the movement of the operating point
through the null point invert the phase of the output signal.

To enable higher order modulations, like QAM or M-PSK, an IQ-modulator is used. This configuration
combines two MZM modulators separated in two arms, each one set in push-pull mode and phase-shifted
by π/2. The amplitude signals of each MZM are then combined to create the desired constellation. This
modulation scheme is explained more in detail in Chapter 6 for the experimental validation of the AO system in
a communication scenario.

Figure 2.12 shows the constellation diagram, bits/symbol, and modulator configuration of the OOK, BPSK,
and QPSK modulation formats. At this point, the output signal of the modulator Eout(t) can be written as

Eout(t) = a(t)
√

Psexp ( j [wst + φs(t) + φls(t)]) (2.54)

where, depending on the adopted modulation format, the carrier is modified in amplitude a(t) and in phase φs(t).



CHAPTER 2. FREE-SPACE LASER DOWNLINKS 31

Fig. 2.12: Constellation diagram, bits per symbol, and modulator configuration for the modulation formats OOK, BPSK, and QPSK.

2.2.2 Demodulator

When the transmitted signal has been modulated in amplitude, the demodulation of the received signal can be
performed using a simple pin-photodiode followed by amplification, sampling, and signal processing stages
where thresholding is used to decide between ones and zeros. This type of optical demodulation technique
is known as direct detection, and benefits from its simplicity and immunity to signal phase variations. The
cons are associated mainly when facing large dynamics in the signal fluctuations, mostly due to atmospheric
scintillation effects. For higher order modulation formats, like BPSK or QPSK, the receiver requires more
complexity. The received signal needs to be coherently combined with a reference one from a local oscillator.
The demodulator mixes and delivers a set of signals that are further amplified, sampled, and processed with a
DSP. In the DSP, the post-processing steps are more complex than in direct detection, correcting induced signal
phase and frequency variations. Today’s adoption of these type of demodulators is rising due to the increase
improvement in computing power of DSP systems. The following subsections give an overview of the direct
and coherent detection process.

2.2.2.1 Direct detection

Direct detection is the simplest and the most used detection scheme in FSOC. The receiver consists of a
reverse-biased PIN diode that converts the optical input power into an electric current, see Fig. 2.13. A received
signal

Es(t) =
√

Psexp ( j [wst + φm(t)]) (2.55)
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Fig. 2.13: Block diagram of the direct detection receiver.

with power Ps, angular frequency ws, and phase variations φm(t) = φls(t) + φpt(t) due to laser phase shift φls(t)
and induced atmospheric phase piston φpt(t), will be converted into an electric current. In the photocurrent
conversion process, the complex term is removed showing that direct detection is non-sensitive to phase
disturbances of the signal, resulting in an average current

Ip = Es(t)Es(t)∗ = RPs (2.56)

where R is the responsivity of the photodetector (in units of Ampere/Watts). The responsivity can be expressed
in term of the quantum efficiency ηe as [2]

ηe =
electron generation rate
photon incidence rate

=
Ip/q

Ps/hv
=

hv
q

R, (2.57)

R =
ηeq
hv

(2.58)

where h = 6.6× 10−34 [m2kg/s] is the Planck constant, v is the laser frequency, λ = c/v is the laser wavelength
with c = 3 × 108 [m/s] being the velocity of light, and q = 1.6 × 10−19 [C] is the electron charge.

Fig. 2.14: Reversed-biased photodiode configuration for optical detection. Incident light power generates free charges which are drawn from the p-n
junction producing an electric current. In absence of light, a small dark current is present.

In reverse biased, the photodiode reacts faster than in direct biased thus this configuration is used for optical
detection. Without incident light, all the electrons and protons are drawn from the p-n junction creating a
depleted region. In this state, a small current still flows and it is commonly known as dark current iD. When
light with sufficient power Ps hits the depleted region, electro-hole pairs appear. Due to the reverse bias potential,
these new carriers drift away from the junction producing a flow of charges Ip (electric current). Figure 2.14
shows the proportional increment of id with the input power Ps. The total current I is then equal to

I = RPs + iD (2.59)
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The I is influenced by shot noise nsn(t) ∼ N(0, σ2
sn) and thermal noise nT(t) ∼ N(0, σ2

T) current, which are the
two fundamental noise mechanisms that produce current fluctuations in an optical receiver [2]

I(t) = Ip + iD + nsn(t) + nT(t). (2.60)

Shot noise is originated by the randomness of the photon arrival and conversion into electrons. Thermal noise is
produced by the random electron movement in a conductor or resistor due to a finite temperature. The nsn(t) is
a stationary random process with Poisson statistics (low received power) often well approximated by Gaussian
statistics (higher received power) [66–68]. Its autocorrelation is related to the spectral density Ssn( f ) by the
Wiener-Khinchin theorem [66]

〈nsn(t)nsn(t − τ)〉 =
∫ ∞

−∞

Ssn( f )exp( j2π f τ)d f , (2.61)

where the brackets denote an ensemble average over the fluctuations, and the integral is the back-Fourier
transform of Ssn( f ). Considering a one-side spectral density, with the lower limit of the integral set to zero, the
Ssn( f ) = 2qIp, thus the shot noise variance is obtained with τ = 0 as

σ2
sn = 〈n

2
sn(t)〉 = 2qI∆f = 2q (RPs + iD)∆f (2.62)

Thermal noise or Johnson-Nyquist noise is associated to the thermal generation of carriers in the shunt
resistance Rsh of the photodetector [69, 70]. It can be modeled as a stationary Gaussian random process with
a spectral density ST( f ) = 2kBT/Rsh, where T is the absolute temperature in degrees Kelvin (273K= 0° C),
kB = 1.38 × 10−23 [J/K] is the Boltzmann’s constant. Applying the same procedure of the calculation of the
shot noise variance, the thermal noise variance is equal to

σ2
T =

4kBT∆f
Rsh

(2.63)

where ∆f is the noise measurement bandwidth in Hertz. Note that the σ2
T is independent of Ip. Amplifiers

unavoidably add additional thermal noise to the signal current. The extra noise produced by the different resistors
in the amplification stages can be included through the amplifier noise figure Fn as

σ2
T =

4kBTFn∆f
Rsh

(2.64)

These Gaussian-like noise sources are decorrelated and can be added

σ2
N = σ

2
T + σ

2
sn, (2.65)

thus the total noise current nN(t) ∼ N(0, σ2
N) and

I(t) = Ip + iD + nN(t). (2.66)

After the detection process, the signal I(t) is amplified with a TIA and the resultant V(t) is sampled with an
ADC. The digitized signal is sent to the DSP which perform timing recovery to control the ADC sampling rate.
Figure 2.15 shows a signal and the sampled points at different ts. Then, the DSP compares the sampled points
voltages against a threshold level Vth to discriminate between ones V1 > Vth and zeros V2 < Vth.
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Fig. 2.15: Voltage signal after the TIA is sampled at intervals ts, defined by the timing recovery performed within the DSP. The digitized signal is
processed in the DSP and thresholding is applied to decide between received 1’s and 0’s.

2.2.2.2 Coherent detection

A coherent receiver is used to demodulate signals encoded with higher order modulation formats. This receiver
requires the mixing of the incoming signal with the one of a local oscillator. At this point, it is only considered
the modulated carrier signal components in Eq. (2.44) to represent the incoming signal Es(t)

Es(t) =
√

Psexp ( j (2πvst + φs(t))) , (2.67)

and the local oscillator (LO) signal Elo(t) is described as

Elo(t) =
√

Ploexp ( j (2πvlot + φlo(t))) (2.68)

where the input signal power Ps, frequency vs, and phase φs(t) are combinedwith their equivalents local oscillator
signal power Plo, frequency vlo, and LO phase φlo(t) to reconstruct the constellation of the modulated signal.
This process is performed with the help of a so-called 90°-Hybrid and balanced detectors, which discriminate
the in-phase II(t) and quadrature IQ(t) signals from Es(t), see Fig. 2.16.

Fig. 2.16: Block diagram of the coherent receiver.

II(t) = R
√

PsPlocos (2πvbt + φs − φlo) (2.69)

IQ(t) = R
√

PsPlosin (2πvbt + φs − φlo) (2.70)
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These signal are then amplified, digitized, and processed with a digital signal processor (DSP), after which
the original data is retrieved. This demodulation scheme is explained with more detail in Chapter 6 for the
experimental validation of the AO system in a communication scenario.

2.2.3 Detection Signal-to-Noise ratio

PIN-Receiver: The electrical signal-to-noise ratio (SNR) of a PIN-based photoreceiver is equal to the ratio of
the total input power and the total noise power (thermal and shot noise), and can be calculated with Eq. (2.56)
and Eq. (2.65) as

SNR =
R2P2

s
2q (RPs + iD)∆f + 4(kBTFn∆f/Rsh)

(2.71)

Direct detection is in general thermal noise limited, which means that thermal noise dominates σ2
T � σ2

sn, thus
Eq. (2.71) gets reduced to

SNRth =
Rsh(RPs)

2

4KbTFn∆f
(2.72)

Clearly, the SNR improves proportionally to the input power Ps and with the increment of Rsh. This is the reason
for the use of a TIA which has high input impedance. Considering the shot noise limit σ2

sn � σ2
T, which occurs

when the input power is amplified before detection, or when coherent reception is used, the SNR can be written
as

SNRsn =
RPs
2q∆f

=
ηePs

2hv∆f
(2.73)

The SNRsn can also be expressed in terms of the number of received photons per bit Np, by considering the
energy per bit [71]

Eb =
Ps
Rb
= Nphv, (2.74)

SNRsn = ηeNp (2.75)

where Rb is the bit rate, and ∆ f = Rb/2 for an ideal receiver. Equations (2.74)-(2.75) are later used in Chapter 6
for the experimental analyses.

APD-Receiver: An important remark needs to be done when an avalanche photodiode (APD) is used in
direct detection. Optical receivers that employ APD provide better performance for the same input power. This
improvement is given by the use of an amplification circuit that increases the photocurrent by a multiplication
factor M . Hence, the current Ip in Eq. (2.56) now becomes

Ip = MRPs = RAPDPs, (2.76)

where RAPD is the responsivity of the APD, enhanced by the M factor. The thermal noise remains the same for
APD receivers since it is given by the internal components like conductors and resistors. Instead, shot noise
increases due to the generation of additional electron-hole pairs through the process of impact ionization [2].
The shot noise variance can be written as

σ2
sn = 2qM2FA(RPs + iD)∆ f (2.77)
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where FA is the excess noise factor of the APD given by

FA(M) = kAM + (1 − kA)(2 − 1/M). (2.78)

In Eq. (2.78) the term 0 ≤ kA ≤ 1 is a ionization coefficient ratio that relates the excess noise factor with the
gain multiplication factor M [2, 72]. Nevertheless, in practice thermal noise dominates over shot noise and the
signal enhancement remains proportional to M2. The thermal noise and shot noise limited SNR for an APD are
given by

SNRAPDth =
Rsh(MRPs)

2

4KbTFn∆f
(2.79)

SNRAPDsn =
RPs

2qFA∆f
=

ηePs
2hvFA∆f

(2.80)

In the thermal noise limit regime, the SNR improves with the gain factor M . In the shot noise limit, the SNR
deteriorates with an increased APD gain due to the fact that the excess noise factor FA rises.

Coherent Receiver: The SNR in a coherent receiver SNRch benefits from the fact that Plo can be made
much larger than the received signal power Ps, thus the signal noise variance is dominated by shot noise leading
to

SNRch ≈
RPlo
2q∆f

. (2.81)

By applying Eq. (2.74), the coherent SNR shows a direct proportionality with the number of received photons
Np

SNRch ≈ ηeNp. (2.82)

2.3 Communications performance

Laser downlinks from low-earth-orbit (LEO) satellites represent one of the most challenging scenarios. This
kind of link has a duration time in the order of 10 minutes, with most of the active transmission time occurring
below the 30 degrees of elevation. At such low elevation angles, the beam is affected by strong turbulence that
induces strong scintillation and high order phase wave-front distortions which affect the coupling of the beam
into a single mode fiber. As a rule of thumb, direct detection with PIN-based receiver front-ends can be used
for data transmissions up to 10 Gbps due to the size of the photodiodes. These type of receivers are mainly
affected by scintillation and background noise light. For very high data rates employing advanced modulation
formats, amplifiers and coherent receivers need a stable and efficient single-mode fiber coupling. Consequently,
it is necessary to quantify the impact of the turbulence and, if necessary, mitigate its effects.

A valid approach to minimize the phase distortions requires the use of a smaller receiver aperture, i.e.
D ≈ 10 cm. When D/r0 approaches unity, the captured beam is mostly affected by the beam angle of incidence
and has a quasi-uniform phase over the aperture; thus it can be easily tracked and corrected with a tip-tilt system
to be coupled into the single-mode fiber. On the other hand, as shown in Fig. 2.8, the aperture averaging of
scintillation is diminished and the received power substantially lowered, i.e. less power and less signal stability.

In a downlink scenario, satellites need tominimize the transmission power due to the limitations of the satellite
platform, which leads to larger OGS apertures to collect sufficient signal power. Typical OGSs are designed
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with an aperture size between 40 cm and 1 meter. Increasing the D unavoidably exposes the decoherence of
the beam wave-front within the aperture area, producing a random focusing of the beam power (focal speckles).
Without any type of wave-front compensation system, this phenomena becomes dominant and the consequences
in the coupled signal are severe.

The impact of the atmosphere in a FSOC communication system can be quantified with several metrics. The
relevant ones, to some extent interrelated, are the mean SNR, the mean BER, and the single-mode fiber coupling
efficiency η. Particularly with coherent reception, a good 〈η〉 and variance σ2

η of the coupled signal directly
impact in the system BER. The BER quantifies the link quality from the perspective of data communication.
The mean and variance of the η define the quality of the channel. The Strehl ratio is an image quality metric
widely used in astronomy and also employed in FSOC as an estimate of performance tendency. The following
subsections extend on these concepts.

2.3.1 Strehl ratio

A coarse estimation of the signal loss produced by the wave-front decoherence αph can be performed in the
focal plane with the Strehl ratio SR. This metric is defined as the ratio between the mean on-axis maximum
irradiance of a beam affected by turbulence IS(0,0), and themaximum irradiance of the reference turbulence-free
case Iairy (diffraction limited airy pattern). The Strehl ratio can be expressed in function of the D/r0 as [73]

SR =
〈IS(0,0)〉

Iairy
=

1[
1 +

(
D
r0

)5/3
]6/5 , (2.83)

Assuming the ergodicity of the fields affected by atmospheric turbulence, the mean of αph(t) can be made
proportional to the SR as

〈αph(t)〉 ∝ 10log10(SR). (2.84)

It is important to highlight that the SR does not accurately represent the signal fading, particularly under
strong turbulence conditions. A better metric to quantify the signal attenuation is the single-mode fiber
coupling efficiency, which will be later discussed in the evaluation of the system communication performance.
Nevertheless, it is a useful metric to estimate the degree of wave-front degradation in different turbulent regimes.
Figure 2.17 shows the Strehl ratio for different values of r0 and three FSOC standard telescope aperture diameters
D. Note that a SR = 0.43 or 〈αph(t)〉 ≈ −3.66 dB is obtained when r0 ≈ D, thus the wave-front coherence
diameter r0 needs to increase beyond the aperture size to approach diffraction limit performance.

2.3.2 Signal to noise ratio in a turbulent channel

The signal-to-noise ratio quantifies the ratio of the signal power over the overall noise power. The higher the
SNR, the better for the data detection process in a communication receiver. As previously introduced, there
are several noise sources to be considered in an optical receiver, but the dominant ones are the shot noise and
thermal noise, see Sec. 2.2.2.1. When working with direct detection, the thermal noise becomes dominant but,
with the help of signal amplification, it is possible to operate in the shot noise regime. In coherent reception,
the received signal results boosted with the power of the local oscillator signal and these type of receiver are
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Fig. 2.17: Strehl ratio vs. Fried parameter for different telescope aperture diameter D

generally assumed to be shot noise limited. The advantage of working in this regime is that the instantaneous
SNR can be directly estimated with the number of received photons as shown in Eq. (2.74)-(2.82). In this work,
only shot-noise limited receivers are considered.

Lets now define the SNR in absence of turbulence as SNR0. Independently of the modulation format, in the
presence of turbulence the SNR0 becomes a fluctuating term and the mean SNR affected by turbulence 〈SNR〉
can be approximated as [59]

〈SNR〉 =
SNR0√

P0
〈PS 〉
+ σ2

I (D)SNR
2
0

. (2.85)

where P0 is the signal power in absence of turbulence, and PS is the mean of the instantaneous input signal
affected by turbulence. The σ2

I (D) is the previously introduced aperture-averaged scintillation index, Eq. (2.31).
Note that the ratio P0/〈PS〉 is nothing else than the inverse strehl ratio 1/(SR), see Eq. (2.83), and thus Eq. (2.85)
becomes [20]

〈SNR〉 =
SNR0√(

1
SR

)
+ σ2

I (D)SNR
2
0

. (2.86)

Power scintillation has a stronger impact in the 〈SNR〉 and can be attenuated using a large aperture collecting
lens or an array of small apertures [20,74]. When the scintillation is minimized, the 〈SNR〉 is clearly dependent
on the degree of aberration of the phase wave-front, quantified through the SR. If the aberration is compensated,
the SR approaches to 1 and the 〈SNR〉 ≈ SNR0. Considering that the impact of phase distortions is dominant
over the beam scintillation effects, the need of phase wave-front compensation becomes evident.

2.3.3 Receiver sensitivity and atmospheric impact

One of the most adopted performance metrics for digital optical receivers is the instantaneous bit-error-ratio
(BER). The BER represents the ratio of the number of erroneously received bits over the total transmitted bits
in a predefined time interval, and can also be defined as the probability of incorrect identification of a bit. It is
widely adopted a BER = 1 × 10−9 as the metric for error-free transmission and implies 1 error per 109 received
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bits. In FSOC, a BER better than 10−3 is sufficient, as it is approximately the limit of error correction systems to
take over and deliver error-free transmission. The receiver sensitivity is then selected to assure this performance.

Figure 2.18 shows the probability density distributions of sampled values at the position of one’s and zero’s.
These distributions are defined by the Gaussian-like noise statistics of thermal and shot noise with variances σ2

N
given by Eq. (2.65).

Fig. 2.18: Signal generated at the receiver, and probability densities associated to received ones’s and zeros’s. The dashed regions highlight the probability
of incorrect detection. Graphic inspired from [2].

As previously mentioned, a decision circuit uses a threshold level Vth to discriminate between a one V1 > Vth

and a zero V0 < Vth. Here, a probability of receiving a 1 or a 0 is defined as P(1) and P(0), respectively. An
error may occur identifying a 0 when a 1 is received P(0/1), or deciding for a 1 when a 0 is received P(1/0).
The BER is then defined as

BER = P(1)P(0/1) + P(0)P(1/0) (2.87)

where one’s and zero’s are equally likely to occur, thus P(0) = P(1) = 1/2 and

BER =
1
2
[P(0/1) + P(1/0)]. (2.88)

These two conditional probabilities with Gaussian distribution and variances σ2
0 and σ2

1 , can be defined as

P(0/1) =
1

σ1
√

2π

∫ Vth

−∞

exp

(
−
(V − V1)

2

2σ2
1

)
dV =

1
2
erfc

(
V1 − Vth

σ1
√

2

)
(2.89)

P(1/0) =
1

σ0
√

2π

∫ ∞

Vth

exp

(
−
(V − V0)

2

2σ2
0

)
dV =

1
2
erfc

(
Vth − V0

σ0
√

2

)
(2.90)

where the erfc stands for the complementary error function [75]

erfc(x) =
2
√
π

∫ ∞

x

exp(−y2)dy (2.91)

Equation (2.88) can now be written as

BER =
1
4

[
erfc

(
V1 − Vth

σ1
√

2

)
+ erfc

(
Vth − V0

σ0
√

2

)]
(2.92)
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where the minimum BER is obtained by optimizing Vth, which is performed as

Q ≡
V1 − Vth
σ1

=
Vth − V0
σ0

(2.93)

Vth =
σ0V1 + σ1V0
σ0 + σ1

(2.94)

Considering a PIN-receiver where thermal noise is dominant, σ0 = σ1, thus Vth = (V1 + V0)/2 or the average
between the sample voltages. In Eq. (2.93), the Q-factor (Q) represents a quality metric that can be related to
the electrical signal-to-noise ratio (SNR) as Q ≈

√
SNR [76]. Now, by combining Eq. (2.93) and Eq. (2.94), the

Q-factor is equal to
Q =

V1 − V0
σ1 + σ0

. (2.95)

Hence, the BER can be written in function of the Q-factor as [2]

BER =
1
2
erfc

(
Q
√

2

)
(2.96)

In thermal noise limit σ1 = σ0, assuming V0 = 0, the Q = V1/(2σ1) thus SNR = V2
1 /σ

2
1 = 4Q2. For error-free

data transmission BER ≈ 10−9 a Q = 6 is required, which implies a SNR = 144 or 21 dB. The BER for direct
detection in thermal noise limit results

BER(OOK)th =
1
2
erfc

(
1
2

√
SNR

2

)
(2.97)

Instead, in the shot noise limit, a zero has no photons and σ0 = 0. Assuming zero dark current, Q = V1/σ1 =
√
SNR and a SNR of 15.6 dB is needed for a BER of 10−9. In addition, considering that the SNR ≈ ηeNp, with

Np being the number of received photons per bit and ηe the quantum efficiency of the diode, the BER can be
expressed as

BER(OOK)sn =
1
2
erfc

(√
SNR

2

)
=

1
2
erfc

(√
ηeNp

2

)
(2.98)

In this noise regime, with ηe = 1, error-free transmission is achieved with Np = 36. In practice , this is not
possible due to thermal noise, thus a more realistic number is Np ≈ 1000.

The performance of BPSK and QPSK in coherent reception can be derived in a similar manner, leading to
the following expressions [77–79]

BER(BSPK) = BER(QSPK) =
1
2
erfc

(√
SNR

)
=

1
2
erfc

(√
ηeNp

)
. (2.99)

Equation (2.99) will be used in chapter 6 for the experimental analysis of the communication scenario.

Atmospheric impact on receiver sensitivity

The received signal after a beam propagates through a turbulent channel is not only affected by the receiver
noise, but it must also consider the induced fluctuations due to the atmospheric effects. As a rule of thumb, the
BER deterioration must not drop bellow the limit 1 × 10−3 of Forward Error Correction (FEC) systems. If the
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BER fluctuates bellow this limit, a FEC system can deliver error-free data communications. The instantaneous
BER, described in Eq. (2.96)-(2.99), is considered a conditional BER in the presence of turbulence and thus it
must be averaged with the PDF of the irradiance fluctuations pI (u). The resultant unconditional mean BER, for
a normalized signal with unit mean, can be expressed as [20]

〈BER〉 =
1
2

∫ ∞

0
pI (u)erfc

(
〈SNR〉
√

2
u
)

du, (2.100)

where pI (u) is taken to be the gamma-gamma distribution with unit mean, Eq. (2.35), and the 〈SNR〉 is given
by Eq. (2.86). To evaluate the enhancement of the 〈SNR〉 and proportional improvement of 〈BER〉 after the
correction of the phase wave-front aberration, let’s consider Noll’s wave-front representation in function of
orthogonal polynomials (Zernike modes), and the defined the residual wave-front variance ∆m = 〈σ2

ϕ〉 after the
compensation of m modes [64]

∆m ≈ 0.2944m−
√

3/2
(

D
r0

)5/3
m > 21, (2.101)

In Eq. (2.101), the wave-front variance is reduced with each corrected m mode (the values of the first 21 residual
errors ∆m are listed in [64]). By considering the definition of Strehl ratio given by Maréchal and [80], the SR
can be estimated from the statistics of the wave-front phase ϕ(r) deviation

SR ≈ |〈exp [ j (ϕ(r) − 〈ϕ(r)〉)]〉|2 (2.102)

Note that the Strehl ratio is a scalar, and the phases develop in a 2D space represented by the vector r . After
the expansion of the complex exponential and retaining only the first terms, Eq. (2.102) leads to the well-known
expression

SR ≈ exp
(
〈σ2

ϕ〉

)
(2.103)

which allows, after combining Eq. (2.103) with Eq. (2.101), an approximation of the SR improvement with each
corrected mode. By introducing Eq. (2.103) in Eq.(2.86), the mean BER enhancement can be evaluated against
turbulence correction.

Figure 2.19 shows the mean BER for OOK and QPSK modulation formats as a function of the mean SNR
and for two LEO-downlinks scenarios with elevation 10° and 90°. The simulation consider a telescope aperture
D = 40 cm, corresponding to D/r0 = 6 and D/r0 = 2 calculated with Eq. (2.20). The red curves show
the reference shot-noise limit in the absence of turbulence. The dashed curves represent the BER for the
uncompensated turbulence effects. The dotted curves show the BER improvement after tilt correction (m=3
modes). The continuous curves show the BER improvement after the correction of a hundred modes (m=100),
where the SR approaches 1 and the 〈SNR〉 increases, improving the 〈BER〉. These results evidence the data
communication enhancement after the compensation of the distorted phase wave-front. Note that at lower
elevations, the tilt correction is not yet sufficient to reach a BER ≥ 10−3. This task can be achieved, to a certain
extent, with wave-front correction methods.

2.3.4 Fiber coupling

To achieve very high data rates and benefits from the high sensitive modulation formats; e.g. BPSK and
QPSK, an efficient and stable single-mode fiber (SMF) coupling is required. A laser downlink working with a
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(a) (b)

Fig. 2.19: Mean BER in function of the mean SNR affected by the turbulence at 70° and 10° laser downlink elevations and considering a telescope
aperture of 40 cm. The BER is calculated for a receiver working with (a) OOK direct detection and (b) QPSK coherent reception. The curves show the
BER improvement in the absence of correction m=1, after tilt correction m=3, and after higher order compensation m=100 of the phase wave-front.

wavelength of 1550 nm and synchronous detection needs amplifiers and demodulators specifically designed to
work with this kind of fiber. Because of the previously described turbulence effects in the laser channel, and
mainly due to the higher order phase wave-front distortions, the SMF coupling of the received signal results
very difficult in scenarios of weak turbulence, and practically impossible under strong turbulence regimes. This
problem can be addressed with different wave-front compensation systems. Synchronous receivers are highly
dependent on the good matching between the spatial fields of the received signal and that of the local oscillator.
The turbulence-induced aberration diminishes the downconverted power due to field mismatching. Since the
LO field in a synchronous receiver results from the fundamental Gaussian mode of a single-mode fiber, the
degradation of the mixing efficiency can be calculated as the loss of SMF coupling efficiency.

2.3.4.1 Single-mode fiber coupling efficiency

The SMF coupling efficiency η quantifies how efficiently the energy of a free-space laser beam can be coupled
into the core of the fiber. The η is calculated in the pupil plane (lens position) as the ratio of the average
optical power coupled into the fiber

〈
Pf

〉
to the average captured power in the system aperture (focusing lens)

〈Pa〉. This is performed with the overlap integral between the incident complex pupil field Pi(r), and the back
propagated fundamental mode of the fiber U0(r) [81]

η =

〈
Pf

〉
〈Pa〉

=

���∫
A
P∗i (r)U0(r)dr

���2∫
A
|Pi(r)|

2 dr ·
∫
A
|U0(r)|

2 dr
. (2.104)

where r represents the spatial coordinate over the receiving aperture of area A, and the complex conjugate is
indicated by ∗. The power-normalized, back propagated mode of a single-mode fiber with 1/e mode field radius
w0, is calculated as

U0(r) =

√
2

πwa2 exp
(
−

r2

wa2

)
(2.105)
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where wa = λ f /(πw0) is the back propagated mode field radius of the fiber, λ is the laser wavelength, and f is
the focal length of the coupling lens. Assuming an ideal plane wave in the absence of turbulence, the maximum
possible SMF coupling efficiency is η = 0.814. The loss of coupling efficiency is associated with the aperture
truncation of the plane wave, leading to an Airy pattern of intensity at the fiber core. The difference between
the Gaussian-shape fiber mode and the Airy intensity distribution results in the efficiency drop.

In Eq. (2.104) the incident field Pi(r) is considered with unitary amplitude and a constant phase over the
aperture. The fiber field mode is also considered to have a constant phase, and thus these terms are not
highlighted in the equation. In a real scenario, the amplitude and the phase of the incident field result distorted
by the atmosphere. It is then useful to estimate the impact of different turbulent regimes in the fiber coupling
efficiency. Let’s assume only phase wave-front distortions, as their effect is generally dominant over amplitude
fluctuations. As mentioned before, different turbulent regimes can be characterized by the D/r0 for a predefined
aperture diameter D. Since the Eq. (2.104) works with synthetically generated 2D complex fields and it is
optimum for numerical simulations, let’s generalize this equation in function of D/r0 for plane wave and
Kolmogorov spectrum. To do so, the authors [81–84] reformulate Eq. (2.104) as

η =
1
〈Pa〉

∫ ∫
A

Γi(r1, r2)U
∗
0(r1)U0(r2)dr1dr2, (2.106)

where the mutual coherence function of the incident field can be written as

Γi(r1, r2) = 〈Pi(r1)P
∗
i (r2)〉 ≈ Iiexp

(
−
|r1 − r2 |

2

ρ2
0

)
(2.107)

by considering weak fluctuation conditions and Gaussian spatial dependence for the mutual coherence function.
In Eq. (2.107), the term Ii is the intensity of the incident plane wave, and ρ0 is given by Eq. (2.19) considering
ζ = 0. Using Eq. (2.105) and Eq. (2.107) in Eq. (2.106), after some algebraic manipulation detailed in [82], the
η can be expressed as

η = 8a2
∫ 1

0

∫ 1

0
exp

[
−

(
a2 +

(
D
r0

)2
) (

x2 + y2
)]

I0

(
2
(

D
r0

)2
xy

)
xydxdy. (2.108)

In Eq. (2.108) I0 is the modified Bessel function of the first kind and zero order, which results from the back
transformation of the fundamental fiber mode from the focal plane to the pupil plane. The parameter a is a
design coefficient relating the radius of the pupil D/2 to the radius of the fiber core, set equal to 1.12 to achieve
maximum coupling efficiency. The ratio (D/r0)

2 represents the number of phase speckles in the aperture, which
is generally assumed equal to the number of intensity speckles in the focal plane [20].

Considering the modal representation of the wave-front presented in Sec. 2.1.4, this work proposes an
approximation for the calculus of the r0. Based on the Strehl ratio definition given in Eq. (2.83) and Eq. (2.103),
the r0 can be approximated after the reduction of the wave-front variance as

SR ≈ exp (−∆m) ≈
1(

1 +
(
D
rc

)5/3
)6/5 , (2.109)
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where rc represents the changing in the wave-front coherence that maintains the equality, resulting in

rc =
D((

1
exp(−∆m)

)5/6
− 1

)3/5 . (2.110)

In Eq. (2.110),∆m is the phase residual error defined by [64], which get reducedwith the increment ofm corrected
modes. Using rc in Eq. (2.108) allows estimating the improvement in the η after wave-front correction.

∆m ≈ 0.2944m−
√

3/2
(

D
r0

)5/3
m > 21 (2.111)

The values of the first 21 residual errors ∆m are listed in [64]. Figure 2.20 shows the SMF coupling efficiency

Fig. 2.20: Coupling efficiency vs. corrected modes for D/r0 = [3, 6, 10] and a telescope aperture D = 40 cm.

for turbulent regimes represented by D/r0 = [3,6,10], and considering a D = 40 cm. Substantial coupling
losses are present in the absence of correction, particularly in scenarios of stronger turbulence. The correction
of the wave-front tilt (modes 2 and 3) delivers the highest improvement, except for scenarios of stronger
turbulence, characterized here with D/r0 = 10. This is expected since strong wave-front aberration lead to
high energy dispersion of the focused beam and thus centroid tilt correction does not assure energy at the
fiber core. Proceeding with additional mode compensation from m = 4 to m = 100, further improves the
coupling efficiency until a plateau is reached. Higher order modes have less energy and are associated with
high-frequency components of the distorted phase, thus their contribution is minimal. Systems with more phase
distortion require more corrected modes, i.e. the compensation of fields with D/r0 = 10 involves 70 corrected
modes. This example highlights the importance of wave-front compensation to enhance the quality of the
received beam wave-front.

2.3.4.2 Mixing efficiency and fading statistics

The performance of synchronous receivers can be evaluated with the mixing efficiency ηh, which measures
how similar are the received field Es(r, t) and the reference local oscillator field Elo(r, t) in terms of their
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transverse amplitude and phase coherence. The probability distribution of the signal fading becomes relevant
in the calculation of the symbol-error-probability (SEP) in M-ary PSK systems. As initially mentioned, the
calculation of the heterodyne/homodyne efficiency is equivalent to that of the SMF coupling efficiency because
the reference LO signal also results from the back-propagated Gaussian mode of the fiber to the aperture [85].
Here it is important to distinguish between the time domain component of the signals and the spatially varying
components associated with the transverse beam profile.

The mixing efficiency and the intensity fading statistics were derived by [86]. Following the same procedure,
the Eq. (2.104) can be written as

ηh =

���∫
A
E∗s (r, t)Elo(r, t)dr

���2∫
A
|Es(r, t)|2 dr ·

∫
A
|Elo(r, t)|2 dr

. (2.112)

where A represents the aperture area of the coupling lens where the fields are integrated. In order to evaluate
the impact of the turbulence, both the log-amplitude χ(r) and the phase fluctuations ϕs(r) are considered in the
received field as

Es(r, t) = Asexp [χ(r)] exp [ j (ws(t) + ϕs(r) + φs(t))] (2.113)

where As is the amplitude in the absence of turbulence, ws(t) is the signal frequency, and φs(t) the signal phase.
Note that these temporal terms are congruent with the terminology presented in Sec. 2.2. Likewise, the LO
signal can be expressed as

Elo(r, t) = Aloexp [ j (wlo(t) + ϕlo(r) + φlo(t))] (2.114)

where ϕlo(r) is the beam phase, Alo is the amplitude of the local oscillator, and where the signal frequency and
phase are represented by wlo(t) and φlo(t), respectively. Assuming homodyne detection and perfect phase lock,
the beat frequency (ws(t) −wlo(t) = 0) and so (φs(t) − φlo(t) = 0), thus after coupling and detection the intensity
can be written as

Is = ηe

����∫
A

AsAloexp [χ(r) + jϕs(r)] dr
���� (2.115)

where ηe is the quantum efficiency. After taking a time average, the average signal power can be written as

I2
s =

1
2

(
ηe
π

4
D2 AsAlo

)2
α2
T. (2.116)

In Eq. (2.116), the term (πD2/4) results from the aperture integration, and αT represents the total fading intensity
due to scintillation and phase aberrations, which can be expressed as

α2
T =

�����(πD2

4

)−1 ∫
A

exp [χ(r) + jϕs(r)] dr

�����2 , (2.117)

Hence Eq. (2.116) can be equivalently written in function of the unperturbed mean signal power I2
z , given by

the geometric Lens-to-fiber coupling, affected by the fading term as

I2
s = I2

zα
2
T (2.118)
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Equation (2.117) can also be decomposed in terms of its real and imaginary terms as α2
T = α

2
r + α

2
i , where

αr =

(
πD2

4

)−1 ∫
A

exp [χ(r)] cos [ϕs(r)] dr (2.119)

αi =

(
πD2

4

)−1 ∫
A

exp [χ(r)] sin [ϕs(r)] dr . (2.120)

The terms αr and αi are integrals of the optical field affected in amplitude and phase over the aperture.
Considering that the field aperture can be represented as a sum of M statistically independent coherent patches
of average size r0, and assuming a large number of cells M � 1 (expected in strong turbulence), the joint
probability distribution of the real and imaginary part of the field can be modeled following circular Gaussian
statistics as

Pα2
T
(α2

T) =
1

2πσrσi
exp

[
−
(αr − αr)

2

2σ2
r

] [
−
(αi − αi)

2

2σ2
i

]
(2.121)

where σ2
r,i and αr,i are the variances and mean of the αr,i that can be calculated as [4]

αr = exp
(
−

1
2
σ2
χ

)
exp

(
−

1
2
σ2
ϕ

)
, (2.122)

αi = 0, (2.123)

σ2
r =

1
2M

[
1 + exp

(
−2σ2

ϕ

)
− 2exp

(
−σ2

χ

)
exp

(
−σ2

ϕ

)]
, (2.124)

σ2
i =

1
2M

[
1 − exp

(
−2σ2

ϕ

)]
(2.125)

where σ2
ϕ is the wave-front phase variance that can be calculated with the phase piston-removed residual error

∆1, defined by [64] as

σ2
ϕ = ∆1 = 1.0333

(
D
r0

)5/3
(2.126)

In Eq. (2.126), the coherence width r0 is calculated with Eq. (2.20). Following the same approach for the
evaluation of the ηe after modal compensation, introduced in Sec. 2.3.4.1, the σ2

ϕ can be approximated for
higher order wave-front compensation with Eq. (2.111). The calculation of the log-amplitude variance σ2

χ can
be carried out as [87]

σ2
χ = 0.5631k7/6

∫ L

0
C2
n (z)(L − z)5/6ζ5/6dz (2.127)

following the terminology presented in Sec. 2.1.2-2.1.3.1. The size ratio between the long-term field coherence
and aperture can be used to determine the number of coherent speckles in the aperture as

M =
[
1
S

∫
A

C(r)dr
]−1

(2.128)

where S =
∫
A
dr = (πD2/4), and C(r) represents the degree of coherence over the aperture presented in

Eq. (2.16). Assuming phase aberration as the dominant phenomena in the phase structure function D(ρ, L) →
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DS(ρ, L), Eq. (2.17), and following the assumption of large number of coherent cells within the aperture, the
approximation in Eq. (2.23) can be used resulting in

C(r) = exp

[
−

1
2

6.88
(
r

r0

)5/3
]

(2.129)

leading to the general expression

M =

[
1.09

(r0
D

)2
Γ

[
6
5
,1.08

(
D
r0

)5/3
] ]−1

(2.130)

where Γ(s, x) is the lower incomplete gamma function. In agreement with [4], Equation (2.130) converges
to M ≈ (D/r0)

2 independent cells of diameter r0. Finally, the author [86] concludes that Eq. (2.121) can be
expressed in function of a constant coherent term αr with amplitude αr, and a random incoherent term αi with
zero mean and variance σ2

i , characterized as a Rice probability density function [4]

Pα2
T
(α2

T) =
1

2σ2 exp

[
−
α2
T + a2

2σ2

]
I0

(aαT
σ2

)
(2.131)

where a2 = α2
r and 2σ2 = σ2

i . With the Eq. (2.131) the probability distribution of the fading intensity can be
calculated.

2.4 Conclusion of the chapter

Earth observations satellites collect massive amounts of information that require downloading in the limited time
of the satellite pass. Only laser links can efficiently copewith the bandwidth demand, but atmospheric turbulence
limits the possibility of high throughput data transmissions, especially in scenarios like low-elevations LEO
downlinks where the strength of scintillation and phase distortion dramatically increases. Establishing a robust
laser link under such conditions is important because most of the flying time of LEO satellite occurs below 30
degrees.

The communications systems and modulation formats employed in FSOC are the same as those used in
terrestrial fibered networks. The difference is localized in the free-space channel which, affected by the
turbulence, induces random amplitude and phase fluctuations in the received communication signal. Up to 10
Gbps direct detection is the preferred technology due to its simplicity, but highly scintillated fields strongly
impact on its performance. To increase the spectral efficiency and allow even higher throughput, coherent
modulation formats are being investigated, where BPSK and QPSK represent the new trend. Single-mode fiber
coupling is a must to employ coherent receivers, amplifiers, and achieve multi-gigabit data transmissions, but
to obtain a stable power coupling, the distorted beam wave-front must be compensated. The FSOC community
has focused on adaptive optics solutions, since a long time employed in astronomy, to improve the quality of the
received beam. The next chapter presents and discusses these systems in the framework of laser communications.



C h a p t e r 3

ADAPTIVE OPTICS SYSTEMS

O ne of the main challenges in FSOC, is the compensation of the turbulence-induced wave-front dis-
tortions that deteriorate the quality of the received signal. Lasercoms targeting very high throughput
and seeking to implement coherent communications systems need to couple the received beam into

a single-mode fiber efficiently. Laser downlinks from LEO satellites experience strong wave-front distortions,
particularly at low elevations, making extremely difficult and certainly inefficient the fiber coupling. Adaptive
optics enhance the temporal and spatial coherence of the field by mitigating the consequences of atmospheric
turbulence [43–45]. However, existing AO systems experience different limitations under strong turbulence.

This chapter presents different adaptive optics systems from the perspective of free-space optical communi-
cations, focusing on satellite-to-ground links. The most popular direct and indirect AO compensation methods
are explained, highlighting their strengths and limitations within the FSOC framework. The chapter concludes
with the arguments that motivate the proposal of a new AO method.
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3.1 Adaptive optics

The previous sections have established the impact of the turbulence in a laser beam wave-front, and highlighted
the associated performance deterioration of the data communication link. Adaptive optics (AO) is a technology
employed to correct the high order phase wave-front aberrations, which is the dominant atmospheric effect
impairing the communication link. Following the scheme presented in Fig. (2.9), here Fig. 3.1 shows the
received beam P(r) affected in amplitude A(r) and phase ϕ(r), being received by the telescope and guided
to the AO systems where, after wave-front correction and fiber coupling, results in a temporal varying optical
signal ERX(t) sent to the demodulation stages. As the Taylor’s frozen turbulence hypothesis considers a static
field within its coherence time, see Sec. 2.1.3.2, the temporal variable of P is generally omitted.

Fig. 3.1: The received beam is captured with the telescope and guided to the AO system, which corrects the high order phase distortions and couples the
light into a SMF fiber. The resultant optical signal represents the modulated signal.

Themain tasks of anAO system are tomeasure the phase distortions of the receivedwave-front and then cancel
these out by applying compensating aberrations [88]. Phase wave-front aberrations cannot be measured directly;
instead, they are estimated through intensity measurements acquired in the aperture or the focal plane. Adopted
AO systems in FSOC are a heritage of astronomy, and thus they follow the same designs and concepts [73].

The general design is shown in Fig. 3.2. A distorted beam P(r) is partially captured by the telescope aperture
and guided first to a tip-tilt system (not present in the setup), where a tip-tilt mirror (TTM) corrects the beam
angle of incidence. Then, the beam is reflected in a deformable mirror (DM) that corrects the higher order
phase distortions ϕ(r) by shaping a thin reflective membrane, mirroring the phase wave-front. To discover the
membrane shape, the reflected beam is split and guided to a wave-front sensor (WFS) and an optical fiber and
detector. The wave-front sensor performs intensity measurements, which are processed to approximate the beam
phase. Amplitude distortions of the beam cannot be corrected with this system, which must run a dedicated
algorithm in closed-loop trying to maintain the phase-only correction dynamically.

The essential components of an AO system are the tip-tilt mirror, the deformable mirror, and the wave-front
sensor. The wave-front sensors can be broadly classified within two families, i.e direct and indirect WFS. The
following sections offer an inside to the relevant AO hardware, sensors, and methods.
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Fig. 3.2: Typical adaptive optic setup with the principal hardware components. The tilt stage is not shown.

3.1.1 Tip-tilt mirror

A fast steering mirror is used in the AO system to compensate for the phase tilt due to the beam angle of
incidence. This TTM is essential to maintain the focused beam within the detector area, particularly critical in
fiber-based receivers. In an FSOC system, this type of mirror is operated in a closed loop to improve the fiber
coupling efficiency and compensate for residual tilts and/or vibrations of the system.

Regarding the overall phase compensation due to turbulence, the TTM delivers the initial and higher improve-
ment in signal power as the tilt deviation represents up to 80% of the power loss. In the modal representation of
the wave-front, described in Sec. 2.1.4 and Eq. (4.47), the tilt correction implies the compensation of the Zernike
modes 2 and 3. The coupling gain due to tilt correction is evident in Fig. 2.20 due to centroid compensation.
Naturally, the stronger the turbulence, the minor the improvement as the focal energy disperses more (larger
speckle pattern) and less power is contained on each intensity spot. The TTM is selected based on its resonance
frequency, which limits the closed-loop bandwidth, and on its maximum angular deflection ϕtm [rad]. The
maximum atmospheric tilt that the mirror should be able to remove is

ϕtm = ±2.525σtl, (3.1)

where σtl [rad] is the standard deviation of the atmospheric tilt, calculated as [73]

σtl =

√
0.184

(
D
r0

)5/3 (
λ

r0

)2
(3.2)

In Eq. (3.2), the normalized aperture D/r0 is defined by the telescope aperture diameter D and the Fried
parameter r0, Eq. (2.20), and λ is the wavelength of the laser. Considering that the motion of the mirror implies
twice the angular tilt of the reflected beam, the minimum stroke required for the TTM is ϕtm/2.



CHAPTER 3. ADAPTIVE OPTICS SYSTEMS 51

3.1.2 Deformable mirror

A deformable mirror is a micromechanical device that introduces a spatial phase-only modulation on the beam
wave-front. It is used in laser downlinks to compensate the residual phase distortion after beam tilt correction,
or to perform beam pre-distortion in laser uplinks. As shown in Fig. 3.3, when a distorted phase wave-front
ϕ(r) is reflected in the DM, which is shaped with ϕ̂(r), the residual phase variance σ2

res of the compensated
phase ϕc(r) can be expressed as

σ2
res =

1
π

∫
(ϕ(r) − ϕ̂(r))2 dr =

1
π

∫
(ϕc(r))

2 dr (3.3)

The modal representation of the wave-front, presented in Sec. 2.1.4 and Eq. (4.35), can be used to describe ϕ̂(r)
as the summation of M Zernike polynomials

ϕ̂(r) =
M∑
l=0
(clZ l (r,ψ)) . (3.4)

Indeed, the modal correction technique implies finding the right Zernike coefficients that approximate ϕ(r) by
shaping the DM at a whole with different modes. Assuming an ideal DM, meaning that the DM can represent
the combined set of modes shapes and excursions with high accuracy, then the residual phase variance can be
calculated as in Eq. (2.111)

σ2
res ≈ 0.2944m−

√
3/2

(
D
r0

)5/3
m > 21 (3.5)

where the values of the first 21 residual errors ∆m are listed in [64].

Fig. 3.3: Representation of a DM compensating a distorted phase wave-front.

In practice, a DM has physical limitations to represent the desired shape. There are many designs for different
purposes, mostly oriented to astronomical applications [89]. The most widely adopted technology for FSO is the
membrane-based microelectromechanical systems (MEMS). These mirrors have a high actuator count and high
bandwidth. Higher actuator counts allow a better representation of the intended phase shape. A MEMS-based
DM typically deflect the membrane in a range between 1.5 µm and 5 µm and, depending on the membrane
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deflection technology, some DM’s have several Kilohertz bandwidths. Deformable mirrors having at least 2
KHz bandwidth are of interest in FSOC applications as they may be able to deal with the time constraints due
to the small τ0 of the fields.

Within the family of MEMS-DMs, the ones based on electrostatic membrane deflection allows very high
banwidths. The working principle of this kind of DM is based on the electrostatic attraction of a grounded
double cantilever flexure. As shown in Fig. 3.4, the actuators are distributed in a square grid structure with
underneath localized electrodes. The reflective membrane is attached to the center of each actuator by posts,
which translate the motion to the mirror [90, 91]. An example of a DM using this technology is the BMC-144
of Boston Micromachines. Alternatively, a segmented DM replaces the membrane by individual mirrors on
each actuator. High order diffraction is expected due to the individual segments along with the inter-segment
spacing, which acts as a finite extent diffraction grating [92]. This effect is particularly unwanted with high
power lasers. The principal benefit of segmented mirrors is the very high actuator number and their very high
bandwidth (≈ 120KHz); a required property for iterative AO solutions [38, 93].

Fig. 3.4: Working principle of the Boston Micromachines membrane-based and segmented DM. Square plates are connected to a negative potential
and experience electrostatic attraction to the bottom positive electrodes. The displacement deflects the attached reflective membrane or the individual
reflective segments.

The DM is first selected based on the maximum surface stroke δDM, which can be calculated in function of
the normalized aperture D/r0 as [94],

δDM = ±2.5
λ

2π
√

l
(

D
r0

)5/6
, (3.6)

where l = 1.03 if the DM needs to correct the full aberration and tilt, or l = 0.134 if the tilt is already
compensated. Note that the required peak-to-valley DM stroke at the center of the pupil is equal to 2δDM [94].
As previously mentioned, the DM bandwidth can be ruffly rounded as BDM = 1/τ0 with τ0 defined in Eq. (2.26).

The overall expected compensation error is represented by the residual phase variance σ2
res approximated

by the fitting error σ2
fit, due to the limited number of actuators Nd, plus the temporal error σ2

t due to limited
bandwidth

σ2
res = σ

2
fit + σ

2
t = kd

(
D
r0

)5/3
N−5/6
d +

(
τ

τ0

)5/3
. (3.7)

In Eq. (3.7), τ represents the time lag of the AO loop, and kd is a factor depending on the type of DM, which
takes the value 0.23 for segmented mirrors and 0.35 for continuous membrane DMs.

It is important also to mention the problem of phase singularities or branch points (BP), which are dislocations
of the phase wave-front that occur when the amplitude of the field drops to zero. At this point, the real and
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imaginary part of the field are non-defined, thus the phase is also undefined. The origin of phase singularities
was studied by Fried and Vaughn [95]. The density of turbulence-induced phase dislocations, associated with
different turbulent regimes, was studied by [96] defining four regions with different growth rate and distributions.
The impact of BP on adaptive optics systems was studied by [97, 98].

Branch points appear in pairs of opposite sign, connected by branch cuts (wave dislocations) along with the
phase undergoes a 2π jump. Figure 3.5 shows a section of a phase wave-front with 2 BP, highlighting the branch
cut and abrupt phase jump. These phenomenon is typical in scenarios of strong turbulence, which is expected
in laser downlink at low elevation angles.

(a) (b)

Fig. 3.5: (a) Branch points in the phase wave-front. (b) 3D view of the branch cut phase jump between branch points.

The impact on deformable mirrors was investigated by Baranova [99] and concluded that these BP cannot
be corrected with membrane-based DMs, as the membrane has limited deflection properties and cannot mimic
the abrupt phase jump. Instead, segmented DMs can represent the phase dislocation and address this issue,
provided the detection of the BP position. The problem of BP is also a limiting factor for some wave-front
sensors.

3.1.3 Wave-front sensing methods

Wave-front sensing methods can be broadly classified as direct (deterministic) and indirect (iterative), following
the AO scheme presented Fig. 3.2. In this scheme the phase wave-front can be estimated through intensity
measurements performed either in the pupil plane or focal plane of the optical system, requiring one or many
iterations with the consequent post-processing and DM shaping to compensate the distorted field. Free-space
optical communication imposes some unique conditions to the standard AO techniques. Wave-front sensors
need to deal with:

• Very strong phase distortions due to the long optical path at lower link elevations

• Strong intensity fluctuations at lower elevations due to accumulative atmospheric effects

• Phase singularities that seriously affect some types of WFSs and may limit the use of membrane-based
DMs
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Detailing the vast variety of techniques is out of the scope of this thesis. Table 3.1 list some relevant AO
sensing techniques and only a brief conceptual overview will be given. A detailed analysis of the different WFS
for FSOC applications can be found in [33]. Here, more emphasis is given to the Shack-Hartmann WFS and the
stochastic sensor-less technique as these two methods have attracted the most interest within the FSOC scientific
and commercial community.

Table 3.1: Classification of wave-front sensor types.

3.2 Direct methods

Direct methods are based on the wave-front conjugation principle, which merely means the equalization of
the residual phase after DM compensation. These methods rely on wave-front sensors that profile the phase
wave-front in one loop iteration. Here, the intensity information is acquired in a single step and then it is
delivered to the feedback algorithm to approximate the phase shape, generating the control signal to drive the
DM, thus, closing the loop. The process must be performed within the coherence time of the field τ0 and then
repeated in order to follow the evolution of the field. Consequently, these methods require loop bandwidths in
the order of a couple of kilohertz to maintain the correction dynamically. Note that the AO loop bandwidth
involves all times lag of the system, namely signal acquisition, signal processing, and hardware control.

The control of the deformable mirror follows a simple concept [73]. Every DM has a set of control commands
(voltages) Xd to deflect the membrane. From the wave-front sensor and algorithm, an approximated phase ϕd is
obtained. Both are linked with an interaction matrix Md as

ϕd = MdXd. (3.8)

The Md is obtained through a calibration process. The control commands to drive the DM are calculated from
the predetermined phase as

Xd = M−1
d ϕd (3.9)

where the M−1
d is the pseudo-inverse calculated by performing the single value decomposition of Md as

M−1
d = VS−1UT (3.10)

Direct methods heavily rely on the type of wave-front sensor (WFS). There is a multitude of designs [33, 73],
like Shack-Hartmann (SH), curvature sensor (CS), interferometer sensors (SI), pyramid sensor (PS), etc. In
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the field of FSOC, the most popular is the Shack-Hartmann wave-front sensor (SHWFS). This sensor has been
used for many years in AO systems for astronomy, leading to a very mature technology. Let’s first focus on the
SHWFS and then briefly overview the other direct methods listed in table. 3.1.

3.2.1 Shack-Hartmann sensor

The working principle of SHWFS involves the spatial sampling of the distorted wavefront with a grid of small
lenslets or sub-apertures. Each sub-aperture captures only a small portion of the whole wave-front and produces
a focal spot in a CCD sensor located in the image plane. A square grid larger than 4x4 CCD pixels (even 2x2 in
Quad cell for low readout noise) is assigned to each sub-aperture; thus the spot displacement can be measured.
A non-tilted flat phase produces a focal spot in the center of each grid. Instead, with a distorted phase, some
sub-apertures capture a tilted portion of the phase-front and thus the focal spot shows a displacement ∆x,y . The
result is a grid of randomly located focal spots over the CCD sensor. Figure 3.6 depicts the process.

Fig. 3.6: Working principle of the Shack-Hartmann wave-front sensor. An array of small lenses capture a portion of the distorted wave-front, which get
focused at different positions in the image plane. Each focal displacement in X-Y can be translated into a phase slope at the lenslet position. All the
phase slopes are used to approximate the overall wave-front phase.

The displacement of each focal spot is proportional to the averaged gradient of the phase ϕ(x, y) in the
associated sub-aperture. In Fig. 3.6, the displacement ∆x is calculated as

∆x =
λ

2πAs

∫
As

∂ϕ(x, y)
∂x

dx, (3.11)

where As is the sub-aperture area. A general description can be written as [100],

s =

∫
d®rW(®r)I(®r) 5 ϕ(®r)∫

d®rW(®r)I(®r)
, (3.12)

where s is the gradient measurement proportional to the centroid in the detector, W(®r) describes the extent of
the sub-aperture, I(®r) is the intensity over the sub-aperture that acts as weighting factor and has more impact in
scenarios of strong turbulence, 5ϕ(®r) is the gradient of the phase, and ®r = (x, y). The gradient measurements
are related to the phase values of the wavefront ϕ as [31]

s = Aϕ, (3.13)
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where A is a geometry matrix that relates ϕ with the slopes. Coordinates are avoided for mathematical
simplification. Then, the least square reconstruction is carried out as

ϕlse =

((
AT A

)−1
AT

)
s, (3.14)

where ϕlse is the reconstructed phase, and AT is the transpose of A. The truth of the matter is that the least
square reconstructor only accounts for the continuous phase. Under strong turbulence conditions there is also a
hidden phase ϕhid associated with phase discontinuities [30], hence

5ϕ = 5ϕlse + 5ϕhid. (3.15)

In Eq. (3.15), the hidden phase gradient is equal to the curl of the vector potential H(®r) as,

5ϕhid = 5 × H(®r). (3.16)

Under weak turbulence, the SHWFS experiences minimum phase discontinuities showing high efficiency in
the wave-front compensation with minimum impact of the ϕhid. With strong turbulence ϕhid becomes relevant.
Since the SHWFS working principle is based on the gradient of the phase, and because the gradient of a
rotational field is zero, the hidden phase cannot be directly measured. Consequently, with strong turbulence, the
5ϕ is wrongly approximated and the SHWFS performance degrades.

Limitations of Sack-Hartmann sensor

Awave-front conjugationmethod is based on the reciprocity principle [101], which requires the compensation of
the complex amplitude of the field by its weighted conjugated. The phase-only compensation performed with a
DM, ignores the amplitude correction. If the amplitude modulation is small, which is frequent in Astronomy, the
impact is not severe [38]. This is not the case of free-space optical communications because at lower elevations
(from 7° to 30° ) long optical paths induce strong intensity modulation (scintillation) and phase dislocations
(branch points). Both phenomena seriously degrade the performance of this type of WFS.

Scintillation affects SHWFS because of non-uniform or poor illumination of the sub-apertures. This leads
to the reduction of the sensor SNR and wrong slope calculation in the poorly illuminated subapertures, and the
impossibility of retrieving information from those non-illuminated ones. This affects the phase reconstruction.
Note in Eq. (3.12) that weak scintillation, thus, uniform illumination I(®r) in the sub-aperture, results in the
gradient tilt (G-tilt). Under strong turbulence and more scintillation, the SH measurement is the average
of the intensity-weighted gradient across a sub-aperture. This is proportional to the displacement of the
image centroid, so-called centroid tilt (C-tilt). The difference between both tilts strongly affects the wavefront
reconstruction [100].

The intensity sensitivity is determined by the camera noise. There is a drastic error increment in the phase
slope estimation when the spot intensity nears the level of the sensor noise. This problem can be addressed
with thresholding that eliminates spots in poorly illuminated lenslets. The threshold can be established when
the wavefront error is greater that λ/10 [102].
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Subaperture overfill is associated with pixel saturation, which leads to errors in the wave-front estimation.
As the intensity increases, more pixels result illuminated and saturate. The spot increases in area and eventually
invades neighboring subapertures. This overlap leads to invalid wave-front estimations [102]. This problem
worsens when spots are represented with fewer pixels, as they saturate rapidly. The use of more pixels per
lenslet naturally increases the post-processing requirements but reduces the saturation problem.

Overcoming these considerations require costly technical effort when it comes to scenarios like LEO down-
links, which exposes the WFS to different levels of scintillation or irradiance dynamics.

3.2.2 Curvature Sensor

The curvature sensor was proposed by Roddier [35] and, while SHWFS is based on the first derivative of the
phase (slope of the phase), the curvature sensor uses the second derivative (curvature of the phase). To do so,
as shown in Fig. 3.7, this sensor measures the intra-focal intensity distribution I1(r) before the focal plane at
the position P1, and the extra-focal intensity distribution I2(r) after the focal plane at the position P2. Then, it
calculates the normalized difference between both intensities.

Fig. 3.7: Curvature wave-front sensor working principle.

I2(r) − I1(r)

I2(r) + I1(r)
=

f ( f − ∆ f )
2∆ f

[
∂

∂(n)
ϕ

(
f
∆ f

r

)
δc + 5

2ϕ

(
f
∆ f

r

)]
(3.17)

where δc is a linear impulse distribution around the pupil edge weighted by the wave-front radial tilt ∂
∂(n) and

52ϕ is the wave-front curvature. Through this equation, the sensor provides all the information required for the
wave-front reconstruction.

The performance of this sensor is limited by the separation between measurement planes that needs to be
sufficiently large to resolve the intensity pattern, leading to high resolution requirements. Meaning that this
sensor may face problems for sensing high-order aberrations. Also, like Shack-Hartmann, this sensor cannot
detect phase singularities leading to wrong phase estimation in scenarios of strong turbulence [33, 88, 103]. In
addition, the curvature sensor does not perform well in strong scintillation, and requires linear or nonlinear
algorithms to reconstruct the wave-front from the defocused images.

3.2.3 Pyramid Sensor

The Pyramid wave-front sensor is a pupil plane sensor that uses a pyramidal prism in the image plane and a
relay lens after the prism, to create four sub-beams and form four images of the pupil on a detector array. The
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intensity of each sub-beam (I0,0(r) > I0,1(r) > I1,0(r) > I1,1(r)), at the position r in the detector plane, varies
with the local tilt and it is used to find the correspondent (x, y) wave-front slope.

Fig. 3.8: Pyramid wave-front sensor working principle.

Sx(r) =
I0,0(r) − I1,0(r) + I0,1(r) − I1,1(r)

It
(3.18)

Sy(r) =
I0,0(r) + I1,0(r) − I0,1(r) − I1,1(r)

It
(3.19)

where It is the mean intensity over the detector. The spatial resolution of this sensor is given by the size of the
detector pixel, while SHWFS relies on the lenslet size. Hence, it offers better performance and sensitivity.

On the other hand, the pyramid sensor works only for low order aberrations, and the sub-micron accuracy of
the prism makes manufacturing difficult and costly [104].

3.2.4 Interferometric sensor

The interferometric wave-front sensor follows a similar principle to the coherent communication receiver, where
a received distorted beam US is mix with a reference beam UL to extract the phase information. As in coherent
receivers, the reference beam can be locally generated and locked in phase with the incoming one; this allows
high sensitivity in detection but it requires high complexity to deal with highly scintillated fields. A more
robust approach split and filter the received beam to create a reference "clean" wave-front to be mix with,
and it is known as self-referencing interferometer. There are many different design, namely, Point-diffraction
interferometer [33, 105], Common-path interferometer [106], Shearing Interferometer [107]. Figure 3.9 shows
the point-diffraction interferometer, which results very intuitive to describe.
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Fig. 3.9: Interferometer wave-front sensor working principle.

As previously said, the beam US is split into the object beam (distorted wave) and the reference beam (plane
wave. The reference beam is obtained by performing a Fourier spatial filtering with a pinhole, thus blocking all
higher order frequency components in the Fourier domain, and allowing the zero-order component to continue
as a cleaner matched in frequency signal that resembles a plane wave. With this, frequency lock is not required
and both beams interfere producing an interference pattern as I = |US +UL |

2, leading to

I = IL + IS + 2
√

ILIScos [(wS − wL)t + ϕS + ϕL] (3.20)

where the beat frequency (wS − wL) = 0, and the terms IS,L form the intensity fringe pattern (provided bias
subtraction) from where the distorted phase ϕS can be extracted.

This type of sensors has a field estimation performance that is tolerant of scintillated fields, and invariant
against branch points. However, the pin-hole filters most of the power of the reference beam, reducing the system
efficiency. Furthermore, in moderate to strong turbulence, the speckled focus reduces the on-axis intensity at
the pin-hole position, which lowers the fringe contrast and the SNR and may lead to wrong phase estimations.

3.3 Indirect methods

Indirect methods are technically more simple and do not rely on the use of complex WFS. Instead, they are
based on the direct optimization of a system performance metric, like power in the bucket, coupled power, image
sharpening, among others.

Sensor-less systems perform the wave-front optimization with several iterations that require continuous
sensing of the metric as feedback. Sensor-less systems can be classified into stochastic, and sequential image-
based methods [3]. The stochastic approach is generally based on blind algorithms that start the optimization
with a random set of variables, applying an iterative approximation of the best solution. The DM shaping
can work in a zonal or modal basis. The zonal approach randomly changes the states of single DM actuators
in searching for an optimal metric; the modal approach shapes all actuators at once, following an orthogonal
modal basis (e.g., Zernike polynomials) [37]. The later converges faster, reducing the number of iterations.
Popular algorithms for such task are the Stochastic Parallel Gradient Descent (SPGD) [38, 108], Simulated
Annealing [109], Algorithm of Pattern Extraction [110], and Genetic Algorithm [111].
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Image-based systems seek to sharpen the image following an iterative DM shaping and image quality
control until a quality metric is reached. Acquisition of multiple images is commonly required to perform the
optimization and wave-front correction. Some examples are sensor-less systems based on PSF optimization
[112], or modal correction which uses a special type of mirror called modal DM (MDM).

Speckle interferometry and Fourier phase spectrum methods are speckle-based techniques that acquire hun-
dred or even thousands of focal images that are contrasted with a reference pattern. With this, the modulus and
phase of the Fourier spectrum is estimated and back-transformed to obtain the complex image field.

A particularly interesting method is the optimization of low spatial frequencies [113], based on the acquisition
and sharpening of several focal images created with Lukoszmodes as predefined DM aberrations. Lukoszmodes
have the advantage, over Zernike modes, that the effect of the coefficients on the image sharpness is quadratic.
Hence, the optimization of each mode can be done with three acquired images by interpolating the result of
a quadratic function, which is the rms spot radius [3]. The following sections offer an overview of these
techniques.

3.3.1 Sensor-less stochastic technique

The objective of a sensor-less iterative compensation system in FSOC, is to enhance the BER by increasing the
mean coupled signal and reducing its variance. A sensor-less AO system has most of the required characteristics
for FSOC. Regarding turbulence compensation, it shows robustness facing phase singularities [33, 40], high
power efficiency, and good tolerance to scintillation [33]. Also, it compensates for the receiver aberration and
shows dynamic adaptation, without any intervention, to a loss of calibration or unexpected events. Regarding
technical aspects, these systems have a straight forward implementation and they are very simple to calibrate,
making accessible the integration on existing systems. Its mechanical simplicity also implies robustness when
it comes to portable optical ground stations. A significant plus comes with the cost reduction in the AO system,
due to the absence of WFS.

Fig. 3.10: Setup for sensor-less iterative AO system with SPGD blind phase optimization algorithm.

One of the most tested blind algorithms with potential uses in FSOC, is the SPGD [37,38,114], see Fig. 3.10.
A standard zonal SPGD applies, with each m iteration and through DM control signals vn, random positive and
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negative perturbations ±γmn δv to each DM actuator as,

vm+n = vmn + γ
m
n · δv

vm−n = vmn − γ
m
n · δv

(3.21)

where γ = ±1 is a random sign vector, δv is a perturbation parameter chosen empirically, and n is the
actuator number. Note that the optimization problem has n dimensions. With each perturbation, a value of the
performance metric η (SMF coupling power) is acquired and the gradient is calculated

δηm = η
(
vm+n

)
− η

(
vm−n

)
. (3.22)

With the gradient δηm, the actuators are updated based on a gain parameter G and the previous state vmn as,

vm+1
n = vmn + G · δηm · γmn · δv (3.23)

The parameters G and δv define the rate of convergence and precision in the phase compensation. Large
values of gain and perturbation increase the rate of convergence but also induces more signal variance and
less precision. Smaller values of these parameters lead to slower convergence but better precision (reach the
maximum possible of optimization). For FSOC, precision is not crucial, rather a stable signal enhancement.
Nevertheless, the signal variance must be constrained to small η to reduce its impact in the BER. Therefore, a
trade-off is necessary.

Modal SPGD iterates over the coefficients of the selected orthogonal basis (i.e. Zernikes), which must be
projected into the displacement of the whole set of actuators. The modal approach implies additional compu-
tation but accelerates the convergence of the algorithm [37]. A reduction in the total number of iterations per
field is essential to cope with the constrained τ0. Both approaches need over 100 iterations to reach sufficient
signal optimization.

Limitations of SPGD technique

The limiting factor of any iterative approach for FSOC is the correction time, which depends on the total number
of required iterations. As shown in Fig. 2.6, typical values for the coherence time of the field ranges between
0.5 and 1.5 milliseconds. Considering that existing solutions need more than 100 iterations to converge to an
optimum [37], unpractical loop bandwidths above of 100 kHz are required.

Today’s MEMS deformable mirrors run smoothly at 2 kHz and, depending on the working principle and
maximum necessary strokes [89,93], some DMs can reach up to 120 kHz [115]. Naturally, such high frame rates
can be achieved with tiny actuator excursions, smaller than 0.6 micrometers. Because a stochastic optimization
starts with a blind set of actuator states, initial strokes are generally high until reaching optimum positions. A
modal stochastic approach accelerates the process, but it still needs large initial strokes and above 100 iterations.

Some researchers have proposed hybrid systems that combine direct and indirect methods, generally using
a SH sensor to provide a hot start to the sensor-less system. This reduces the number of iterations by half but
increases the system complexity. Also, it may be considered inherited limitations of the WFS under strong
scintillation.
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3.3.2 Speckle imaging technique

Speckle imaging techniques recover the complex information in the focal plane, through the acquisition of a
large number of short-exposure intensity images (speckle pattern) of the object and of a reference star. These
images are processed to extract the Fourier spectrum modulus and phase via the use of speckle interferometry
and the bispectrum/cross-spectrum methods, respectively. Then, the Fourier modulus and phase are combined
and back-transformed to recover the complex focal image. Figure 3.12 shows the processing stages.

Measure and record N short 

exposure images of the object 
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Fourier transform 

of the image
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Fig. 3.11: Speckle imaging technique block diagram of principal processing stages.

The working principle is well detailed in the work of [116]. Consider that short-exposure focal images,
acquired within the coherence time τ0 of the field, see Sec. 2.1.3.2, retain high-resolution information of the
object. In astronomy, the coherence time rounds 60 milliseconds. The recorded image I(x) (detector plane) of
an object O(x) of interest (pupil plane) is the convolution of the object with the point spread function of the
atmosphere P(x). Labeyrie first proposed to calculate the Fourier transform of each image I(x), which is just
the product of the individual Fourier transforms [117]

Iobj(u) = O(u)P(u), (3.24)
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and do the same with a reference start that, assumed as a point source, can be considered a delta leading to

Iref(u) = P(u). (3.25)

Then, Labeyrie suggested to use their respective power spectrums, |Iobj(u)|2 and |Iref(u)|2, to recover the modulus
of the object by calculating the ratio of the ensemble over N images as

|Oobj(u)|2 =
〈|Iobj(u)|2〉
〈|Iref(u)|2〉

. (3.26)

To recover the phase, Knox and Thompson proposed the so-called cross-spectrum of the image,

〈Iobj(u)I∗obj(v)〉 = |Iobj(u)| |Iobj(v)|exp
[
j(θobj(u) − θobj(v) + θPSF(u) − θobj(v)

]
(3.27)

where ∗ indicates complex conjugate, θobj is the phase of the object, and θPSF are the aberrations introduced by
the atmosphere. By using the reference star, the phase difference of the distortions is found

θPSF(u) − θPSF(v) = ∠
(
〈Iref(u)I∗ref(v)〉

)
(3.28)

from which the phase difference of the object can be estimated as

θobj(u) − θobj(v) = ∠
(
〈Iobj(u)I∗obj(v)〉

)
− ∠

(
〈Iref(u)I∗ref(v)〉

)
(3.29)

The phase at all frequencies can be discovered by repeating iteratively the same process with small changes in the
frequency difference |u − v |. The bispectrum method follows a similar concept and can be found in [116,118].

Even though this method can deliver very high resolution imaging, the limitation in FSOC is obvious. Several
hundred of images need to be acquired and heavy post processing must be performed to obtain the modulus and
phase of the complex image. Infrared cameras cannot acquire that quantity of images within the 2 milliseconds
available in satellite downlink applications.

3.3.3 Image sharpening

Image sharpening techniques seek to iteratively sharp the focal image by applying a set of modal changes in
the DM. In the particular case of FSOC, a speckled focal intensity pattern deviates from the diffraction limited
airy pattern, which occurs in the absence of turbulence. Like in speckle interferometry, several short exposure
intensity images need to be acquired within an iterative process until the quality criteria is reached [119]. The
acquisition and control of the DM can be performed with different algorithms, e.g. simplex optimization,
conjugate gradient search, or multidithering [120–123]

A particularly interesting method is the optimization of low spatial frequencies [113], based on the acqui-
sition and sharpening of several focal images created with Lukosz-Braat (LB) polynomials as predefined DM
aberrations [124]. The LB polynomials have the advantage, over Zernike polynomials, that the effect of the
coefficients on the image sharpness is quadratic and thus the optimum can be discovered with 3 trials and
parabolic optimization. The image sharpness can be quantified with

M =
∫ ∫

I(x, y)2dxdy (3.30)
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where I(x, y) is the focal image. If the aberrated phase wave-front ϕ(r) is decomposed in terms of weighted
Lukosz modes L(r) as

ϕ(r) =
N∑
l=1
(blLl(r)) (3.31)

the coefficients bl can be found by the sequential modal shape of the DM, where each mode is altered by a
positive/negative amount with a predefined step size c. The optimization of each mode can be done with three
acquired images by calculating the metric for the unchanged mode M0 and the altered modes M+ and M−,
interpolating the result and finding the maximum of the quadratic function [3].

b =
c(M+ − M−)

2M+ − 4M0 + 2M−
(3.32)

Assuming a distorted wave-front composed of N modes, the sequential optimization would require 2N + 1
captured images.

Fig. 3.12: Image sharpening parabolic optimization process [3].

This method reduces the number of DM changes in the iterative process since only 3 trials are needed to
optimize each polynomial. However, the process needs several images to correct one aberrated wave-front,
which may be not possible in the contained time of FSOC scenarios. Additionally, highly aberrated fields need
to consider a larger number of modes, increasing also the number of camera acquisitions. Image-based systems
are slow due to limitations in the camera frame rate. Such approaches need to capture several images during the
optimization process, and infrared cameras cannot run efficiently above 8 kHz. Hence, the camera becomes the
bottleneck regarding the closed loop bandwidth.

3.4 Comparison of AO techniques

To conclude with the discussion of some of the traditional AO techniques that may be used in FSOC, a summary
of the relevant characteristics for laser downlinks is shown in Table. 3.2. Details of the analysis can be found
in [33]. Some additions, like Speckle imaging and image sharpening have been included. The listed WFS are
compared regarding resolution, complexity of wave-front reconstruction and speed, robustness against phase
singularities and scintillation, and hardware complexity. The comparison is made with a "+" a "-" and a "o" to
indicate a positive, negative, or neutral characteristic in an FSOC downlink.
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Table 3.2: Summary comparison of wave-front sensors characteristics.

Resolution: The resolution is very important in imaging AO, where a clear image of the object is targeted,
thus higher spatial resolution of the WFS allows more accuracy in the phase reconstruction. Lasecoms does not
require that high quality and AO only needs to sufficiently correct the dominant wave-front aberrations to allow
a stable and efficient focusing of the beam energy in the fiber. Here, the SH-WFS can increase the resolution
with a densely packed lenslet but at the expense of rising the post-processing requirements. Interferometric
methods, the Pyramid sensor, and Speckle imaging perform better but the hardware complexity increases in
the first two cases, and several images are needed in the speckle-based technique, unwanted conditions for an
AO-FSOC solution.

Reconstruction complexity and speed: This is a key point for FSOC due to the constrained time for
correction (1 to 2 milliseconds). Clearly, non-iterative AO solutions vastly overcome their iterative counterparts,
which to the date still require too many iterations to converge (> 100), limiting their use in FSOC. To correct a
wave-front within 1 millisecond, a closed loop running at 100 KHz would be needed for 100 iterations, which
is unpractical.

Robustness to singularities and scintillation: Here the trends are inverted, and the pupil-based AO solutions
perform worse than the iterative solutions. Considering that scintillation can be, to some extent, attenuated
with aperture averaging, iterative systems outperform other systems. Low illumination over the lens area, also
originated due to intensity scintillation, additionally affect pupil-based techniques. Likewise is the impact of
phase singularities. Particularly for the SH-WFS, a BP in one or many of the lenslets (expected in low elevation
links) would imply a spot focused outside the sensor area and a wrong phase estimation.

Hardware complexity: Here the clear winner is the family of sensor-less AO solutions, as they require no
complex WFS. Lasercom also targets a simple system, easy to adjust and calibrate, as many of the OGS are
intended to be mobile and ready for on-demand deployment. Complex AO systems are costly and may be a
limiting factor from the commercial point of view.
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3.5 Conclusion of the chapter

The implementation of spectrally efficient coherentmodulation formats in scenarios of LEOdownlinks represents
a very difficult challenge. This task must consider an efficient single-mode fiber coupling, which can only be
achieved after the distorted beam wave-front is compensated. Even though the impact of the scintillation
is attenuated with aperture averaging, phase distortions are dominant. The use of standard AO techniques
adopting the mature Shack-Hartmann sensing technology is efficient up to a certain degree of turbulence.
Its original design is well suited to weak turbulence regimes and, in such scenarios, a Hartmann-based AO
system delivers sufficient signal stabilization. Naturally, the incursion into strong turbulence regimes highlights
predicted limitations. Other pupil-based techniques may offer better performance in the speed of the wave-front
reconstruction, or robustness against phase singularities, at expenses of more hardware complexity, and still
being limited by large irradiance dynamics.

In the search for alternatives, and considering that high resolution is not that crucial in FSOC, sensor-less
techniques show most of the wanted characteristics of an AO system in FSOC, but suffer from time constraints;
the iterative nature of this approach exceeds the expected coherence time of the field (≈ 1 ms). The SPGD is
the most promising iterative technique, but still requires a loop bandwidth above 100 kHz, which is technically
unpractical.

One can conclude that the set of positive characteristics of sensor-less techniques encourage further research
of similar methods capable of reducing the required number of iterations. By doing so, this technology may
provide a solution to FSOC under strong turbulence breaching today’s gap in high bandwidth laser downlinks.
The following sections address the convergence time problem by proposing a new iterative AO approach.



C h a p t e r 4

SPECKLE-BASED ADAPTATION

T he adoption of standard adaptive optics systems has been the first logical approach to solve the turbu-
lence problem in satellite-to-earth lasercoms. Naturally, many of these techniques have experienced
substantial refinement since their first appearance, being optimized for their original field of applica-

tion. Most of them were created or proposed to help to visualize celestial objects with higher definition, where
the typical scenario involves a telescope located at the top of a mountain, pointing to the clear sky at higher
elevations. Consequently, these AO systems deal with more benign turbulence regimes than the ones presents
in FSOC.

Recent years have shown many attempts of the FSOC community to use these AO systems to overcome
the turbulence constraints. The preferred one has been, without question, the Hartmann-based AO system.
Its technological maturity and reasonable hardware complexity has inclined the scientific community, and
recently some commercial endeavors, to use this solution towards their goal of providing a stable solution in all
turbulent regimes. Under low to moderate turbulence, the adoption of SHWFS for laser communications has
proven to successfully correct phase distortions, allowing efficient single-mode fiber coupling and gigabit data
rates [43–47]. However, the predicted limitations of this type of solutions become evident entering into strong
turbulent regimes, thus most of the successful campaigns have been done at elevations above 30 degrees.

To deal with low elevation laser links, scientist have considered the robustness of sensor-less adaptive optics
and focused on its use in lasercoms. This approach has properties very much wanted in FSOC systems, like
simplicity, robustness, easy calibration, and metric-oriented optimization. This means that by constant blind
optimization of the power coupled in the fiber, the system can dynamically adapt itself to sudden atmospherically-
induced changes in the signal. The critical impediment has been, and even though significant progress still is,
the high number of iterations (above 100) needed to correct the wave-front. This limitation is linked to the
mechanical capabilities of the DM, which would need to reshape at 100 KHz within 1 millisecond.

Consequently, it is of high interest to reduce the number of iterations in iterative solutions while keeping
their robustness and simplicity. The previous chapter introduced other indirect techniques like speckle imaging,
highlighting that short-exposure speckles posses useful information Fourier-related to the distorted pupil phase.
The limitations of such approach is the large number of images that need to be acquired and the heavy
processing workload. This limitation is shared by the image sharpening technique, that seeks to sharp the focal
PSF optimizing a set of Lukosz modes in a quadratic manner. In the later, the intensity distribution itself is not
directly related to the applied polynomials, thus the optimization goes through a large set of modes sequentially.
Note that each one of these indirect methods has key strengths but they do not solve the convergence speed
problem on their own.

This chapter presents a new modal iterative method that combines some of the properties of the described
indirect methods, allowing a substantial reduction in the loop bandwidth utilization during the iterative process.
This method uses the individual speckles of a single short-exposure intensity image, assuming that each speckle
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can be Fourier related with a plane wave mode in the pupil plane. Each mode can be optimized in a quadratic
manner and sequentially combined, improving the focal intensity distribution after each optimization. The
optimization process works with the power of the coupled light in the fiber, and reaches convergence with a
number of iterations proportional to the number of selected speckles. The proposed technique only needs a
single captured image per field, and it allows the in-advance knowledge of the set of modes as well as the
number of iterations required, thus it performs a non-blind sequential optimization process. Consequently, the
loop bandwidth utilization is reduced, while giving more control over the correction process.

The following sections present an overview of some relevant properties of a short-exposure focal image,
regarding the intensity distribution among speckles and the intrinsic limitation for the direct phase recovery.
Then, the general mathematical framework is presented and the method is detailed. This chapter concludes
with an estimation of the method performance, analyzed numerically under turbulent conditions of a satellite
downlink scenario.
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4.1 The focal speckle pattern

A speckled image is a random pattern of intensity that originates from the interference of a multitude of wave-
fronts of the same frequency, but different amplitudes and phases. A coherent light beam propagating through
a turbulent channel must cross through different inhomogeneities of varying size, that results in both amplitude
and phase fluctuations of the wave-front entering the lens of the optical receiver. Assuming a photodetector
array in the focal plane of the lens, each point in the detector will result from the field contribution of each
point in the aperture. Since different parts of the aperture have suffered non-equal amounts of atmospherically
induced phase delay, interferring waves with phase differences larger than one wavelength result in random
pattern of intensity. Goodman modeled this phenomenon representing the waves as vectors, and presented an
intuitive explanation for the speckle formation based on the concept of "random walk" [4]. In Goodman’s model
a focal speckle arises from the interference of a multitude of independently phase additive complex components
in a signal. Each component may have a random length (amplitude) and direction (phase) in the complex plane
that, when added together, they constitute a random walk. Depending on their phases, the sum may result
in destructive or constructive interference, with the squared length of the resultant being the intensity of the
observed wave. Figure 2.2 depicts a random walk of a light ray propagating from the laser source to the detector.

(a) (b)

Fig. 4.1: (a) Short exposure PSF and (b) long exposure PSF. Turbulent scenario D/r0 = 6, with D = 40 [cm]

A distinction between the short and long exposure speckle pattern needs to be made. Figure. 4.1 (a) shows
a typical short-exposure focal intensity image, while Fig. 4.1 (b) depicts the long-exposure one. Whether both
patterns differ between each other, depends on the integration time of the focal sensor with respect to the coherent
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time of the fields τ0. The short-exposure image shows a speckled intensity pattern and statistically independent
intensity spots. Assuming a camera capable of acquiring many images within τ0, then the resultant focal speckle
would still resemble the one in Fig. 4.1 (a). Instead, longer acquisition times t > τ0 result in an averaging
process with a broader spread function. These long exposure images do not contain useful information.

Turbulence compensation in FSOC systems must be performed within τ0 to avoid signal fades. Speckle-based
imaging techniques rely on short-exposure images which contain spectral information and where, even though
not directly retrievable, the phase information is preserved [117].

An important property of the focal intensity patterns is that a linear phase tilt in the pupil distribution only shift
the speckle pattern but does not introduce any blur or broadening. Therefore, the tilt can be pre-compensated to
center the pattern without altering the information related to higher order phase distortions.

In the concerning scenario of laser propagation over turbulent channels, the speckle phenomena can also be
modeled considering that discrete regions of the pupil wave-front suffer different amounts of atmospherically
induced phase delays [4]. This loss of coherence of the wave-front can be represented by circular symmetric
correlation cells with a diameter defined by the Fried parameter r0, calculated with Eq. (2.20), and depicted in
Fig. 4.2. Each cell is assumed to have a uniform phase, which is random with Gaussian statistics respect to
the others [4]. The ratio of correlation cells embraced by the aperture of diameter D, known as the normalized
aperture D/r0, defines the impact of the phase distortions in the optical system. The number of uncorrelated
cells in the pupil plane can be approximated as N0 = (D/r0)

2.

Fig. 4.2: Representation of the pupil field loss of coherence and autocorrelation process [4].

The extent of the performance deterioration in the optical receiver is estimated through the autocorrelation
of a complex pupil field. In Fig. 4.2, the autocorrelation is represented by the shifted overlap of the field with
its identical conjugated version. The shaded areas represent the full overlap of the cells. By shifting the field a
distance r0, the overlap between uncorrelated cell results in a random phase and amplitude leading to a reduction
in the system performance. As a result, the cell size limits the system resolution to that of a system with aperture
diameter equal to r0. Because the speckle pattern results from the Fourier transform of the complex pupil field,
the dimension of each focal speckle (single intensity spot) is proportional to λ/D, and the extension of the whole
speckle pattern is given by λ/r0.

Generally, the number of intensity spots in a short-exposure speckle pattern is also approximated as (D/r0)
2.

In reality, the speckles do not have the same intensity, and those with higher intensity contain more information
of the aberrated wave-front.
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4.1.1 Speckle intensity distribution

As previously said, the power distribution among the speckles in the focal plane changes with the turbulence
strength. When the turbulence is weak, most of the wave-front energy gets focused in a few bright speckles.
Instead, under strong turbulence, a large number of intensity spots appear, typically spread around the central
position in the focal plane. The on-axis focal intensity can be estimated numerically by generating a set of
synthetic speckle patterns and registering the Strehl factor [125]. This factor is equal to the intensity at the
central point I(0), normalized to the peak intensity Imax of the diffraction-limited pattern (Airy pattern). For
this analysis, a large set of N = 400 focal images is generated by Fourier transforming an equal number of
complex pupil fields. Each set of pupil fields is created with unitary amplitude, and a phase generated with the
single-screen phase method, presented in Sec. 2.1.4. The simulated scenarios consider normalized apertures
equal to D/r0 ≈ [1,3,6,10] with D = 40 cm.

Fig. 4.3: Probability distribution of the on-axis intensity of a large set of speckle pattern.

Figure 4.3 shows the PDF of the normalized on-axis intensity. The probability of having high-intensity values
at the central position of the focal plane (expected position of a single-mode fiber) reduces because most of the
bright speckles typically evolve around the central position. Such phenomenon is related to high order phase
distortions in the pupil field.

Assuming the possibility of target-and-correction of each speckle, it results useful the estimation of the
number of speckles that should be considered to optimize the correction. This would imply having the capacity
of selecting the more intense speckles, and being able to “move them” towards the central position to increase
the composite signal. The trend of the mean intensity distribution per speckle can be analyzed numerically, and
requires the detection and classification of the speckles on each short-exposure intensity pattern.

The process starts by normalizing each focal image to the sum of its intensity components, see Figure 4.4 (b).
Then, the normalized image In is segmented and the detected speckles are classified in descending order based
on their intensity strength. Once sorted, the total intensity within each speckle area I s is calculated. For
example, if the normalized image has four intense speckles, then In ≈

∑4
m=1 I s(m). The procedure is repeated

for a large set of images within different D/r0.
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Fig. 4.4: (a) Airy pattern. (b) Representation of the image processing steps applied to each focal image. The table classifies the speckles based on their
peak intensities and shows the total intensity contained on their respective speckle areas.

Fig. 4.5: Mean intensity distribution per speckle for different turbulent scenarios. The markers indicate the optimum number of processed speckles
equivalent to 81% of the total focal intensity.

The results are shown in Fig. 4.5. Each curve shows the trend of the mean normalized intensity per speckle,
for a particular D/r0. Consider that a plane wave received by a circular aperture, and focused by a single lens,
results in an Airy pattern of intensity, see Fig. 4.4 (a). Note that in an airy pattern, the encircled energy in the
first ring is equal to 84% of the total, and the intensity ratio between the first and principal lobe of an Airy
pattern is 1.7%. Consequently, as the maximum SMF coupling efficiency is no more than 81% of the total focal
power, the optimum number of speckles considered for processing in Fig. 4.5 are those with an intensity strength
above 1.7% of the total. This optimum number of speckles, equivalent to 81% of the total focal intensity, is
highlighted with a marker on each curve.

As expected, the distribution of the focal intensity varies with D/r0. The stronger the turbulence, the more
is the intensity distribution among the focal speckles. For nearly ideal conditions D/r0 = 1, most of the power
accumulates in less than 3 speckles. For higher D/r0, more speckles need to be considered to reach 81% of the
maximum. The curves confirm that most of the focal power concentrates in a small number of speckles, hence
the (D/r0)

2 assumption, made in Sec. 4.1, overestimates the required number of speckles for correction.
To provide an estimation of the required speckles for correction under different turbulent regimes, the curves
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in Fig. 4.5 can be approximated with the function

log10 (〈In〉) = A0exp (B0M) + C0exp (D0M) , (4.1)

where M is the number of speckles to be processed, and the coefficients {A0,B0,C0,D0} can be calculated in
function of the D/r0 as shown in Table 4.1. The Eq. (4.1) results of a numerical fitting of the curves and
coefficients. This equation is well suited for all D/r0 scenarios within the stipulated range. Note that the
optimum number of speckles M can be recursively calculated for a predefined D/r0.

D/r0 Function Coefficients
p1 = −0.01546

A0 1 ≤ D/r0 ≤ 20 p1

(
D
r0

)p2
+ p3 p2 = 0.9688

p3 = −1.476
p1 = 0.05685

B0 1 ≤ D/r0 ≤ 20 p1exp
[
p2

(
D
r0

)]
+ p3exp

[
p4

(
D
r0

)]
p2 = −0.2836
p3 = 0.006063
p4 = −0.006485
p1 = 8.108

C0 1 ≤ D/r0 ≤ 20 p1exp
[
p2

(
D
r0

)]
+ p3exp

[
p4

(
D
r0

)]
p2 = −0.9132
p3 = 2.136
p4 = −0.09269
p1 = −1.933

D0 1 ≤ D/r0 ≤ 20 p1exp
[
p2

(
D
r0

)]
+ p3exp

[
p4

(
D
r0

)]
p2 = −0.55
p3 = −0.1496
p4 = 0.01146

Table 4.1: Range of D/r0 and formulae for the main coefficients of Eq. (4.1).

Fig. 4.6: Comparison between the distribution of the mean normalized intensity per speckle betweenmeasured focal images (markers) of a GEO downlink
and the analytic fitting based on simulations (continuous curve) of table 4.1.

The validation of Eq. (4.1) is performed against a set of focal images obtained during a TESAT-DLR
measurement campaign (2016-2018) [43], see Fig. 4.6. The focal images correspond to a laser downlink (1064
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nm) between the GEO satellite Alphasat (35700 km) and the ESA-OGS located in Tenerife (Spain). The r0 is
estimated using the method described in [126] on different days and daytime. The selected scenarios have an
approximated normalized aperture D/r0 = [3.5,6.22,12.6] with D = 1m.

In Fig. 4.6, the continuous curves are the numerical approximation, based on simulations, and calculated
with Eq. (4.1). These curves are compared against the ones resulted from the processing of the measured focal
images, represented with markers. There is a good matching in the slopes, particularly for strong turbulence.
A deviation occurs approaching weak turbulence, D/r0 = 3.5, which may be originated by the fact that the
synthetic fields are created with unitary amplitude, while the real focal images also consider scintillation effects
and slant-path.

4.1.2 Focal speckle phase

The main challenge for the phase retrieval from a focal intensity image is an intrinsic phase ambiguity. If the
phase of the complex focal field is missing, there is always ambiguous solutions for the recovered complex
pupil field. In other words, there exist several focal phase map alternatives leading to the same measurable
focal intensity pattern. This claim is also valid for the pupil function, where several pupil phases result in an
identical focal pattern of intensity. A mathematical analysis of the problem was performed by J.C. Dainty in
1979, where he established that “on the basis of measurements of intensity alone, there is no possible way to
distinguish between these alternatives without additional information” [127]. Several approaches have been
proposed to deal with the problem, concluding on the impossibility of a direct phase retrieval from power
intensity measurements [127–131].

As explained in Sec. 3.3.2, when working with focal intensity patterns as an input of the phase compensation
system, amplitude and phase are addressed independently. The amplitude spectrum of the field is estimated
with speckle interferometry [117]. The phase spectrum of an object can be recovered with post detection image
processing techniques like the cross-spectrum and bispectrum methods [16]. Both processes require a large set
(>100) of focal images that need to be Fourier transformed; thus the task involves fast camera acquisition rates
and substantial software post-processing workload. Since FSOC turbulence compensation must be constrained
to approximately 2 milliseconds, these methods do not qualify for the task, mainly due to camera acquisition
rates constraints.

4.2 Speckle-based sequential technique

This thesis proposes a new iterative adaptive optics method that uses the intensity information of a single focal
image to reduce the number of iterations required. The adaptation method operates on each main intensity
speckle sequentially, updating and optimizing their phases iteratively. The method has the attractive property
that each phase estimation can be obtained in a closed form via the quadratic optimization of a cost function based
on power measurements. Because quadratic optimization problems are always convex, a standard multivariate
quadratic algorithm would always find a global optimum. This means that the algorithm does not need to react
based on the trend of the coupled signal, like stochastic blind algorithms, and instead perform the pre-established
measurements and optimization steps sequentially.
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To facilitate the understanding of the next sections, a summary of the main processing stages is given as
follows:

• The method uses a single short-exposure focal image and identifies the peak amplitude and coordinate
position of the most intense speckles

• In the framework of Fourier optics, the method associates the speckle pattern with a summation of
pondered pupil plane waves, each one propagating towards its own associated focal speckle

• Optimizing the phase of the speckles is equivalent to phase-shift the associated plane waves until the
best coherent combination compensates the distorted field. This is done sequentially, shaping the DM
and concurrently sensing the fiber-coupled power

• Because the power optimization process fulfills conditions of a convex problem, it requires only three
power measurements for each optimization

• As a result, the total number of iterations needed is proportional to three times the number of selected
speckles, substantially reducing the total number of iterations required per field compensation

4.2.1 The turbulence compensation system

Before detailing the adaptation method, let’s describe the turbulence compensation system and define the signal
terms. Figure. 4.7 shows the main hardware components of the receiver. Like the sensor-less system shown in
Fig. 3.10, a deformable mirror and a fiber coupling section are required for the working algorithm. Additionally,
a focal camera and a tilt correction stage are shown. Tilt correction systems are always present to compensate
for the beam angle of incidence, allowing the DM to correct only the higher order aberrations. Because the
satellite needs to be tracked, optical ground stations always have a focal camera. The optical system for the
tracking camera normally uses a rather large focal length (≈ 4 meters in DLR-OGS) and high-resolution IR
cameras. Hence, the focal image (speckle pattern ) can be well-resolved, and the adaptation method does not
need to add an extra piece of hardware.

Fig. 4.7: Simplified scheme of the optical receiver. The incoming beam is corrected in tilt, reflected in the deformable mirror, and focused on an infrared
camera and single mode fiber. The speckle image and the coupled signal are used to sequentially compensate the distorted phase-front via the iterative
control of the deformable mirror.

When a laser beam passes through the turbulent atmosphere, the wavefront P = A exp( jϕ) is affected by
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distortions in amplitude A and phase ϕ. In the receiver, the distorted beam is captured by a single monolithic
aperture, guided to the tip-tilt mirror (TTM) for angle-of-incidence correction, and reflected in the deformable
mirror (DM). The DM modifies its shape according to an estimated phase ϕ̂, inducing phase-only variations on
the wavefront P, and resulting in a phase-compensated reflected beam

Pc = A exp ( j (ϕ − ϕ̂)) . (4.2)

Here, ϕ̂ is defined by an iterative algorithm requiring two inputs. The first input is a focal intensity image
I = |F |2 captured by a camera sensor. The complex field F = B exp ( jθ), with amplitude B and phase θ, results
from the optical Fourier transform of Pc. The second input is a real-time acquisition of the signal power coupled
into a single mode fiber. The power of the coupled signal is defined by the SMF coupling efficiency η, which is
calculated in the pupil plane applying Eq. (4.2) into Eq. (2.104).

4.2.2 Mathematical framework

The proposed technique considers Fourier optics and the angular wave spectrum (AWS) method. Fourier optics
explains the fundamental principles and processes of the technique, while the AWS method helps to understand
the assumption leading to the problem simplification.

4.2.2.1 Fourier Optics representation

In Fourier optics, a wave-front can be described by the sum of an infinite number of plane waves oriented in
different directions in space, each one carrying a part of the total energy of the field. After the wave-front passes
through a lens, the energy of each plane wave converges in a unique non-equal point in the focal plane. This
focal plane is known as the Fourier transform plane, where the wave-front is transformed into spatial frequency
spectra [132]. When a distorted wave-front is considered, measurements of intensity in the focal plane show
fine-scale fluctuations in space, i.e., speckles. In this framework, these speckles appear because the wave-front
is composed of a multitude of independent complex plane waves having both random amplitude and random
phase. Let’s consider a plane wave defined as

u(x, y, z) = Aexp
[
j
(
kxx + kyy + kzz

) ]
(4.3)

propagating in a particular direction in space, indicated by the wave vector k = (kx, ky, kz), having a wavelength

λ, wave number k =
√

k2
x + k2

y + k2
z = 2π/λ, and complex envelope A. The wave vector k makes angles

βx = sin−1(kx/k) and βy = sin−1(ky/k)with the y− z and x− z planes, respectively. In Fig. 4.8 the angle βx = 0.
At the position z = 0, the complex amplitude u(x, y, z = 0) is a spatial harmonic function of the type

f (x, y) = Aexp
[
j2π

(
vxx + vyy

) ]
(4.4)

with spatial frequencies vx,y = kx,y/2π (cycles/mm) and harmonic periodsΛx,y = 1/vx,y in the x and y directions,
respectively. The propagation direction of the plane wave is clearly defined by the frequencies of the harmonic
as

βx = sin−1(kx/k) = sin−1(λvx) (4.5)
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Fig. 4.8: Representation of a pupil harmonic (plane wave) propagating in the direction of the wave vector k to the focal point of coordinates c, with and
angle βy proportional to the harmonic frequency vy .

βy = sin−1(ky/k) = sin−1(λvy). (4.6)

In the paraxial approximation kx,y � k, and the propagation angles in Eq. (4.5)-(4.6) are small enough to be
approximated as

βx,y ≈ λvx,y. (4.7)

As initially mentioned, a complex wave-front is composed by a multitude of plane waves. A lens separates and
focus each plane wave propagating in the direction (βx, βy) onto a unique point (x ′ = βx f , y′ = βy f ) in the focal
plane, where

x ′ = βx f = λvx f (4.8)

y′ = βy f = λvy f (4.9)

Clearly, from Eq. (4.8)-(4.9), the complex amplitude at the point (x ′, y′) is proportional to the Fourier transform
of the function f (x, y), Eq. (4.4), evaluated at the frequencies vx = x ′/λ f and vy = y′/λ f . The Fourier
transform of the aperture function f (x, y) with Fourier components F(vx, vy) can be written in the K-space as

F(k) =

∞∬
−∞

f (r)exp (− jk · r) (4.10)

with an inverse

f (r) =

∞∬
−∞

F(k)exp ( jk · r) (4.11)

where k · r = (kxx + kyy). Considering the aperture function that equals unity for |r | ≤ D/2 and zero for
|r | > D/2, with D being the lens aperture diameter, the Fourier transform of a truncated plane wave can be
expressed as

F(k) =

∞∬
−∞

W(r) f (r)exp (− jk · r) =
2πJ1

(
D
2

√
k2
x + k2

y

)
√

k2
x + k2

y

(4.12)
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where J1( ) is the Bessel function of the first kind of order one. The focal intensity pattern I(k) results in the
well-known Airy pattern

Ia(k) =


2πJ1

(
D
2

√
k2
x + k2

y

)
√

k2
x + k2

y


2

(4.13)

4.2.2.2 Angular wave spectrum representation

The angular wave spectrum (AWS), also known as angular-spectrum of plane waves, is a mathematical tool used
to describe and analyze optical wave fields. The AWS represents a field as the superposition of homogeneous
and in-homogeneous (evanescent) plane waves, propagating in different directions in space. The full derivation
of the AWS is not given to avoid confusion with the previous derivation, and can be found in [132,133]. Instead,
the most relevant concept is explained.

(a) (b)

Fig. 4.9: (a) Object plane and image plane representation. A plane wave originates from a point source in the object plane and propagates in the direction
of the k vector to a unique point c in the image plane. (b) A plane wave propagates in the direction of the k vector which has (kx , ky , kz ) components.
In the far field and paraxial limit, the angle βy is small, thus, the condition of propagating plane wave (k2

x + k
2
y < k2) is fulfilled.

The AWS establishes that each point in the object plane (x, y) of Fig. 4.9 (a), acts as a source of plane waves
of the type

u(x, y, z) = Aexp
[
j
(
kxx + kyy

) ]
exp [ j (kzz)] (4.14)

propagating to the point c based on a propagation factor exp(± j kz z). Equation (4.14) can be written in the
K-space as

u(x, y, z) = Aexp ( jk · r) (4.15)

where k =
(
kx x̂ + ky ŷ + kz ẑ

)
and r = (x x̂ + yŷ + zẑ) define the propagation direction of the wave, and ˆ

indicates a unit vector. Considering again the relation k2
x + k2

y + k2
z = k, the conditions for propagation and

evanescence of plane waves is given by
kz =

√
k − k2

x − k2
y, (4.16)
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where the propagator factor exp(± j kz z) oscillate or exponentially decay based on

k2
x + k2

y ≤ k2 Plane waves (4.17)

k2
x + k2

y > k2 Evanescent waves (4.18)

As a result, the larger the angle βy between k and the z axis, Fig. 4.9 (b), the more are the oscillation in the
transverse plane and the faster the waves attenuates. Note that when k2

x + k2
y > k2 then kz becomes imaginary

and the propagation factor turns into a negative exponential, attenuating the field.
G.C. Sherman [133] proved that, in the framework of the AWS and paraxial limit, each point of the field

u(x, y,0) acts as a source of a plane wave that carries part of the total energy of the field to the observation
point in the image plane. The amplitude of such point is equal to the amplitude of the plane wave. The rest of
plane waves originated in different points of the object plane destructively interfere [132, 133]. Consequently,
only a single plane wave contributes to each point of the image plane. If an optical system is considered, the
far field is focused at the focal plane of the lens, hence, the energy of each plane wave converges in a unique
non-equal point in the focal plane.

4.2.3 The method

Consider now that a wave-front affected by turbulence experiences different amounts of phase delays [4]. Similar
phase delays in the pupil define coherent regions in the phase-front. In Fig. 4.10(a), areas of the same color
represent the regions where the phase remains coherent. From the theory of angular wave spectrum, Sec. 4.2.2.2,
it is reasonably assumed that each coherent region in the pupil plane becomes a source of plane waves with
similar propagation directions, focusing in a well-defined area in the focal plane, see Fig. 4.11. The contribution
of this set of plane waves, with slight differences in the propagation direction, results in a speckle with a well-
defined maximum of intensity. Additional speckles are produced by a different set of plane waves associated
with other coherent regions in the pupil, see Fig. 4.10(b). Hence, it is possible to represent the net effect of each
coherent region with a single plane wave, having properties defined by the associated focal speckle.

Fig. 4.10: (a) Representation of the coherent regions of phase in the pupil plane. (b) Representation of the focal intensity image with M main speckles.
(c) Simplification with the M peak intensities.

These assumptions can be modeled by representing each main speckle of the focal intensity pattern in
Fig. 4.10(b) as a spatially shifted airy pattern, weighted by the scalar speckle peak amplitude bl, and matching
the speckle peak coordinates c = (x ′, y′) shown in Fig. 4.10(c). By performing the back Fourier transform of the
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Fig. 4.11: Representation of a distorted phase wave-front reaching the focusing lens. Each coherent region in the wave-front can be considered a source of
plane waves propagating to a particular point c of the focal plane. The ensemble contribution of each focused set of plane waves results in the formation
of a speckle.

summation of airy patterns, and considering that these main speckles are indeed sufficiently decorrelated [134],
the pupil field P(r) can be written as

P(r) ≈

M∑
l=1

bl
∞∬

−∞

δ (k − k l)
√

Ia(k)exp ( jk · r) dk
 (4.19)

where k l can be defined as

k l =

(2πx ′
l

λ f
,
2πy′

l

λ f

)
. (4.20)

In Eq. (4.20) the reader may consider Eq. (4.8)-(4.9) and recall βx,y = kx,y/k from Sec. 4.2.2.1. Naturally, the
speckle phase information is still missing and its inherent ambiguity is generally addressed with the method
introduced in Sec. 3.3.2, which is not suitable for FSOC applications. However, from the work of Freund [134], it
is known that each speckle shows a local spatial correlation between its intensity distribution and phase gradient,
with a high correlation between the minimum phase gradients and the maximum slopes of intensity. In simple
words, on each well-defined speckle of intensity, there is a small gradient of phase that allows the assignment
of a constant phase value to its entire area. With this approximation, the speckle phase can be modeled as a
constant scalar value and

P(r) ≈

M∑
l=1

blexp( jθl)
∞∬

−∞

δ (k − k l)
√

Ia(k)exp ( jk · r) dk
 . (4.21)

Therefore, this model approximates the distorted wave-front P(r) by a finite set of M dominant plane waves,
each one related to one of the M main focal speckles which define the scalar amplitude bl ∈ R, and the
propagation direction given by the wave vector k l. Based on that, the wave-front is written as

P(r) ≈ W(r)
M∑
l=1

bl exp ( jθl) exp ( jk l · r) . (4.22)
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Note that the still unknown scalar phase θl ∈ R represents the phase shift of the l harmonic (plane wave) respect
to the others. Figure 4.12 depicts the real term of a single pupil harmonic of amplitude b and frequency vx ,
highlighting the possible phase shift direction.

Fig. 4.12: Representation of harmonic term with spatial frequency vx , amplitude b, and phase shift θ.

In consequence, the problem gets reduced to the iterative search for a set of θl that deliver the right combination
of harmonics in the pupil plane. Considering the orthogonality between harmonics/speckles, this task can be
performed with the coordinate-wise ascent algorithm [135]. This algorithm treats the multivariate problem as
a set of simpler sub-problems of a single dimension, maximizing an objective function by optimizing the scalar
variables θl in sequence. In other words, the algorithm finds each optimum phase shift sequentially, optimizing
each variable at a time and independently.

ϕ̂(r) = arg
b1 exp ( jk1 · r) +

M∑
l=2

©«bl exp ( j (k l · r + θl)) +

∑
q,l

bq exp
(
j
(
kq · r + θq

) )ª®¬
 . (4.23)

In Eq. (4.23), the M plane waves are sequentially added and the estimated phase ϕ̂(r) is calculated as the
argument of the summation. The objective function is the fiber coupling efficiency η, calculated with Eq. (2.104)
using the field Pc(r) compensated in phase with the estimated ϕ̂(r), see Eq. (4.2) and Fig. 4.7. The first term
in Eq. (4.23) represents the first plane wave taken as a reference and from which the estimated field will evolve,
thus, no phase shift is required. Starting with the second plane wave l = 2, the phase shift θl is found following a
parabolic optimization process. In this process, depicted in Fig. 4.13, three scalar phase variations [θ1, θ2, θ3] are
applied to the plane wave, resulting in three pupil phase estimations

[
ϕ̂1, ϕ̂2, ϕ̂3

]
which leads to [Pc1,Pc2,Pc3].

Consequently, three values of coupling efficiency [η1, η2, η3] are sequentially obtained. A parabolic fitting is
applied to the function η = f (θl) and the optimum phase shift θoptl is found at the position of the maximum
coupling ηmax.

Note that each phase shift θ represents a perturbation of the compensator element (i.e. DM), which is
translated into a change in ϕ̂(θ) and concurrently to the control signals as
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Fig. 4.13: Description of the optimization of the phase shift of a plane wave.

vm = Md ϕ̂m, (4.24)

where v represents the control signals, Md is transfer function of the compensator element, and m represents
the iteration number. The difference with the SPGD method, presented in Sec. 3.3.1, is that the perturbations θ
are non-stochastic but instead well-defined, and the number of iterations m is known in advance.

This procedure is repeated for each subsequent plane wave, keeping each q , l previously optimized variable
θq fixed. Consequently, the compensation of a distorted phase-front is done with a total number of iterations
calculated as

Niter = 3 (M − 1) + 1 , (4.25)

which is directly proportional to the number of main intensity speckles. In Eq. (4.25) the number 3 indicates the
three iterations, M is the total number of processed speckles, the factor “-1” represents the first plane wave which
does not require the optimization, and the final “+1” represents the final iteration that imprints the final shape to
the DM. Note the similarity with the image sharpening technique presented in Sec. 3.3.3, here performing the
optimization with the power coupling instead of image comparisons, thus avoiding the bottleneck limit given by
the camera acquisition frame rate.

4.2.4 Parabolic optimization

A parabolic optimization of each plane wave is possible because the coupled power in the fiber η varies
periodically with θl. Before the mathematical formulation of the function η = f (θl), let’s expand Fig. 4.12
with more plane wave harmonics. Figure. 4.14 (a) shows the field P(r) composed of 4 plane waves, each one
represented with its real term components as, getting focused and producing 4 speckles spatially distributed in
the focal plane, see 4.14 (b).

R[P(r)] =
M=4∑
l=1
[blcos (k l · r + θl)] . (4.26)

The speckle “A” is the resultant of a harmonic of lower frequency and higher amplitude, clearly visible in the
image. Instead, the speckles “B”, “C”, and “D” result from the propagation of plane waves of lower amplitude
and higher spatial frequency, thus, they are positioned further apart from the center of the image and have lower
peak intensity. The summation of the waves is shown in Fig. 4.14 (c). A continuous variation of θ1 (plane wave
A) shift the position of the speckle “A” back and forward periodically, inducing the same change in the coupled
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(a) (b) (c)

Fig. 4.14: (a) Real components of a combined set of four plane waves of different amplitudes, propagation directions, and spatial frequencies. (b) Focal
image resulted of the Fourier transform of the combined plane wave set. (c) Resultant phase map of the combined set of plane waves.

power. From this representation, it is easy to visualize that the compensation of the distorted field involves
finding the conjugated plane waves and the optimum phase matching between them.

A mathematical formulation of the periodicity of the function η = f (θl), can be found by combining the
Eq. (4.2) with Eq. (4.22) as,

Pc(r) =
M∑
l=1

bl exp ( j (k l · r + θl)) exp
(
− j

(
k l · r + θ̂l

))
. (4.27)

In this equation, θ̂l is the estimated phase shift of the l plane wave of P(r). As the l plane wave has an unknown
θl, the optimization requires to optimize ∆θl = θl − θ̂l. Because the amplitude bl and spatial frequency k l of the
plane wave are known parameters, the equation can be reduced to a scalar problem in function of the variable
∆θl. Assuming ideal coupling η = 1 in Eq. (2.104), the coupling efficiency can be written as

η ∝

����� M∑
l=1

(
bl exp ( j∆θl) +

[∑
t,l

bt exp ( j∆θt )

])�����2 , (4.28)

Considering the Euler expansion of the complex exponential, every l sub-problem can be expressed as,

ηl = A0 + A1 cos (∆θl) + A2 sin (∆θl) (4.29)

with coefficient,

A0 = b2
l +

[∑
t,l

bt cos (∆θt )

]2

+

[∑
t,l

bt sin (∆θt )

]2

(4.30)

A1 = 2bl
∑
t,l

bt cos (∆θt ) (4.31)

A2 = 2bl
∑
t,l

bt sin (∆θt ) (4.32)

In Eq. (4.29) the components [A0, A1, A2] represents the intensity contribution of the t , l optimized plane
waves, combined with the intensity b2

l
of the current wave. Applying the trigonometric identity a cos (x) +

b sin (x) = R cos (x − a), the coupling efficiency shows its periodicity with each ∆θl variation

ηl = A0 + R cos (∆θl − α) , (4.33)
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where R =
√

A2
1 + A2

2 and α = tan−1 (A2/A1). In Eq. (4.33), the coupling of each l sub-problem ηl is seen as
a biased circular function of periodicity 2π, with a phase shift α that updates its value after every plane wave
adjustment.

In order to perform a parabolic optimization, the value of ∆θl must be constrained to a range of π. If the
values are linearly assigned and equally spaced, the phase shift always spans in one, and no more than two,
contiguous quadrants of a cosine period. Hence, whenever θ̂opt is found in a minimum, the maximum can be
located at θ̂opt + π.

Figure 4.15 (a) shows an example of the coupled signal variation and parabolic optimization. By applying a
continuous variation of each θl between the plane waves, the output η follows the expected periodic behavior
described in Eq. (4.33). Here, each θl varies between 0 and 3π. As mentioned before, the first speckle acts as
a reference and only the plane waves associated with the speckles 2 to 4 are optimized. To verify the parabolic
optimization, each θl is only changed with three discrete values θ = {0, π/3, π/6}. The correspondents three
values of η are shown with green markers on the curves together with the parabolic fitting (dashed lines). The
ηmax3 corresponds to a maximum, hence the optimum phase shift of the third plane wave is θ̂opt3. The parabolic
fitting for the waves 2 and 3 leads to minimums, thus the ηmax2,4 and θ̂opt2,4 are found at π distance. When each
optimum phase shift is applied to the plane waves in Eq. (4.27), the estimation of the pupil phase is made and
the distortion can be compensated.

(a) (b)

Fig. 4.15: (a) Representation of the coupled power behavior after the 3π phase shift variations of each plane wave in Fig. 4.14 (a). Markers indicate the
three registered power values after three applied phase shifts, required for parabolic fitting. Black markers show the final calculated points of maximum
coupling and optimum phase shift for each plane wave. (b) Ensemble average of intensity patterns before and after correction of alike randomly generated
pupil fields.

Figure 4.15 (b) shows the intensity ensemble of 50 uncorrected and corrected fields. Each field is created as
described in Fig. 4.14 (a) with 6 plane waves per field. On each case, the spatial frequencies, amplitudes, and
phase shifts of the plane waves are randomly distributed following a normal distribution. The estimation of the
phase shift of the planes waves is done with the Eq. (4.33). The insets show the contour plot of the ensemble
pattern before and after correction, highlighting the improvement after the optimization.
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4.2.5 Optimization process

The description of the optimization process is intended to guide the reader towards the practical implementation
of the method. The details of the adaptation process are summarized in Fig. 4.16 and involve three main steps:
laser speckle imaging and selection of the M most intense speckle spots in the focal plane; identification of the
corresponding M plane waves in the pupil plane; and optimization of the M independent random phases. Fields
coordinates are omitted for mathematical simplicity.

4.2.5.1 First step

In the first step of the method, an image of the focal intensity pattern I is captured with the camera, normalized,
and square rooted to obtain amplitude coefficients bl =

√
I (cl). The M main speckles with coordinates r are

detected using image processing and classified in descending order based on their maximum amplitudes bl
at coordinates cl. The result is an array of coefficients b = [b1, b2, b3, ..., bM ] that are associated with sensor
coordinates c = [c1, c2, c3, ..., cM ], respectively. In Fig. 4.16, this is represented as a set of images, each one
with a single component of amplitude bl at the coordinate cl of maximum speckle intensity.

4.2.5.2 Second step

The second step involves identifying the M plane waves in the pupil plane corresponding to the M selected
speckle spots in the focal plane. Each l plane wave has a propagation direction that is identified by a propagation
vector k l and the speckle coordinate cl, see Eq. (4.22). In Fourier optics, a deviation in the direction a wave of
light propagates is a tilt, and tilt angles can be used to quantify the slope of a phase profile across the pupil of an
optical system. Consequently, the identification of the propagation directions of the M waves is performed by
linking a specific tilt angle in the pupil with the corresponding speckle spot position in the focal plane. In this
way, each l ∈ {1,2,3, ...,M} detected speckle, with coordinate cl and amplitude coefficient bl, as measured by
the CCD camera in the focal plane, will be associated to a well-defined tilted phase profile of a plane wave in
the pupil plane. Note that no Fourier transform of the intensity speckle distribution is required. Instead, as part
of the calibration process of the system, a lookup table is created containing information of DM’s membrane
tilts related to camera pixel coordinates, see Fig. 4.17. A scanning process is used, where tilts are applied to the
DM producing a displacement of the speckle in the camera sensor and registering the peak coordinate of the
displaced speckle.

4.2.5.3 Third step

In the third step, the method estimates and compensates the distorted pupil phase-front ϕ. This process requires
adding up the identified M plane waves, calculating the argument of the summation ϕ̂, and using this resultant
phase to shape the DM, see Fig. 4.16. In this step, the optimum phase shift θ̂opt of each plane waves is iteratively
estimated, using a quadratic cost function based on the measured coupling efficiency. Hence, three power
measurements are enough to discover the optimum phase shift of each plane wave.

As depicted in step 3 of Fig. 4.16, the method always considers the first plane wave as an initial reference
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Image acquisition and Processing

Capture focal intensity image:

Detect/classify M main speckles:

· Coordinate of speckle maximum
· Amplitude  coefficient      at speckle 

maximum

Iterative phase compensation

· Apply plane wave optimization 
substeps

· Argument of sequential sum of 
optimized plane waves, defines DM 
shape

· After one field realization is 
compensated, the algorithm keeps 
track of changes. For the next phase 
state, it adds new plane waves, or 
modifies existing ones 

Signal acquisition

Measure SMF 
coupled power for 
optimization

1
2

3 M
. . .

Speckle 1 Speckle 2 Speckle 3 Speckle M

. . .
1 1

( )b  I c

3

1
2

M

b
c



DM control

Send estimated 
phase map      
to DM

̂

̂

2
I F

I

2 2
( )b  I c

3 3
( )b  I c ( )

M M
b  I c

. . .

2
2 2

jb e · k rP1
1 1

jb e · k rP 3
3 3

jb e · k rP M
j

M M
b e · k rP

Optimization 1 Optimization 2 Optimization M-1

1

2

31 2
1 2

j

j jb e b e e











 k r k rP 1

2

33
3

j

jb e e











 k r 1

2

3... M

j

j
Mb e e











  k r

opt
ˆ

1
2

ˆ arg l

M j

l
l

e


 
  
 
 
  

  P P

Plane wave optimization substeps:

· Apply 3  phase shifts                       to the current plane wave

· Extract the resultant 3 phases and send to DM

· Measure coupled power after each DM change

· Parabolic fitting and select optimum phase             for maximum 
power 

· Fix optimum phase for plane wave and proceed with next one

 1 2 3, ,  

 1 2 3
ˆ ˆ ˆ ˆ, ,      P

opt̂ m ax

, ,1 2 3{ }   

1st Plane wave
(reference)

M

Discovery/Selection of plane waves

Each         detected speckle, with CCD 
coordinate     , is associated with a tilted 
phase of a plane wave of amplitude       in 
the pupil plane 

S 
T 

E 
P

   
 1

S 
T 

E 
P

   
 2

S 
T 

E 
P

   
 3

F O C A L  P L A N E

P U P I L  P L A N E

b

1
2 3

1
2

3

opt̂

max

c

Fig. 4.16: Adaptation algorithm. The captured intensity image is used to create a set of pupil plane waves, each one associated with a main focal speckle.
The plane waves are sequentially combined after the optimization of their respective phase shifts, which is done using the feedback power coupling. The
argument of the optimized plane wave summation is applied to the DM and represents the estimated distorted phase-front.

from which the field will further evolve, thus, no phase shift is required here. With the coordinate position
of the second speckle, the algorithm selects the correspondent phase map in the lookup table and creates the
second plane wave. In order to find the optimum phase shift of the second plane wave θ̂opt2, the method shifts
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Fig. 4.17: A process to create the lookup table. The DM scans the camera sensor applying phase tilts to the reflected beam. The position of the speckle
peak in the sensor is registered. During the correction of the distorted field, every speckle inside the active area can be assigned to a plane wave. Speckles
outside the area are neglected

the phase of such a plane wave with three scalar phase settings θ = {θ1, θ2, θ3} and calculates the argument
of the summation, so as three estimated pupil phases ϕ̂ =

{
ϕ̂1, ϕ̂2, ϕ̂3

}
are obtained. These estimations are

converted into control signal v as shown in Eq. (4.24). Shaping the DM with these phases affects the power
coupled into the single mode fiber. Thus, three optical powers η = {η1, η2, η3} are measured concurrently with
each DM change, one for each pupil phase. Then, a parabolic fitting of these measured values is required,
finding the optimum phase shift θ̂opt2 at the position of the maximum coupling ηmax. Repeating this procedure
on the subsequent plane waves results in an optimal adaptation array θ̂opt =

{
θ̂opt2, θ̂opt3, ..., θ̂optM

}
, where each

component is an optimum phase shift of its associated plane wave.
As an important remark, detailed in Sec. 4.2.4, a continuous variation of the scalar phase shift θ in Eq. (4.22)

results in an oscillation of the coupled power η, which varies following a phase-shifted cosine function, see
Fig. 4.15 (a). Consequently, to obtain the quadratic cost function for the optimization process, the values of
θ need to be constrained to a range of π. Here, power variations will depend on the θ spacing. Especially
when dealing with correlated phase distortions, the first set of plane wave optimization will show higher power
excursions, while the subsequent optimization will be performed around the anterior optimums, reducing the
variation of the coupling power. This control of the phase shift range is essential for real-time operation and
considers gradual speckle evolution in a temporal scale of the coherence time of the field.

4.3 Numerical analysis of the adaptation method

Numerical analyses are carried out to illustrate the performance profiles offered by the proposed adaptation
approach. The optical receiver of Fig. 4.7 is considered for the analyses and the tests are performed on
synthetically built optical signals.

In order to synthesize the optical signals, Kolmogorov turbulence [16] is assumed. The atmospheric turbu-
lence strength is quantified by the normalized aperture diameter D/r0, where D is the aperture diameter of the



CHAPTER 4. SPECKLE-BASED ADAPTATION 88

single receiver system, and the wave-front coherence diameter r0 describes the statistical spatial coherence of
the field in the pupil plane. For a fixed aperture diameter, as the coherent diameter decreases, SMF coupling
efficiency decreases. This phenomenon is typical in FSOC from LEO satellites, where the elevation changes
during the satellite pass.

A sufficiently large number of statistically uncorrelated phase wave-fronts is synthesized to simulate the
effects of the turbulent propagation scenario. The phase fluctuations of the field are considered the dominant
factor affecting the fiber coupling efficiency [37]. Hence, in most of the analyses, the single-screen phase
method is adopted to impress the phase distortion into the optical signal. When required, the multiple-screen
phase method is also used to see the impact of the scintillation and branch points in the overall performance of
the algorithm.

4.3.1 Numerical wave-front generation

The single-screen phase method, introduced in Sec. 2.1.4, is well-suited for horizontal beam propagation.
Nevertheless, it is also widely used in slant-path scenarios to approximate the effects of the turbulence in the
wave-front. It is generally adopted because it gives more control over the type and magnitude of the aberrations
involved, as it is entirely based on Zernike polynomials. Also, it is simple to implement and allows fast
generation of a large number of fields. Regarding the dynamic range of the irradiance fluctuations of a focused
beam in a Laser downlink scenario, the phase wave-front variance is considered to be the dominant factor over
wave-front scintillation [58]. The reason is that laser downlinks require larger telescope apertures that produce
an averaging of the intensity scintillation, but exposes the optical system to a larger amount of field phase
decoherence. Consequently, as initially mentioned, the emulation of the turbulent channel effects can be done
assuming a complex field with unitary amplitude A(r) = 1 and an aberrated phase ϕ(r) as

P(r) = A(r)exp( jϕ(r)), (4.34)

where r indicates a spatial coordinate. A phase wave-front ϕ(r) in the pupil plane can be modeled as a sum of
nz Zernike polynomials Z l, each one weighted with a Zernike coefficient cl as

ϕ (r,ψ) =
nz∑
l=0
(clZ l (r,ψ)) (4.35)

where r is the radial distance 0 < r < 1, and ψ is the azimuthal angle. The Zernike polynomials are defined in
a unit circle, based on the azimuthal and radial symmetry [64] as

Z l (r,ψ) = Z |m |n (r,ψ) =
√

n + 1R |m |n (r)


√

2 cos (|m| ψ) m , 0 even
√

2 sin (|m| ψ) m , 0 odd

1 m = 0
(4.36)

where R |m |n (r) is a radial polynomial with m and n being the azimuthal and radial frequencies, respectively [64].
The values of m and n are calculated using the mode number l as

n =
(
1 +
√

8l − 7
)
/2 − 1 (4.37)
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m = l − (n + 1) (n/2) − 1, (4.38)

and the radial polynomial Rm
n (r) is calculated as,

Rm
n (r) =

(n−m)/2∑
s=0

(−1)s (n − s)!

s!
[
(n+m)

2 − s
]
!
[
(n−m)

2 − s
]
!
r (n−2s) . (4.39)

The Zernike coefficients cl are obtained using a single value decomposition (SVD) of the covariance matrix E

of the Zernike modes. First, the covariance matrix is calculated as

E
(
cl, c′l

)
=

Kzz′δzΓ [(n + n′ − 5/3) /2]
Γ ((n − n′ + 17/3) /2) Γ ((n′ − n + 17/3) /2) Γ ((n + n′ + 23/3) /2)

(4.40)

δz = 1 m = m′ (4.41)

δz = 0 m , m′ (4.42)

Kzz′ = 2.2698 (−1)(n+n
′−2m)/2

√
(n + 1) (n′ + 1), (4.43)

where n,m and n′,m′ given by Eq. 4.37 and Eq. 4.38 and considering,

E
(
cl, c′l

)
= 0 l − l ′ = odd. (4.44)

Second, with the covariance matrix E
(
cl, c′l

)
, the SVD is performed,

[U,S,V ] = SVD (E) (4.45)

Then, Zernike coefficients cl are calculated using the Karhunen-Loève method to achieve random and uncorre-
lated coefficients [136]. In the Karhunen-Loève method, the natural random array bn of length nz is generated
with a variance given by

√
S. Finally, the array of coefficients cl is calculated

cl = Ubn, (4.46)

and the single screen phase wave-front ϕ (r,ψ) is generated for a predefined D/r0 as

ϕ (r,ψ) =
(

D
r0

)5/6 nz∑
l=0
(clZ l (r,ψ)) (4.47)

To validate a generated set of uncorrelated fields, the Fried parameter r0 can be calculated from a set of N

complex fields P(r) in the pupil plane by using the second-order field moment Γ2 or Mutual Coherence Function
(MCF) [20], see Eq. (2.14)-(2.16). The MCF is calculated in the pupil plane as,

Γ2(r1, r2) = 〈P
∗(r1)P(r2)〉, (4.48)

where 〈〉 denotes ensemble average, r1 and r2 represents points in the transverse plane, and P∗(r) indicates the
complex conjugate of the field. From the MCF, and considering fields of unitary amplitude, the modulus of the
complex degree of coherence (DOC) is equal to,

DOC = |〈P∗(r1)P(r2)〉| . (4.49)
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Here, the DOC describes the loss of spatial coherence of the phase wave-front. The coherent radius ρ0 can be
approximated by the 1/e points of the DOC. Numerically, this can be performed through the ensemble average
of the N pupil fields P(r) as,

DOC =

����� 1
N

N∑
t=1

[
P∗t (r) Pt

(
r (0,0)

) ] ����� , (4.50)

where r represents all the points of the wave-front respect to the central coordinate r (0,0) of the field. Then, the
r0 ≈ 2.1ρ0 is calculated with the coherent area ADOC of the DOC, defined by the distance between the points
where the DOC falls to 1/e of its maximum.

r0 =
√
(4/π) ADOC (4.51)

To verify the method, a comparison between the reference Fried parameter r0 ref used to create sets of 1000

Fig. 4.18: Comparison between the reference Fried parameter r0 ref used to create sets of 1000 fields for different turbulent conditions, and the estimated
Fried r0 calc calculated from these fields. Each field is created with 256 × 256 pixels and 600 Zernike polynomials.

fields for different turbulence conditions (dotted plot), and the estimated Fried r0 calc calculated from these fields
using the above-described method, is shown in Fig. 4.18. Each field is created with 256 × 256 pixels and 600
Zernike polynomials. The good match between the reference and calculated curves show that the simulation of
turbulent fields is accurate.

The multiple-screen phase method is optimum for slant-path propagation but more complex to implement. In
this work, the phase-screens are generated with an in-house software tool developed by the German Aerospace
Center (DLR) called Pilab [62, 137–139]. This tool propagates the optical field through several phase screen
layers, created based upon a given path length, turbulence profile, and elevation angle. This tool can also
generate correlated fields, which are used Sec. 4.3.4 and Sec. 5.4.4 to evaluate the concept for the dynamic
correction of the fields.

In the analyses, the Zernike-based generated phase wave-fronts are generated with no less than 600 polyno-
mials. In both cases, each wave-front is created with a size of 256x256 pixels and a sampling spacing of 1.56
millimeters. This considers a received laser wave-front captured by the 40 cm diameter telescope aperture.
To obtain the focal image with sufficient speckle resolution, each wave-front is zero padded and then Fourier
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transformed. The size of the focal image, which represents the size of the CCD, is 256x256 pixels. The
simulation considers a minimum of 7x7 pixels for resolving the minimum speckle size, which corresponds to
the Airy pattern diameter when its intensity falls to 1/e2. At this stage, the compensation of the distorted phase
is performed ideally without special consideration of a specific DM.

4.3.2 Algorithm performance under the effect of signal noise

The first analysis evaluates the capacity of the algorithm to improve the quality of the coupled signal by the
correction of the wave-front distortions with an incremental number of speckles. An scenario of D/r0 = 10
with D = 40 cm is considered for the analysis. This represents a realistic condition of a LEO downlink at 5°
elevation from the horizon [140, 141]. Because noise affects the optimization process, introducing unwanted
variations of the signal, its impact is also quantified. The overall analysis is performed using the single-screen
phase method. A comparison with the case of slant-path propagation under the effect of scintillation and phase
singularities is also performed.

Figure 4.19 shows (a) the mean SMF coupling efficiency, and (b) the normalized variance of the received
signal, as a function of the number of compensated speckle spots and the SNR of the optimization signal. The
normalized histogram of the coupled signal at the maximum of each curve is shown in plot (c). The optimum
number of corrected speckles for different values of SNR is depicted in plot (d).

In Fig. 4.19 (a), the tilt correction of the first speckle greatly increases the coupling efficiency. Because the
first speckle has a higher peak intensity level, the impact of the noise is minimum. For the case of SNR = 50 dB,
the correction of additional speckles M ≥ 2 improves the fiber coupling efficiency until saturation is reached
(curve A). At this point, the correction of further speckles with lower intensity does not significantly contribute
to the overall coupling. The same behavior is seen in Fig. 4.19 (b), where the normalized variance rapidly falls
to a plateau for M ≥ 36. Instead, with lower SNR = [30,10] dB, noise-induced deviations of the coupling
efficiency affect the phase shift optimization process, penalizing the coupling gain and limiting the reduction of
the variance (curves B and C). Note that keeping this variance minimal is a key factor for fading-free data links
in the FSOC scenarios. Furthermore, the performance with low SNR is dependent on the number of corrected
speckles. The curves of SNR = 30 dB and 10 dB, in Fig. 4.19 (a), show maximums at M ≈ 16 and M ≈ 6,
respectively, and negative slopes with an increasing number of corrected speckles. After these maximums, the
noise has a greater effect in the optimization of plane waves associated with speckles of lower intensity. This
leads to sub-optimal phase shifts and propagates errors, which affects the subsequent optimizations and reduces
the overall performance.

The performance of the algorithm in a slant-path scenario (curve E), under the effects of scintillation and
phase singularities, shows a penalty of 2 dB compared with the case of single-screen method. However, both
curves of SNR = 50 dB also show identical slopes, reaching the plateau with a similar number of corrected
speckles. The final normalized variance is slightly increased by 1 dB, but the slope does not significantly change
in comparison with the single-screen method, still showing a reduction in the signal variance higher than 6 dB
with less than 20 corrected speckles.

Figure 4.19 (c) depicts the normalized histogram of the coupling efficiency at the maximum of each curve,
where the fields are corrected with the above-mentioned M = [6,16,36]. An improvement in gain and variance
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(a) (b)

(c) (d)

Fig. 4.19: (a) Mean SMF coupling efficiency and (b) normalized variance of the received signal as a function of the number of corrected speckle spots and
the signal to noise ratio of the optimization signal (SNR). (c) Normalized histogram at the maximum of each curve. (d) Optimum number of corrected
speckles for different SNR values of the optimization signal. All the analyses correspond to an scenario D/r0 = 10 with a D = 40 cm.

compared to the absence of AO compensation (histogram D) can be appreciated. The algorithm seems to be
robust facing scintillation (histogram E); despite the impact of the scintillation in the general gain, the variance
remains comparatively similar to the case shown in histogram “A”.

Figure. 4.19 (d) extends the SNR analysis and establishes the optimum number of corrected speckles in the
presence of different levels of noise. The result establishes a threshold around 50 dB, after which the noise has
minimum impact. The optimum number of speckles to be corrected for varying SNR can be approximated as
Mopt = 0.43SNR + 1.5 for 10 ≤ SNR ≤ 50dB.

As explained in Sec. 4.1.1, the use of (D/r0)
2 overestimates the effective number of speckles that need to

be corrected. From the curves “A” and “E” in Fig. 4.19 (a,d), saturation is reached with M between 20 and
25 corrected speckles, which represents 1/4 of the 100 speckles, expected for D/r0 = 10. Thus, the metric
for selecting the Mopt can be chosen at the point where the curve of coupling efficiency reaches saturation and
additional improvements are smaller than ∆η ≤ 0.05 dB. This ∆η corresponds to an increment smaller than 1%
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of the total focal intensity.

Fig. 4.20: Percentage of total focal intensity per speckle. Comparison between single-screen and multiple-screen method. Markers indicate the required
speckles to reach 81% of the total focal intensity

Figure 4.20 shows the distribution of the mean normalized intensity per speckle from an ensemble of 500
analyzed focal fields of a similar scenario. The procedure for the image processing follows the description in
Sec. 4.1.1. The analysis considers the single and multiple screen methods and the markers indicate the number
of speckles to achieve 81% of the total focal intensity. For the scenario D/r0 ≈ 9.3, around 23 speckles contain
81% of the total focal intensity. For slant-path propagation, the number rounds to 20 speckles. Comparing this
result with the Fig. 4.19 (a), the equivalent case (curve A) also reaches saturation with a similar number of
processed speckles.

4.3.3 Overall performance and bandwidth utilization

The previous analysis can be extended to a broader range of turbulence conditions and a formula for the optimum
number of corrected speckles Mopt can be obtained.

The main analysis for the discovery of the Mopt is performed over a range D/r0 = 1 to D/r0 = 21. The
telescope aperture size is D = 40 cm and each scenario is emulated with 500 fields of unitary amplitude and
phase generated with the single-screen phase method. On each scenario, every field is corrected with M = 100
speckles and the saturation point is identified to define the Mopt, as defined in the previous section. Then, the
mean is calculated to define the optimum number of corrected speckles for that particular turbulent channel. The
curve M1 in Fig. 4.21 (a) shows these optimums for each scenario. In order to further reduce the required loop
bandwidth, a trade-off between M and the maximum possible coupling efficiency can be established. Hence,
the curve M2 considers a coupling penalty up to 2 dB from the saturation level, allowing an important reduction
in the required bandwidth. Both curves can be fitted with the following equations,

M1 =

⌈
−0.057

(
D
r0

)2
+ 2.9

(
D
r0

)
+ −0.3

⌉
(4.52)
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(a) (b)

Fig. 4.21: (a) Required number of corrected speckles for different turbulent scenarios considering maximum performance M1 and a penalty of 1 dB
from the maximum M2. (b) Mean SMF coupling efficiency for different turbulent scenarios with M1 and M2 corrected speckles

M2 =

⌈
D
r0

⌉
(4.53)

A comparative plot of the algorithm performance is shown in Fig. 4.21 (b). The mean SMF coupling efficiency
for each turbulent scenario is plotted considering a number of corrected speckles given by the curves M1 and M2.
The signal improvement is contrasted with the cases where the fields are uncorrected and only compensated in
tilt. The method offers a significant gain especially in cases of very high turbulence. For example, in the scenario
of strong turbulence D/r0 = 10 the number of required iterations falls from Niter = 82 (M = 28 speckles) to
Niter = 28 (M = 10 speckles), which represents a drastic reduction in the loop bandwidth utilization. When
compared with the Modal Stochastic Parallel Gradient Descent (MSPGD) algorithm, which typically requires
around 100 iterations to converge, a reduction of 70% in the required loop bandwidth is appreciated.

(a) (b)

Fig. 4.22: Coupling efficiency distribution for (a) D/r0 = [5, 10] and (b) D/r0 = [15, 21, after the correction of the fields with M1 (continuous plot)
and M2 (dashed plots) speckles.

The PDF for the scenarios of strong turbulence, corrected with M1 (continuous plot) and M2 (dashed plot)
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speckles, are visualized in Fig. 4.22. The reduction in the number of corrected speckles, from M1 to M2,
introduces the expected penalty in the coupling gain but does not greatly increase the variance of η. Particularly
with higher D/r0, the number of corrected speckles can be dynamically selected in between the above-mentioned
range to further reduce the signal variance and increase the signal gain. This flexibility in the correction process
represents one of the principal strengths of the method.

4.3.4 Considerations for a closed-loop operation

In a real scenario, the turbulence induces a gradual change of the phase wave-front in the time scale of the field
coherence time τ0, see Sec. 2.1.3.2. During this time, typically around 1 millisecond [28], the AO system needs
to correct the first distorted field and lock the system in order to follow the changes dynamically. If the system
fails to do that or requires correction times longer than τ0, the estimated DM shape mismatches the distorted
phase and the coupled signal deteriorates. The control of this dynamic correction is a challenging task that
involves AO loop bandwidths in the order of kilohertz in real-time-based solutions.

This process is even more challenging on iterative systems, since the correction requires several iterations
and, unavoidably, the field will evolve in between the initial and final stage of the process. Assuming that the
new state of the phase is approximated correctly within a time t < τ0, phase mismatches are expected to produce
a certain degree of signal fade.

Fig. 4.23: Coupling penalty of correlated fields being corrected with their previous field states, considering a dynamic time gap of a fraction of t0 between
fields.

Figure 4.23 shows the SMF coupling penalty due to the delay in the correction. The set of fields are created
with an in-house DLR tool called Pilab, for a scenario of a LEO-downlink at 30° elevation and D/r0 = 6,
considering an aperture D = 40 cm, a τ0 = 2.1 msec, and a transversal wind velocity Vt = 10 m/sec. When
the AO loop time is short, τ0/5 and τ0/2, the coupling penalty remains below -3 dB. If the iterative process
needs an AO loop time t ≥ τ0, the penalty drastically increases since the fields become uncorrelated. From this
plot, it is evident the importance of having an iterative system capable of performing the task with a minimum
number of iterations. An achievable goal is not the total suppression of these fades. Instead, by maintaining the
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mean and variance of the coupled signal within tolerable margins, sufficient signal stability may allow a stable
communication link.

This work does not go into complex concepts of control theory. Instead, it proposes a preliminary approach
for the dynamic processing of the images and correction of the field, adapted to the proposed AO method. In
line with this, a small modification of the optical setup of Fig. 4.7 needs to be done. As shown in Fig. 4.24, the

Fig. 4.24: Optical receiver adapted for a dynamic implementation of the method. The camera is positioned before the DM. No change in the algorithm,
neither implementation of the method is required. The nomenclature follows the description of Fig. 4.7.

focal camera is now positioned before the DM to capture each focal speckle pattern without being altered by the
shaping of the mirror. This change does not modify in any sense the concept or the AO method and allows the
continuous tracking of the speckle evolution.

Figure 4.25 illustrates the idea for the dynamic correction. The first field realization Ih−1 is acquired,
processed with the method described in Sec. 4.2.5, and used to optimize the distorted field. Here, h represents
a field realization. Another image Ih is acquired after a time t < τ0. In the second image the focal speckle
pattern has evolved. Those speckles with minimum change in their position are adjusted with small variations
∆θ around the anterior optimum phase shift θ̂optl. This minimizes power fluctuations in the fiber. The speckles
with significant changes in their positions are treated like new ones and optimized accordingly.

The decision-making process for the plane waves update and phase shift assignment is shown in the algo-
rithm 1. Two inputs are required; the current focal image Ih−1 which is being optimized, and the subsequent
focal image Ih captured after a time t < τ0. The output of the algorithm is an array of new phase shift ranges
θh to be used in the optimization of the plane waves of the field h. The coordinates components

[
ch−1
l

]
of

the l speckle and h − 1 field under correction are known. The coordinates components
[
ch
l

]
of the l speckle

and h field need to be extracted and compared with the ones of the h − 1 field realization. For each l speckle,
the Euclidean distance ‖ch

l
− ch−1

l
‖ is calculated and compared with a threshold ∆r . If the speckle l in both

realizations is separated more than the threshold, then the speckle in the field h is assumed to be new and a larger
phase shift range for optimization {π/100 , π/3 , 2π/3} is assigned. Otherwise, the speckle l in the realization
h is considered to be the same as the one in the previous realization h − 1 and the phase shift range is assigned
around the known optimum θh−1

l
, spaced by ∆θ2 = θ

h−1
l
/3. Once all the M speckles have been processed, the

new range of phase shifts θh for the correction of the field h is ready. Hence, the new field estimation Ph will
evolve from the previous Ph−1.
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Fig. 4.25: Graphical representation of the dynamic processing of the speckle pattern. The image realization Ih is captured after a time t from the
previously captured image Ih−1. The process is performed within the coherence time of the field τ0. The coordinates r l of the speckles are compared
as described in the algorithm 1.

Algorithm 1: Dynamic definition of phase shifts

INPUT: Ih−1 , Ih . Intensity images
OUTPUT: θh . Updated array of phase shifts

1: Ih−1 →
[
ch−1
l

]
l = {1,2, . . . ,M} . Speckle coordinates field h-1

2: Ih →
[
ch
l

]
l = {1,2, . . . ,M} . Speckle coordinates field h

3: while l < M do . Evaluate M speckles
4: if ‖ch

l
− ch−1

l
‖ > ∆r then . Euclidean distance

5: θhl ← {π/100 , π/3 , 2π/3} . Extended phase shift range
6: else
7: θhl ←

{
θh−1
l
− ∆θ2 , θ

h−1
l

, θh−1
l
+ ∆θ2

}
∆θ2 = θ

h−1
l
/3 . Reduced phase shift range

8: return θh = [θhl ] l = {1,2, . . . ,M} . phase shifts for field h

Ph ≈

M∑
l=1

{√
Ih
l
exp

(
jθhl

)
exp

[
j
(
khl · r

)]}
(4.54)

Figure. 4.26(a) shows a numerical simulation of the proposed algorithm for the dynamic correction of
correlated field. The fields where corrected considering a decorrelation of τ0/3. When the algorithm is not used
and each field is corrected independently, deep fades occur reaching up to -9 dB of coupling efficiency loss.
When the algorithm is employed and tracking of the previous corrections is used, the signal fading between
fields gets reduced, improving the coupling distribution shown in the PDF of Fig. 4.26(b). The smaller tail
of the PDF after using the algorithm represent less signal fading and a reduction of the probability of error in
transmission. Further analyses will be shown in the experimental test of the algorithm in chapter. 5.
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(a) (b)

Fig. 4.26: (a) Numerical simulation of the proposed algorithm for the dynamic correction of correlated field. (b) PDF of the two different types of
correction. The scenario corresponds to a 30° elevation link with D/r0 ≈ 4.

4.4 Conclusion of the chapter

This chapter has presented a novel phase-retrieval technique that indirectly determines the unknown phase wave-
front from focal-plane intensity measurements. The adaptation approach is based on sequential optimization
of the speckle pattern and works by the iterative update of the phases of individual speckles to maximize the
received power. This approach offers a useful set of properties:

• The pupil modes (phases of the plane waves) to be optimized and combined can be known in advance and
optimized with only three power measurement. This allows to estimate and manage the total number of
required iterations for different turbulent regimes

• The technique only needs one image per field realization to perform the task. On each image, only the
peak coordinates and magnitude of the focal speckles are required for the selection of plane waves. The
camera can be replaced by any other sensor capable of providing such information, thus avoiding the
possible bottleneck associated with the camera maximum frame rate

• It has a straightforward implementation and does not need complex mathematical processes; thus com-
putation costs can be minimized

• The bandwidth utilization can be managed in real time depending on the turbulence conditions. Hence,
when facing scenarios of low turbulence fewer bright speckles are considered, resulting in a significant
reduction in the loop bandwidth utilization of the system. This property implies a truly flexible method
able to adapt to the turbulence conditions

• The technique has the capacity of recovering the phase lock fast because it directly addresses the focal
energy and searches for its coherent maximization, all carried out in a time scale of the field coherence
time
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The numerical results show that the proposed technique can deliver substantial signal gain and variance reduction
by the sequential processing of the focal speckles and the parabolic optimization of their phases. There is a good
overall performance in all range of turbulence conditions, and the technique is robust facing highly scintillated
fields. It also shows robustness against signal noise, experiencing only a 2 dB gain penalty and 1 dB of
variance increment facing a 20 dB SNR deterioration. The analyses have been extended beyond the expected
turbulence conditions in FSOC LEO-downlinks. Here, typical dimensions of a telescope aperture range between
40 ≤ D ≤ 80 cm, thus, based on measured r0 at several LEO elevations [141], expected scenarios are not likely
to be higher than D/r0 = 11, and generally D/r0 ≤ 6. In principle, assuming less than 60 iterations (M ≈ 20)
allows a gain of Gη ≈ 6 dB with respect to only tilt compensation, and also approximately 6 dB of reduction in
the variance.

A first approach for the dynamic correction of the field has been presented. This approach tracks the position
of the speckles of subsequent field realizations and optimize the associated plane waves if a change is significant.
Naturally, the image acquisition of a new field state must be performed during the optimization process of the
anterior one. This requirement moves the camera in front of the DM, which does not represent a change to the
method but it allows continuous tracking of the field evolution without the influence of the DM shaping. The
first numerical trials show that the idea effectively reduces the signal fading of the iterative correction between
fields, but the performance is not ideal and this approach certainly needs more refinement, especially for cases
of stronger turbulence. Experimental results are shown in chapter 5.

Overall, the numerical analyses show that this technique can compensate the distorted phase wave-front and
increase the signal coupled with a significant reduction in the required number of iterations, resulting in a loop
bandwidth utilization within reach of commercially available deformable mirrors [115].



C h a p t e r 5

EXPERIMENTAL VALIDATION

T his chapter details the experimental tests carried out for the proof of concept of the proposed AO
solution. At this point, the goal of the thesis is to validate the working principle of the newly proposed
method, to be refined in a future working prototype. The validation is performed under laboratory

conditions in a non-real time regime. It seeks to support the made assumptions related to the plane wave
decomposition of the speckle pattern and parabolic optimization. It is intended to demonstrate that these
assumptions are not purely theoretical; instead, they have a practical application leading to the claimed benefits
in the improvement of the signal quality and reduction of the bandwidth utilization.

A laboratory test requires the consideration of hardware constraints. The main impediment for a real-time
evaluation of this concept is associated with limitations in the DM bandwidth, camera frame rate, and mostly
due to the need of a proper control solution, which is still an open task. Assuming a suitable DM and control
solution, still the camera frame rate would represent a constraint for a real-time evaluation of the concept. This
factor does not constitute a hard constraint for future implementations because the technique only needs to know
the spatial coordinates and magnitude of each speckle peak, allowing the camera to be replaced by a more
suitable and faster sensor. The experimental tests do consider vibrations of the optical setup, signal noise, and
hardware limitations of the turbulence emulation to quantify the method performance within realistic conditions.
To emulate the turbulent channel, the tests are carried out first with decorrelated phase screens created with
the single screen phase method, and second with an in-house DLR software that generate correlated screens of
phase to test the concept of dynamic speckle correction.
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5.1 Experimental setup

The objective of this section is to validate in the laboratory the theoretical concept and numerical analyses. It is
aimed to demonstrate that this technique increases the mean coupled power and reduces its variance, minimizing
the overall bandwidth utilization. For such purpose, a testbed is built in the laboratory. The block diagram of
the design is shown in Fig. 5.1 (a). This diagram highlights the transmitter, turbulent channel, and receiver
sections with the principal hardware components. The schematic of the optical design and the image of the built
setup are shown in Fig. 5.1 (b) and Fig. 5.2, respectively. The trajectory of the laser beam is represented with
the arrows. The relevant hardware components are listed in table 5.1. Note that this design follows the initial
concept presented in Sec. 4.2.1, Fig. 4.7 and Fig. 4.24.

(a) (b)

Fig. 5.1: (a) Block diagram of the laser downlink emulator, highlighting the transmitter, turbulent channel, and receiver sections, as well as the involved
hardware. (b) Optical setup design to emulate the free-space link affected by the turbulence and corrected with the proposed iterative AO method.

The description of the setup is as follows:

• To emulate a laser downlink from a LEO satellite one must consider that, in this scenario, the laser is
exposed to the turbulence in the last 20 km of the atmosphere, and the beam wave-front can be modeled
as a plane wave, see Sec. 1.2. Here, a laser source is collimated to generate a free-space laser beam
propagating towards the detector. The collimator is built with a large focal length and ring stops to
produce the intended profile. This approach also induces some ring-like diffraction effect in the intensity
pattern, which may reduce the maximum possible coupling efficiency but do not alter the functionality of
the method.

• The beam size is modified throughout the system using a set of three optical relay systems (R1-3). After
the first relay (R1) the beam passes through an H-polarizer previous being reflected in a spatial light
modulator (SLM), which is used to impress the phase-only distortions in the wave-front. The SLM offers
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Fig. 5.2: Optical setup of the free-space laser downlink emulator.

Hardware T ype Details

LASER TeraXion PS-LM 1550 nm | Lwidth < 1MHz | Pmax= 100 mW
Windows=15.8x12 mm

SLM Hamamatsu X10468-LCOS 800x600 pixels | 20 µm pixel pitch
Resolution= 25 lp/mm
Angular Range= ±26.2mrad

TTM Newport FSM-300 Closed-loop= 600 Hz
Resolution= , 3µrad
InGaAs sensor 640x512 pixels

CAM 1 Xenics Cheetah 640-CL Pixel Size 20µm
Frame rate= 400 Hz (Full)
InGaAs sensor 320x256 pixels

CAM 2 Xenics Xeva XS-1.7-320 Pixel Size 30µm
Frame rate= 100 Hz (Full)
Membrane | 12x12 actuators

DM BMC Multi-X-CL140-DM Max. Stroke= 3.7 µm
Mirror BW= 3.5 KHz

APD Thorlabs PDA20CS-EC InGaAs | Gain: 0 - 70 dB
DAQ NI BNC-2110 | PCI-6221 12 bits
VOA Thorlabs VOA50 50 dB

Table 5.1: List of hardware components of the optical setup.

flexibility to imprint the desired set of phase-screens for different turbulent conditions. It also gives the
possibility to repeat experiments and verify the performance with identical field states. Additionally, it
facilitates the synchronization of the experiment when a large set of screens is needed for testing. The
drawback here is mostly linked with a phase wrapping effect in scenarios of strong turbulence, explained
in Sec. 5.2.1.

• After the SLM, the distorted beam is guided to a tip-tilt mirror (TTM) to correct the phase-front tilt. In
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this experiment, the TTM is used to maintain the illumination of the active area of the DM, coaligned
with the fiber and camera axis.

• After the TTM, the beam is newly compressed with the relay (R3) to a diameter of 3.7 mm and split. One
beam is focused in an infrared camera (CAM 1) with a 500 mm lens (L3) to obtain approximately 28× 28
pixels per speckle. This camera is used for the optimization process. The second beam is reflected in a
membrane-based DM. Note that the CAM 1 is located before the DM following the design of Fig. 4.24
and required for the test of the correction of correlated fields.

• The beam reflected in the DM is split and focused in a single mode fiber (SMF) and a second infrared
camera (CAM 2). This camera is used to verify the evolution of the focal speckle pattern during the
correction process, where a lens (L2) of 500 mm is selected to assure sufficient speckle resolution
(≈ 18 × 18 pixels). For the SMF, a lens (L1) of 19 mm allows a maximum coupling efficiency of ≈ 60%
when the wave-front is assumed with minimum aberration.

• The signal for the optimization process is measured with an avalanche photodetector (APD). The coupled
power can be attenuated with a single mode variable optical attenuator (VOA). The output electrical signal
from the photodetector is acquired with a data acquisition system (DAQ).

5.2 Hardware limitations

As mentioned before, the experiments are performed in a non-real-time regime. The algorithm, as well as the
signal acquisition and control of the hardware, are implemented in Matlab. The following sections detail the
characteristics and limitations of the relevant hardware of the AO system.

5.2.1 Spatial Light Modulator

The SLM is a device capable of modulating the amplitude and phase of a wavefront. In this case, the LCOS-SLM
is a reflective phase-only modulator [5]. The working principle of this type of SLM is represented in Fig. 5.3 (a).
A silicon substrate supports an array of pixels made by aluminum electrodes, and controlled by an addressing
circuit. Each pixel can be controlled independently. In front of the array, a second transparent electrode and
a glass substrate are placed. The gap between the electrode array and the transparent electrode is filled with a
liquid crystal material. An alignment control system aligns all the crystal molecules in parallel. By controlling
the electric field on each pixel, the molecules can be tilted, changing the refractive index locally with different
tilt angles. The change in the refractive index modifies the optical path length in the liquid crystal layer and
induces a phase difference in a particular region of an input beam. Consequently, the output reflected beam is
modulated in phase by the active control of the pixel electrodes.

To imprint a phase distortion in the beam wave-front, a phase map is created and then converted to a 256
level grayscale in order to drive the pixels of the SLM. The SLM has a linear response between 0 and 2π in
256 levels, as shown in Fig. 5.3 (b). The conversion from the phase values ϕ to pixel input signal levels can be
performed as ISLM = 95.9ϕ + 0.975, which corresponds to the SLM transfer function.
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(a) (b)

Fig. 5.3: (a) Structure of the LCOS SLM chip. Design based on the model Hamamatsu X10468-LCOS [5]. (b) Transfer function of the SLM.

The limitations of the SLM can be associated with an effect known as phase wrapping. The maximum
excursion of the SLM is 2π, thus, larger phase variations experience jumps of 2π every time this limit is
exceeded. Figure 5.4 shows SLM phase-screens for different turbulent conditions. It also shows their phase
profiles, and correspondent measured focal intensity patterns. For very strong turbulence, represented by a
D/r0 ≥ 20, the regions undergoing a phase wrap are tightly packed. If the wrapping effect increases, the phase
cannot be well resolved by the available pixels on the SLM and the amplitude transmission diminishes [142].
Furthermore, a high number of phase wraps acts as a grating that produces an unwanted artifact with a constant
bright central speckle. These two effects are seen in the cases of D/r0 20 and 40, where the measured focal
intensity pattern shows a central intensity spot in all the images. In line with this, the principal limitation of using

Fig. 5.4: Laboratory examples of SLM phases and their profiles for different turbulent regimes. The measured focal intensity patterns are compared.
Higher D/r0 are not well resolved by the SLM (dashed box), showing a single stable central intensity spot in all tested phase screens.
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an SLM to emulate the turbulence is that phase wraps cannot be properly represented by a membrane-based
deformable mirror. The membrane cannot reproduce abrupt jumps in the phase and the scenarios under test
need to be limited to those with a phase excursion within the span of the SLM. By subtracting the tilt on each
generated phase-screen, the number of wraps can be minimized without affecting the phase aberration. As
explained in Sec.4.1, tilt compensation only moves the speckle to the center of the image and does not alter the
high order distortions targeted by the AO system.

(a) (b)

Fig. 5.5: Comparison between simulated (continuous line) and measured (markers) focal speckle patterns. Analysis of the intensity distribution per
speckle for different turbulent regimes. (a) Normalized mean intensity per speckle. (b) Mean intensity variance per speckle.

The analysis of Sec. 4.1.1 is performed over simulated and measured focal images to verify the correct
generation of the focal intensity pattern. In this analysis, the mean intensity distribution per speckle is calculated.
If themean intensity distribution of themeasured speckles follows the same distribution of the simulated patterns,
then it can be concluded that the SLM is accurately emulating the turbulent scenario.

For such analysis, a set of 400 phase-screens is created for a D/r0 = [3,6,10]. On each scenario, the phase
maps are applied to the SLM and images of the focal intensity pattern are acquired. The same phase maps are
numerically Fourier transformed to have pairs of simulated and measured images. Each pair of focal images is
post-processed. First, the images are normalized to their maximums. Then, the speckles are individualized and
classified in descending order based on the total intensity per speckle. Finally, the mean and variance intensity
per speckle are plotted. The results in Fig. 5.5 show that the measured focal intensity patterns on each scenario,
have speckles of decreasing intensity that closely follow their numerical counterparts.

5.2.2 Tip Tilt Mirror

The TTM hardware was introduced in Sec. 3.1.1. The maximum angular deflection of the TTM mirror ϕtm can
be calculated with Eq. (3.1). Considering a D/r0 = 6 and a beam diameter D = 12 [mm] after the relay R2, a
maximum ϕtm = 2 mrad is needed, see Figure 5.6. This range is within the capacity of the TTM, see Table 5.1.
For the experiments, the phase screens are generated without the tilt components to minimize phase wrapping.
Consequently, the TTM only corrects the remnant system tilt to assure the centering of the speckle pattern in the
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Fig. 5.6: Maximum angular deflection of the TTM mirror for a 12 [mm] beam diameter and different turbulent regimes.

camera sensor, proper illumination of the DM active area, and good alignment with the fiber coupling section.
This particular stage does not represent any limitation for the experimental proof of concept.

5.2.3 Deformable Mirror

The working principle of a membrane-based DM was introduced in Sec. 3.1.2. The required stroke of the DM
can be calculated with the Eq. (3.6), and compared with the numerical estimation of the peak-to-valley (P2V)
phase excursion of a set of phase screens. The phase screens are generated for different turbulent regimes using
the single screen phase method detailed in Sec. 2.1.4.

Fig. 5.7: Comparison between the required peak-to-valley (P2V) DM stroke, and the numerical estimation of the P2V phase excursion of a set of phase
screens generated for different turbulent regimes.

The results in Fig. 5.7 show good matching between analytical and numerical simulations. As highlighted
by K. Morzinski [94], the 2σDM is the stroke requirement at the center of the pupil. Other factors like,
non-stationarity of phase, inherent curvature of the MEMS, and tip-tilt residuals, further increase the stroke
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requirements [143, 144]. The numerical simulation of the P2V phase excursion shows significant variance,
which may well push for the selection of DM with higher stroke capacity.

For the particular case of the proposed compensation method, as mentioned in Sec. 4.2.5, a scanning process
is required to create the lookup table of all possible plane wave phases. For each plane wave, a DM tilt
produces a displacement of the diffraction limited speckle. The camera sensor registers the peak coordinate
of the speckle and associates this coordinate with the tilted phase, see Fig. 4.17. This process is constrained
by the DM stroke and the number of actuators. In the experimental setup, only a section of 8 × 8 actuators of
the DM is illuminated. This corresponds to a beam diameter of 3.7 mm, highlighted in Fig. 5.8. This figure
shows a maximum membrane tilt of 2.6 µm. Membrane surface tension, associated with actuators outside the
illuminated area, limit the maximum deflection. Based on Fig. 5.7, the available stroke may be sufficient to deal
with a D/r0 = 6. For higher D/r0, speckles tend to separate more. Note that, during the optimization process,
the speckles inside the scanned area in the camera sensor can be assigned to a plane wave as the tilted phase
map is available. The speckles outside this area must be discarded.

Fig. 5.8: Laboratory measurement of the DM scanning process. Different tilts are applied to the illuminated area of the DM, producing a displacement
of the focal speckle. The dimensions of the scanned area define the maximum DM stroke.

5.2.4 Single-mode Fiber coupling

As detailed in Sec. 2.3.4.1, the efficiency of the SMF coupling depends on the good matching between the beam
profile in the aperture (focusing lens), and the back propagated fundamental mode of the fiber (Gaussian). The
energy of a free-space beam with diameter Dbe is collected by a lens, which focuses the beam into the core of the
fiber. In Fig. 5.9, the focused beam must converge within the cone of acceptance of the fiber, delimited by two
times α ≈ sin−1 (NA). The numerical aperture (NA) of the fiber is a parameter provided in the fiber datasheet,
from which the focal length f of the lens can be approximated as f = Dbe/(2NA).

In practice, a more accurate calculation of f is performed with Eq. (5.1), where w0 is the mode field radius
of the fiber, also provided in the fiber datasheet. A commercially available lens is then selected based on the
best-matching characteristics considering a slightly large D ≈ 1.5Dbe to avoid vignetting.

f =
πw0Dbe

2λ
(5.1)

In a LEO downlink, the Gaussian beam at the satellite position reaches the turbulent layer (20 Km) with a
flat intensity profile and it is modeled as a plane wave. The Fourier transform of the wave-front, assuming a flat
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Fig. 5.9: Free-space beam being focused into a single mode fiber.

phase, results in a focal intensity distribution that resembles an airy pattern, Fig. 4.4 (a). The mismatching with
the Gaussian fiber mode limits the maximum SMF coupling efficiency to η = 0.814.

As initially mentioned, in the laboratory experiment the flat beam profile is generated with the collimator.
The beam results affected by diffraction due to internal stop rings in the collimator and the polarizer located
before the SLM. This results in a distortion of the intensity profile, see Figure 5.10.

Fig. 5.10: Beam profile before the SLM.

The measured intensity profile of the beam at the entrance pupil of the coupling section and the back
propagated simulated Gaussian profile of the fiber mode are shown in Fig. 5.11 (a). Their respective Fourier
transform are shown Fig. 5.11 (b). The beam wave-front acquires additional aberration due to the optical
components that further alter the profiles of Fig. 5.10. The phase aberration corresponds to a small degree of
astigmatism with a peak-to-valley phase excursion of 0.8 radians, shown in the inset of Fig. 5.11 (a).

It is important to highlight that the alterations in the beam intensity profile only reduce the maximum
coupling efficiency but do not significantly alter the proof of concept of the method. In a real scenario the beam
intensity profile will certainly show worse variations of intensity (scintillation). The measured wave-front is
used to estimate the maximum expected coupling efficiency. The calculation is performed with the Eq. (2.104)
considering a w0 = 5.4 µm, beam diameter Dbe = 3.7 mm, and the lens focal length equal to f = 19.5 [mm].
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The estimated SMF coupling efficiency is η = 0.67. The measured ratio of received optical power in the
coupling lens ( f = 19 mm), and coupled power in the SMF fiber, results in a coupling efficiency η = 0.6.

(a) (b)

Fig. 5.11: (a) Measured Intensity beam profile and simulated back propagated Gaussian profile of the fiber. (b) Focal intensity profiles.

5.2.5 Avalanche Photodetector

The optimization process is highly dependent on three signal power measurements to find the maximum of a
parabolic-fitted curve. Signal noise randomly changes the position of such measures leading to sub-optimum
optimizations. Consequently, to know the range of input power for a good performance of the algorithm, the
detector needs to be characterized by its electrical signal-to-noise ratio.

In these experiments it is used an InGaAs detector that can adjust its gain between 0 and 70 dB, see Table 5.1,
where the gain is set to 60 dB. The optical input power Pin can be accurately estimated with the linear relation
Pin = Vout/GH, where Vout is the measured output voltage in units volt, and GH = 1.5 × 106 [V/A] is the high
impedance gain. The SNR is estimated as SNR = 20log10 (Vout/NRMS), where NRMS = 880 × 10−6 [µV] is the
RMS noise, see Table 5.2.

Figure 5.12 shows the estimated SNR of the APD for different optical input powers. This estimation is
confirmed by directly applying an input signal to the APD, and measuring 2.4 million samples at different
output voltages. Then, their correspondent mean voltage Vmean and standard deviation Vstd are calculated. The
signal-to-noise ratio is approximated as SNR = 20log10 (Vmean/Vstd). The results are shown with the markers,
closely matching the estimated curve. When the laser beam propagates through the AO system and gets coupled
into the SMF fiber, vibrations and small changes in temperature affect the coupled signal, inducing additional
signal variations on top of the intrinsic noise. The overall effect is a reduction of the SNR, reaching a plateau
around 40 dB. Note that these additional signal variations are not noise, but anyway included in the SNR to have
a single metric.
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60 dB Settings Values

Gain (Hi-Z ) 1.5 × 106 V/A ∓ 5%
Bandwidth 25 kHz
Noise (RMS) 880 µV
NEP 1.76 × 10−12 W/

√
Hz

Offset 6 mV (10 mV max)

Table 5.2: APD characteristics for the Thorlabs PDA20CS-EC set to
60 dB gain. Fig. 5.12: Signal-to-Noise ratio characterization of the APD.

5.2.6 Focal Camera

As previously explained, the camera (CAM1) performs a short-exposure image acquisition required by the
algorithm to identify focal intensity speckles. The acquisition time is set to 100 microseconds. Based on the
analysis performed in Sec. 4.1.1 and Fig. 4.5, the incident power distributes among the speckles in different
ratios depending on the turbulence strength. Hence, the received power must be enough to assure sufficient
SNR in the speckle with less intensity.

The focal camera is then characterized by its signal-to-noise ratio for three input powers within its dynamic
range. For such characterization, a lens with short focal length f = 45 mm is adjusted to produce a single
speckle of 6 × 6 pixels. The ratio between the background noise standard deviation and mean total intensity of
the speckle is calculated for 5000 images.

Fig. 5.13: (a) Camera signal-to-noise ratio in function of the input power.

Figure 5.13 shows the camera SNR in function of the received power. The Eq. (5.2) allows the estimation of
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the camera SNR for different input powers

SNR = 0.94Pcam + 73, (5.2)

where Pcam is in dBm units, and the SNR in dB units.

5.3 Channel emulation

The turbulent channel used for the proof of concept is constrained to D/r0 ≤ 6 to be within the capacity of the
DM and reduce the occurrence of phase wrapping in the SLM. These scenarios are congruent with the expected
ones in a LEO downlink operating with a telescope diameter of 40 cm, as shown in Fig. 2.5. The scenario of
strong turbulence represented by a D/r0 = 10 is also tested to evaluate the algorithm against phase wrapping,
which occurs due to branch points in a real scenario and here are induced by the SLM. Each turbulent scenario
considers 600 phase-screens generated with the single screen phasemethod. Besides the initial verification of the
turbulence generation, detailed and validated in Sec. 5.2.1 and Fig. 5.5, an additional verification is performed
by comparing the simulated and measured normalized SMF coupling efficiency ηnorm under turbulence effects.

Fig. 5.14: Normalized single-mode fiber coupling efficiency comparison between the laboratorymeasurements (markers) and the simulations, considering
a different set of phase-screens for varying turbulence regimes.

The ηnorm results from the normalization of the coupled signal by the maximum possible coupled power in
the current setup, shown in Sec. 5.2.4. This metric allows a better comparison with the simulation.

Figure 5.14 compares the laboratory measurements of the normalized coupling with the numerical estimation
(SIM 1) and (SIM 2) calculated with the Eq. (2.104) and Eq. (2.108), respectively. The good matching of the
curves further confirms that the channels are emulated properly.

5.4 Proof of concept

During the compensation process, each phase screen is applied to the SLM, the overall phase wave-front tilt is
corrected with the TTM, and the focal image of size 160 × 160 pixels is acquired. The speckles are detected
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using a local maxima algorithm which is fast and efficient [145]. With the identified speckles, the lookup
table is used to generate the proper plane waves. Then, the algorithm performs the sequential iterative DM
shaping, signal power acquisition, and phase optimization. This process is repeated for all the set of phase
screens. For each case, the initial and final coupled power as well as the signal on each iteration and corrected
speckle is registered. The experimental results are also compared with simulations where the relevant laboratory
constraints like camera noise, optical aberration of the system, APD noise, and DM maximum deflection are
included. To validate the method, three main experiments are carried out:

• Evaluation of the behavior of the algorithm for different SNR and varying received signal power

• Overall performance over a range of turbulent scenarios

• Verification of the proposed concept for the dynamic compensation of correlated fields

5.4.1 Algorithm performance under the effect of signal noise

Figure 5.15 (a) depicts the mean SMF coupling efficiency penalty for each corrected speckle in a turbulent
scenario with a D/r0 = 6. Here D = 12 mm is the beam diameter and r0 = 2 mm indicates the spatial
coherence of the wave-front. This ratio is representative of a LEO satellite downlink around 10° elevation when
the beam is received with a telescope aperture of D = 40 cm [140, 141]. The experimental values (LAB)
and the simulation results (SIM) are normalized to the maximum achievable coupled power for comparison.
The analysis is performed for values of SNR ≈ [14,40] dB and received powers of −56 dBm and −36 dBm,
respectively. This range of received power is selected from Fig. 5.12 and it is representative for multi-gigabit
data reception, either working with direct detection or coherent systems [146,147].

(a) (b)

Fig. 5.15: (a) Normalized coupling efficiency vs. number of corrected speckles. The inset shows the PDFs for the final coupling. (b) Evolution of the
coupled signal and SNR distribution.

As expected from the numerical analyses, with higher SNR the coupling improves with each corrected
speckle, delivering a gain of 4 dB after approximately 58 iterations (M = 20). The inset shows the probability
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density functions (PDFs) of the final coupled signal, with a reduction in the variance compared with the tilt-
corrected cases. While the maximum achievable coupling match closely, a slower growth of the experimental
curve is appreciated. It is assumed to be given by a residual tilt in the evolving estimated phase, which is not
compensated because the TTM remains static during the correction.

The performance penalty due to the decrease in the SNR is also verified. The system can still provide a gain
of 2.5 dB with 58 iterations. Here, as mentioned during the numerical analysis, the noise introduces random
deviations in the measured power values used for optimization, affecting the parabolic fitting and leading to
sub-optimum phase shift estimations. This effect is prone to impact more in speckles of lower intensity when
the SNR is high, limiting the slope of the curve. Also, it can alter the initially estimated phase shift associated
with speckles of higher intensity, forcing an earlier saturation. In Fig. 5.15 (b), the evolution of the coupling
penalty against the mean SNR is depicted. The right axis is associated with the PDFs of each SNR case, which
illustrate the noise distribution when the optical power varies during the iterative process. The right-skewed
shape of the PDF of higher SNR is given by the combined effect of APD internal noise and signal variations
due to system vibrations. At lower SNRs, the APD internal noise dominates and the distribution approaches to
Gaussian.

5.4.2 Overall performance

Figure 5.16 (a) shows the performance of the method in the pre-established optimum range of turbulence.
Stronger turbulence is separately tested, limited by the maximum DM stroke of the illuminated area and the
resolution of the SLM.

(a) (b)

Fig. 5.16: (a) Overall performance for different turbulent scenarios. (b) Ensemble of normalized intensity patterns before and after correction.

The curves show a close matching between the experimental and numerical results alongside the tested
scenarios. There is an important improvement in the mean of the signal when the fields are corrected with
M = 36 (106 iterations) and M = 20 (58 iterations). A nearly half-reduction in the number of iterations comes
at the expense of a minimum penalty of 0.4 dB in the signal mean. The long-term point spread function for the
scenario D/r0 = 6 can be calculated by performing the ensemble of the corrected intensity patterns 〈I〉 over a
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set of N = 500 captured focal images [4]. The result is shown in Fig. 5.16 (b) and the calculation is performed
before and after the correction of M = 20 speckles per field. The insets highlight beam focusing improvement.

In addition, figure. 5.17 shows the improvement in the variance of the signal when the fields are corrected
with M = 36 and M = 20 speckles. The scenarios D/r0 = [5,6] are equivalent to a case of a LEO downlink
around10° elevation with D = 40 cm, see [140, 141]. Here, the reduction in the number of iterations implies a
slight increase in the variance.

(a) (b)

Fig. 5.17: Experimental PDF of the coupling penalty for the scenarios (a) D/r0 = 5 and (b) D/r0 = 6. Comparison between the correction with 36 and
20 speckles.

Overall, the performance shows stability in a wide range of turbulence conditions. The signal gain is increased
and the variance gets reduced substantially. The enhancement in the signal quality is achieved with reduced
bandwidth utilization.

5.4.3 Algorithm performance under very strong turbulence

The scenario with D/r0 = 10 is tested to evaluate the performance of the algorithm under strong turbulence.
This scenario can be associated with LEO downlinks bellow 10° elevation, as shown in Fig. 2.5 and [146,147].
As mentioned before, the SLM phase map shows an increment in the number of phase wraps beyond D/r0 = 6,
and one must consider that the performance of the correction may suffer deterioration due to the DM limitations
facing such abrupt phase jumps. On the other hand, it is of interest to see the degree of improvement in coupling
efficiency delivered by this iterative solution knowing that the iterative nature of the algorithm may encounter a
good solution, not necessarily the best, to increase the signal power.

Figure. 5.18(a) compares the performance curves for D/r0 = [6,10]. In the scenario of D/r0 = 10, a signal
gain of 4 dB (M = 30 corrected speckles) and 3 dB (M = 20 or 58 iterations) is obtained. There is a difference
in gain between both curves of less than 2 dB, which is larger by 0.7 dB to that of the simulated case in Fig. 4.21.
Note that simulations do not include all hardware limitations. The measured PDF’s in Fig. 5.18(b) clearly
show how the algorithm improves the quality of the signal with respect to the tilt-corrected cases. Centroid-tilt
correction under strong turbulence does not deliver much of improvement since the focal energy is sufficiently
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(a) (b)

(c)

Fig. 5.18: (a) Experimental normalized coupling efficiency versus number of corrected speckles for the scenario D/r0 = 10. Comparison against the
curve associated with D/r0 = 6. (b) PDF of the tilt corrected fields and full correction with 36 speckles. (c) Ensemble of normalized intensity patterns
before and after correction.

dispersed, reducing the probability of energy at the fiber core position. Still, the variance of the PDF after
correction should be reduced to avoid signal fading. The performance of the system and algorithm in the
scenario D/r0 = 6 is better as the occurrence of phase wrapping is less probable. Finally, Fig. 5.18(c) shows
the normalized ensemble of focal intensity patterns where the algorithm improves the beam energy focusing
at the fiber core position. Overall, even though the described limitations, the algorithm proves its capacity of
improving the quality of the received signal in scenarios of stronger turbulence.

5.4.4 Correction of correlated fields

This analysis evaluates a preliminary algorithm for the dynamical correction of the speckles originated from
correlated pupil fields, as presented in Sec. 4.3.4. This approach compares the changes in each speckle location
between subsequent images and decides the phase shift range to be used in the optimization. For minimum
changes in the speckle location, a reduced phase shift range is assigned for the optimization of each speckle,
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thus, minimizing the power fluctuation in the fiber. For major changes, a larger phase shift range is assigned,
increasing the variance of the coupled signal but accelerating the correction. Following this procedure, it is
expected to reduce the overall power fluctuations during instantaneous iterations.

A real-time test is not yet possible, but the concept can be evaluated with the use of correlated phase-screens
accounting for their coherence time and number of screens involved. The in-house DLR tool Pilab [137], briefly
introduced in Sec. 4.3, is used to create correlated fields for a scenario of a LEO downlink at 30° elevation.
A total of 300 fields are generated with a mean D/r0 = 6, a τ0 = 2.1 msec calculated with Eq. (2.26), and
transversal wind velocity Vt = 10 m/sec. Here, fields are generated and propagated through the turbulent layers
every 250 µsec. Hence, around 9 fields are contained within τ0.

The cross-correlation between the generated fields is depicted in Fig 5.19. It is expected around 1 dB loss of
correlation if the initial field is corrected with the subsequent 9th realization, and 3 dB loss of correlation with
the equivalent 20th realization. From this plot, and for the following experiments, the theoretical τ0 = 2.1 msec,
and N = 9 fields are adopted as the threshold limits.

Fig. 5.19: Cross-correlation between pupil phase wave-fronts

For the experiment, the correlated fields are sent to the SLM with a spacing of N = [3,6,9] fields, or a
time gap ∆t = [0.3τ0,0.7τ0, τ0]. With this, it is intended to verify the correction performance with increased
decorrelation. The results are shown in Fig. 5.20.

Figure 5.20 (a,b) shows the ηnorm per iteration while the algorithm dynamically corrects 20 speckles per field.
Each field is applied to the SLM spaced every 3rd realization, and this separation implies an AO loop time
AOloop = 0.3τ0. Here, the AOloop considers the total time required for the compensation of one field. The dotted
line shows the ηnorm of the fields only corrected in tilt. The red plot shows the algorithm performance without
the dynamic tracking of the speckles or managing of the phase shift range. Without this dynamic tracking,
every single speckle of subsequent fields is optimized using a large phase shift range, resulting in power
fluctuations with deep fading at the beginning of each field compensation. Even though each optimized field
reaches a satisfactory final state of coupling efficiency, the repetitive fades are unwanted from the perspective
of a communication channel. Instead, the blue curve highlights the enhancement in the performance when
the algorithm makes use of the information of anterior fields, keeping the ηnorm within a band gap of -3 dB.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.20: Laboratory performance of the dynamical compensation of correlated fields (D/r0 = 6, τ0 = 2.1 msec). The correction time per field AOloop
of the algorithm increases from (a) AOloop = 0.3τ0, to (b) AOloop = 0.7τ0, and (c) AOloop = τ0.
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The algorithm also shows a fast recovery when the synchronization is lost ( Niter ≈ 3000). At this point, the
synchronization is recovered within ≈ 60 iterations. The histogram clearly contrasts the improvement in the
variance of the coupled signal with and without the dynamic correction of the fields.

The algorithm has a diminished performance against more spaced fields. If the spacing approach to τ0, the
correction fails. Figure 5.20 (c-f) show this behavior with AOloop approaching to τ0, here implemented by
increasing the field spacing to 6 and 9 realizations. The longer it takes to correct an initial field, the more the
wave-front evolves and thus the focal pattern decorrelates. The increased difference in the speckle locations,
force the update of the table of plane waves that needs to be combined and optimized. Hence, each subsequent
field is seen as a new field realization that needs to be optimized from the beginning. This result in deep fades
and larger variance.

It is evident that this preliminary approach performs better with AOloop ≤ τ0/2. As mentioned before, it is
important to constrain the power fluctuations within a functional threshold, which can be defined differently
based on factors like, receiver sensitivity, modulation formats, the use of FEC, and the turbulent scenario. In
addition, the decision criteria for the phase shift assignment in scenarios of stronger turbulence may require the
consideration of other factors, like peak intensity changes between speckles.

5.5 Conclusion of the chapter

This chapter has presented the experimental work performed for the proof of concept of the technique. To
validate the proposed technique, an emulator of an optical satellite downlink was built in the laboratory. This
setup was equipped with an AO system based on a focal camera, as designed in Fig. 6.8. The set of experimental
tests were performed with synthetically generated phase-screens, considering uncorrelated and correlated fields.
The hardware components were characterized to identify the system limitations on the AO system.

The experiments verify the model and method presented Sec. 4.2. Each distorted field is corrected following
the processing steps shown in Fig. 4.16, and the calibration of the system is done as described in Fig. 4.17. The
technique improves the mean coupling efficiency and reduces the signal fluctuations in scenarios of weak to
strong turbulent regimes. The adaptation process shows that the signal improves with each corrected speckle
and that each plane wave phase shift, or the equivalent associated speckle phase, is optimized with three power
measurements. This results confirm the assumptions made in chapter 4 and indicate that approximately 60 power
measurements (3 × 20 speckles) are required to correct fields in scenarios of moderate to strong turbulence.
There is a difference of less than 0.5 dB respect to the maximum improvement reached after 36 corrected
speckles, which match the maximum attainable predicted with the simulations but where experimental curves
grow at a slower rate. Several factors may contribute to such behavior, namely, residual tilts after each plane wave
compensation, and DM fitting limitations. This point remains open for further experimentation and analysis.
Overall, the use of 60 iterations in the tested scenarios reduces by 40% the required number of iterations (≈ 100)
of stochastic methods, and this performance may be further improved after refinement of the algorithm and AO
system.

The impact of the noise in the overall performance verifies the curves obtained in the numerical analyses.
Noise affects the optimization process of each plane wave, deteriorating the correction. With sufficient SNR,
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the method delivers around 4 dB gain under strong turbulence. A reduction of 26 dB in the SNR induces a gain
penalty, but the algorithm still manages to deliver 2.5 dB of signal improvement. This highlights robustness,
which is wanted in FSOC systems. Additionally, it shows the adaptability of the iterative methods as it can
adjust to different states of the channel and signal, still performing the correction.

The preliminary concept for the correction of correlated fields behaves as expected. Some unwanted losses
of performance indicate that the underlying idea requires more work and refinement, particularly dealing with
strong turbulence. One may conceive the use of predictive Kalmann-based algorithms or alike methods to
introduce robustness in the dynamic correction. Also, the stochastic dynamic correction may also be an option
once the initial compensation is achieved. These alternatives are worth to be researched in future works.

The next chapter experimentally tests the proposed AO method in a communication scenario in order to
evaluate if the improvement in the quality of the received signal is sufficient to allow multi-gigabit data
transmission.



C h a p t e r 6

EXPERIMENTAL VALIDATION WITH TRANSMISSION SYSTEM

T his chapter experimentally evaluates the AO technique in a communication scenario. As introduced
in previous chapters, in order to increase the receiver sensitivity and therefore achieve several gigabits
data rates, spectrally efficient modulation format like BPSK and QPSK can be used. This modulation

schemes are phase-sensitive and require an efficient SMF coupling and wave-front phase correction, especially
for LEO downlinks at lower elevations.

In this context, a suitable AO system capable of mitigating the wave-front distortion in all turbulent regimes,
and able to stabilize the signal coupled in the SMF, may allow a coherent receiver demodulating and compen-
sating remnant induced signal impairments like atmospheric piston effects and phase noise. To quantify the
performance of the AO system regarding the improvement in the communication link affected by turbulence,
a coherent QPSK system is integrated into the AO setup. The test involves the transmission of data over the
channel affected wave-front phase distortions, measuring the BER before and after the AO compensation. The
trials are performed with decorrelated and correlated phase screens following the previous procedures.

This chapter first extends the concepts of QPSK modulation and demodulation, briefly presented in Chap-
ter. 2.2. Then, the setup and main hardware components of the transmission systems are presented. The
development of this coherent system is out of the scope of this thesis, thus only the integration and functional
aspects of the system is given. The performance is evaluated with curves of BER that are contrasted with
theoretical estimations calculated from real SNR values of the acquired SMF power signal. Finally, a discussion
of the results is given.
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6.1 Coherent QPSK modulation

As introduced in Chapter 2.2, the amplitude and phase modulation of the carrier can be performed with a
Mach-Zehnder modulator operating in push-pull or push-push mode, respectively. The combination of these
type of modulators allows the implementation of higher order modulation formats, like QPSK. Likewise, as
briefly introduced in Sec. 2.2.2.2, a coherent receiver combines the received signal with that of a local oscillator
to obtain the in-phase and quadrature signals required to map the detected symbol with the adopted constellation
map. The next sections further detail these concepts to give the reader a better overview of the QPSKmodulation
format employed in the experiments.

6.1.1 QPSK modulator

The IQ-modulator depicted in Fig. 6.1 is used to modulate a carrier signal in QPSK. Following the modulator
description of Sec. 2.2.1, this configuration combines two MZMmodulators separated in two arms, each one set
in push-pull mode to produce an amplitude modulation of its input signal. The output signals EI(t) and EQ(t) of
the upper/lower MZM are respectively called "In-phase" and "Quadrature" respect to the entrance signal Ein(t)

of the IQ-modulator, and they are driven by the voltages UI(t) and UQ(t) on each MZM. The difference is given
by the additional phase modulator in the lower arm, which shifts the entrance signal by π/2 applying a bias
voltage −Uπ/2. The transfer function of the IQ-modulator TIQ can be written as

Fig. 6.1: Configuration of an IQ modulator based on two π/2 phase shifted MZM operating in Push-pull mode.

TIQ =
Eout(t)
Ein(t)

=
1
2
cos

(
π

UI(t)
2Uπ

)
+ j

1
2
cos

(
π

UQ(t)
2Uπ

)
(6.1)

Equation (6.1) shows how the input signal Ein of the IQ-modulator can be modulated in different manners by
just controlling the amplitude state of the driving MZMs voltages. The QPSK scheme encodes 2 bits on each
symbol by setting both arms of the IQ-modulator in the null operating point of the MZM and driving each MZM
with a swing voltage of 2Uπ .
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Fig. 6.2: General schematic of an optical transmitter based on the IQ-modulator.

To transmit a digital stream of data, the electrical bit sequence from the DSP in Fig. 2.9 is split by a
demultiplexer into the I and Q arms and then converted with a Digital-to-Analog converter (DAC) to a bit-
equivalent analog signal. This signal, with the corresponding voltages, drives the MZM to produce the intended
constellation. Figure 6.2 shows this process, where the carrier Ein(t) in Eq. (2.41) is modulated in QPSK. At
this point, the output signal Eout(t) can be written as

Eout(t) = a(t)
√

Psexp ( j [wst + φs(t) + φls(t)]) (6.2)

where, depending on the adopted modulation format, the carrier is modified in amplitude a(t) and in phase
φs(t). Figure 6.3 shows the effect of phase and amplitude noise in the constellation diagram, where each symbol
constellation becomes less definite and broadens. This phenomenon must be controlled under higher order
modulation formats to allow the accurate detection of each symbol. It is important to consider that further
alterations of the constellation will occur due to the channel impairments.

Fig. 6.3: Representation of the effect of the laser phase noise and amplitude in the constellation diagram of a QPSK modulation.

6.1.2 QPSK demodulator

The coherent receiver introduced in Sec. 2.2.2.2 is further detailed, showing the demodulation steps from the
input signals Eq. (2.67)-Eq. (2.68) to the output in quadrature signals Eq. (2.69)-Eq. (2.70), here newly repeated.
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This receiver is used to demodulate signals encoded with higher order modulation formats. This receiver
requires the mixing of the incoming signal with the one of a local oscillator. At this point, it is only considered
the modulated carrier signal components in Eq. (2.44) to represent the incoming signal Es(t)

Es(t) =
√

Psexp ( j (2πvst + φs(t))) , (6.3)

and the local oscillator (LO) signal Elo(t) is described as

Elo(t) =
√

Ploexp ( j (2πvlot + φlo(t))) (6.4)

where the input signal power Ps, frequency vs, and phase φs(t) are combinedwith their equivalents local oscillator
signal power Plo, frequency vlo, and LO phase φlo(t) to reconstruct the constellation of the modulated signal.
This process is performed with the help of a so-called 90°-Hybrid and balanced detectors, which discriminates
the in-phase II(t) and quadrature IQ(t) signals from Es(t), see Fig. 6.4. These signals are then amplified with
a TIA and further converted into digital signals VI,Q(n) using an ADC. Finally, the discrete signals require
additional data processing, involving timing recovery, imbalance compensation, frequency offset compensation,
and carrier phase recovery, previous demodulation. This is performed within a Digital Signal Processor (DSP).

Fig. 6.4: Block diagram of the coherent receiver.

In this receiver, a key section is the 90°-Hybrid and balance detectors. The 90°-Hybrid is an arrangement
of four 3dB-couplers that mix Es(t) with Elo(t), inducing an additional π/2 phase shift in one of the split local
oscillator signals to allow mixing with the quadrature term of Es(t), see Fig. 6.5. The output of the 90°-Hybrid
are four signal, described by the following equations

E1 =
1
2
(Es + Elo) (6.5)

E2 =
1
2
(Es − Elo) (6.6)

E3 =
1
2
(Es + jElo) (6.7)

E4 =
1
2
(Es − jElo) (6.8)

In these equations the temporal variable is omitted for mathematical simplification, the 1/2 factor comes from
the half power attenuation of the couplers, and the j indicates the effect of the π/2 phase shift. These in-phase
signals E1,2 and quadrature signals E3,4 are correspondingly sent to a balance detector, which transforms their
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Fig. 6.5: Main blocks of the 90°-hybrid and balanced detectors.

respective optical power into electrical currents and deliver the differential of them. To describe this mixing
process, let’s start with the output signal current I1 from one of the diodes of the balance detector

I1 = R |E1 |
2 = RE1E∗1 =

R
4
(Es + Elo)

(
E∗s + E∗lo

)
=

R
4

(
Ps + Plo +

[√
PsPloexp ( j (2πvbt + φs − φlo))

]
+

[√
PsPloexp (− j (2πvbt + φs − φlo))

] )
=

R
4

(
Ps + Plo + 2

√
PsPlocos (2πvbt + φs − φlo)

)
(6.9)

where vb = vs − vlo is the beat frequency, a DC term is present from the summation of the signal powers Ps

and Plo, and the encoded signal phase is affected by the local oscillator phase as φs − φlo. Similarly, the output
balance detector currents I2,3,4 are

I2 =
R
4

(
Ps + Plo − 2

√
PsPlocos (2πvbt + φs − φlo)

)
(6.10)

I3 =
R
4

(
Ps + Plo + 2

√
PsPlosin (2πvbt + φs − φlo)

)
(6.11)

I4 =
R
4

(
Ps + Plo − 2

√
PsPlosin (2πvbt + φs − φlo)

)
(6.12)

Because the balance detector delivers the difference between both generated signal currents, the DC bias is
removed and the two output signals are equal to

II = I1 − I2 = R
√

PsPlocos (2πvbt + φs − φlo) (6.13)

IQ = I3 − I4 = R
√

PsPlosin (2πvbt + φs − φlo) (6.14)

From these equations it is clear that weak received signals can be amplified by increasing the power Plo of the
LO signal, which represents one of the most useful characteristics in coherent receivers. With this, the effects of
background noise and dark current can be neglected, and since shot noise is directly proportional to the optical
power, it dominates over the thermal noise allowing to consider the receiver as shot noise limited. Then, as the
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mean optical input power on each diode of the balanced detector is constant, the shot noise produced can be
written as

σ2
sn = 2qR

Plo
4
∆f (6.15)

After the balanced detector, the noise produced on each diode is added, leading to

σ2
sn = 2qR

Plo
2
∆f (6.16)

for the in-phase and quadrature signals. After being combined, the signal noise can bewritten as nsn ∼ N(0, σ2
sn)

with
σ2
sn = 2qRPlo∆f (6.17)

Consequently, the total noise nAG will consider only shot noise and laser spontaneous emission noise as

nAG = nsn + nase (6.18)

Likewise, combining all phase shifts in one as

φm(t) = φls + φlo(t) + φpt(t), (6.19)

and including also the terms representing the atmospheric fading αatm(t) and transmitter gain Ga, the orthogonal
signals II,Q after the TIA and before the ADC, can be written in a combined manner as

VRX(t) = VI(t) + jVQ(t) (6.20)

VRX(t) ∝ αatm(t)R
√

PsPloexp ( j [2πvbt + φs(t) − φm(t)]) + nAG. (6.21)

Based on the carrier frequency difference between the LO and carrier signals, there are three main types of
coherent reception:

• Homodyne: It drives the LO with the exact same frequency and phase of the carrier, thus the beat
frequency vb = vs− vlo = 0. This down-converts the received signal to a baseband and allow the sampling
and signal recovery. An optical phase-locked loop (OPLL) system is used to precisely lock the frequency
and phase of both signals, which change in time. The OPLL system is complex to calibrate and tends to
lose synchronization in scenarios with strong fading, thus they have been implemented in inter-satellite
links where atmospheric effects are non-existent and signal maintains sufficient stability.

• Heterodyne: It uses a LO running at a different frequency of the carrier signal, thus the beat frequency
down-coverts the signal onto an intermediate frequency vi = vb. Since the signal has a particular spectrum
bandwidth, the vi has to be at least twice this bandwidth to avoid overlapping.

• Intradyne: It runs the LO at a similar frequency of the carrier, but it does not lock it. This results in an
unknown digitized vb and phase offset between the carrier and LO signal. Hence, it requires a DSP to
compensate them. This system is being investigated for satellite applications.
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Fig. 6.6: Digital signal processing stages.

After the ADC sampling process, the signal is processed with the DSP and the data is recovered. Details about
the involved DSP processes are out of the scope of this work. Here, a broad overview of each main processing
stages is given. Once the received signal is demodulated and digitized, the steps shown in Fig. 6.6 are carried
out. Figure 6.7 shows the signal after each processing stage.

• Timing recovery: This process is necessary for direct and coherent detection. Here, signal sampling
must be performed at the right instant during the symbol duration Ts, preferably at its center, avoiding to
sample at the transitions. Fluctuations of the ADC clock introduce a drift in the sampling time, which can
be compensated using a timing recovery stage in closed-loop and controlling an error metric. This error
metric represents the difference between the sampling point respect to the center of the symbol. The DSP
timing recovery can be performed with the Gardner algorithm [148], which forces a sample at the center
and the transition of the symbol, or with the spectral-based squared timing recovery [149], among others.
Figure 6.7 shows how timing recovery improves the sampling process reducing the uncertainty of symbol
detection from the received signal (yellow circle).

• Imbalance compensation: gain imbalances between the I and Q signals produce a loss of orthogonality
which moves the constellation symbols away from the expected positions. This leads to the wrong symbol
mapping and errors in the retrieved data. The correction is performed with a filter of the type[

I ′

Q′

]
=

[
g1 0
g2 g3

]
.

[
I

Q

]
(6.22)

where the coefficients g1,2,3 are calculated with algorithms like [150, 151]. Figure 6.7 shows how the
imbalance compensation process improves the slight ellipsoid shape after timing recovery.

• Frequency offset compensation: this step is compulsory on intradyne receivers as the LO signal runs
freely and the frequency and phase offset between the LO and carrier are unknown. Laser frequency
fluctuations can be divided in slow static drifts, caused by changes in the environmental conditions (slower
than 1 GHz/h), and faster dynamic drifts due to laser oscillations around its fundamental frequency (MHz
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Fig. 6.7: Visualization of the signal after each DSP stage for QPSK demodulation.

range). Again, a digital domain compensation can be used either in the time domain comparing the
phase of consecutive symbols [152–154], or in the spectral domain identifying the peak position [155].
Figure 6.7 shows now a clear image of the four symbols.

• Carrier phase recovery: This step is also compulsory on intradyne receivers. As introduced in the
previous sections, Eq. (6.19), the total phase noise is a compound of phase noises originated in the laser
source φls, local oscillator φlo, atmospheric piston effect φpt, and some residual phase error φres originated
during the frequency offset compensation process. These phase variations broaden the symbols so that
their relative phase is estimated with errors. This effect is corrected using algorithms like the Viterbi
Viterbi, which divides the burst into blocks, averages the phase offset within it, and finally re-shift the
block phase [24]. Other algorithms are the blind phase search and the decision-directed digital phase
locked loop [156,157].

• Equalization: Inter Symbol Interference (ISI) is seen in the previous step, increasing the probability of
wrong symbol detection. The equalizer mitigates the ISI by redistributing the power within the signal,
meaning that the signal-to-noise ratio of low power symbols is increased, and the energy of high power
symbols is reduced. This process allows an efficient detection of each constellation symbol, improving
the BER [158].

After all these processes, the data is recovered by mapping the symbol position with the original symbol
modulation map.
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6.2 Coherent data communication test

This experiment evaluates the AO system in a communication scenario. The objective is to verify that the
improvement in the signal quality is sufficient to allow high throughput data transmissions. The original setup
presented in Fig. 5.2 is integrated with a coherent transceiver that modulates the laser carrier in Quadrature
Phase Shift Keying (QPSK). The modulation is performed at 40 Gbauds (80 Gbps). Figure. 6.8 shows the
system, where the laser carrier is collimated, then the beam wave-front is distorted in phase with the SLM, and
the reflected beam is guided through the AO system to be finally coupled into the SMF. The coupled signal is
split, sending 90% of the signal to the QPSK demodulator, and 10% to the APD detector.

Fig. 6.8: AO setup with integrated coherent transmission system.

6.2.1 Description of the transmission system

The coherent communication system used in the experiment consists of separated modules for the QPSK
transmitter and receiver, see Fig. 6.9. In the transmitter, a bit pattern generator (SHF-12163A) with two 40 GHz
bandwidth differential outputs generates a non-pulse-shaped pseudo-random bit sequence (PRBS) with a length
of 27 −1 bits. Each differential output feeds a customized optical modulator (IQ-ModBOX IXBlue) that contain
two IQ modulators, used for dual polarization. The carrier signal for the modulator is generated internally
with a C-band laser source of 25 KHz linewidth and 16 dBm maximum power. The output of the modulator
is connected to the AO system that produces a collimated beam that propagates through the AO system until
reaching the SMF coupling section. The coupled signal power is then split, sending 10% of the signal to the AO
system and 90% to the QPSK receiver. The coherent receiver (Finisar CPRV4225A) consists of two matched
90°-Hybrid with integrated balanced photodetectors (one for each polarization) and four linear trans-impedance
amplifiers (TIA); Figure 6.5 shows one single-polarization receiver. The local oscillator signal for the coherent
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receiver is generated with an external laser source (Teraxion Purespectrum NLL) of narrow linewidth (<5 KHz)
and 10.5 dBm output power. The output of the coherent receiver is then sampled at a rate of 80 GSa/s (Giga
samples per second) with a 63 GHz real-time bandwidth Oscilloscope (Keysight DSA-Z-634A Z-series). The
bandwidth of the oscilloscope is limited to 80% of the received Baudrate (40 Gbauds→ 32 GHz). The acquired
signals are stored for post-processing where the DSP stages are applied. This system was design by DLR and
details can be found in [147,159].

OPTICAL MODULATOR

(IQ-ModBOX IXBlue)

C-Band Laser

LW=25 KHz 
Pmax= 16 dBm

PRBS 7

COHERENT RECEIVER

(Finisar CPRV4225A )

C-Bande LO LASER

(Teraxion 
Purespectrum NLL)

LW=5 KHz
Pout=10.5 dBm

AO SYSTEM

SMF coupling

APD 
(Optimization)

10%

90%

          Outputs
2x40 GHz

BIT PATTERN GENERATOR 
(SHF-12103A)

OSCILLOSCOPE

(Keysight DSA-Z-634A )
BW=63 GHz

Fig. 6.9: Block diagram of the experimental coherent transmitter and receiver.

6.2.2 Power requirements - Communication vs. AO system

Power efficiency is an important characteristic of an AO system for FSOC. The AO system has to be able
to operate with a fraction of the power required by the communication system. Here, the camera must have
sufficient signal power to properly detect the speckles that are targeted for correction on each turbulent regime,
meaning that each speckle must have enough SNR. Likewise, the APD must also acquire the coupled signal
with high SNR to perform the parabolic optimization with a minimum impact of the noise.

Fig. 6.10: Camera input power distribution between the speckles for different turbulent regimes. The cumulative power of the speckles sum up 80% of
the total input power. The minimum input power to assure a 3 dB SNR in the less intense speckle of each scenario is Pcam = −54 dBm.
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The minimum input power of the camera (CAM 1) is defined to have at least 3 dB of SNR in the less
intense speckle, see Fig. 5.2. This input power is equal to −75 dBm, obtained from Eq. (5.2) of the camera
characterization. As shown in Fig. 4.5, the number of speckles considered to accumulate 80% of the total focal
power vary with the turbulence. The Eq. (4.1) allows the estimation of the mean normalized power per speckle
for different D/r0, thus, the power ratios between speckles can be used to project the power distribution from
the less intense speckle to the brightest one, and calculate the total required input power.

Figure 6.10 shows the curves of power distribution among the speckles for three turbulent regimes. The total
power contained within the speckles is 80% of the maximum, but distributed differently. The very last speckle
on each scenario has a minimum power that assures 3 dB over the camera noise floor. The total power required,
independently of the scenarios, sum up Pcam = −54 dBm. The SNR per speckle can be directly mapped with
the help of Eq. (5.2).

The total power required for the AO system can be estimated by adding Pcam and the minimum APD input
power for a sufficient optimization process SNR, see Fig. 5.12. Here, the APD input power is set to −46 dBm
to have an SNR = 35 dB. Assuming Pcam = −50 dBm to increase the SNR of the less intense speckle above 6
dB, the AO system would need a total received power of PAO = 35 nW or −44.2 dBm.

The AO power requirement can be compared with the minimum sensitivity power for different QPSK data
rates. From the BER measurements, shown in Fig.6.11 and Fig.6.13, a minimum input power of Ps = −30 dBm
is required for a BER ≈ 10−6. The number of photons per bit Np for the measured data rate Rb = 80 Gbps, can
be calculated as

Np =
Ps

RbEp
, (6.23)

where Ep = hc/λ, with h = 6.6 × 10−34 [m2kg/s] being the Planck constant, c = 3 × 108 [m/s] the velocity of
light, and λ = 1550 [nm] the wavelength of the carrier. The calculation results in Np ≈ 98 [ph/bits]. This Np is
typical for coherent receivers [58]. Assuming this number constant for different data rates, the required received
power Pin for the communication system can be calculated from Eq. (6.23). The results are shown in Table 6.1.

Data Rate Pin PAO AO power
QPSK (BER = 10−6) requirement

1 Gbps 12.5 nW 35 nW 3Pin
10 Gbps 125 nW 35 nW Pin/4
40 Gbps 500 nW 35 nW Pin/14
80 Gbps 1 µW 35 nW Pin/29
100 Gbps 1.25 µW 35 nW Pin/36

Table 6.1: Comparison between the power requirements of the AO system and the communication system for a QPSKmodulation format and BER = 10−6.

This general estimation shows that, for the current test, the AO system needs -15 dB power (15 dB less power)
than the communication systems, which indicates good power efficiency. At 10 Gbps this margin drops to -6
dB. Instead, at 1 Gbps the AO system needs around 5 dB more power than the communication system, which
makes it power inefficient. Furthermore, adaptive optics may not be needed for receivers working in on-off
keying (OOK) at Rb ≤ 10 Gbps, where free-space detectors can be used. With higher data rates, SMF coupling
is required to benefit from the use of optical amplifiers and coherent reception, hence AO is needed.
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Generally, an AO system targets a BER ≈ 10×10−3, from where Forward Error Correction (FEC) system can
provide error-free data transmission. In such a case, the power requirement gap reduces, as shown in Table 6.2.
The AO systems needs between -7 dB and -11 dB power than the communication system, operating with data
rates between 40 and 100 Gbps, respectively.

Data Rate Pin PAO AO power
QPSK (BER = 10−3) requirement

1 Gbps 4 nW 35 nW 9Pin
10 Gbps 40 nW 35 nW Pin
40 Gbps 158 nW 35 nW Pin/5
80 Gbps 316 nW 35 nW Pin/9
100 Gbps 395 nW 35 nW Pin/11

Table 6.2: Comparison between the power requirements of the AO system and the communication system for a QPSKmodulation format and BER ≈ 10−3.
This BER is considered the limit for the error correction system to deliver error-free data transmission.

6.2.3 Evaluation of the AO system in a communication scenario

TheAO system is evaluated in a communication scenario by integrating a coherentQPSK transmitter and receiver
in the setup. The test is performed over 200 uncorrelated fields generated for the scenarios D/r0 = [5,6], which
are representatives of a satellite downlink at elevations near 10° with an aperture D = 40 cm, see Fig. 2.5. On
each case, the coupled signal is measured before and after the correction of 20 speckles (≈ 58 iterations) per
field. Concurrently, the mean BER of the received data is measured. For each distorted field, 50 data sequences
with 106 bits each are generated by a PRBS7 (pseudorandom bit sequence of size 27 − 1). Each data sequence
is modulated in the laser carrier in QPSK at 40 Gbaud. In the receiver side, the signal is sampled with an
oscilloscope at 80 GSample/s. Then, the sampled signal is saved for post-processing. The procedure is repeated
after each field distortion is corrected with the algorithm.

The post-processed 50 data sequences per field result in a mean BER value, one for the corrected state with
the AO system activated (AOON) and one for the uncorrected state (AOOFF). Both are plotted in Fig. 6.11 (a,c).
The results are contrasted against the 40 Gbaud back-to-back reference curve and the ideal shot-noise limited
curve (dashed black). The PDF of the BER, when the AO system is set on/off, is shown in Fig. 6.11 (b,d).

The results show a better BER when the AO correction is performed, indicating an increment in the SMF
coupled power. For the scenario D/r0 = 5, the speckle correction implies an improvement in the quality of
the beam, which increases the coupled power and reduces its variance, improving the BER by three orders of
magnitude. For the scenario D/r0 = 6, the slight increment in the variance of the coupled signal is seen as a
larger span of the measured BER values (AOOFF). Here, the stroke of the illuminated section of the DM reaches
its maximum, limiting the correction capabilities. Nevertheless, signal enhancement is achieved reducing the
errors in the data transmission, as shown in the histograms.

To estimate the system performance under stronger turbulent regimes, the curves of BER can be directly
calculated from the fiber coupled power measurements performed in the APD of the AO system. Note that after
the fiber coupling the signal is split with a 90/10 ratio, but the variance should remain equal to the power signal
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(a) (b)

(c) (d)

Fig. 6.11: (a) Receiver sensitivity measurement for a 40 Gbaud QPSK data transmission corrected by the AO system. (b) PDF of the BER when the
AO system is set on/off. The dashed curve represents the shot-noise limited ideal performance and the dotted curve. The blue curve represents the
back-to-back reference of the receiver. The green and red dots are the mean BER calculated after DSP processing of the received 50 × 16 bits per field
when the AO system is ON and OFF, respectively.

of the coherent receiver. Considering again the Eq. (2.99)

BER(QSPK) =
1
2
erfc

(√
ηeNp

)
(6.24)

and recalling Eq. (2.58) with R = ηeq/hv = 0.08 being the responsivity of the coherent receiver (Finisar
CPRV4225A), the quantum efficiency ηe can be calculated and used to approximate the signal-to-noise ratio
SNR = ηeNp. The number of photon Np is estimated with Eq. (6.23) and Rb = 32 × 109, which is the filter
bandwith of the ADC oscilloscope set to 80% of the 40 Gbauds symbol rate. Figure 6.12 shows the estimated
BER curves for D/r0 = [3,5,10] superimposed on Fig. 6.11(a). The BER performance for the scenario D/r0 = 5
closely follows the lower limit BER performance obtained after DSP post-processing in the coherent receiver.
One may consider that these power vectors are obtained directly from the optimization signal, thus the influence
of the APD shot and thermal noise may reduce the SNR. In the scenario with D/r0 = 3, the AO system can
perform better and correct the fields with minimum constraints of the hardware, thus the curve follows the best
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case represented by the QPSK back-to-back dotted line. The opposite case is represented by the scenario with
D/r0 = 10, where the focal energy is highly dispersed and hardware limitations do not provide that high level
of correction, hence the BER curve shows nearly 7 dB penalty for a BER = 10−6.

Fig. 6.12: (a) Continues BER curves are calculated with Eq. (2.99) and consider the measured power vectors for the scenariosD/r0 = [3, 5, 10] assuming
constant shot noise. The dashed curve represents the shot-noise limited ideal performance and the dotted curve the back-to-back reference curve of the
receiver. The green and red dots are the mean BER calculated after DSP processing of the received 50× 16 bits per field when the AO system is ON and
OFF, respectively.

The same BER analysis of Fig. 6.11(c) is performed with correlated fields in order to verify the BER
performance during the iterative optimization, which implies measuring the BER on each iteration. The result is
shown in Fig. 6.11. Here, the correlated fields are generated and sent to the SLM with a spacing (N=4) or 0.4τ0.
In this case, 106 bits are sent with each iteration. Each field is corrected with 20 speckles (58 iterations), which
means that a total of 58×106 bits are considered per optimized field. Only 16 fields are tested, which represents
around 5 uncorrelated states. In other words, with a field spacing of 0.4τ0, every second field occurs at 0.8τ0

and it is partially correlated, see Fig. 6.11 (c), and every third field occurs at 1.2τ0 being fully uncorrelated; this
means that in 16 fields the transition to an uncorrelated state happens 5 times.

Figure 6.13 (a) shows the BER per iteration during the correction of the fields. Most of the measured BER
values tend to be positioned around a BER ≈ 10−5. There are also measurements with worse BER, which results
from the loss in coupling efficiency during the correction, visualized in Fig. 6.13 (b). Around the iteration
number 1000, the algorithm faces a reduction on its performance with a coupling penalty below 3 dB. Later, the
signal recovers. The inset shows that this signal deterioration rarely falls below 5 dB.

Overall, it can be seen that the method corrects highly distorted fields with a reduced number of iterations
(≈ 58), allowing very high data throughput (= 80 Gbps). The signal fluctuations during the optimization of
each field do not greatly impact in the mean BER, but the method for the dynamic correction of the fields still
requires further improvements. This is a first approach and preliminary test to prove the continuous correction
capabilities of the technique, facing correlated fields with realistic temporal evolution.
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(a)
(b)

Fig. 6.13: (a) Receiver sensitivity measurement for a 40 Gbaud QPSK data transmission corrected by the AO system ON and considering correlated
fields. The data measurement is performed on each iteration. The dashed curve represents the shot-noise limited ideal performance and the blue curve
the back-to-back reference of the receiver. The green circles are the mean BER calculated after DSP processing of the received 58 × 106 bits (106 bits
per iteration) per field. (b) Coupling signal penalty for each iteration of the optimization process. Normalized histogram of the coupling penalty.

6.3 Conclusion of the chapter

This chapter has addressed the final objective of this thesis and validated the AO system in a communication
scenario. The main goal was to verify that, in the presence of turbulence, this AO technique can sufficiently
correct the induced wave-front distortion allowing a better SMF coupling and improving the BER performance
in multi-gigabit transmission.

The experiment involved the integration of a coherent QPSK transmitter and receiver in the AO system, where
a set of decorrelated and correlated phase screens were applied to the SLM to induce different levels of phase
distortions in the beamwave-front. The analysis with decorrelated fields intended to evaluate the communication
performance with the final state of correction of the fields. The mean BER was measured before and after AO
correction to quantify the improvement. For the case of correlated fields, the BER measurement was performed
on each iteration to evaluate the performance during the correction process and transitions between fields. This
test also intended to indirectly verify that the algorithm for dynamic compensation can maintain the signal
correction over several fields, and thus the BER performance.

The results indicate that formoderate turbulence D/r0 ≈ [5,6] the distorted beam can be sufficiently corrected,
improving the BER beyond the minimum FEC limit (10−3). Note that the FEC limit is the minimum BER from
which Forward-error-correction system can provide error-free transmission. The numerical curves calculated
with the experimental power vectors and considering the coherent receiver parameters showed the expected
performance under scenarios of strong turbulence, clearly show a good match with the tested D/r0 = 5 case.

It can be concluded that this AO approach improved the coupling efficiency and improved the BER perfor-
mance. The demonstration was performed using QPSKmodulation at 80 Gbit/s and intradyne reception. Future
experiments should be oriented towards the prototyping of the concept to test the technique dynamically in
real-time, thus to confirm these results.
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CONCLUSIONS AND FUTURE WORK

This thesis has proposed a new adaptive optics solution for turbulence compensation in satellite laser
communications scenarios. The goal was to achieve SMF coupling with sufficient efficiency and signal
stability allowing the use of advanced coherent modulation formats to achieve very high data throughput.

7.1 Summary

The motivation of this work was originated by the need of establishing robust laser links from satellites and
aircraft to earth ground stations, targeting lasercom applications like earth observation. A particular emphasis
was given to the case of LEO downlinks at low elevations (<30°). As explained in chapter 1-2, the cumulative
effects of the turbulence over long paths induce in the beam wave-front strong amplitude fluctuations, strong
phase distortions, and phase singularities, resulting in signal fading affecting the communication performance.
When the turbulence distorts the phase-front, the focused light results in spread intensity spots (speckled intensity
pattern), and the power fluctuates randomly every millisecond, impairing a stable fiber coupling. Consequently,
phase wave-front aberrations are the principal limitation to the use of coherent modulation formats like BPSK
and QPSK, which require an efficient single mode fiber (SMF) coupling.

The FSOC community have addressed this problem with the help of standard adaptive optics systems,
mostly inherited from astronomy. Due to the severe turbulence conditions in LEO downlinks, such systems
have performed with partial success, being truly efficient and allowing gigabit downstream up to moderate
turbulence [43–47]. Satellite communications require a robust solution under any turbulence condition, as well
as a simple system easy to integrate either in a fixed or transportable optical ground station (OGS).

Under such conditions, an iterative (sensor-less) approach was chosen as a potential solution due to positive
characteristics like robustness in all turbulent regimes, hardware simplicity, easiness of integration and calibra-
tion, and low cost. The principal limitation was identified in the long convergence time of the iterative process.
A standard stochastic iterative method follows a blind optimization of the power coupled in the fiber and thus it
requires above 100 iterations to converge, or equivalently AO loops running at 100 KHz or more, definitively
non-practical with the state-of-the-art deformable mirrors.

To address this limitation and make possible the use of iterative solutions in FSOC, the proposed AO
technique makes use of the existing OGS tracking camera and the power coupled in the fiber, thus adding
minimum hardware complexity to the standard sensor-less system designs. The adaptation method operates
on each main intensity spot of an acquired focal image (speckled intensity pattern), sequentially updating and
optimizing their phases. It can estimate the phase of each speckle in a closed form via the quadratic optimization
of the power of the fiber-coupled signal, thus only three power measurements (iterations) are needed per speckle.
Consequently, the algorithm does not need to monitor nor to react to the trend of the coupled signal, and just
perform the pre-established measurements and optimization steps to assure the correction of the field.

The general objective of this thesis was to validate these claims and prove that these ideas and methods
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are technically feasible, also offering a new insight to iterative solutions, and hopefully encouraging new
development in the field.

7.2 Conclusions

The conclusions of this thesis follow the initial objectives presented in Sec. 1.5:

• Regarding the analysis and modeling of the proposed speckle-based compensation method: The principal
limitation of the iterative methods state-of-the-art is related to the working principle of their algorithms,
that blindly search for the signal optimization. Such an approach certainly needs too many iterations
as there is no predictable connection between the measured focal power and the unknown pupil phase
distortion. The model presented in chapter 4 relates both optical planes in a simple manner, linking each
main speckle spot of the intensity image with a predefined pupil mode (plane-wave phase). Following
basic principles of Fourier optics, a very complex problem is simplified to the search of scalar variables
representing the relative phase differences between speckles, or equivalently the best coherent phase
matching between plane waves. The proposed model also benefits from the possibility of performing
each speckle optimization with just three iterations, allowing each field to be corrected proportionally
to the number of speckles selected. Consequently, this approach truly simplifies the search of the best
compensation phase, now in a priori well-defined, tractable, and flexible manner.

These combined set of properties makes the technique very attractive for FSOC applications. To my
knowledge, there is no other method capable of identification of the required number of iterations and a
limited set of possible solutions in-advance. The method directly addresses the dispersed energy spots
saving time in the process of focusing the focal energy. Furthermore, the method can be adapted to the
turbulence conditions or the targeted coupling efficiency by varying the number of corrected intensity
speckles, i.e. the number of iterations.

This model also offers the possibility of working directly in the focal plane. As described mathematically
in Sec. 4.2.3 and Eq. 4.21, the phase on each speckle spot can be reasonably considered constant. This
may allow the use of a segmented DMpositioned directly in the focal plane, applying piston phase changes
at each speckle position. This approach may benefits from very fast segmented DMs able to reach up to
120 KHz with piston excursions of half wavelength [115], sufficient for the range of phase values related
to the phase of a focal speckle.

• Regarding the numerical analysis of the technique: The main objective of the numerical analysis was to
verify the assumptions of the model and its working principle.

The numerical analyses considered the generation of decorrelated and correlated phase screens, from
which pupil complex fields were created and Fourier transformed, thus the speckle patterns needed for
the adaptation method were obtained. The algorithm was implemented following the steps described in
Fig. 4.16, and the results showed an excellent performance in all turbulent regimes, as depicted in Fig. 4.21.
In the particular case of strong turbulence and D/r0 = 10 shown in Fig. 4.19, the technique efficiently
addressed the most intense speckles and corrected them with the expected number of iterations, needing
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for convergence less than 60 iterations per field. The signal gain was substantial (≈ 10 dB), and the
variance was greatly reduced (≈ 7 dB) which is crucial to minimize the fading of the signal an improve
the communication performance. The concept was also tested against strong scintillation and branch
points by generating phase screens with an in-house software tool developed by the German Aerospace
Center (DLR) [137]. The impact of scintillation and phase singularities showed a slight reduction of
2 dB in the signal gain but not much influence in the number of required speckles for correction, which
proves that phase distortions are dominant defining the spreading of energy in the focal plane. The
impact of signal noise resulted in early saturation of the curves and less overall gain, originated by the
errors in optimization due to noisy power measurements used in the quadratic optimization process. It is
estimated that a SNR ≈ 50 dB in the measurement of the coupled-signal power is required for near-ideal
performance. Different levels of signal-to-noise-ratio of the coupled-signal reduce the maximum coupling
efficiency. Simulations show however that the AO system improves the coupling efficiency, working at
SNR > 40 dB.

From these results, one can conclude that the numerical evaluation of the technique has validated the
assumption of the model. Each speckle can indeed be related to a well-defined plane wave mode in
the pupil plane, and its phase can be optimized with three power measurements. Because of this, the
method can correct the distorted field with a total number of iterations equal to three times the number
of selected speckles. The coupling efficiency shows a steady improvement with each corrected speckle,
supporting the assumptions made in Eq. (4.23). The study of the number of required corrected speckles
and iterations per turbulent scenario shown Fig. 4.21, and the trend of the coupling efficiency after each
correction, support the assumed relation between the speckles and the plane wave modal representation
of the wave-front. From the analysis of the optimum number of speckles per turbulent scenario, one can
predict ≈ 40% less loop bandwidth requirements in comparison with other stochastic iterative methods.

• Regarding the experimental evaluation of the adaptation technique: The main objective in the experi-
mental evaluation of the technique was to confirm the results of the numerical analysis.

In order to perform the experiments, a laboratory setup was built to emulate turbulence phase distortions
in satellite downlinks, as it is shown in Fig. 5.2. The algorithm was implemented following the steps
described in Fig. 4.16. All hardware involved was characterized to identify the possible limitations and
minimize errors in the analyses due to hardware constraints. In line with this, due to limitations on the
SLMphase range and theDMexcursion and resolution, the optimal operation range of the emulated phases
was defined for weak to moderate turbulence between D/r0 = 1 and D/r0 = 6. However, measurements
under the equivalent of strong turbulence D/r0 = 10 have also been performed to quantify the impacts of
such constraints in the technique and to evaluate the degree of improvement obtained. The preliminary
concept for dynamic correction of correlated fields was also evaluated.

The results have validated the model and simulations, confirming the proposed pupil plane wave represen-
tation of the focal intensity pattern and the quadratic optimization of the speckles phase. The performance
curves have confirmed the predicted trend of the coupling efficiency and the required number of iterations
per speckle and field. The receiver noise had the expected impact on the overall performance. However,
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the improvement in the coupling efficiency was occurring a slower rate than in the simulations, having a
mismatch of approximately 0.5 dB between the experimental coupling efficiency and the simulated one at
the evaluated point of 20 corrected speckles (58 iterations). One can conclude that fitting errors in the DM,
system vibrations, and non-perfect tilt compensation surely impact the performance of the experiments.
The experimental PDFs in Fig. 5.17 showed that the signal variance in scenarios of moderate turbulence
was reduced by 3 dB, and the final coupling was enhanced by nearly the same proportion. The scenario
of equivalent stronger turbulence D/r0 = 10 in Fig. 5.18 also showed a signal gain of approximately 3 dB
with 60 iterations and nearly the same amount of reduction in the variance, noticing an expected penalty
in both metrics due to the hardware limitations. The positive aspect of this test is that the algorithm
can still deliver an increment in the signal quality, indicating that refinement on the system design may
certainly improve these results.

This thesis has also experimentally tested a preliminary approach to the dynamic speckle tracking and
correction, presented and briefly analyzed in Sec. 4.3.4. The laboratory tests evaluated this approach with
correlated fields in moderate turbulence D/r0 = 6. The results showed a good performance maintaining
the correction between field states decorrelated by one-third of the field coherence time τ0/3, reducing
the variance of the coupled signal by approximately 4 dB. On the other hand, this solution may face
limitations operating at very fast loop rates or under strong turbulence, requiring frequent re-lock of the
distorted phase. Here, this approach is not robust enough, and stochastic methods perform better.

Finally, one can conclude that the technique experimentally works and corrects a wide range of turbulent
regimes with a reduced number of iterations. Still, the experiment needs to be improved to further test
this concept under D/r0 � 6, and more work is required in the control and dynamic correction of the
fields.

• Regarding the experimental validation in a communication scenario: The final objective of this thesis
involved the validation of the AO system in a communication scenario. The main goal was to verify that,
in the presence of turbulence, the AO system can sufficiently correct the induced wave-front distortion
allowing a better SMF coupling improving multi-gigabit transmission.

For this analysis, a coherent QPSK transmitter and receiver was integrated with the AO system. The
tests were performed in a non-real time regime measuring the BER before and after the correction of a
turbulent field. The experiment was performed with decorrelated fields testing the performance after the
final correction of each field. Additionally, the same test was performed with correlated fields measuring
the BER on each iteration. The acquired power vectors were used to estimate the performance under
strong turbulence D/r0 = 10 by the use of the theoretical BER formula.

The results under moderate turbulence showed in both cases a clear improvement in the BER of the
transmission system after AO correction. It was achieved nearly four orders of magnitude improvement
and a BER ≈ 10−6 for the scenario D/r0 = 5, and around two orders of magnitude better BER in the
scenario D/r0 = 6 due to increased signal variance. The estimation under strong turbulence D/r0 = 10
showed the expected penalty, needing 7 dB more power to reach similar performance. Here, the power
vector used in the estimation includes the hardware limitations as the signal variance is influenced by
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these constraints. The BER test performed with correlated fields, measuring on each iteration, also
showed improvements in the BER, maintaining the coupled with minimum fading. Still, as evaluated
with decorrelated fields, the technique needs to be improved as the BER results largely span between
BER = 10−3 and BER = 10−6 which indicates larger signal variance.

7.3 Future work

Future work should focus on each of the above-described sections improving the model, the numerical simula-
tions, and the experimental tests to finally move towards the prototyping and field test. In addition, the technique
should be compared with other alternative methods proposed for FSOC, like multi-aperture transceivers.

Regarding the model, the dynamic correction of the fields needs to be addressed more in detail, either refining
the proposed approach, combining it with predictive algorithms, or proposing a suitable alternative able to
keep track of the speckle evolution. This must involve parallel processing, where the image acquisition of the
camera is performed while the algorithm corrects the field. One may consider alternatives like Kalman-based
predictors of the speckle positions, or a combination with Zernike modes to maintain the correction once the
initial phase-lock is reached.

Regarding the simulation, the numerical analyses have not evaluated the dynamics of the AO system in terms
of loop bandwidth constraints. Future numerical analysesmust consider themodeling of the hardware, especially
timing constraints of a realistic closed loop, control system, deformable mirror, and camera acquisition. This
could help to refine the technique for future lab implementation targeting a real-time working prototype.

About the practical implementation, future developments should focus on the optimization of the optical
system, maybe testing mirrors with larger stroke and number of actuators, and also considering segmented
DM’s. The emulation of the turbulent scenarios (without wrapping effects) may also consider the use of other
methods, like digital holography with micromirror arrays [160], or hot-air chambers [161]. In my opinion, a
suitable and fully-controllablemethod, able to represent larger D/r0 and dynamic turbulent regimeswith realistic
atmospheric time evolution, should involve a membrane-based deformable mirror. A key point here is that the
turbulence emulationmust allow reproducibility of the scenario to verify the results. The beam collimation needs
to be improved to avoid the interference pattern and obtain a cleaner flat intensity profile, resembling a plane
wave arriving from a satellite. This should further enhance the coupling efficiency. Future design must certainly
consider the real-time implementation of the method and the study of some of the mentioned alternatives for the
dynamic correction of the speckles. A prototype for a real-time implementation must consider the fact that this
algorithm can also run in a non-sequential fashion, not studied in this work. The mathematical model clearly
shows that the plane waves are uncorrelated, hence they can be optimized independently. Naturally, starting
the optimization from a speckle of lower intensity may induce a penalty, but this option can greatly benefit the
implementation of the method. Today’s DMs have the option of pre-storage of a set of phase maps in the DM
driver, which can be addressed at will avoiding the transmission delays. In the calibration process of the method,
all the possible phase maps and their three stages alternatives could be stored in the DM driver and accessed
on demand based on the speckle position. This approach could be combined with a suitable sensor, replacing
the camera, as only the speckle peak coordinate and relative magnitude is needed. To my knowledge, this kind
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of sensor solution does not exist, but the general idea should involve a photodetector array receiver with pixel
positions electronically mapped to a lookup table of pre-stored phase maps, directly controlling the DM. Hence,
all the process could be integrated without the need of running the algorithm in a computer. In my opinion, a
real-time working prototype should move in this direction, including the simplification and optimization of the
optical system.

New techniques offer alternatives to the traditional AO system design considered in this work. Typically, the
receivers consist of a single aperture with a full-size collecting area that fully embraces the phase distortions of
the field. Instead, the spatial diversity technique divides the single aperture into smaller sub-apertures whose
output are coupled into a fiber, electronically combined, and co-phased [135,162]. Each sub-aperture only sees a
small region of the distorted phase-front, thus, the number of speckles in the focal plane get substantially reduced
allowing an easier coupling into the SMF. In coherent reception, this technique facilitates the local oscillator
locking with the received signal, reducing the probability of errors in reception [163]. Because this technique
performs signal phase compensation electronically, it can achieve very fast loop rates and does not need a DM.
On the other hand, the technique needs a high number of channels that increase the complexity in the electrical
domain. The speckle-based technique proposed in this thesis should be compared in a common framework, like
the capacity of improving in the BER. Both methods can also be compared in terms of complexity and cost of
implementation.

Last but not least, the technique proposed in this work shows many new characteristics that may encounter
applications in different fields. This method opens the door to possible combinations with other iterative
algorithms without the need for adding complex wave-front sensors. Considering more relaxed time constraints,
and that the same technique can work with many more intensity points of the speckle image, it can also be
used in applications seeking for higher resolution like AO for medicine and spectroscopy, or high power laser
in industry. In FSOC the resolution is reduced in favor of time optimization. For example, in a LEO downlink
moving from strong to low turbulence conditions, the number of focal speckles vary, and the related algorithm
can easily adjust itself reducing the treated modes and iterations depending on the number and strength of
the measured intensity spots. Another possible application for FSOC could be AO for pre-compensation in
laser communication uplinks. Applications like GEO feederlinks need to sens the aberrations induced by the
turbulence in the downlink and pre-distort the uplink beam with the phase-front conjugate, so as the turbulent
channel acts as a compensation element. Research in this area is mostly carried out in laboratories [164, 165],
where the adopted technique is real-time Hartmann-based systems. An open question remains on the potential
use of fast iterative solutions in this application.

The focus of this Ph.D. dissertation is on free-space laser beam propagation, and the suggestion of adaptive
methods and strategies to minimize the adverse effects of atmospheric turbulence on optical communication
systems for space-to-ground link applications. The adaptation approach presented in this work is based on the
sequential optimization of speckle components and works by iteratively updating individual adaptation phases
to maximize coupled power. The method has the attractive property that the phase estimates can be obtained in a
closed form from optimizing a quadratic cost function based on power measurements. Our work uses the power
of new insights about iterative compensation methods for improving the performance of advance free-space
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communication systems and shows how simple concepts can be combined to solve complex communication
needs.
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