1,327 research outputs found

    Performance-oriented Cloud Provisioning: Taxonomy and Survey

    Full text link
    Cloud computing is being viewed as the technology of today and the future. Through this paradigm, the customers gain access to shared computing resources located in remote data centers that are hosted by cloud providers (CP). This technology allows for provisioning of various resources such as virtual machines (VM), physical machines, processors, memory, network, storage and software as per the needs of customers. Application providers (AP), who are customers of the CP, deploy applications on the cloud infrastructure and then these applications are used by the end-users. To meet the fluctuating application workload demands, dynamic provisioning is essential and this article provides a detailed literature survey of dynamic provisioning within cloud systems with focus on application performance. The well-known types of provisioning and the associated problems are clearly and pictorially explained and the provisioning terminology is clarified. A very detailed and general cloud provisioning classification is presented, which views provisioning from different perspectives, aiding in understanding the process inside-out. Cloud dynamic provisioning is explained by considering resources, stakeholders, techniques, technologies, algorithms, problems, goals and more.Comment: 14 pages, 3 figures, 3 table

    A Review of Energy-aware Cloud Computing Surveys

    Get PDF
    The increasing demands on the usage of data centers especially in provisioning cloud applications (i.e. data-intensive applications) have drastically increased the energy consumption and becoming a critical issue. Failing to handle the increasing in energy consumption leads to the negative impact on the environment, and also negatively affecting the cloud providers’ profits due to increasing costs. Various surveys have been carried out to address and classify energy-aware approaches and solutions. As an active research area with increasing number of proposals, more surveys are needed to support researchers in the research area. Thus, in this paper, we intend to provide the current state of existing related surveys that serve as a guideline for the researchers as well as the potential reviewers to embark into a new concern and dimension to compliment existing related surveys. Our review highlights four main topics and concludes to some recommendations for the future survey

    Automated Dynamic Resource Provisioning and Monitoring in Virtualized Large-Scale Datacenter

    Get PDF
    Infrastructure as a Service (IaaS) is a pay-as-you go based cloud provision model which on demand outsources the physical servers, guest virtual machine (VM) instances, storage resources, and networking connections. This article reports the design and development of our proposed innovative symbiotic simulation based system to support the automated management of IaaS-based distributed virtualized data enter. To make the ideas work in practice, we have implemented an Open Stack based open source cloud computing platform. A smart benchmarking application "Cloud Rapid Experimentation and Analysis Tool (aka CBTool)" is utilized to mark the resource allocation potential of our test cloud system. The real-time benchmarking metrics of cloud are fed to a distributed multi-agent based intelligence middleware layer. To optimally control the dynamic operation of prototype data enter, we predefine some custom policies for VM provisioning and application performance profiling within a versatile cloud modeling and simulation toolkit "CloudSim". Both tools for our prototypes' implementation can scale up to thousands of VMs, therefore, our devised mechanism is highly scalable and flexibly be interpolated at large-scale level. Autonomic characteristics of agents aid in streamlining symbiosis among the simulation system and IaaS cloud in a closed feedback control loop. The practical worth and applicability of the multiagent-based technology lies in the fact that this technique is inherently scalable hence can efficiently be implemented within the complex cloud computing environment. To demonstrate the efficacy of our approach, we have deployed an intelligible lightweight representative scenario in the context of monitoring and provisioning virtual machines within the test-bed. Experimental results indicate notable improvement in the resource provision profile of virtualized data enter on incorporating our proposed strategy

    Allocation of Virtual Machines in Cloud Data Centers - A Survey of Problem Models and Optimization Algorithms

    Get PDF
    Data centers in public, private, and hybrid cloud settings make it possible to provision virtual machines (VMs) with unprecedented flexibility. However, purchasing, operating, and maintaining the underlying physical resources incurs significant monetary costs and also environmental impact. Therefore, cloud providers must optimize the usage of physical resources by a careful allocation of VMs to hosts, continuously balancing between the conflicting requirements on performance and operational costs. In recent years, several algorithms have been proposed for this important optimization problem. Unfortunately, the proposed approaches are hardly comparable because of subtle differences in the used problem models. This paper surveys the used problem formulations and optimization algorithms, highlighting their strengths and limitations, also pointing out the areas that need further research in the future

    Automated Dynamic Resource Provisioning and Monitoring in Virtualized Large-Scale Datacenter

    Full text link
    corecore