55 research outputs found

    A Performance evaluation of several ATM switching architectures

    Get PDF
    The goal of this thesis is to evaluate the performance of three Asynchronous Transfer Mode switching architectures. After examining many different ATM switching architectures in literature, the three architectures chosen for study were the Knockout switch, the Sunshine switch, and the Helical switch. A discrete-time, event driven system simulator, named ProModel, was used to model the switching behavior of these architectures. Each switching architecture was modeled and studied under at least two design configurations. The performance of the three architectures was then investigated under three different traffic types representative of traffic found in B-ISDN: random, constant bit rate, and bursty. Several key performance parameters were measured and compared between the architectures. This thesis also explored the implementation complexities and fault tolerance of the three selected architectures

    A formalism for describing and simulating systems with interacting components.

    Get PDF
    This thesis addresses the problem of descriptive complexity presented by systems involving a high number of interacting components. It investigates the evaluation measure of performability and its application to such systems. A new description and simulation language, ICE and it's application to performability modelling is presented. ICE (Interacting ComponEnts) is based upon an earlier description language which was first proposed for defining reliability problems. ICE is declarative in style and has a limited number of keywords. The ethos in the development of the language has been to provide an intuitive formalism with a powerful descriptive space. The full syntax of the language is presented with discussion as to its philosophy. The implementation of a discrete event simulator using an ICE interface is described, with use being made of examples to illustrate the functionality of the code and the semantics of the language. Random numbers are used to provide the required stochastic behaviour within the simulator. The behaviour of an industry standard generator within the simulator and different methods of number allocation are shown. A new generator is proposed that is a development of a fast hardware shift register generator and is demonstrated to possess good statistical properties and operational speed. For the purpose of providing a rigorous description of the language and clarification of its semantics, a computational model is developed using the formalism of extended coloured Petri nets. This model also gives an indication of the language's descriptive power relative to that of a recognised and well developed technique. Some recognised temporal and structural problems of system event modelling are identified. and ICE solutions given. The growing research area of ATM communication networks is introduced and a sophisticated top down model of an ATM switch presented. This model is simulated and interesting results are given. A generic ICE framework for performability modelling is developed and demonstrated. This is considered as a positive contribution to the general field of performability research

    Analyzing Traffic and Multicast Switch Issues in an ATM Network.

    Get PDF
    This dissertation attempts to solve two problems related to an ATM network. First, we consider packetized voice and video sources as the incoming traffic to an ATM multiplexer and propose modeling methods for both individual and aggregated traffic sources. These methods are, then, used to analyze performance parameters such as buffer occupancy, cell loss probability, and cell delay. Results, thus obtained, for different buffer sizes and number of voice and video sources are analyzed and compared with those generated from existing techniques. Second, we study the priority handling feature for time critical services in an ATM multicast switch. For this, we propose a non-blocking copy network and priority handling algorithms. We, then, analyze the copy network using an analytical method and simulation. The analysis utilizes both priority and non-priority cells for two different output reservation schemes. The performance parameters, based on cell delay, delay jitter, and cell loss probability, are studied for different buffer sizes and fan-outs under various input traffic loads. Our results show that the proposed copy network provides a better performance for the priority cells while the performance for the non-priority cells is slightly inferior in comparison with the scenario when the network does not consider priority handling. We also study the fault-tolerant behavior of the copy network, specially for the broadcast banyan network subsection, and present a routing scheme considering the non-blocking property under a specific pattern of connection assignments. A fault tolerant characteristic can be quantified using the full access probability. The computation of the full access probability for a general network is known to be NP-hard. We, therefore, provide a new bounding technique utilizing the concept of minimal cuts to compute full access probability of the copy network. Our study for the fault-tolerant multi-stage interconnection network having either an extra stage or chaining shows that the proposed technique provides tighter bounds as compared to those given by existing approaches. We also apply our bounding method to compute full access probability of the fault-tolerant copy network

    Distributed call set-up algorithms in BISDN environment.

    Get PDF
    by Shum Kam Hong.Thesis (M.Phil.)--Chinese University of Hong Kong, 1992.Includes bibliographical references (leaves 125-131).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Background --- p.1Chapter 1.2 --- Outline of the thesis --- p.6Chapter 1.3 --- Current Art in Packet Switching --- p.9Chapter 2 --- Management of Control Information --- p.17Chapter 2.1 --- Inter-node Exchange of Link Congestion Status --- p.21Chapter 2.2 --- Consistency of Control Information --- p.24Chapter 2.3 --- Alternate Format of Control Information --- p.26Chapter 3 --- Traffic Flow Control --- p.29Chapter 3.1 --- Control of Traffic Influx into the Network --- p.29Chapter 3.2 --- Control of Traffic Loading from the Node --- p.30Chapter 3.3 --- Flow Control for Connection Oriented Traffic --- p.32Chapter 3.4 --- Judgement of Link Status --- p.38Chapter 3.5 --- Starvation-free and Deadlock-free --- p.42Chapter 4 --- Call Set-up Algorithm Traffic Modelling --- p.47Chapter 4.1 --- Basic Algorithm --- p.47Chapter 4.2 --- Minimization of Bandwidth Overhead --- p.48Chapter 4.3 --- Two-way Transmission --- p.51Chapter 4.4 --- Traffic Modelling --- p.52Chapter 4.4.1 --- Aggregate Traffic Models --- p.53Chapter 4.4.2 --- Traffic Burstiness --- p.57Chapter 5 --- Parameters Tuning and Analysis --- p.76Chapter 5.1 --- Scheme I : Scout Pumping --- p.76Chapter 5.2 --- Scheme II : Speed-up Scout Pumping --- p.85Chapter 5.3 --- Blocking Probability --- p.90Chapter 5.4 --- Scout Stream Collision --- p.92Chapter 6 --- Simulation Modelling & Performance Evaluation --- p.96Chapter 6.1 --- The Network Simulator --- p.96Chapter 6.1.1 --- Simulation Event Scheduling --- p.97Chapter 6.1.2 --- Input Traffic Regulation --- p.100Chapter 6.1.3 --- Actual Offered Load --- p.101Chapter 6.1.4 --- Static and Dynamic Parameters --- p.103Chapter 6.2 --- Simulation Results --- p.107Chapter 7 --- Conclusions --- p.123Chapter A --- List of Symbols --- p.13

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise

    The Design of a single chip 8x8 ATM switch in 0.5 micrometers CMOS VLSI

    Get PDF
    This thesis illustrates the design of a single chip Asynchronous Transfer Mode (ATM) protocol switch using Very Large Scale Integration (VLSI). The ATM protocol is the data communications protocol used in the implementation of the Broadband Integrated Services Digital Network (B-ISDN), A number of switch architecture are first studied and a new architecture is developed based on optimizing performance and practicality of implementation in VLSI. A fully interconnected switch architecture is implemented by permanently connecting every input port to all the output ports. An output buffering scheme is used to handle cells that cannot be routed right away. This new architecture is caned the High Performance (HiPer) Switch Architecture. The performance of the architecture is simulated using a C++ model. Simulation results for a randomly distributed traffic pattern with a 90% probability of cells arriving in a time slot produces a Cell Loss Ratio of 1.Ox 10^-8 with output buffers that can hold 64 cells. The device is then modeled in VHDL to verify its functionality. Finally the layout of an 8x8 switch is produced using a 0.5 micrometer CMOS VLSI process and simulations of that circuit show that a peak throughput of 200 Mbps per output port can be achieve

    Architecture design and performance analysis of practical buffered-crossbar packet switches

    Get PDF
    Combined input crosspoint buffered (CICB) packet switches were introduced to relax inputoutput arbitration timing and provide high throughput under admissible traffic. However, the amount of memory required in the crossbar of an N x N switch is N2x k x L, where k is the crosspoint buffer size and needs to be of size RTT in cells, L is the packet size. RTT is the round-trip time which is defined by the distance between line cards and switch fabric. When the switch size is large or RTT is not negligible, the memory amount required makes the implementation costly or infeasible for buffered crossbar switches. To reduce the required memory amount, a family of shared memory combined-input crosspoint-buffered (SMCB) packet switches, where the crosspoint buffers are shared among inputs, are introduced in this thesis. One of the proposed switches uses a memory speedup of in and dynamic memory allocation, and the other switch avoids speedup by arbitrating the access of inputs to the crosspoint buffers. These two switches reduce the required memory of the buffered crossbar by 50% or more and achieve equivalent throughput under independent and identical traffic with uniform distributions when using random selections. The proposed mSMCB switch is extended to support differentiated services and long RTT. To support P traffic classes with different priorities, CICB switches have been reported to use N2x k x L x P amount of memory to avoid blocking of high priority cells.The proposed SMCB switch with support for differentiated services requires 1/mP of the memory amount in the buffered crossbar and achieves similar throughput performance to that of a CICB switch with similar priority management, while using no speedup in the shared memory. The throughput performance of SMCB switch with crosspoint buffers shared by inputs (I-SMCB) is studied under multicast traffic. An output-based shared-memory crosspoint buffered (O-SMCB) packet switch is proposed where the crosspoint buffers are shared by two outputs and use no speedup. The proposed O-SMCB switch provides high performance under admissible uniform and nonuniform multicast traffic models while using 50% of the memory used in CICB switches. Furthermore, the O-SMCB switch provides higher throughput than the I-SMCB switch. As SMCB switches can efficiently support an RTT twice as long as that supported by CICB switches and as the performance of SMCB switches is bounded by a matching between inputs and crosspoint buffers, a new family of CICB switches with flexible access to crosspoint buffers are proposed to support longer RTTs than SMCB switches and to provide higher throughput under a wide variety of admissible traffic models. The CICB switches with flexible access allow an input to use any available crosspoint buffer at a given output. The proposed switches reduce the required crosspoint buffer size by a factor of N , keep the service of cells in sequence, and use no speedup. This new class of switches achieve higher throughput performance than CICB switches under a large variety of traffic models, while supporting long RTTs. Crosspoint buffered switches that are implemented in single chips have limited scalability. To support a large number of ports in crosspoint buffered switches, memory-memory-memory (MMM) Clos-network switches are an alternative. The MMM switches that use minimum memory amount at the central module is studied. Although, this switch can provide a moderate throughput, MMM switch may serve cells out of sequence. As keeping cells in sequence in an MMM switch may require buffers be distributed per flow, an MMM with extended memory in the switch modules is studied. To solve the out of sequence problem in MMM switches, a queuing architecture is proposed for an MMM switch. The service of cells in sequence is analyzed

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization

    Mesh-of-Trees Interconnection Network for an Explicitly Multi-Threaded Parallel Computer Architecture

    Get PDF
    As the multiple-decade long increase in clock rates starts to slow down, main-stream general-purpose processors evolve towards single-chip parallel processing. On-chip interconnection networks are essential components of such machines, supporting the communication between processors and the memory system. This task is especially challenging for some easy-to-program parallel computers, which are designed with performance-demanding memory systems. This study proposes an interconnection network, with a novel implementation of the Mesh-of-Trees (MoT) topology. The MoT network is evaluated relative to metrics such as wire area complexity, total register count, bandwidth, network diameter, single switch delay, maximum throughput per area, trade-offs between throughput and latency, and post-layout performance. It is also compared with some other traditional network topologies, such as mesh, ring, hypercube, butterfly, fat trees, butterfly fat trees, and replicated butterfly networks. Concrete results show that MoT provides higher throughput and lower latency especially when the input traffic (or the on-chip parallelism) is high, at comparable area cost. The layout of MoT network is evaluated using standard cell design methodology. A prototype chip with 8-terminal MoT network was taped out at 90nm90nm technology and tested. In the context of an easy-to-program single-chip parallel processor, MoT network is embedded in the eXplicit Multi-Threading (XMT) architecture, and evaluated by running parallel applications. In addition to the basic MoT architecture, a novel hybrid extension of MoT is proposed, which allows significant area savings with a small reduction in throughput

    Satellite Networks: Architectures, Applications, and Technologies

    Get PDF
    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled
    • …
    corecore