
ABSTRACT

Title of dissertation: MESH-OF-TREES
INTERCONNECTION NETWORK FOR AN
EXPLICITLY MULTI-THREADED
PARALLEL COMPUTER ARCHITECTURE

Aydin Osman Balkan
Doctor of Philosophy, 2008

Dissertation directed by: Professor Uzi Vishkin
Department of Electrical and Computer
Engineering

As the multiple-decade long increase in clock rates starts to slow down, main-

stream general-purpose processors evolve towards single-chip parallel processing.

On-chip interconnection networks are essential components of such machines, sup-

porting the communication between processors and the memory system. This task

is especially challenging for some easy-to-program parallel computers, which are

designed with performance-demanding memory systems.

This study proposes an interconnection network, with a novel implementa-

tion of the Mesh-of-Trees (MoT) topology. The MoT network is evaluated relative

to metrics such as wire area complexity, total register count, bandwidth, network

diameter, single switch delay, maximum throughput per area, trade-offs between

throughput and latency, and post-layout performance. It is also compared with

some other traditional network topologies, such as mesh, ring, hypercube, butterfly,

fat trees, butterfly fat trees, and replicated butterfly networks. Concrete results

show that MoT provides higher throughput and lower latency especially when the

input traffic (or the on-chip parallelism) is high, at comparable area cost. The layout

of MoT network is evaluated using standard cell design methodology. A prototype

chip with 8-terminal MoT network was taped out at 90nm technology and tested.

In the context of an easy-to-program single-chip parallel processor, MoT network is

embedded in the eXplicit Multi-Threading (XMT) architecture, and evaluated by

running parallel applications. In addition to the basic MoT architecture, a novel

hybrid extension of MoT is proposed, which allows significant area savings with a

small reduction in throughput.

MESH-OF-TREES INTERCONNECTION NETWORK FOR AN
EXPLICITLY MULTI-THREADED PARALLEL COMPUTER

ARCHITECTURE

by

Aydin Osman Balkan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:
Professor Uzi Vishkin, Chair/Advisor
Associate Professor Clyde P. Kruskal
Professor Steven Nowick
Professor Martin Peckerar
Associate Professor Donald Yeung

c© Copyright by
Aydin Osman Balkan

2008

Dedication

This dissertation is dedicated to my parents:

Y. Afet Balkan

Örsçelik Balkan

I am eternally grateful.

ii

Acknowledgments

First and foremost, I would like to thank my advisor Prof. Uzi Vishkin, for

providing me this opportunity for contributing to the XMT project. I also thank

him for providing a creative and challenging research environment that allowed me

to improve myself.

I am also very grateful to my co-advisor Prof. Gang Qu, for his guidance

and directions that led me to high quality results and publications. I am a better

researcher today, thanks to our conversations and technical discussions.

I would like to thank my Ph.D. dissertation committee members, Prof. Clyde

P. Kruskal, Prof. Steven Nowick, Prof. Martin Peckerar, and Prof. Donald Yeung,

for their time, effort, and comments that improved this dissertation.

I would like to specially thank Prof. Steven Nowick, for traveling from New

York to participate my defense. I also appreciate his hospitality at Columbia Uni-

versity, and our fruitful discussions.

I also specially thank Prof. Martin Peckerar, for his help in our layout efforts.

I would like to thank all XMT research team members for their friendship and

collaboration during my studies. Especially, I thank Michael Horak, for his tireless

efforts, and positive attitude during our long hours with of chip layout tools. I thank

Xingzhi Wen, for his collaboration in integrating my work into the XMT processor.

I also thank Mary Kiemb for her contributions in our testing efforts.

I would like to thank ECE Chair Prof. Patrick O’Shea, and all ECE staff

for providing a peaceful and productive research environment. I also thank all

iii

my friends at University of Maryland, for their friendship and support during my

studies.

I would like to thank my parents, Afet and Örsçelik, and my brother Gökçe,

for providing a sympathetic and patient ear, whenever I needed one, and for their

unconditional love.

Last, but not least, I would like to thank Sanem Koçak, for her friendship, her

companionship; and for being my beacon, when I felt lost.

iv

Table of Contents

List of Tables ix

List of Figures x

List of Abbreviations xiii

1 Introduction 1

2 Background and Related Work 5
2.1 PRAM-On-Chip Vision . 5
2.2 Underlying Memory Model . 6
2.3 Review of Existing Interconnection Network Models 9

2.3.1 Definitions . 9
2.3.2 Bus . 11
2.3.3 Crossbar . 12
2.3.4 Fat Tree Networks . 13
2.3.5 Mesh Networks . 14
2.3.6 Ring Networks . 14
2.3.7 Hypercube Networks . 17
2.3.8 Butterfly Networks . 17

2.4 Performance Improvement with Additional Resources 19
2.4.1 Virtual-Channel Routers . 19
2.4.2 Virtual Output Queuing and Buffered Crossbars 20
2.4.3 Tuned Butterfly Networks . 22

2.5 Deficiency of the Existing Interconnection Networks 23
2.5.1 Interference . 23
2.5.2 Global Synchronization . 23

2.6 Advantages of MoT Network . 23
2.7 Earlier Implementations of Mesh-of-Trees Network 24

3 General Methodology of Evaluation 26
3.1 Introduction . 26
3.2 Topology Evaluation . 27

3.2.1 Wire Area Complexity . 27
3.2.2 Register Count . 28
3.2.3 Bisection Bandwidth . 30
3.2.4 Network Diameter . 30
3.2.5 Deadlock . 31

3.3 Switch Evaluation . 31
3.3.1 Modeling Interconnection Network Components as Queues . . 31
3.3.2 Hardware Models . 33
3.3.3 Switch Delay . 34

3.4 Network Performance Evaluation by Simulation 35

v

3.4.1 The Network Simulator . 35
3.4.2 Artificially Generated Traffic 36

3.5 Layout Evaluation . 39
3.5.1 Layout Design and Verification 39
3.5.2 Cycle-Accurate Validation . 39
3.5.3 Physical Testing of Network Chip 40

3.6 Mesh-of-Trees Network in XMT Context 43

4 Mesh-of-Trees Interconnection Network 44
4.1 Introduction . 44
4.2 Topology . 44
4.3 Routing . 47
4.4 Flow Control . 47
4.5 Floorplan . 49
4.6 Differences with Existing MoT Implementations 50
4.7 Evaluation . 51

4.7.1 Wire Area Complexity . 51
4.7.2 Register Count . 53
4.7.3 Bisection Bandwidth . 57
4.7.4 Network Diameter . 57
4.7.5 Deadlock . 58
4.7.6 Interference . 59

4.8 Summary . 62

5 Switches of MoT Network 63
5.1 Introduction . 63
5.2 Queue Model of MoT Network . 64
5.3 Earlier Arbitrate-and-Move Primitive Implementations 66

5.3.1 Asynchronous Implementation 68
5.3.2 Reduced Synchrony Implementation 68

5.3.2.1 Static Gate Implementation (RS-Static) 70
5.3.2.2 Dynamic Gate Implementation (RS-Dynamic) 71

5.3.3 Simulation Results . 72
5.3.4 Discussion . 74

5.4 Synchronous Switch Primitives . 77
5.4.1 Pipeline Primitive . 78
5.4.2 Routing Primitive . 80
5.4.3 Arbitration Primitive . 82

5.4.3.1 Arbitration Method 83
5.4.3.2 N-input to 1-output Arbitration 85
5.4.3.3 Winner-Take-All Arbitration for “Store” Operations 86

5.4.4 Butterfly Primitive . 88
5.5 Evaluation . 89

5.5.1 Logic Delay of Switch Primitives 89
5.5.2 Maximum Network Throughput 92

vi

5.5.3 Throughput and Latency Under Varying Traffic 95
5.6 Summary . 98

6 Layout 99
6.1 Introduction . 99
6.2 Network Layout . 100

6.2.1 Terminal Circuits . 102
6.2.2 Pipeline Insertion . 102

6.3 Results and Discussion . 104
6.3.1 Simulation Results . 104
6.3.2 Layout Results . 108

6.4 Physical Testing . 110
6.4.1 Lessons Learned . 113

7 Area Improvement Through Hybridization 115
7.1 Introduction . 115
7.2 Hybrid MoT Network . 116

7.2.1 Network Architecture . 116
7.3 Evaluation . 119

7.3.1 Register Count . 119
7.3.2 Minimum Latency . 121
7.3.3 Throughput-Area Trade-off 122
7.3.4 Latency and Throughput vs. Traffic 123
7.3.5 Post-Layout Throughput . 125

7.4 Summary . 126

8 MoT Network as Part of XMT Parallel Processor 128
8.1 Deadlock . 128

8.1.1 Conditions for Deadlock . 129
8.1.2 Deadlock Prevention Methods for XMT 131
8.1.3 Cost of Deadlock Prevention 132
8.1.4 Summary . 134

8.2 Application Simulation on XMT . 135
8.2.1 Application Traffic and Execution Time 137

8.3 Layout of XMT ASIC chip . 139

9 Discussion 142
9.1 Limiting Factors for Clock Rate . 142

9.1.1 Clock Rate Decrease Between Development Stages 142
9.1.2 Limitations of Standard-Cell Design Method 145

9.2 Potential Impact of Multi-GHz Operation 146
9.2.1 Case Study . 147

9.3 Applicability to Other Systems . 151

vii

10 Future Directions and Conclusion 154
10.1 Future Directions . 154
10.2 Conclusion . 161

A MoT Network in XMT Architecture 167

Bibliography 171

viii

List of Tables

4.1 Asymptotic area comparison of networks. 56

4.2 Asymptotic diameter comparison of networks. 58

5.1 Comparison of asynchronous and reduced synchrony arbitrate-and-
move circuits. 75

5.2 Comparison of N -to-1 arbitration methods. 86

5.3 Single switch delay of various networks (in FO4). Replicated butterfly
and MoT do not have virtual channels. 91

5.4 Maximum throughput . 94

6.1 Wire and cell area (in mm2). 100

6.2 Simulation results for different network configurations. 106

6.3 Layout Results . 108

7.1 Register count of some hybrid MoT-BF networks normalized to MoT
with same number of terminals. 121

8.1 Comparison of deadlock avoidance methods. 135

8.2 Simulation Results for Execution Time and Traffic Rate. 139

9.1 Performance improvement with square floorplan. 143

9.2 Benefits of high-frequency network operation. 150

10.1 Summary of important results in absulute terms (quantitative mea-
surements). 165

10.2 Summary of important results in relative terms (comparison to other
networks). 166

ix

List of Figures

2.1 Memory System . 7

2.2 Bus with N = 8 terminals. 11

2.3 Crossbar with 3 source and 4 destination terminals. 13

2.4 Two types of fat trees with constant switch size. (a) k-ary n-tree with
k = 2, n = 4, N = kn = 16; (b) Butterfly Fat Tree with N = 16. . . . 15

2.5 (a) Ring, and (b)4 × 4 2-dimensional mesh topologies with N = 16. . 16

2.6 A physical implementation of 4-dimensional hypercube. 18

2.7 (a) Butterfly network and (b) its layout with N = 8 PCs as shown
in [107]. 18

2.8 4 × 4 crossbar with virtual output queues (VOQ). 21

2.9 4 × 4 Combined Input and Crosspoint Queued (CICQ) crossbar. . . . 21

3.1 A system with queue buffers, and server with arrival and service pa-
rameters λ and µ. 32

3.2 Markov chain representation of a queue with arrival and service pa-
rameters λ and µ. 32

3.3 Setup for testing network chip. 41

4.1 Mesh of Trees with 4 Clusters and 4 Memory Modules 45

4.2 Possible implementation of network terminal node. 46

4.3 Switch primitives of MoT network. 48

4.4 Mesh-of-Trees network floorplan . 50

5.1 Queue model of fan-out tree. 65

5.2 Asynchronous arbitrate-and-move primitive. 69

5.3 Reduced-synchrony arbitrate-and-move primitive. 70

5.4 Schematic of RS-Static arbitrate-and-move circuit 71

x

5.5 Schematic of RS-Dynamic arbitrate-and-move circuit 72

5.6 Operation of reduced synchrony arbitrate-and-move circuits 73

5.7 Pipeline primitive. 79

5.8 Block diagram of pipeline primitive. 80

5.9 Block diagram of routing primitive. 81

5.10 Block diagram of arbitration primitive. 83

5.11 Block diagram of butterfly primitive. 88

5.12 Register-to-output delay of routing primitive with different number
of outputs. 92

5.13 Cost-performance comparison of networks. 96

5.14 Throughput and latency of various networks for N = 64 terminals. . . 97

6.1 Wire and cell areas for 90nm and 32nm technology nodes. 101

6.2 High level chip floorplan for 8-terminal network. 102

6.3 Throughput, and latency of 64-terminal MoT. 105

6.4 64-terminal MoT simulation results for different methods of handling
store operations. 107

6.5 Final layout of 8-terminal chip. 109

6.6 Die photo of 8-terminal chip. 111

6.7 Simulation output. 111

6.8 Test output 1. 112

6.9 Test output 2. 113

7.1 Butterfly, Mesh-of-Trees, and Hybrid Networks. 117

7.2 Cost-performance comparison of different network configurations. . . 122

7.3 Latency and throughput of 64-terminal hybrid networks. 124

xi

7.4 Post-layout throughput of MoT, replicated BF and MoT-h-BF net-
works. 125

8.1 Single MoT network in XMT. 129

8.2 Two-network configuration of XMT with 4 PCs and 4 MMs. 132

8.3 10mm × 10mm layout of XMT ASIC chip with 64 processors. 140

8.4 Modules of XMT ASIC chip. 141

A.1 Block diagram of synchronous network in XMT. 168

A.2 Block diagram of asynchronous network in XMT. 170

xii

List of Abbreviations

ASIC Application Specific Integrated Circuit
BF Butterfly
FO4 Technology-independent delay of inverter driving 4 identical inverters
fpc Flits per cycle
LSTRM Length of Sequence of Round-Trips to Memory
MoT Mesh-of-Trees
MM Memory Module
PC Processing Cluster
PRAM Parallel Random Access Machine/Model
QD Queuing Delay
RTM Round-Trip to Memory
XMT eXplicit Multi-Threading

N Number of terminals of interconnection network
λ Traffic rate in terms of flits per cycle per port

xiii

Chapter 1

Introduction

The advent of the Billion-transistor chip era coupled with a slow down in clock

rate improvement brought about a growing interest in parallel computing. Ongoing

expansion in the demands of scientific and commercial computing workloads also

contributes to this growth in interests. To date, the outreach of parallel computing

has fallen short of historical expectations. This has primarily been attributed to

programmability shortcomings of parallel computers.

The Parallel Random Access Model (PRAM) is an easy model for parallel

algorithmic thinking and for programming. Given a task, PRAM allows users to

express its parallelism independently of the underlying architecture. As a conse-

quence, PRAM has been considered as the desired model of parallel computing dur-

ing 1980s and 1990s. On the other hand, PRAM assumes that a high-performance

shared memory system with Uniform Memory Access (UMA) feature is available to

support high level of parallelism. Historically, several challenges, including the ones

in implementing such a system, led to decline of attention to PRAM. Nevertheless,

experts noted that building a computer “that can look to the programmer like a

PRAM” is an achievement of revolutionary magnitude [24].

The PRAM-on-Chip vision at University of Maryland aims to build a single-

chip multi-core parallel processor, called eXplicit Multi-Threading (XMT) architec-

1

ture, that looks to the programmer like a PRAM [12, 71, 101, 102, 104, 105]. To

handle the high level of parallelism and memory access needed for a PRAM-like

architecture, XMT uses a memory architecture where partitioning of data memory

starts from the first level of the on-chip cache [72]. It is a challenging task to build

a high-throughput low-latency interconnection network on such architecture. A not

well designed interconnection network may create many on-chip queuing bottlenecks

when concurrent read and/or write requests are issued to the memory, consume large

portions of die area, or suffer from long wire delays. Such problems can significantly

hurt the overall system performance.

We study the interconnection network design problem for a memory architec-

ture designed to achieve high single-chip parallelism. We propose using the Mesh-

of-Trees (MoT) topology with a novel approach of implementation. As a result,

we achieve high bandwidth, high throughput, high operating frequencies and low

latency.

We follow a top-down design, and bottom-up implementation strategy. In

other words, we start our evaluations at high-level features, such as topology, maxi-

mum bandwidth and network diameter; and then advance to design and evaluation

the low level details of network switches [9,10]. This concludes our top down design

and analysis stage. After observing the advantages of the proposed network archi-

tecture, we discuss hardware implementation models using standard-cell libraries,

and building larger components with them, as they have led to a prototype layout of

Mesh-of-Trees network [8]. Then, we discuss fabrication and testing of the prototype

chip.

2

Next, we advance the MoT network concept by proposing a novel hybridization

approach, where some parts of it is replaced by Butterfly (BF) networks of small

scale. As a result, we achieve significant reduction in area cost with acceptable

reduction in throughput [11]. Hybridization with increased intensity shows a trade-

off between area cost and throughput, which is more cost-effective than popular

networks such as meshes and rings.

Finally, we incorporate the MoT network to a prototype design (as shown in

[105]) of XMT architecture. We evaluate deadlock conditions that may arise due to

the MoT-XMT interaction, and evaluate methods of deadlock prevention. Following

that, we evaluate the effectiveness of the MoT network with real applications, which

are compiled and executed on a complete parallel computing platform that supports

PRAM-like programming, and implements the memory system envisioned in [72].

The main results in this thesis are based on synchronous CMOS circuit design

principles. With asynchronous design principles [94], one can achieve low power

consumption, since such components do not require a periodic “clock” signal, which

is a significant power consumer in synchronous circuits. In fact, the study reported in

[42] focuses on designing a low-power network using asynchronous design principles,

based on the MoT architecture discussed in the current thesis.

This thesis is organized as follows: Following the introduction, we discuss

background and related work in Chapter 2. Next, we present our methodology of

evaluation in Chapter 3. We introduce the Mesh-of-Trees topology and evaluate

its inherent features based on its topology in Chapter 4. Next, we discuss the

details of network switches, their performance, and consequently, the overall cost

3

and performance of the MoT network in Chapter 5. Chapter 6 follows with the

layout design and evaluation; and physical testing of the fabricated prototype chip.

In Chapter 7, we present and evaluate our hybridization method. Next, in Chapter 8

we discuss the integration of MoT and XMT architecture. We discuss the limitations

of our approach in Chapter 9; and conclude in Chapter 10.

4

Chapter 2

Background and Related Work

2.1 PRAM-On-Chip Vision

The Parallel Random Access Model (PRAM) is an easy model for parallel

algorithmic thinking and programming [101]. It has been developed mostly during

1980s and early 1990s, and it provides the second largest algorithmic knowledge

base, following the serial algorithms.

PRAM is a natural extension of serial RAM (Random Access Model), which

is the basis of current programming model in serial computers. In PRAM, archi-

tecture details are abstracted. The algorithm designer (or software programmer)

focuses on the actual problem, and explicitly declares all available parallelism, in-

stead of dealing with architecture details and marginal optimizations. The hardware

orchestrates efficient execution of expressed parallelism. This is one of the features

that provide the highly sought-after ease-of-programming.

Earlier multi-chip multiprocessor designs that aim to support the PRAM (such

as Tera/Cray MTA [2] and SB-PRAM [7]), although interesting, are constrained by

inter-chip interconnections. Latency and bandwidth problems have limited their

success in supporting PRAM. With the continuing advances in integrated circuit

technology, it becomes possible to build a single-chip parallel processor, as is being

demonstrated in the Explicit Multi-Threading (XMT) project [71, 102–105] that

5

seeks to prototype the PRAM-On-Chip vision.

2.2 Underlying Memory Model

Parallel computing generally requires a larger number of memory accesses than

serial computation per clock. A standard technique for hiding access latencies is by

feeding functional units with instructions coming from multiple hardware threads.

This allows, for example, overlapping several arithmetic instructions as well as read

instructions each requiring waiting for data. Such overlap implies a steady and high

demand for memory accesses. To facilitate concurrent accesses by many processing

elements, memory is normally partitioned on parallel machines [50]. For example,

Tera/Cray MTA [2] uses 512 memory modules of 128MB each, and SB-PRAM [7]

uses as many memory modules as processing elements.

In addition to employing multiple processing elements and memory modules,

the XMT architecture uses Independence of Order Semantics (IOS), which allows

concurrent threads to advance independently from each other, without busy-waiting

[102]. As a result, threads issue more memory requests, creating a very high demand

for memory bandwidth.

We consider a memory system that is designed to support high levels of par-

allelism, as expected from a PRAM-like operation. Ideally, such a system has same

memory latency for a single access and multiple concurrent accesses. In reality,

such a system can be approximated by assuming Uniform Memory Access (UMA)

models, as opposed to Non-Uniform Memory Access (NUMA) models. The main

6

L1

L2

Mem.
Off−Chip

L1

L2

Mem.
Off−Chip

L1

L2

Mem.
Off−Chip

Interconnection Network

0 PP 1 PN−1

Figure 2.1: Global memory is partitioned into modules (separated by dashed lines).

Each module has its own possibly multi-level on-chip caches (within dotted lines).

difference is that in UMA model, all memory modules are at same logical distance

to all processors; whereas in NUMA model this is not true.

A memory access consists of two parts:

1. The processors send a request to memory modules.

2. The memory modules send a corresponding response.

For example, for a load instruction, the processor sends an address as request,

and memory modules respond with the data. In some cases, the response may be

omitted. For example, depending on the communication protocol, a store operation

7

may or may not require any response from memory.

Requests and responses are physically realized by sending data packets be-

tween processors and memory modules. From the network’s point of view, both are

attempts to communicate between a source and a destination. Therefore, unless we

explicitly state otherwise, we do not distinguish them, and call them as request.

In the general case of concurrent memory accesses, the access latency of a

message between processors and memory modules breaks into two parts:

1. Flight time, where memory requests advance towards their destinations, and,

2. Waiting time, where they wait in queues while some other requests are being

serviced.

The advantage of an UMA model is that the former is the same for all memory

requests, regardless of different source-destination pairs. The latter part depends on

the traffic amount in the network, and distribution of the traffic on all destination

modules. High traffic implies higher waiting times, and balanced traffic implies that

the waiting time seen by the sources is similar to each other. The flight time and

waiting time components can be used in performance modeling of PRAM-like pro-

grams, as shown in [101]. The performance model of [101] considers the sum of these

components for memory request and memory response, and calls them Round-trip

Time to Memory (RTM) and Queuing Delay (QD). For high-performance execution,

both RTM and QD are desired to be low.

The following memory architecture is used in the XMT single-chip parallel pro-

cessor, [72], which is designed to optimize single-task completion time (Figure 2.1).

8

A globally shared memory space is partitioned into multiple memory modules. Each

memory module consists of on-chip cache and off-chip memory portions. A hashing

function is used to avoid pathological access patterns (similar to [2, 7, 35]). This

structure completely avoids cache coherence issues because the processors do not

have writable private caches. In a recent implementation [105], read-only buffers

were used for groups of processors. This architecture, along with PRAM perfor-

mance model of [100], imposes significant challenges for the interconnection network

design.

1. The network needs to provide high throughput between processors and first

level of memory caches, especially when the traffic is high.

2. The network needs to support an UMA model. Namely, the distance between

each source-destination pair needs to be the same.

3. For low execution time, low RTM and QD are desired.

2.3 Review of Existing Interconnection Network Models

2.3.1 Definitions

The topology of an interconnection network is represented by a set of source

terminal nodes S, a set of destination terminal nodes D, a set of internal nodes I.

All nodes, N∗ = S ∪ D ∪ I, are connected by a set of channels C.

In general, each channel c = (x, y) ∈ C uni-directionally connects two nodes

x and y, where x, y ∈ N∗; and characterized by its width wc (in terms of bits), and

9

frequency of transmission fc. The bandwidth of a channel is bc = wcfc, and it is

measured in bits per second. In the notation c = (x, y), the node x is the source,

and the node y is the destination of the channel. In specific cases (see Section 2.3.2)

a channel may be bi-directional, and have multiple sources and destinations.

A cut of a network, C(N∗

1 , N∗

2) is defined as the set of channels, so that re-

moving them from the network partitions the nodes N∗ into disjoint sets of N∗

1 and

N∗

2 . A bisection is a cut that partitions the network, including the source and desti-

nation terminals, nearly in half1. The bandwidth between two disjoint sets is equal

to the sum of bandwidths of all channels in the cut. The bisection bandwidth BB of

a network is the defined as the minimum bandwidth over all possible bisections.

We consider packet-switched interconnection networks, where messages are

transmitted from sources to destinations in form of data packets. A message consists

of one or more data packets. Packets can be further divided into flow-control digits

or flits [28], which are the smallest units recognized by the control circuits in the

network.

In the single-chip multiprocessor context, terminals in S and D are realized

by processing elements and memory modules; and internal nodes in I are realized

by simple switch primitives, or more complex router circuits. In general, a channel

c is realized by wc parallel wires. Specific VLSI implementations can insert repeater

buffers or pipeline stages on these wires, in order to improve signal delay on wires

[39]. In synchronous implementations with a periodic clock signal, each channel

1If there are even number of nodes, each partition has equal number of nodes. If there are odd

number of nodes, one partition has one more node than the other.

10

PC
5

PC
6

PC
4

PC
7

PC PC PCPC
1 2 30

Figure 2.2: Bus with N = 8 terminals.

transmits one flit per clock cycle. Asynchronous implementations do not have a

traditional periodic clock. However, transmission occurs in cycles, which may not

be periodic; and each channel transmits one flit per cycle.

2.3.2 Bus

Bus is one of the simplest interconnection networks. It consists of a single

channel, with no intermediate nodes (I = ∅). A bus with N = 8 terminals is shown

in Figure 2.2.

In practice, bus networks are used for systems with small number of inter-

connected components [32]. A commonly used open-source bus standard is AMBA

(Advanced Micro-Controller Bus Architecture) [5].

On the other hand, the use of multi-stage interconnection networks is shown

to be more effective for large number of components, including Multi-Processor

Systems-on-Chip (MPSoC) [3, 4, 40, 41]. Therefore, we briefly discuss busses for

completeness, but focus on multi-stage interconnection networks for our main studies

and evaluations.

Buses operate in cycles. In each cycle, if a source node transmits a message on

the bus, it is broadcast to all destinations. The intended destination node accepts

and processes the message, while other terminal nodes ignore it. Since multiple

11

independent source nodes may want to transmit on the bus in a given cycle, an

arbitration mechanism is necessary. One source, called master, has control over the

bus in any given cycle, and it transmits its message during that cycle [5, 28]. An

arbitration protocol decides which source will control the bus in the next cycle [5].

2.3.3 Crossbar

Traditionally, an N × M crossbar (also called bus matrix [77]) connects N

inputs to M outputs without any internal stages. Such a crossbar has N ·M cross-

points, where N input lines and M output lines intersect. Each crosspoint can be

implemented as a switch. If a switch is closed, source and destination modules cor-

responding to the switch’s input and output lines are connected. Figure 2.3 shows

a 3 × 4 crossbar.

Several studies considered crossbars for connecting processors, memory mod-

ules and application-specific components on Multi-Processor Systems-on-Chip (MP-

SoC) [70, 77]. Such networks are built by connecting multiple pipelined buses,

based on communication bandwidth requirements between heterogeneous compo-

nents. While diversity in required bandwidth allows efficient hardware optimization

for different applications, such optimizations are not expected to provide the same

level of benefit when the connectivity of components is symmetric and high band-

width is required between general-purpose processors and globally shared memory.

The pipelined crossbar network of Cyclops-64 processor (IBM) [111] connects such

processors and globally-shared memory modules. However due to its centralized

12

S

S

S

S

S

S

S

S

S

S

S

S

DDD DDD DDD DDD

0

1

2

0 1 2 3

Figure 2.3: Crossbar with 3 source and 4 destination terminals. Horizontal and

vertical lines represent input and output lines respectively.

architecture, it is unable to provide the desired performance.

2.3.4 Fat Tree Networks

Fat tree network [58] provides multiple paths between each pair of nodes. A

disadvantage of fat tree is its large switch size. The following two structures were

proposed to overcome this disadvantage.

1. The k-ary n-tree [80] connects N = kn PCs with a fat tree of n levels as

illustrated in Figure 2.4(a). Root nodes (small circles in the center) have

k children, switch nodes (oval shape internal nodes) have k children and k

parents, and there are two unidirectional links between a child and parent.

Thus there are 2k input ports and 2k output ports for each switch node.

13

2. Figure 2.4(b) depicts a butterfly fat tree (BFT) with N = 16 PCs [74]. Each

internal switch node (the square with no label surrounded by 4 PCs) is con-

nected to 4 PCs and the 2 root switch nodes. Thus it has 6 input ports and

6 output ports.

2.3.5 Mesh Networks

In general, 2-dimensional (2D) mesh networks can be connected by an m ×

n grid, where m and n represent number of rows and columns. Such a network

interconnects N = mn components. Figure 2.5(b) shows a case where m = n = 4.

Meshes can have higher dimensions [28], however most common practice is

based on 2D meshes. The interconnection network of Teraflop processor (Intel) [99]

connects 80 processing cores in an 8 × 10 2D-mesh. This topology has also been

used in academic projects such as RAW (MIT) [95], and TRIPS (UT-Austin) [36].

Furthermore, several network-on-chip (NoC) studies chose 2D-mesh as underlying

topology, due to its regularity and low hardware complexity [4, 69,83].

2.3.6 Ring Networks

Ring network consists of a 1-dimensional (1D) array of modules, where the

last component is also connected to the first to form a cycle. A ring network in-

terconnecting N = 16 components is shown in Figure 2.5(a). This network is a

specific member of a family known as cube, or torus networks [28]. Ring represents

1-dimensional interconnection of N components. On the other hand, hypercube

14

PC PC

PCPC

PC PC

PCPC

PCPC

PC PC

PCPC

PC PC

(a) 2-ary 4-tree

PC PC

PCPC

PC PC

PCPC

PC PC

PCPC

PC PC

PCPC

(b) Butterfly Fat Tree

Figure 2.4: Two types of fat trees with constant switch size. (a) k-ary n-tree with

k = 2, n = 4, N = kn = 16; (b) Butterfly Fat Tree with N = 16.

15

PC
5

PC
6

PC
4

PC
7

PC PC PCPC
1 2 30

PC PC PCPC
14 13 1215

PC
11

PC
10

PC
9

PC
8

(a) Ring

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

PCPC

PC

8

1

5

9

2

6

10

14

3

7

11

1512

4

0

13

(b) 2D-Mesh

Figure 2.5: (a) Ring, and (b)4 × 4 2-dimensional mesh topologies with N = 16.

network of the same family represents log2 N dimensional interconnection. For a

given N , these networks correspond to lowest and highest dimensions in this family

respectively.

Recently, new topologies, such as spidergon, are proposed and evaluated as a

compromise among the ring and 2D-mesh topologies [16,23].

Ring networks also received attention from recent industrial projects. The

16

Element Interconnect Bus of Cell processor (SONY, Toshiba, IBM) [46] is designed

with 4 parallel rings that connect 12 cores consisting of processing elements and

peripherals.

2.3.7 Hypercube Networks

Hypercube is a member of cube or torus network family [28]. An n-dimensional

hypercube, Qn, connects N = 2n nodes by connecting a node to n other nodes. If

we label the nodes from 0 to N − 1 in binary, a pair of nodes are connected directly

if and only if their labels differ by one bit [28, 38, 57]. This connection consists of

two uni-directional physical communication channels (wires). Figure 2.3.7 depicts

the best known implementation of Q4 in terms of area efficiency [38]. N = 16 nodes

(PC stands for Processing Cluster in the figure) are connected by wires in tracks

shown in the shaded areas between the PCs.

2.3.8 Butterfly Networks

Butterfly network is one of the most extensively studied interconnection net-

works (e.g. [31, 47, 66]). Figure 2.7(a) shows a binary butterfly that connects N =

23 = 8 nodes. The 8 PCs are connected to each other through switch nodes labeled

(by their vertical layers) A, B, C, and D. For example, the connection between

source 0 and destination 5 and the connection between source 6 and destination 6

are highlighted. Figure 2.7(b) shows the best known physical layout to implement

the same butterfly network for MPSoC context, based on [107].

17

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

0000

0100

1000

0001

0101

1001

1101

0010

0110

1010

1110

0011

0111

1011

11111100

PC

PC

PC

PC

Figure 2.6: A physical implementation of 4-dimensional hypercube.

D

0

1

2

3

4

5

6

7

1

0

2

3

4

5

6

7

A

A

A

A

A

A

A

A

B C D

B

B

B

B

B

B

B

C

C

C

C

C

C

C

D

D

D

D

D

D

(a) Butterfly Logical Drawing

A

D

A

C

B
1

D

A

C

B
2

D

A

C

B
3

D

A

C

B
0

5
B

C D

A

6
B

C D

A

7
B

C D

A

4
B

C D

(b) Butterfly Physical Layout

Figure 2.7: (a) Butterfly network and (b) its layout with N = 8 PCs as shown

in [107].

18

2.4 Performance Improvement with Additional Resources

In many cases per-cycle throughput of interconnection networks can be im-

proved by increasing the amount of resources. In this section, we summarize three

common methods.

2.4.1 Virtual-Channel Routers

Virtual channels [27] can be used as buffers for incoming data packets that are

stalled due to contention in later stages. A packet is stored in a virtual channel in

the switch until an output port and physical channel toward its destination becomes

available [27, 28, 37, 80]. These studies typically use 2 or 4 virtual channels per

physical channel. Using more virtual channels improves per-cycle throughput, by

increasing utilization of physical channels (wires) in cases of contention. It is possible

to build a virtually non-interfering network by using N virtual channels per switch,

where N is the number of terminals. However, in addition to the area cost of virtual

channel buffers, this approach also increases the complexity of the network switch.

With more virtual channels, there are more candidate packets that require to use a

single physical channel or output port. This results in a more sophisticated routing

and arbitration logic, and longer switch delay.

Recently, Express Virtual Channels (EVCs) [51, 52] were proposed to reduce

energy and performance overheads of regular virtual channels. Results on a 7×7 2D-

Mesh network (49 terminals) show 84% reduction in packet latency and up to 23%

improvement in throughput while reducing the average router energy consumption

19

by up to 38% compared to state-of-the-art virtual channel implementations [52].

The EVCs have also been evaluated on larger networks with 100 terminals (10 ×

10), and have shown improvements over the baseline VC configuration [52]. The

improvements are achieved by allowing some packets, which need to travel several

hops without changing directions, to bypass some stages in each hop such as routing

and arbitration.

While EVCs seem to be feasible and promising on 2D-Mesh networks, it is not

clear if it would work similarly on high-bandwidth networks such as butterfly, where

packets may need to change directions more frequently. Furthermore, the network

switches with EVCs require additional logic that could increase the switch delay;

and additional flit buffers that could increase the area cost of the network.

2.4.2 Virtual Output Queuing and Buffered Crossbars

Virtual Output Queues (VOQ) are the most commonly used methods to achieve

maximal throughput with crossbars. In its classical implementation, O(N) buffers

per input port (O(N2) buffers total) precede the inputs of a monolithic crossbar [65].

Figure 2.8 shows a 4× 4 crossbar with VOQ buffers between sources and the cross-

bar. In such crossbars, the complexity of the arbitration and scheduling may affect

the length of clock cycles, similar to the effect of virtual channels discussed above.

Alternatively, buffered crossbars, or crosspoint-buffered crossbars use buffers at

each crosspoint instead of inputs. More advanced crossbar architectures are built

by combining input buffers and crosspoint buffers (CICQ crossbar, Figure 2.9), and

20

DDD DDD DDD DDD

S

S

S

S

S

S

S

S

S

S

2

3
S

S

S

0

1

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

0 1 2 3

Figure 2.8: 4 × 4 crossbar with virtual output queues (VOQ).

DDD DDD DDD DDD

S

S

S

S

S

S

S

S

S

S

2

3
S

S

S

0

1

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

D3
D2
D1
D0

0 1 2 3

Figure 2.9: 4 × 4 Combined Input and Crosspoint Queued (CICQ) crossbar.

21

generally used in large-scale network routers [1]. Using some amount of crosspoint

buffers effectively decouples input scheduling from output scheduling; however, it

does not completely eliminate them as centralized operations [48]. Therefore, such

architectures may still require long clock cycles, or multiple iterations of arbitration.

2.4.3 Tuned Butterfly Networks

The butterfly network is one of the most extensively studied interconnection

networks. Many variants of butterfly network have been developed to improve its

performance. The improvement is achieved by increasing the resources.

One group of networks extend the regular butterfly vertically, by adding par-

allel resources. Extra hardware provides additional bandwidth, reduces congestion

and improves throughput. Examples of this approach include multi-butterfly [98],

dilated butterfly [49, 87], and replicated butterfly [33, 49].

Another group of networks extend the regular butterfly horizontally, by adding

extra stages. This approach adds alternative paths between sources and destina-

tions, improves traffic distribution in the network, and reduces congestion. However,

without additional bandwidth, throughput improvement is limited. Some examples

of this approach include extended butterfly networks [66], selective extra stage but-

terfly networks [47], and augmented butterfly networks [53]. The historical Beneš

networks [14] can also be considered in this group, since it is equivalent to two

back-to-back butterfly networks.

22

2.5 Deficiency of the Existing Interconnection Networks

2.5.1 Interference

Interference occurs, when traffic destined to Da interferes with or “steals”

bandwidth from traffic destined to Db, where 0 ≤ a, b ≤ N − 1 and a 6= b [28]. In

other words, two packets Pi, from si ∈ S to di ∈ D and Pj from sj ∈ S to dj ∈ D

interfere with each other, if one prevents the other from advancing towards their

destination.

2.5.2 Global Synchronization

Crossbar networks provide one standard type of high-throughput intercon-

nection networks, where packets do not interfere. They achieve this by scheduling

the switches based on the global state of the network. The overhead for global

scheduling may be acceptable with large payloads in messages. However, in the

XMT single-chip parallelism context, the messages between processors and cache

are very small (one word for load instructions and at most two words for the store

instructions). Therefore, the networks that need to globally schedule the switches

will incur significant overheads.

2.6 Advantages of MoT Network

We propose a new interconnection network implementation based on mesh of

trees (MoT) topology. We will demonstrate, both analytically and experimentally,

23

that the proposed MoT network can provide high throughput with low latency

within a reasonable area cost.

The MoT topology and routing method guarantee that unless the memory ac-

cess traffic is extremely unbalanced, packets between different sources and destina-

tions will not interfere. Therefore, MoT network provides high per-cycle throughput,

very close to its peak throughput.

MoT network consists of less complex switches compared to other networks.

Furthermore, packets in MoT network are routed without global scheduling. This

allows higher operating frequencies.

Notable differences between Mesh-of-Trees network and CICQ crossbars [1]

include the distribution of buffers over trees with logarithmic depth; the use of

completely decentralized and decoupled constant-complexity routing and arbitration

operations; and combining arbitration with data traversal over the network, similar

to [9]. Among those differences, logarithmic depth is especially important, since a

MoT with comparable area distributes wire load over O(log N) pipeline stages as

opposed to O(1) stages of crossbar. This feature allows MoT to operate at higher

clock rate.

2.7 Earlier Implementations of Mesh-of-Trees Network

The mesh of trees (MoT) concept has been discussed earlier in books such

as [57], and papers such as [15,21,30,56].

In an interconnection network based on their approach, functional units (pro-

24

cessing units and memory modules) will be placed at the leaves of the trees, and a

communication path involves climbing up and down some part of the tree. This ap-

proach is not interference free and would create performance bottlenecks, as children

of internal nodes would compete for resources (connections in the communication

path) even when their destinations are different.

25

Chapter 3

General Methodology of Evaluation

3.1 Introduction

The aim of this thesis is to show that the proposed interconnection network

is a competitive alternative for interconnecting memory systems as described in

Section 2.2. For that purpose, we characterize and evaluate our network in several

aspects, and compare to the networks described earlier.

This chapter lists definitions, and our assumptions and general methods of

evaluation.

We start with the network topology, and related metrics that affect cost and

performance (Chapter 4). We use wire area and register count as cost metrics;

and bisection bandwidth and diameter of the network as a performance metric.

We derive analytic expressions for these metrics, and compare with other networks

discussed in Section 2.3. Additionally, we analyze deadlock and interference in the

proposed network, and qualitatively compare it with above mentioned networks.

Following the general properties of the network, we discuss switches, which are

the building blocks of the network (Chapter 5). Using queuing models for switches,

we analyze the expected throughput of the proposed network. We perform simu-

lations to accurately evaluate network performance under certain expected traffic

conditions. We compare our results with other networks of Section 2.3. We also use

26

hardware models of switches to analyze the circuit delay of each switch, which is

an important component of operating frequency of the network. We integrate the

hardware model of our network into XMT processor architecture, which embodies

the memory architecture of Section 2.2, and evaluate our network under application-

generated traffic.

We build layout of our network using commercial tools and standard cell li-

braries. We evaluate layout-accurate area, performance and power consumption

(Chapter 6) while taking physical constraints, such as wire lengths, into considera-

tion.

Finally, we integrate our network in XMT architecture context, and evaluate

its performance with real applications (Chapter 8).

3.2 Topology Evaluation

3.2.1 Wire Area Complexity

We follow the following grid assumptions of Thompson’s classical VLSI com-

plexity theory [96]: (i) Width of wires and square switches are assumed to be one

unit; (ii) there are two levels of metal wires; (iii) two wires can intersect in one unit

square, if one is horizontal, the other is vertical, and they belong to different levels.

We define the area of a network that is laid-out according to above assumptions

as its wire area.

These assumptions are sufficient to evaluate and compare asymptotic wire area

complexity of networks in this study. However, in modern VLSI processes, there are

27

more than 2 levels of metal available for wiring. As a result, the real wire area of a

circuit is less than the area indicated by the asymptotic complexity by a technology-

dependent constant factor [13,29,108,109]. The switch nodes are usually wider (and

taller) than wires by another constant factor. As a result, the cumulative switch

area may dominate the real area cost of the network.

3.2.2 Register Count

We discussed wire area complexity as a measure of cost in previous section.

In addition to wires, a network consists of switches that route the flits from their

sources to their destinations. We consider the cumulative switch area as a metric

to evaluate the area cost of networks.

Our goal is to come up with a simple and accurate model for computing and

comparing the switch area Asw of various networks. We divide the switch area

into two components (3.1): (i) control logic to orchestrate their flow from inputs to

outputs AL, and (ii) storage units for flits AS.

Asw = AL + AS (3.1)

In general, storage units can be implemented as registers, using edge-triggered

flip-flops, or level-sensitive latches. We use the term register to cover all implemen-

tations of such storage units.

The control logic usually consists of a small amount of gates per register. On

the other hand, a register consists of multiple bits, for example, b-bits for a b-bit-

wide flit. The value of b depends on the data that is carried through the network.

28

The signals generated by the control logic is broadcast to all relevant bits of the

registers. Furthermore, techniques such as virtual channels (Section 2.4.1 allow

multiple registers to use the same control logic at different times [28]. As a result,

the registers require more hardware than the control logic. Therefore, we assume

that AL is negligible compared to AS. Then, AS can be used to approximate the

switch area, and compare with other networks.

Finally, in order to generate a technology-independent model, we use the num-

ber of b-bit registers R instead of the actual hardware area. If one bit of register

requires Abit silicon area at a given technology, then the storage area is computed

as AS = R · b · Abit.

To summarize, we consider the cumulative switch area as a cost metric of

networks. For a single switch, we use the area model given in (3.2). We assume

that the logic area AL is negligible compared to register area. A register consists

of b bits depending on the intended purpose of the network, and we assume that

it is same for all evaluated networks. We use a technology-dependent constant Abit

to represent the silicon area of one bit of register, and we assume that it remains

constant for the evaluated networks. R is different for each network, and it can

be varied for the same network to obtain higher performance. As a result, we use

register count R to evaluate the area cost of the networks in this study.

Asw = AL + R · b · Abit (3.2)

29

3.2.3 Bisection Bandwidth

We defined bisection bandwidth earlier in Section 2.3.1. Here we discuss its

relevance and importance as a performance characteristic.

The bisection bandwidth is the bandwidth of the smallest cut that partitions

the network nearly in half1 [28]. The upper bound of per-terminal throughput of

a network under uniform traffic is proportional to its bisection bandwidth, and in-

versely proportional to the number of terminals [28]. As a result, under uniform

traffic, the upper bound of overall throughput of a network is proportional to bi-

section bandwidth. Therefore it is an important performance measure to consider

for the memory system of Section 2.2. In such a memory system, a network with

higher bisection width is expected to have higher performance.

3.2.4 Network Diameter

Packets in a network advance in hops from one node to the next, as they

travel from the source to the destination. The diameter of a network is the largest

number of hops among all shortest paths [28]. Since the network we intend to build

is placed between processors and the first level of globally shared cache memory, low

and scalable diameter is desirable.

1Exactly in half, if number of nodes and terminals are even.

30

3.2.5 Deadlock

Deadlock occurs in a network, when a set of flits cannot move, because each

flit is waiting for some resource, that is held by another flit. If these flits form a

cycle, the network is deadlocked [28].

Deadlock prevents the operation of a network. Therefore, if deadlock can hap-

pen in a network, additional measures are needed to either prevent the occurrence

of deadlock, or resolve when it occurs.

We consider deadlock in two cases. For the MoT network in isolation, we

discuss deadlock issues in Section 4.7.5, together with topology and routing. We

revisit the issue later in Section 8.1, when we embed the MoT in the XMT processor,

since the environment of the network may impose new conditions for deadlock.

3.3 Switch Evaluation

Packet-switched interconnection networks consist of a set of switches (or routers,

or switch primitives), which contain a set of buffers and some control logic circuit.

Incoming packets are stored in the buffers until the time they are processed and/or

forwarded to the next stage. This process can be modeled as a queue, with an arrival

process and a service process [28].

3.3.1 Modeling Interconnection Network Components as Queues

Figure 3.1 shows a simple queue system, where packets enter on the left. They

are stored in buffers until they are served and leave the system. λ and µ are called

31

Queue with buffers Server

...λ µ

Figure 3.1: A system with queue buffers, and server with arrival and service param-

eters λ and µ.

q i−1 q i q i+1... ...

µ

λ λ λ λ

µ µ µ

Figure 3.2: Markov chain representation of a queue with arrival and service param-

eters λ and µ.

arrival and service rates respectively.

We consider the so-called “Markovian” queues, which are used in modeling

interconnection network switches [28, 85]. Such queues have stochastic arrival and

service processes with exponential distribution of inter-arrival and service times.

This condition is satisfied by assuming Poisson process for continuous-time systems,

and Bernoulli process for discrete-time systems such as computer interconnection

networks. In other words, if the arrival and service processes of a queue system

are modeled by Bernoulli processes, the queue system is called “Markovian”, and

it can be modeled and analyzed using Markov Chain representation [25, 85]. Such

systems can be analyzed to evaluate the system at steady state, if such a steady

state behavior exists [25,85].

32

Switches in interconnection networks are commonly modeled with Markovian

queue systems, where packets arrive with a rate of λ packets per second, stored in

an infinite-length queue until they are ready to be served, and processed at a rate

of µ packets per second [28]. The Markov chain representation of such a system

is shown in Figure 3.2. The state of the system represents the number of waiting

packets in the queue. A new arrival at a rate of λ transitions the state from qi to

qi+1; a service at a rate of µ transitions it from qi to qi−1.

Although this model is easy to build, solve, and analyze the network [28],

the infinite queue assumption introduces inaccuracies. Therefore, for more accurate

evaluation, we build simulation models, and evaluate our network by simulations.

3.3.2 Hardware Models

We generate hardware models of the network switches for the following pur-

poses:

1. To evaluate the logic complexity and delay of the switches.

2. To generate and evaluate network layout using industry-standard design tools.

3. To embed the proposed network into a hardware model of a parallel processor

that embodies the memory system described in Section 2.2, and evaluate the

network in real application traffic.

We use Verilog hardware description language to model our switches using

Register Transfer Level (RTL) abstraction. In RTL modeling, the hardware is de-

scribed as sequential and combinatorial logic. We specify how and when the value of

33

a register changes. This gives us control over the operations that are performed in

one clock cycle. As a result we are able to perform manual optimizations to improve

the operating frequency of the network.

In order to build the hardware model of a specific network instance, we need

multiple instantiations of each switch, connected in a specific way. We automatize

this process by developing a high-level synthesizer, which generates all necessary

Verilog models of a network, based on a configuration file. This will be further

discussed in Section 3.4.1.

3.3.3 Switch Delay

Peh and Dally showed in [79] that the critical delay of a routing switch in-

creases, when (i) number of input and output ports, or (ii) number of virtual channels

increases. Longer critical delay requires a slower clock rate, and this reduces peak

and average throughput of the network.

In some cases, it might be sufficient to tune the network for highest per-cycle

throughput, although this imposes a slow global clock for the entire chip. This may be

an acceptable price to pay, because currently, there is an apparent cap on the clock

rate for microprocessors. Clock speed does not increase as predicted earlier [88,89],

in part due to challenges of distributing the clock signal on the entire chip. However,

it is still reasonable to run a small centralized module with a fast clock, and multiple

other modules with a slower clock (derived from the fast clock), e.g. 2× or 4× slower

than the fast clock. Therefore, it is important to seek short critical delays in the

34

interconnection network.

3.4 Network Performance Evaluation by Simulation

Simulations are widely used to characterize interconnection network perfor-

mance [28]. We apply two different approaches for this purpose.

First, we build a network simulator to test our network in isolation. We inject

traffic that is artificially generated based on several parameters. This analysis helps

us to understand the limits and characteristics of our network in a controlled setting.

Second, we use appropriate hardware models of our network and integrate it

to the hardware model of the XMT processor [105]. We compile and run parallel

applications and measure network performance under application-generated traffic.

3.4.1 The Network Simulator

SystemC [45] is a standard hardware modeling and design approach based on

C++ language. It is freely available for use in stand-alone mode; and recently it has

been integrated in some commercial Electronic Design Automation (EDA) tools.

It combines the flexibility of a standard and general-purpose computer language

(C++) with the accuracy of RTL modeling. Therefore, we chose SystemC for our

simulation environment.

Our SystemC simulator mainly consists of three parts. A high-level synthesizer

generates the network (Device Under Test or DUT), based on configuration files.

The network is hierarchically generated by instantiating and connecting switches,

35

and some macro components built of multiple switches. This is a high-level synthesis

because the generation stops at switch level; as opposed to a regular synthesis, where

all components are modeled with low-level logic gates or standard cells.

The second part of our simulator is the actual implementation of the switches.

Each switch is modeled based on its operation, and implemented as a C++ class

with class-specific C++ functions. SystemC libraries provide the ability of trigger

such functions based on value changes in signals. We used the global clock signal to

trigger the operation of our switches, similar to a real hardware operation.

The third part is the environment around the network, which consists of traffic

generating terminal modules, packet tracking and performance measurement func-

tions. We also have a text-based user interface to report progress and results.

More detailed and up-to-date information about the operation of specific func-

tions is available as part of the simulator’s on-line documentation.

3.4.2 Artificially Generated Traffic

In order to evaluate the network, we apply different traffic patterns at its input,

and observe average throughput and latency at the outputs. This section describes

different traffic patterns that we used in this evaluation.

We classify our traffic patterns with respect to length of packets, and temporal

and spatial distribution.

In general, processors issue load and store instructions. In the underlying

memory architecture, all load instructions that are issued by processors, returning

36

data and store-acknowledgment packets can fit in single-flit packets. Two-flit packets

are used when sending store instructions. Architectures such as [105] may have

some specific and less frequently issued instructions, which can fit into two flits.

As a result, packets are most frequently one-flit, and less frequently two-flit long,

and longer packets do not occur. Our main results based on artificially generated

traffic assumes single-flit packets, and covers most common packets described above.

Our simulations with real-life traffic evaluates our network with all of the above

instructions.

The temporal distribution of a traffic pattern describes its characteristics as

time advances. This is also called the injection process [28]. Three most common

approaches are periodic, Bernoulli and Markov modulated (MMP) processes [28].

The spatial distribution of a traffic pattern describes its characteristics with

respect to destination modules. Two most common approaches are random (or

uniform) and permutation traffic.

Next, we briefly describe each of the temporal and spatial distributions.

Periodic Process In a periodic process, a flit is injected into the network every Ti

cycles. This process is characterized by the injection rate is r = 1/Ti.

Bernoulli Process Bernoulli process is a random process, where the injection of a flit

depends on the outcome of a weighted coin toss. In other words, the probability of

flit injection at any given cycle is r. As a result, flit injection events are geometrically

distributed over time. The average injection rate of this process is r.

37

Markov Modulated Process In a Markov modulated process (MMP) the Bernoulli

injection process is modulated by a Markov process. It is used to simulate bursty

traffic, where the injection rate changes in time. A two state MMP is characterized

by three parameters, α, β, and ron. The process has two states, on and off, and at

any given cycle the process is at one of them. At the off state, no flits are injected.

With probability α the process can transition from off state to on state. At the on

state flits are injected as a Bernoulli process with injection rate ron.

Random Traffic In a random traffic distribution, each packet is assigned a desti-

nation with equal probability. In other words, if there are N possible destinations,

the probability of a packet to have destination i, 0 ≤ i < N is equal to 1/N . Since

the distribution is also called uniform distribution, this pattern is sometimes called

uniform traffic. This traffic pattern is the expected pattern for the memory archi-

tecture described in Section 2.2. It is a reasonable assumption due to the use of

hashing mechanism, which has an effect similar to randomization that distributes

the memory accesses evenly among modules [2, 7, 35,64].

Permutation Traffic In permutation traffic, the destination address of a packet is

determined by its source address and a permutation function. As a result all traffic

from one source targets one destination [28]. Various functions have been used

in earlier network studies to simulate typical communication patterns of specific

applications, or worst-case or best-case patterns for networks. This kind of traffic

pattern is not suitable for our evaluations, because of the underlying memory model,

38

and general-purpose use of the surrounding parallel processor system.

3.5 Layout Evaluation

We build the layout of the proposed network using standard cell design flow.

We using commercial CAD tools, with commercially available technology IPs, such

as standard cells. Standard cell design is flexible, whereas a custom layout is project

specific, and more time consuming. It also may yield better performance due to

lowest level optimizations.

3.5.1 Layout Design and Verification

In this section we first explain the importance of validating the previous re-

sults on MoT network with cycle-accurate Verilog simulator. We then modify the

arbitration primitive to support the store operation. We describe the physical de-

sign of the MoT network as a further step towards evaluating its layout-accurate

performance. Finally, pipelines are inserted to deal with the long wire delays.

3.5.2 Cycle-Accurate Validation

In [10], the performance model of the MoT network has been evaluated using

a custom-made simulator, written in C++ using SystemC libraries. There was no

earlier study of a cycle-accurate simulator for verifying the MoT network model

in [10]. To demonstrate accuracy, some butterfly network simulations has been

compared with the “booksim” simulator of [28]. However, the simulator in [10] is

39

optimized for MoT network, and the simulator in [28] is optimized for traditional

networks such as hypercube and butterfly. Therefore, the accuracy of the comparison

was limited.

Prior to the current paper, switch primitives have been individually synthe-

sized into generic technology, but the whole MoT network has not been synthesized

and verified. Therefore, a realistic hardware model was not available for valida-

tion. In this paper we derive a synthesizable verilog model of the full MoT network

using our own high level synthesis tool. We perform RTL and gate-level netlist

simulations, and validate earlier results.

We assume uniform traffic pattern, which is expected for the memory archi-

tecture described in [71], due to the use of a hashing mechanism [2,7, 35,64].

3.5.3 Physical Testing of Network Chip

During the layout design of the MoT chip, we verified functional correctness by

using a testbench module that simulate a typical operation of the network. Specifi-

cally, our testbench serially uploads a short sequence of parameters into the terminal

circuits; runs all terminals for a determined period of time; and serially downloads

the accumulated statistics from the chip. We call this the write-execute-read se-

quence.

For physical testing of the chip, we aim to create similar conditions in order to

compare the outcome with verilog simulations. For that purpose, we designed the

setup shown in Figure 3.3. We use the following components in this setup:

40

Network
ASIC
Chip

...

......
RS 232

Serial Cable

110V AC to 5V DC converterAC Wall Plug

Host
Computer

ASIC Board

Probe

Digital
Logic
Analyzer

Xilinx
ProVirtex−II

RS232 Interface
8051 Micro−controller

Testbench FSM

Virtex−II Board

...

...

...

...

Figure 3.3: Setup for testing network chip.

• FPGA board with Xilinx Virtex-II Pro chip. FPGA contains the following

components:

– RS232 serial communication interface: Establishes communication

between host computer and 8051 micro-controller.

– 8051 embedded micro-controller: Programmable controller for or-

chestrating test sequence; setting PLL inputs on the chip; and directing

reset and “go” signals based on user input.

– Testbench Finite State Machine: Circuit synthesized from verilog

testbench. It generates the input signals for the chip as seen in the

verilog simulations.

• Custom chip board, developed in-house, to connect ASIC chip to the FPGA

board.

41

• Digital logic analyzer (DLA), to observe the signals at the input/output of the

ASIC chip.

The chips are tested as follows:

1. For initial testings, we disabled PLL by setting proper inputs. We send a clock

signal with 4MHz to the ASIC chip, and observed ≈ 4kHz output from clk1k

output. This output indicates that the clock signal entered the chip, and it is

divided by 1024 correctly.

2. We reset the ASIC chip from host computer.

3. We run the Testbench FSM by entering the “go” command from host com-

puter. With this command, the FSM goes through the write-execute-read

sequence, similar to the verilog simulations.

4. Downloaded throughput and latency data are written in RAM blocks in the

FPGA, and later sent to the host computer through the serial interface.

5. We observe chip output from the host computer screen, as well as using DLA.

6. We compare the throughput/latency output with verilog simulation output;

compare chip signals with verilog simulation waveforms.

Ideally, we expect that the throughput and latency numbers would match

with the output we observe at verilog simulations. This would verify that the chip

is operating as shown in the verilog simulations.

42

3.6 Mesh-of-Trees Network in XMT Context

We conduct preliminary study on the execution of real life programs to demon-

strate the effectiveness of the proposed MoT network. We modify our hardware

model to fit the XMT architecture [104]. This modification is presented in Ap-

pendix A. Next, we develop XMT programs, and measure execution time and the

amount of network traffic during execution. In order to show the effectiveness of

MoT, we repeat same experiments using a butterfly network instead of MoT.

43

Chapter 4

Mesh-of-Trees Interconnection Network

4.1 Introduction

This chapter presents the MoT network for single-chip parallelism. We focus

on a single network with N source and N destination terminals for characterization.

We discuss its topology, routing methods, and flow control mechanisms, and propose

a floorplan, considering Thompson’s assumptions for VLSI complexity [96]. We con-

trast our proposed implementation with earlier implementations of MoT topology

and other networks that we discussed in Section 2.3.

4.2 Topology

Figure 4.1 shows our implementation of MoT network with four processing

clusters (PCs) and four memory modules (MMs). Without loss of generality, we

consider the PCs as sources for packets and the MMs as destinations.

The terminal nodes can be built in various ways. In this study, we do not focus

on these nodes, or impose any specific design. A recent and practical implementation

for such terminals in XMT architecture context is discussed in [104]. We use the

following model in our discussion. A PC and an MM can share a terminal node

of a single network as shown in Figure 4.2. The PC with and instruction cache is

44

0

1

2

3

2

0

1

3

2

0

1

3

0

1

2

3

2

0

1

3

and Memory Modules

memory requests (0,2), (2,1), and (3,2)

(a) Processing Clusters

4

3

2

0
1

(c) Fan−in Trees

(b) Fan−out Trees

(d) Communication Paths for three

P
ro

ce
ss

in
g

C
lu

st
er

s

M
em

or
y

M
od

ul
es

1

2

3

0

1

2

3

Figure 4.1: Mesh of Trees with 4 Clusters and 4 Memory Modules

marked with letters P and I, and two level data caches are marked as L1-D and

L2-D. The network interface is marked as NIF, and it directs network traffic to and

from processor and memory. In Chapter 8, we discuss the use of a second network

(“response” network) in the context of XMT architecture, for data packets returning

from MMs.

The network consists of two main structures, a set of fan-out trees and a set

of fan-in trees1. Figure 4.1(b) shows the binary fan-out trees, where each PC is a

1They are called row and column trees in [57]. We use the names ’fan-out’ and ’fan-in’ to

convey the data flow direction.

45

I
F

P I

L2−D

L1−D

N

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

Figure 4.2: Possible implementation of network terminal node. P: Processor, I:

Instruction Cache, L1-D, L2-D: Two levels of data cache, NIF: Network interface.

root and connects to two children (we call them up child and down child), each child

will have two children of their own. The 16 leaf nodes also represent the leaf nodes

in the binary fan-in trees that have MMs as their roots (Figure 4.1(c)).

Each source (PC) and destination (MM) terminal is labeled as Si and Di

respectively, where 0 ≤ i ≤ N −1 is the address of the terminal node. We label each

internal fan-out node as Rs,i and each fan-in node as Ad,i. Here, s and d represent

the terminal, where the root of each respected tree is connected; and 1 ≤ i ≤ N is

the label of each node in the tree. In the case of binary trees the children of a node

Rs,i are denoted as Rs,2i and Rs,2i+1.

46

4.3 Routing

Routing is the process of finding a path for each packet from its source to

its destination. Figure 4.1(d) gives the communication paths from PCs to MMs

for three memory requests. Each memory request will travel from the PC (source)

through a fan-out tree and then a fan-in tree before it reaches the MM (destination).

There is no routing decision to be made in the fan-in trees as all packets move toward

the root. In fan-out trees, routing decision is trivial from the binary representation

of the destination. For example, when PC 0 sends a packet to MM 2 (10 in binary)

as shown in Figure 4.1(d), the packet goes from the root to its down child (because

of the first bit 1 in 10) and then it selects the up child (because of the 0 in the next

bit position in 10) and reaches the leaf. This simple routing scheme also ensures

that the fan-out tree part of the network is non-interfering. Similarly, packets with

different destinations will not interfere in the fan-in trees.

4.4 Flow Control

Flow control mechanisms manage the allocation of channels and buffers to flits.

Figure 4.3 illustrates the switch primitives in our MoT network. Each node in the

fan-out and fan-in trees of the network will be implemented as the fan-out (routing)

or fan-in (arbitration) primitives as shown in Figures 4.3 (a) and (b) respectively.

The pipeline primitive in Figure 4.3 (c) is used to divide long wires into multiple

short segments. We discuss the primitives in detail in Chapter 5.

In a given cycle, switch primitives send two signals in addition to data signals,

47

"Ack"

Request
Data

"Ack"

Request
Data

Request

Data

"Ack"

Request
Data

"Ack"

Request

Data

"Ack"

Arbitrate

Request

"Ack"

Data

Request

Data

"Ack"

Pipeline

Request

"Ack"

Data
Route

(a)

(c)

(b)

Figure 4.3: Switch primitives of MoT network.

one to their predecessor, and one to their successor. These signals are marked as

“Ack” and “Req” respectively in Figure 4.3. Upon receiving these signals, each

switch primitive computes their next state; and state transition occurs in synchrony

with the clock signal.

In absence of contention, a flit advances one level per cycle. In cases of con-

tention, a flit may stall, and wait in the buffer of a switch primitive, until the

contention is resolved.

Contention occurs when flits compete for common resources. In general, com-

petition does not occur in the fan-out trees. Flits of fan-out trees stall only when

48

the fan-in trees stall and the stall condition propagates back to the fan-out trees.

On the other hand, competition may occur frequently in the fan-in trees, since all

flits in a fan-in tree have the same destination module. From the flit’s point of view,

it may experience increased latency; however, from the destination module’s point

of view, flits arrive at a high rate of throughput.

4.5 Floorplan

Figure 4.4 depicts our proposed floorplan for the MoT networks. We first

explain the layout of the fan-out and fan-in trees. Both the fan-out and fan-in trees

are placed in pairs for better area utilization. Figure 4.4 (a) shows such a pair of

8-leaf fan-out trees for an MoT network with N = 8 clusters. The two root nodes of

the two fan-out trees are connected to the source clusters by the thick lines. Empty

circles are internal nodes and crosses are leaf connections. Figure 4.4 (c) shows

the same layout for a pair of 32-leaf fan-out trees. Figure 4.4 (d) shows a pair of

8-leaf fan-in tree. Leaves are connected to internal nodes represented by the empty

squares. Roots of the two fan-in trees are connected to the destination clusters

through the connections with arrowhead. Figure 4.4 (e) gives the layout of a pair

of 32-leaf fan-in trees.

Figure 4.4 (b) shows how the fan-out and fan-in trees are placed between the

eight sources and destinations marked as Si and Di respectively, where 0 ≤ i ≤ 7.

Each pair of the fan-out trees is placed vertically and each pair of fan-in trees is

laid out horizontally. The leaves of fan-out tree are connected to the leaves of fan-in

49

(a)
Pair of 8−leaf Fan−Out Trees

(b)
An 8−terminal Mesh−of−Trees interconnection network

(d)
A pair of 8−leaf Fan−In Trees

(e)
A pair of 32−leaf Fan−In Trees

(c)
A pair of 32−leaf Fan−Out Trees

S

S

S

S

S

S

S

S

D

D

D

D

D

D

D

D

1

3

5

7

0

2

4

6

1

3

5

7

0

2

4

6

Figure 4.4: Detailed floorplan of the MoT interconnection network. (b): the 8-

cluster MoT network floorplan; (a) and (d): details of a fan-out tree pair and a

fan-in tree pair in (b); (c) and (e): layout of 32-leaf trees.

trees. The path of a packet from source 5 to destination 2 is highlighted.

4.6 Differences with Existing MoT Implementations

Unlike the conventional MoT approach (Section 2.7), we put the PCs and

MMs at the roots of the trees instead of the leaves. As a result, there are two major

differences of our MoT network.

50

1. Unique Routing Path There is a unique path between each source and each

destination. This simplifies the operation of the switching circuits and allows

faster implementation which translates into improvement in throughput when

pipelining a path (registers need to be added to separate pipeline stages).

2. Low Interference Conventional MoT is prune to interference of packets be-

tween different sources and destinations as described in case (i) of Section 4.7.6.

Our implementation eliminates this type of interference and related perfor-

mance loss.

4.7 Evaluation

4.7.1 Wire Area Complexity

This section evaluates the wire area complexity of MoT network and compares

it with other networks such as hypercube, butterfly, ring, 2D-mesh, fat trees and

buffered crossbar.

Earlier work [10] assumed a fixed chip size, and compared wire areas of different

networks. We generalize that discussion by removing the chip size constraint. Our

results show that the wire complexity of MoT network is asymptotically larger than

other networks by a factor of log2 N or N (Table 4.1).

In following analysis we use wc for number of bits per channel, and dw for wire

pitch, a technology-dependent parameter specifying the minimum distance between

two adjacent wires.

51

For MoT network, we consider Figure 4.4 (b). The width of wire area is

wc · dw · N
2
· (log N + 2) and height is wc · dw ·

(

N
2
· (2 log N + 1) + 1

)

. Their product

gives the wire area of MoT network (4.1).

Aw = 1
4
N2 ·

(

log2 N + 3 log N + 2
)

· (wc · dw)2 = O(N2 log2 N) (4.1)

Hypercube area is computed as shown in Figure 2.3.7. The chip area is N ·(s+

ww)2, where s is the size of a PC, ww = 2 · t(Qn/2) · wc · dw is the width of the wire

area between two PCs. The constant 2 is due to the use of unidirectional channels,

t(Qn/2) is the number of tracks in such area, and n = log N . We use the formula for

t(Qn/2) from [38], assume unit width for PCs, and obtain hypercube network’s wire

area (4.2).

Aw =

(

16

9
N2 +

8

3
N
√

N + N

)

· (wc · dw)2 = O(N2) (4.2)

For butterfly network, the number of wire tracks required in both dimensions

can be obtained from the layout of [107]. Similar to the MoT approach, their product

gives the wire area in equation (4.3).

Aw = (N + logN − 3) ·
(

4N − 3
√

2

2

√
N

)

· (wc · dw)2 = O(N2) (4.3)

The wire area of a replicated butterfly network is r times the area of single

butterfly times O(log r) for connecting multiple copies to sources and destinations.

We consider fat trees as the two practical implementations, namely k-ary n-

trees and butterfly fat trees, as discussed earlier in Section 2.3.4. The wire area does

not change for k-ary n-trees with different values of k and n as long as N = kn is kept

constant. We calculate the total wire area by iteratively adding wires starting from

52

the root. Assuming unit size for PCs, the wire area of k-ary n-trees and butterfly

fat trees are given in equations (4.4) and (4.5) respectively.

Aw =
(

2N2 − N
√

N
)

· (wc · dw)2 = O(N2) (4.4)

Aw =

(

1

4
N log2 N + N log N + N

)

· (wc · dw)2 = O(N log2 N) (4.5)

For the wire area of 2D-mesh, we consider only switches and links, and assume

unit width for PCs (4.6).

Aw =
√

N ·
√

N · (wc · dw)2 = O(N) (4.6)

The wire area of ring networks is computed similarly to the 2D-mesh, and shown in

equation (4.7).

Aw = 2 · N

2
· (wc · dw)2 = O(N) (4.7)

The wire complexity of a traditional crossbar is O(N2). The buffered crossbar adds

constant overhead per crosspoint buffer. Therefore, its wire complexity remains

O(N2). We assume that VOQ-based crossbars also have similar wire complexities.

Aw = O(N2) (4.8)

4.7.2 Register Count

Routing switches consist of several data registers of wc-bits each, and some

control circuit that handles resource allocation, and forward and backward signaling.

In typical virtual-channel routing switches [28], there are v virtual channels per

input and output port to improve performance. Each virtual channel uses at least

53

one wc-bit register for one data packet. In our proposed MoT network, each switch

primitive has several input and output ports, and B first-in-first-out (FIFO) buffers

at each input port. In both types of switches, the control circuit consumes negligible

area compared to data registers.

Next, we discuss register count for different networks. If v is constant, hyper-

cube, butterfly and fat trees have asymptotically fewer registers than MoT network.

However, if v = O(N) so that these networks become non-interfering, register count

of these networks reach or exceed MoT (Table 4.1).

As shown in Figures 4.1 and 4.4, the MoT network consists of N fan-out

and N fan-in trees, each with (N − 1) nodes. The leaves do not contain switching

circuits, since they are only wire connections. Each switch primitive contains B ≥ 1

registers per input. We compute the register count for B = 2, which maximizes local

throughput [20]. Each register is wc-bit wide. The total number of wc-bit registers

is computed in equation (4.9).

R = 3 · BN (N − 1) = 6N (N − 1) = O(N2) (4.9)

Hypercube has N switching nodes, each with log N +1 input and output ports.

Each of the input and output ports contains v data registers [28], one per virtual

channel. As a result, the total number of wc-bit registers is computed in equation

(4.10).

R = 2 · v · N (log N + 1) = O(vN log N) (4.10)

Similarly, the switches of butterfly network have a total of 2 · N log N input

54

and output ports with v virtual channels each (4.11).

R = 2 · v · N log N = O(vN log N) (4.11)

We consider replicated butterfly switches B registers per input, similar to MoT

network, and no virtual channels. Similar to MoT, we assume the minimum value

for B, and discuss larger values in Chapter 5. The network consists of r copies of

a regular butterfly, and binary trees between the network and source/destination

modules. The total number of registers in replicated butterfly with r copies is shown

in equation (4.12).

R = 3 · B · N(r − 1) + B · r · N log N = 6 · N(r − 1) + 2 · r · N log N = O(rN log N)

(4.12)

The k-ary n-tree with N = kn terminals has N root nodes with 2 · k · N total

ports, and N logk N internal nodes with 4 · k · N logk N total ports. In total they

require 2 · v · k · (2 · N + logk N) b-bit registers (4.13).

R = 2 · v · k · (2 · N + logk N) = O(vkN) (4.13)

In the butterfly-fat-tree, the total number of switches approaches to N/2 as

N grows [29, 37, 74]. Each switch node has 6 input and 6 output ports. Therefore

the total number of wc-bit registers will be approximately 6 · v · N (4.14).

R = 6 · v · N = O(vN) (4.14)

2D-mesh network has N switches. Each switch has 5 input and output ports

for connections towards North, South, East, West and corresponding PC. In total

55

there will be 10 · v · N b-bit registers (4.15).

R = 10 · v · N = O(vN) (4.15)

In a ring, each switch has 3 ports, for connections towards its predecessor,

successor and the corresponding PC. As a result, it has 6 · v · N registers (4.16).

R = 6 · v · N = O(vN) (4.16)

In a buffered crossbar or VOQ-based crossbar, there are N2 buffers (or queues)

with depth q, which is usually a small constant (4.17).

R = q · N2 = O(N2) (4.17)

Table 4.1: Asymptotic area comparison of networks.

Network Wire complexity Register Count

MoT O(N2 log2 N) O(N2)

Hypercube O(N2) O(vN log N)

Butterfly O(N2) O(vN log N)

Replicated Butterfly O(N2r log r) O(rN log N)

Fat Tree (k-ary n-tree) O(N2) O(vkN)

Butterfly Fat Tree O(N log2 N) O(vN)

2D-Mesh O(N) O(vN)

Ring O(N) O(vN)

Buffered Crossbar O(N2) O(N2)

56

4.7.3 Bisection Bandwidth

We consider that N is the number of terminals of a network, and links between

switches have identical bandwidths.

The bisecting cut of a MoT network contains N links. As a result, its bisection

bandwidth is O(N).

A ring network has O(1), a buterfly fat tree has O(
√

N), and a 2D-mesh net-

work has at most O(
√

N) bisection bandwidth. If the number of rows and columns

(m, n) are not equal, the bisection bandwidth of 2D-mesh is O(min(m,n)). While

these networks may be better suited for localized traffic patterns, for parallel proces-

sors with uniform memory access patterns they face scalability challenges. Networks

can be replicated to improve the bisection bandwidth, such as the 4-ring network

of the Cell processor [46]. However, there may be challenges in further scaling (e.g.

up to O(N) rings), and we are unaware of any comprehensive performance study of

such replicated networks.

Other networks that we consider in this study have O(N) bisection bandwidth.

4.7.4 Network Diameter

Table 4.2 summarizes the diameter of the networks discussed in Section 2.3.

Most networks have logarithmic (O(log N)) diameter, similar to MoT network. For

2D-mesh, the longest minimum distance (network diameter) is between the termi-

nals at opposite corners, for example between nodes 3 and 12. As a result, the

diameter of 2D-mesh is O(
√

N). Similarly, the diameter of the ring networks is

57

O(N). Buffered crossbar, VOQ-crossbar and CICQ-crossbar have a constant num-

ber of stages between inputs and outputs, therefore their diameter is O(1).

Table 4.2: Asymptotic diameter comparison of networks.

Network Diameter

MoT O(log N)

Hypercube O(log N)

Butterfly O(log N)

Replicated Butterfly O(log N)

Fat Tree (k-ary n-tree) O(log N)

Butterfly Fat Tree O(log N)

2D-Mesh O(
√

N)

Ring O(N)

Buffered Crossbar O(1)

4.7.5 Deadlock

A necessary condition for deadlock in a network is existence of cyclic depen-

dencies on resources. The MoT network is deadlock-free by design, because it does

not contain any cycles as shown in Figure 4.1.

Similar to other deadlock-free networks such as butterfly, certain external de-

pendencies can cause deadlock. For example, the memory module receives a mem-

ory request from the network, processes it, and injects it back into the network as

a response. Here, the memory module creates a cycle (externally) that includes

58

network resources, and can cause deadlock. This is called high-level deadlock, or

protocol deadlock. Using separate networks is a known approach to avoid such con-

ditions [28]. We discuss the deadlock conditions caused by external dependencies in

a parallel processor context in Chapter 8.

4.7.6 Interference

We defined interference in Section 2.5.1. In this section we analyze and eval-

uate interference conditions in MoT network.

Consider two packets Pi and Pj, with source terminals si, sj ∈ S and desti-

nation terminals di, dj ∈ D. In order to evaluate interference in MoT network, we

consider two cases, (i) si 6= sj and (ii) si = sj.

In case (i) we show that the paths of Pi and Pj do not share common resources

(Figure 4.1). Consider the set of internal nodes2 Φi = {Rsi,k|k ∈ [1, N]}∪{Adi,k|k ∈

[0, N]}. The first part of Φi represents the nodes on the fan-out tree that originates

from source terminal si. Its second part represents the nodes on the fan-in tree

that ends at destination terminal di. The path of Pi consists of a subset of Φi.

Similarly, the path of Pj consists of a subset of internal nodes Φj = {Rsj ,k|k ∈

[1, N]} ∪ {Adj ,k|k ∈ [1, N]}. It is easy to see that if si 6= sj and di 6= dj, then

Φi∩Φj = ⊘. As a result, Pi and Pj do not share any nodes. Any link that Pi passes

through has its both ends in Φi; likewise any link that Pj passes through has its

both ends in Φj. If Pi and Pj do not share any nodes, they also cannot share any

links. As a result, Pi and Pj do not share any resources. Therefore, they do not

2Node notation was defined earlier in Section 4.2

59

interfere with each other.

In case (ii) packets originate from same source terminal. Then, Φi ∩ Φj =

{Rsi,k|k ∈ [1, N]}, in other words, they may use a common resource in the fan-out

tree, such as a buffer in a node or a link between nodes. We denote this common

resource as c. Assuming that each terminal injects at most one packet per cycle,

packets Pi and Pj must be injected at different times. Without loss of generality

we assume that Pi is injected before Pj. We split case (ii) in two parts. In (ii.a),

Pi packet advances one hop every cycle on its path in the fan-out tree of Si, until

it enters the fan-in tree of terminal Di. In (ii.b), Pi does not advance one hop per

cycle.

In case (ii.a) Pi uses and releases the common resource c in consecutive cycles.

Since Pj is at least one cycle behind Pi, it will be able to use common resource c

after Pi releases it. As a result, Pi and Pj will not require to use the same resource

at the same time. Therefore, they will not interfere with each other.

In case (ii.b) Pi may hold on to resource c for longer than one cycle. This

may interfere with Pj, because it cannot use c. This case occurs, when Pi cannot

advance (stalls), while it is still in the fan-out tree. In the fan-out tree, where

packets advance one stage per cycle as long as the next stage is available, a packet

stalls only if one or more of packets stall in later stages. So, if Pi stalls, There must

be another stalled packet Pk ahead of Pi in the network.

If Pk is in the fan-out tree, we can repeat the same argument and conclude

that there must be another packet, Pl, stalled ahead of Pk, and continue analyzing

Pl. If Pk is in the fan-in tree, it can stall for two reasons: (1) similar to previous

60

cases, there is a stall ahead; or (2) because it lost the arbitration.

Arbitration is expected to create such stalls in cases of high traffic towards a

single destination. Our above argument shows that their effects can spill over to

fan-out trees under two conditions: (1) stall happens at the leaves of fan-in tree,

and it effects the following packets, which did not leave fan-out trees yet; or (2) stall

happens closer to the root of fan-in tree, and packets are backed up due to limited

storage capacity.

In summary, (ii.b) is the only case that interference can happen in MoT net-

work. For this case to occur, the demand for the a particular destination needs to be

high. Due to address hashing mechanisms used in the memory system, as described

earlier in Section 2.2, this condition does not happen frequently.

Case (ii.b) is similar to head-of-line blocking in switches of other networks,

where data destined for one switch output is blocked behind data waiting for another

port [28]. This can be prevented by use of a separate set of virtual channels for each

output port.

Networks such as bus, ring, mesh, butterfly, hypercube and fat trees suffer

performance losses due to interference described in case (i). Our implementation of

MoT topology eliminates the kind of interference in case (i), and improves network

performance.

61

4.8 Summary

We introduced a new implementation of Mesh-of-Trees (MoT) network be-

tween processing clusters (PCs) and memory modules (MMs) of the memory ar-

chitecture described in Section 2.2. We described the topology, routing and flow

control methods. We presented a floorplan for the MoT networks, discussed the

differences from earlier implementations of MoT topology, and the advantages of

our implementation.

62

Chapter 5

Switches of MoT Network

5.1 Introduction

The Mesh-of-Trees (MoT) network is built by connecting multiple instances

of different types of switch primitives, following the network topology described in

Section 4.2. Two main primitives are routing and arbitration primitives, which are

used in fan-out and fan-in trees respectively. A basic MoT network can be built

with these two primitives. A third pipeline primitive can be used to reduce delays on

long wires by splitting such wires in smaller segments. The butterfly primitive can

be used as part of a hybrid network for reducing area cost (Chapter 7). It is not part

of the basic MoT network, but discussed in this chapter for sake of completeness.

In this chapter, we first present our earlier studies on reduced-synchrony

arbitrate-and-move circuits [9]. These circuits contain elements of both synchronous

and asynchronous design principles: the periodic clock signal is combined with asyn-

chronous handshake signals between consecutive switch primitives of the network.

Functionally, they correspond to an arbitration primitive, where the circuit arbi-

trates among flits at the inputs, and passes one to the next stage.

Reduced synchrony circuits promise high frequency operation, especially when

implemented using dynamic logic circuits [9]. For reasons that we will discuss after

presenting these circuits, we chose to focus on a fully synchronous implementation,

63

and defer reduced-synchrony or fully asynchronous designs for future studies. In

fact, an alternative fully asynchronous implementation, presented recently in [42],

is based on the current study.

Following reduced synchrony circuits, we continue with synchronous switch

primitives. We explain their operation, and analyze and compare their performance

with existing switch models. Finally, we build a MoT network using the synchronous

primitives, and analyze and discuss the performance of the network.

5.2 Queue Model of MoT Network

The topology of MoT network shows that it consists of identical fan-out trees

and identical fan-in trees. Considering the queue model presented in Section 3.3.1

[28], we discuss the queue model of MoT by considering those trees individually.

Figure 5.1 shows the queue model of the fan-out tree. When we split a packet

stream with exponential interarrival times, the sum of the traffic rates of each output

stream is equal to the traffic rate of the input stream [28]. Assuming uniform random

distribution, and exponential interarrival times between packets (such as in Bernoulli

process), the traffic generated at the root (with generation rate λ) will be halved

at each level of the tree. Assuming the tree has l = log N levels, the traffic will be

diluted to λ
N

at the leaves.

Similar to splitting, combination of multiple input streams with exponential

interarrival time results in one output stream with the rate equal to the sum of

input streams [28]. Then the operation of the fan-in tree is similar to the fan-out

64

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

λ

λ/2

λ/4

λ/8

λ/2

λ/4

λ/4

λ/4

λ/8

λ/8

λ/8

λ/8

λ/8

λ/8

λ/8

Figure 5.1: Queue model of fan-out tree.

tree, but in reverse direction.

A leaf of fan-out tree is directly connected to a leaf of a fan-in tree. Bases on

our analysis of fan-out trees, each leaf of fan-in tree will receive λ
N

traffic. At next

level, the traffic coming from two branches will combine to 2 λ
N

. As a result, the

traffic rate leaving the root node of a fan-in tree will be equal to λ.

As we discussed earlier, this model assumes that the queues are arbitrarily

deep. This condition is difficult to realize, because of hardware cost of buffers.

Therefore, we build more accurate simulation models to evaluate our network. The

queue model described in this section represents the ideal case that we want to

achieve.

65

5.3 Earlier Arbitrate-and-Move Primitive Implementations

Flits in the arbitration (fan-in) tree of a MoT network advance to the root

by step-wise arbitration. In each arbitration cycle, one among incoming requests is

arbitrated at each fan-in tree node, and moved to its parent node. We call them

arbitrate-and-move circuits [9].

Research on state-of-the-art arbiter circuits were motivated by applications,

where the performance of crossbar switches and bus-based networks is directly re-

lated to the latency of arbitration (e.g. [43, 81, 91, 112]). These works focused on

N -to-1 arbitration, where a request vector of N -bits is given, and an N -bit grant

vector is generated with only one granting signal among N bits.

In cases of crossbar network applications ([43,91,112]), the grant vector is used

to configure the switches to connect input ports to output ports. Communication

(moving data from input to output port) follows switch configuration. In case of

bus network applications [81], the grant signal decides which source owns the bus in

the next cycle to transmit data. In all of the above approaches, arbitration among

N elements precedes the data movement.

In a crossbar context, pipelined multiplexers are used in [106], where standard

multiplexers and flip-flop embedded multiplexers are connected in an alternating

way to move data in a pipelined path. However, this design lacks arbitration func-

tion, and the steering signals for multiplexers are obtained from a global crossbar

scheduler. On the other hand, [55] describes a distributed crossbar scheduling in

binary-tree form, however the decision and data flits do not advance in a pipelined

66

path.

The latency of traditional arbiter circuits is measured from the instant the

request vector is modified to the instant when the grant vector is updated. N -bit

arbiter circuits in each of [81, 91, 112], were built in a tree structure, using 2-input

or 4-input primitives. Critical delay path, which influences latency directly, extends

from leaves to the root [81] and in some cases, from leaves to the root and then back

to leaves [91,112].

In contrast, we combine arbitration and data movement. We move the data

one level up in the binary tree, towards the root (output port), as soon as we

arbitrate between two neighboring requests. Arbitration and movement repeat at

each stage until the data reaches the root. Each stage of the pipeline has the latency

of a single (2-to-1) arbitrate-and-move primitive, which promises great increase in

throughput.

Arbitrate-and-move circuits can be implemented following asynchronous, syn-

chronous (see Section 5.4.3), or reduced-synchrony methods. We first summarize

a fully asynchronous design based on the concept of Micropipelines [94]. We then

discuss the reduced synchrony (RS) circuits and present two implementations with

static CMOS gates (RS-Static) and dynamic TSPC [110] gates (RS-Dynamic) re-

spectively. Then, we summarize our results in [9].

The main idea of reduced-synchrony arbitrate-and-move primitives is the mean-

ing and implementation of the clock signal, which propagates in the tree in reverse

direction of the data, i.e. from root to leaves. It is also used as an acknowledgment

signal, similar to asynchronous handshake protocols. If a child node has a request

67

towards its parent, a clock pulse from the parent indicates the acknowledgment of

the request.

5.3.1 Asynchronous Implementation

Single-input-single-output pipelines built by this approach operate at the speed

of a single C-gate [90, 92]. Arbiter and Call blocks [94] are required along with the

pipeline segment, to build the node circuit. Figure 5.2 shows the block diagram

of this circuit. Empty squares represent control logic components of micropipeline

segments, and empty ellipses represent the data latches or registers.

We implemented Arbiter and Call blocks as described in [67] and [59] respec-

tively. The former generates two mutually exclusive grant signals, which, in turn,

are converted to a single request by the latter. According to [67], a second request

will be served at least 11-gate delays after the first one.

We ran a simulation of a ring oscillator [84] circuit to figure out the minimum

gate delay for 0.18µm design technology. 50ps propagation delay of an inverter

suggests that our node circuit cannot operate at a rate faster than 550ps between

consecutive requests. Detailed simulations show that the delay is much higher than

550ps, due to high fan-out of the gates.

5.3.2 Reduced Synchrony Implementation

The reduced synchrony circuits proposed below share some properties with the

synchronous and asynchronous approaches, yet they do not fit exactly into any of

68

Figure 5.2: Asynchronous arbitrate-and-move primitive.

them. We unified acknowledgement signal and clock pulse as a new design approach,

to simplify the implementation and conserve power.

These circuits are not connected to a global clock directly. An external fast-

clock signal is connected to the root circuit only. The children receive clock pulses

from their parents, only when needed. There is synchrony between a parent and

its immediate children, but there is no global synchrony as in a fully synchronous

circuit. Hence, we use the term, reduced synchrony.

We initially designed such a circuit using static CMOS gates. Further obser-

vations suggested that a design with dynamic gates could yield better performance

in terms of speed and power.

69

Figure 5.3: Reduced-synchrony arbitrate-and-move primitive.

5.3.2.1 Static Gate Implementation (RS-Static)

The node is connected to its children as shown in Figure 2. It operates as

follows:

1. If no requests come from the children, no request signal is sent to the parent,

and both children receive a clock pulse.

2. If a single request comes from a child, it passes, and the clock pulse is passed

to both of the children.

3. If two requests come, one passes first and then the other. Only the child with

passing request receives a clock pulse.

The implementation can be seen in Figure 3. The critical delay, which deter-

mines the clock period of this circuit, is the amount of time between the generation

of the clock pulse at the parent node and the update of the request signal at the

70

Figure 5.4: Schematic of RS-Static arbitrate-and-move circuit

child node. The former consists of a 2-input nand gate and two inverters, and the

latter consists of a D-latch, implemented as a transmission gate and 2 inverters.

Since some of these gates have a fan-out of 3 or 4, we cannot achieve the delay of

a gate of the reference ring oscillator as described for the asynchronous circuit in

Section 3.1.

5.3.2.2 Dynamic Gate Implementation (RS-Dynamic)

The high-level node structure is the same as in Figure 2 except that the clock

signals to the children are unified to clk-out signal. Dynamic logic gates from True

Single Phase Clocking (TSPC) family [110] are used for this implementation (Figure

4). Each gate executes a simple logic function and latches the result for one clock

period. This allows the parent node to modify signals of its children. The high-level

algorithm is as follows:

1. If no requests come from the children, no request signal is sent to the parent,

and both children receive a clock pulse.

71

Figure 5.5: Schematic of RS-Dynamic arbitrate-and-move circuit

2. If a single request comes from a child, it passes, and the clock pulse is passed

to both of the children.

3. If two requests come, the one from Child 0 passes, then the parent kills that

request. The clock signal is not passed to the children. (At the next cycle, the

request at Child 1 remains but Child 0 does not generate a new request)

If both children send a request at a given cycle, the request of child 1 passes as

the only remaining request at the next cycle. Therefore, arbitration is fair, despite

of the built-in priority of Child 0. (Figure 5)

The critical delay path is similar to that of RS-Static, however fewer gates are

used: Clock pulse is generated through two half gates (dynamic gates) and a buffer.

Request is generated through one dynamic gate.

5.3.3 Simulation Results

In this section, we describe our simulation setup for the study of the proposed

circuits and report our preliminary results. We used Cadence tools (SPECTRE sim-

72

Figure 5.6: Operation of reduced synchrony arbitrate and move circuits: As the

Node receives continuous clock pulses, requests pass in order 1, 2, 3, 5, and 4

through the Node

ulator) for all simulations and delay and power measurements. SPICE parameters

for 0.18µm technology are obtained from [68]. A 1.8V source is used.

We simulated a single node of the asynchronous arbitrate-and-move circuit

with minimum sized transistors, and an 8-leaf-7-node binary tree for both RS-Static

and RS-Dynamic circuits. RS-Dynamic (Figure 5.5) is optimized using Cadence

Analog Circuit Optimizer. RS-Static (Figure 5.4) is optimized manually.

As reference, we built a 7-stage ring oscillator using inverters with a Wp/Wn =

13/6 ratio at the same technology. Here, Wp and Wn represent the width of pmos

and nmos transistors respectively. We used minimum length for transistors that is

available by this technology. Each inverter showed a 49ps propagation delay (50%

of the input to 50% of the output) of full voltage swing) and a 73ps rise time (10%

73

to 90% of full voltage swing). We thus targeted a rise time of 80ps for the clock

pulse when we simulate the arbitrate-and-move circuits.

Table 5.1 reports the performance, measured by speed, area, and power, of

different circuit implementations for a test design explained above. The root node

of RS circuits is connected to a clock generator with various clock periods for our

simulation. Cycle is measured as the fastest clock (or equivalently, the shortest clock

period) that the circuit can keep pace with for the RS circuits, and the time interval

between the request and done signals for the asynchronous circuit. Area is measured

as the total transistor area (width× length) and the number of transistors required

per node circuit. Power consumption of each circuit is measured as the average

power consumed by the global power source on the same request pattern.

The shortest clock period for the RS-static circuit to work correctly is 800ps,

while the RS-dynamic circuit operates correctly at a clock period as fast as 500ps.

The critical delay path of RS-dynamic circuit is even shorter, but we observed that

for shorter cycle times, the clock signal does not complete full voltage swing. The

asynchronous circuit completes one arbitration cycle in 2.5ns. No other requests

can be processed during this time.

5.3.4 Discussion

All circuits described above contain state holding elements. In the asyn-

chronous one, these elements may go into a metastable state as the node receives

two request signals concurrently. Extra circuitry, which reduces the speed of the

74

Implementation Cycle T. Area T. Count Power

Asynchronous 2.5 ns ≈ 35um2 188 N/A

RS-Static 800 ps 38um2 72 8.8 mW

RS-Dynamic 500 ps 28um2 34 16.4 mW

Table 5.1: Comparison of asynchronous and reduced synchrony arbitrate-and-move

circuits. “T” stands for transistor.

circuit, is required to prevent this from happening. As a result, cycle time increases

and overall throughput decreases.

Power consumption is proportional to switching frequency, and load capaci-

tance. A major power consumer in synchronous circuits is the clock tree, which

delivers the periodic clock signal from one input to all synchronous elements in the

chip. It is usually designed and implemented separately from the functional opera-

tion, during chip layout preparation. Asynchronous and reduced-synchrony circuits

do not require an external clock tree. In RS circuits, a node sends clock pulse to

its children only when it is ready for a new request. Therefore the inner nodes will

not always receive the fastest clock signal. In the case when the interconnect tree

is fully loaded with requests, there will be only one single branch driven by the

clock, from the root towards the leaves, and the remaining part of the tree will not

consume any power. Table 5.1 shows that RS-Static is slower but consumes less

power compared to the RS-Dynamic circuit. We note that the results were obtained

through simulations with synthetic inputs, and not with real data traffic. A more

realistic result could be observed with such traffic.

75

Although the results indicate that reduced synchrony circuits may be a good

candidate for the MoT network, we focus on synchronous circuits for our further

design and implementation. The following reasons summarize the rationale behind

our decision.

1. A drawback of the reduced synchrony design is that selective propagation of

the clock signal may reduce overall throughput in terms of flits per cycle,

when there are large gaps between consecutive flits. In a synchronous or fully

asynchronous design, flits behind the gap may advance even when flits in the

front are stalled during arbitration. In a reduced synchrony implementation,

the lack of clock signal will slow down such advance. This feature needs

improvement in order to provide high throughput in all cases.

2. From the system-wide point-of-view, Mesh-of-Trees network as presented in

Chapter 4 did not have a reference implementation in practice at that time.

A study of synchronous network would establish foundations for its functional

operation and building blocks, and evaluate its cost and performance met-

rics with respect to other well known synchronous network architectures in

practice.

3. Although there are benefits in using asynchronous or reduced-synchrony cir-

cuits in the network, the environment of the network, namely processors and

memory modules are expected to be synchronous, at least for the foreseeable

future. Considering the critical location of the network, robust and efficient

interfaces are needed for handling communication between processors, network

76

and memory. Promising examples of such interfaces [20] were at pre-layout

level of maturity around the same time frame as [9], and have not been tested

as part of a large-scale system. On the other hand, fully synchronous approach

has mature design methodologies from concept to layout, with reusable com-

ponent libraries that are used for such systems.

4. Finally, based on the design of [9], such interfaces would be required at leaves

of each arbitration tree. This would amount in O(N2) additional cost, and

potential performance overheads.

5.4 Synchronous Switch Primitives

In this section, we model the switch primitives as synchronous finite state

machines. In a given cycle, the primitives evaluate their own state, and input

signals from their predecessors and successors, to determine their next state. The

MoT network does not have any central component to schedule or keep track of the

states of all primitives. As a result, each switch primitive operates independent of

others, except for its immediate neighbors.

In general, primitive has one or more input channels, and one or more output

channels. A channel consists of a wc-bit data signal di
XY , a request signal ri

XY , and a

negative acknowledgment signal that we call kill-and-switch ksi
Y X . In this notation,

the superscript index i represents the order of the channels, starting from 0. We

omit this index if the primitive has only one input or output channel. For subscript

indices we use letters A, B and C to represent the predecessor, the primitive under

77

consideration, and the successor respectively. The order represents the direction

of the signal, which originates from the first letter, and terminates at the second.

Note that the direction of ks signals are opposite to the data and request signals of

same channel. With this notation, we uniquely identify each signal associated to a

primitive. For example, Figure 5.7(a) shows a pipeline primitive with its connections

to its predecessor and successor.

An assertion of signal r (logic value 1), means that the source of this signal

has a packet to pass to its successor on that channel. A de-asserted r (logic value 0)

means that the source does not have a packet for its successor on that channel. An

asserted ks signal means that the source primitive is able to accept a packet through

that channel in the next cycle. A de-asserted ks signal means that the source will

not accept a new packet through that channel in the next cycle.

A switch primitive evaluates its state and the signals from its predecessor and

successor; and decides on its new state and output for the next clock cycle. State

transition occurs in synchrony with the clock pulse.

Next, we discuss each of the switch primitives in the order of increasing com-

plexity, namely, pipeline, routing, arbitration and butterfly.

5.4.1 Pipeline Primitive

This simplest primitive has one input and one output channel (Figure 5.7(a)),

and consists of B ≥ 1 storage registers and control logic. Following the latency-

insensitive design methodology of [18], B = 2 registers are necessary and sufficient to

78

satisfy maximum local throughput, i.e. one flit per cycle, under following conditions:

1. Stall condition is propagated from destination towards source, opposite to the

data flow, as opposed to being broadcasted instantly to all primitives

2. Data must be preserved, i.e. not overwritten or discarded.

Therefore, we assume B = 2 through this study.

A high-level state diagram of a pipeline primitive with B = 2 is shown in

Figure 5.7(b). There are B + 1 = 3 states, denoted as 0, 1, and 2; they represent

cases with 0, 1 and 2 full registers respectively. The arcs represent the necessary

input signals to switch between states. On the top and the bottom of the state

diagram we show the output signals. In states 1 and 2 rBC is equal to 1, and 0

otherwise. Similarly, ksBA is equal to 1 in states 0 and 1, and 0 otherwise.

A

ks

r

dAB

AB

BA

B C

d

r

ksCB

BC

BC

(a) Connections.

r_AB=1
ks_CB=x

r_AB=0
ks_CB=x

r_AB=1
ks_CB=0

r_AB=x
ks_CB=0

r_AB=x
ks_CB=1

r_AB=0
ks_CB=1

r_AB=1
ks_CB=1

r_AB=0
ks_CB=0

0 1 2

reset

r_BC = 1

ks_BA = 1

(b) State diagram.

Figure 5.7: Pipeline primitive.

The block diagram of the pipeline primitive is shown in Figure 5.8. Rectan-

gles marked as B0 and B1 represent the data registers. Vertical trapezoidal blocks

represent multiplexers. Their output is connected to one of the numbered inputs

(on the left), depending on the value of the third input (at the bottom). Thick lines

79

dAB

rAB rBC

dBC

ksCBksBA

wB1wB0 Br

1

0

0

1

1

0

B0

B1

Control Logic

Figure 5.8: Block diagram of pipeline primitive.

represent data paths with wc-bit signals, thin lines represent control paths with 1-bit

signals. Clock and reset signals are omitted for clarity.

5.4.2 Routing Primitive

The purpose of the routing primitive (or fan-out primitive) is to direct a packet

from one source to one of the multiple destinations. We classify the routing primi-

tives based on the number of their output channels. A k-ary routing primitive has

k ≥ 2 output channels.

A binary routing primitive (k = 2) has one input and two output channels.

It can be used to build binary routing trees (fan-out trees). An l-level tree has an

input at the root, and 2l outputs at the leaves. Using k-ary routing primitives with

k output channels, k-ary trees with kl leaves can be built similarly.

The routing primitive contains one pipeline primitive attached to the input

80

dAB

rAB

ksBA

rBC
1

ksCB
1

dBC
1

0

1

0

1

0

1

rBC
0

ksCB
0

dBC
0

Primitive

Pipeline

id
selectdst

Routing Logic

Figure 5.9: Block diagram of routing primitive.

port, and additional combinatorial routing logic. Each routing primitive has a con-

stant id signal, that is used in determining the packet direction. Figure 5.9 shows

the block diagram of a binary routing primitive.

The high level operation is same for all k. Incoming flit is stored in the pipeline

primitive. The destination (signal dst) of each packet is encoded as part of the data

signal. The signal select is derived through a comparison of the encoded destination

bits with the id signal, which depends on the depth of each routing primitive in the

fan-out tree. Based on the outcome the flit is directed to one of the outputs, and

other outputs are disabled by setting their corresponding request signal to 0. In

other words, if a flit is destined for output port i, then we set ri
BC = 1, and rj

BC = 0,

where 0 ≤ j ≤ k − 1, j 6= i. Similarly, the ksCB signal of the pipeline primitive is

connected to the ksi
CB input. This operation is implemented using demultiplexers

for data and request signals, and a multiplexer for the negative acknowledgment

(ks) signal.

81

Depending on k, the circuit implementation will have the following differences:

A k−ary routing primitive needs to compare log k bits of dst signal to determine the

destination of the flit. In addition, the logic depth of demultiplexer and multiplexer

components also increase with k. As a result, the overall complexity of routing

increases as k increases. Therefore, we focus on k = 2 in this study, without ruling-

out the possibility of k > 2 cases in future studies and realizations.

5.4.3 Arbitration Primitive

The purpose of the arbitration primitive (or fan-in primitive) is to select one

of multiple competing packets at its inputs, and forward it to its output. We use the

number of input channels to classify such primitives. A k-ary arbitration primitive

has k input channels and one output channel.

A binary arbitration primitive has one output and two input channels; and it

is used to build a binary arbitration tree (fan-in tree). An l-level arbitration tree

has 2l inputs at its leaves, and a single output at its root. Similar to routing trees,

k-ary primitives can be used to build k-ary trees.

A k-ary arbitration primitive contains k pipeline primitives, and combinatorial

arbitration logic, with an additional state machine to provide fairness and prevent

starving. Incoming flits are stored in pipeline primitives. Based on the dynamically

changing priority and arbitration method, one of the stored flits is directed to the

output. Other stored flits wait for another cycle.

Figure 5.10 shows the block diagram of a binary arbitration primitive. The

82

Primitive

Pipeline

Primitive

Pipeline

dBC

rBC

ksCB

0

1

dAB

rAB

ksBA

0

0

0

dAB

rAB

ksBA

1

1

1

Arbitration
ks0

ks1

arb

d

r

ks

d

r

ks

1

1

1

0

0

0

Store1

Store0 Priority h

Figure 5.10: Block diagram of arbitration primitive.

Priority block keeps and updates the state of the current priority based on request

signals r0 and r1. It consists of a priority register and the combinatorial logic for

the update. Optionally, the flits can have a single-bit signal, if the current flit and

its successor must remain together, for example, in case of a store word instruction

from processors to memory modules. We discuss this option in Section 5.4.3.3. The

Arbitration block performs the arbitration based on dynamic priority (denoted h

for history), r0, r1, and ksCB signals. It sets ks0 and ks1 signals for the pipeline

primitives, the rBC output signal, and the arb signal for multiplexing the output

data. This block consists of combinatorial logic only.

5.4.3.1 Arbitration Method

We use an arbitration method that prevents starvation of local (switch prim-

itive) and global (network) input sources. Among local inputs of each arbitration

primitive, each request is served equally often, when there are continuous requests

on each input. This is called strong fairness. On the other hand, a single arbitration

83

primitive is not aware of the global state of network inputs. As a result, network

inputs may not be served equally often. However, every request will be eventually

served. In other words, there is an upper bound of time, between the appearance

of a packet at an input port and its exit at the output port. This is called weak

fairness [28].

For k-ary arbitration primitives, where k > 2, we use round-robin arbiters

with dynamic priority assignment [28, 91]. A k × k arbiter evaluates k inputs, and

generates one “winner” among at most k requests (k-to-1 arbitration). The “winner”

receives a grant signal, whereas other requests wait for the next arbitration cycle.

The winner is determined by a dynamic priority setting. At any given cycle, one of

k inputs, say input i, 0 < i < k − 1 has priority. If i has a request at that cycle, it

is declared “winner”, and it receives the grant signal. If i does not have a request,

then i+1 is considered. If i+1 has a request, it becomes the “winner” and receives

the grant; if not then i + 2 is considered, and so on. After considering input k − 1,

the order rotates back to input 0, and it continues until input i− 1. Here, i has the

highest priority, and i − 1 has the lowest priority.

In order to guarantee strong fairness in the primitive, the dynamic priority is

updated every cycle as follows. Regardless of priority holder i, if input j receives

grant signal at any cycle, input j +1 will have the highest priority at the next cycle.

In other words, the input receiving the grant signal has the lowest priority in the

next arbitration cycle.

Studies show that the area cost of the arbitration logic in this model is O(k),

and the logic delay is O(log k) with logarithmic-depth tree implementations [55].

84

5.4.3.2 N-input to 1-output Arbitration

For N -to-1 arbitration, one can use a single-stage arbitration primitive with

k = N , as shown in many studies of crossbar networks. For this implementation,

area cost is O(N), and shortest logic delay is O(log N). If there is no competition,

a request reaches the output in one cycle. In other words, minimum arbitration

latency is 1. If there are multiple requests, the worst-case latency is O(N).

In order to build a high-throughput network, arbitration trees with short cycle

times are desirable. This can be achieved by using multiple levels of simpler and

faster primitives with short cycle times.

Assuming all input signals are available at the rising edge of the clock pulse,

the arbitration result arb of the binary arbitration primitive in Figure 5.10 can be

computed with two levels of NAND gates (or a single AND-OR-INVERT gate in

current technology libraries [6]), implementing the following logic function: arb =

(h · r0 + r1 ′)
′

, where · and + represent logical AND and OR operations respectively,

and x′ represents inverted value of x. Here, h represents the history bit which is

used to keep track of the dynamic priority.

A logk N level arbitration tree built with k = 2 primitives will consist of N −1

primitives, each with O(1) area cost and logic delay for one clock cycle.

Table 5.2 compares “single k-ary primitive” with “tree of binary primitives”.

The area cost of both methods are O(N). The clock rate of latter method is O(1),

compared to O(log N) [55] of the former. The minimum and maximum arbitration

latency is 1 and O(N) cycles in the former, and log N and O(N) cycles, in the latter.

85

Method Area Clock Cycle Min Latency Max Latency

Single N-ary primitive O(N) O(log N) O(1) O(N)

Tree of binary primitives O(N) O(1) O(log N) O(N)

Table 5.2: Comparison of N -to-1 arbitration methods.

As a result, an N -to-1 arbitration tree with k = 2 configuration will provide a

faster cycle time and higher throughput, compared to k > 2 configurations, at the

expense of increased minimum arbitration latency.

In the underlying memory system, a high traffic rate is expected through the

network. As multiple packets target the same destination module, achieving min-

imum arbitration latency will be less likely. In that case, the disadvantage of an

arbitration tree with k = 2 configuration reduces relative to k > 2 configurations,

without losing the fast clock rate advantage. Therefore, our study focuses on arbi-

tration trees with k = 2 configuration.

5.4.3.3 Winner-Take-All Arbitration for “Store” Operations

A part of our performance model is based on exchanging single-flit packets

between terminals. In case of a load operation, the processor sends the address to

the memory module, and the memory module responds with the requested data.

In this most common mode of operation, each packet consists of a single flit with

sufficiently many bits, that contains either the address or the data.

In case of a store operation the processor sends the address and the data to the

memory module. A flit could be sufficiently wide to hold both the address and the

86

data, however this would waste bandwidth when load instructions are sent through

the network. Alternatively, a store packet could consist of two flits that are injected

consecutively to the network. In this case additional effort is required to relate

address and data pairs that belong together, and perform the correct operation. We

consider the following two options for handling store operations.

• Both flits of address–data pair can be marked with an identifier tag, and sent

as individual single-flit packets. The memory commits the operation when the

second flit with the matching tag arrives. This method requires computation

on the processor and the memory module. The network remains unchanged.

This is called fair bandwidth arbitration [28], since the arbitration primitives

perform fair arbitration regardless of the type of the packet.

• Second flit is chained to the first one, and they follow each other in the network.

The memory receives the pair consecutively.This method requires computation

in the network. Specifically, the arbitration primitive must ensure that second

flit immediately follows the first one. This introduces a temporary bias to

the arbitration operation. The processor and the memory modules remain

unchanged. This method is called winner-take-all arbitration [28]. Extra

logic in the arbitration primitive may increase clock period and, therefore,

reduce throughput. On the other hand, this method reduces average packet

latency for multi-flit packets in terms of clock cycles. The optional signals

called Store0 and Store1 in Figure 5.10 are used to perform winner-take-all

arbitration.

87

rBC
0

ksCB
0

dBC
0

0

1

Primitive

Pipeline

0

1

0

1

0

1

Primitive

Pipeline

0

1

0

1

0

1

id

0

1

rBC
1

ksCB
1

dBC
1dAB

rAB

ksBA

1

1

1

d

r

ks

1

1

1

dAB

rAB

ksBA

0

0

0

d

r

ks0

0

0

selectdst

selectdst

Routing Logic 0

Routing Logic 1

ks0

ks1

arb

Store1

Store0 h

ks0

ks1

arb

Store1

Store0 h

Priority 0

Priority 1

Arbitration 0

Arbitration 1

Figure 5.11: Block diagram of butterfly primitive.

We implement these both types arbitration primitives and evaluate their per-

formance with a cycle-accurate verilog simulator. The results show that they both

provide similar throughput improvement over the single-flit arbitration. The im-

provement is significant especially when load operation dominates. See Section 6.3.1

for details.

5.4.4 Butterfly Primitive

The original MoT tree [10] can be built with three switch primitives (Fig-

ures 5.8- 5.10). An additional butterfly primitive (Figure 5.11) is used for building

the hybrid MoT-BF network. A butterfly primitive consists of one pipeline primitive

per input channel, and additional control logic that handles routing and arbitration

together. Similar to other switch primitives, a flit spends one clock cycle in the

primitive if there is no contention. In case of contention and stalls, proper backward

signaling and using the second wc-bit buffer prevents overwriting stalled data.

88

5.5 Evaluation

5.5.1 Logic Delay of Switch Primitives

As we stated earlier in Section 2.5, long logic delay of switches in existing

networks limits the performance. In this section we evaluate switch delay of the

networks.

For switches with virtual channels, we use the analytical results of [79]. For

MoT and replicated butterfly network, we build verilog models of switches and

synthesize them using Cadence tools, ARM regular-Vt standard cell library [6] and

IBM 90nm (9SF) CMOS technology [44]. We normalize all results using technology-

independent FO4 delay unit that represents the delay of an inverter driving four

identical inverters. For the technology and standard cell library that we used, the

FO4 delay at slow operating corner with 1.08V voltage and 125 C temperature is

equivalent to 66.5ps [6]1

The results are summarized in Table 5.3. For butterfly, ring, 2D-mesh, hyper-

cube and fat trees, we increase the number of virtual channels. MoT and replicated

butterfly don’t have virtual channels. For MoT, we used the longest critical delay

of three switch primitives discussed in Section 5.4. For replicated butterfly, we used

the delay of the butterfly primitive (Section 5.4.4), which is the longest delay among

all of its switch primitives. We assumed 32-bit data path in our computations. Our

results show that attempts to improve throughput by increasing virtual channels

1We also note that in a typical operating corner, with 1.2V source and 25 C temperature, the

FO4 delay is approximately 35ps.

89

will increase switch delay at the same time, and reduce clock rate.

Switches of hypercube network have log N + 1 input and output ports, where

N is the number of network terminals. Therefore, peak throughput of hypercube

would reduce with increasing number of terminals. Similarly, a butterfly network

built with larger switches with e.g. 4-ports, would have longer clock period, and

therefore lower peak throughput, compared to a butterfly with 2-port switches.

Leiserson [58] states that the root capacity of the fat tree for N terminals is

between N2/3 and N , where the capacity between the network and each processor

at the leaves is defined as 1. The capacity increases exponentially at each level

between leaves and the root. The number of the input and output ports to the

switching nodes is proportional to the capacity at that level of the tree. Therefore,

in Leiserson’s fat tree, number of switch ports increases between leaves and root,

reaching N2/3 at the root switch. Alternative fat tree architectures as described

earlier in Section 2.3.4 are built with small switches with constant number of ports.

Smallest of these switches has 4 input and 4 output ports. As a result of this, they

will provide higher peak throughput compared to Leiserson’s fat tree, however they

will fall short compared to the peak throughput of butterfly network with 2-port

switches.

In [79], the routing stage of switches are not analyzed, and they are assumed

to be less than 20 FO4 delay, which used to be the typical clock rate for earlier

serial processors. In most networks that we consider, routing can be performed by

checking a single bit at each stage. Therefore we think that this will not affect the

critical path for switches of butterfly, hypercube and fat trees. However, if routing

90

Number of VCs (v) 2 4 8 16 32 64

2-port (butterfly) 10.9 14.2 17.5 20.8 24.1 27.4

3-port (ring) 11.9 15.2 18.5 21.8 25.1 28.4

4-port (fat tree) 12.5 15.9 19.2 22.5 25.8 29.1

5-port (2D-mesh) 13.1 16.4 19.7 23.0 26.3 29.6

7-port (hypercube-64) 13.9 17.2 20.5 23.8 27.1 30.4

Replicated butterfly 9.40

MoT 8.98

Table 5.3: Single switch delay of various networks (in FO4). Replicated butterfly

and MoT do not have virtual channels.

takes as long as 20 FO4, the minimum switch delay for these networks will be

20 FO4.

Next, we discuss the delay for routing primitives with k > 2 outputs. Similar

studies for arbitration primitives with k > 2 inputs [91] show that the logic delay

increases as O(log k). In order to estimate the additional switch complexity for

k > 2, we synthesize routing primitives for k = 4, 8, and 16 outputs; and measure

the worst delay between clocked registers and output signals. Note that this delay

is less than 8.98 FO4 as shown in Table 5.3, because (i) it is measured between

registers and output, where additional circuit for k > 2 is inserted; and (ii) the

routing primitive is relatively simpler than the arbitration primitive.

This delay depends on the load at the outputs, and we do not know the

actual load before the layout. Therefore, we report results, where the outputs are

91

loaded with the smallest (BUFX2) and largest (BUFX20) buffer cells available in

the standard cell library [6]. According to the data book, these cells correspond to

a capacitive load of 5.0fF and 8.8fF respectively. If buffers are inserted to reduce

long wire delays, it is reasonable to expect loads within this range. Figure 5.12

shows that the measured delay increases logarithmically with increasing k.

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

Number of outputs (k)

D
el

ay
 in

 F
O

4

Load=BUFX2
Load=BUFX20

Figure 5.12: Register-to-output delay of routing primitive with different number of

outputs.

5.5.2 Maximum Network Throughput

In order to evaluate the maximum throughput provided by each network

model, we assume the maximum traffic generation rate of one flit per cycle (1.0 fpc)

92

at each input port of the network2. At this generation rate, the network will satu-

rate with packets, and the injection and delivery rates will come to balance at the

maximum throughput. We assume random traffic pattern.

We obtain the results for hypercube, butterfly, 2D-mesh, and ring networks

from simulation using the simulator of [28]. The results for fat tree networks are

from [80] and [75]. For MoT and replicated butterfly we used our own simulator as

discussed in Section 3.4.1. As one can see from Table 5.4, the proposed MoT network

can provide the highest maximum throughput, which is 76% and 28% higher than

butterfly and hypercube with v = 4 virtual channels, and 3% and 16% higher

than butterfly and hypercube with 64 virtual channels, respectively. The maximum

throughput of 2D-Mesh and Ring networks decrease as N increases.

Configuration Max Throughput

Hypercube N = 16 v = 4 0.777

Hypercube N = 64 v = 4 0.763

Hypercube N = 16 v = 16 0.787

Hypercube N = 64 v = 64 0.843

Butterfly N = 16 v = 4 0.602

Butterfly N = 64 v = 4 0.553

Butterfly N = 16 v = 16 0.861

Butterfly N = 64 v = 64 0.946

2D-Mesh N = 16 v = 4 0.677

2Note that our single-flit per packet assumption represents the majority of processor-memory

communication, as explained in Section 3.4.2

93

Configuration (cont.) Max Throughput

2D-Mesh N = 16 v = 16 0.800

2D-Mesh N = 64 v = 4 0.352

2D-Mesh N = 64 v = 64 0.500

Ring N = 16 v = 4 0.239

Ring N = 16 v = 16 0.472

Ring N = 64 v = 4 0.061

Ring N = 64 v = 64 0.179

Fat Tree N = 256 k = 4 n = 4 v = 2 0.55

Fat Tree N = 256 k = 4 n = 4 v = 4 0.72

BFT N = 64 v = 4 0.28

BFT N = 64 v = 8 0.30

Mesh of Trees N = 16 0.951

Mesh of Trees N = 32 0.963

Mesh of Trees N = 64 0.977

Table 5.4: Maximum throughput (in flits per cycle per port) provided by different

networks (N : numbner of terminals, v: number of virtual channels, BFT: Butterfly

Fat Tree.).

We plot area cost vs performance for these networks and MoT for various num-

ber of terminals (Figure 5.13). Area cost is computed as the number of data registers

in Section 4.7.2. Performance is obtained by maximum throughput simulations as

94

described above.

Cost and performance of replicated butterfly increases as we increase the num-

ber of copies (r); and cost and performance of virtual-channel networks increase as

we increase number of virtual channels (v). There is single MoT configuration on

each chart for a given number of terminals (N). Replicated butterfly achieves higher

performance at comparable cost, with respect to virtual-channel networks. On the

other hand, MoT network achieves higher throughput for comparable cost, or com-

parable throughput at lower cost for up to N = 64 terminals.

5.5.3 Throughput and Latency Under Varying Traffic

As traffic in the network increases, packets will experience longer latencies. We

follow the guidelines in [28] to design simulations in order to evaluate the throughput

and latency of various network models under different input traffic. We use Bernoulli

process and random traffic pattern. (Section 3.4.2).

The network is warmed-up until the throughput stabilizes, then marked pack-

ets are injected for latency measurement. We are particularly interested in the case

when the input traffic, or the on-chip parallelism, is high. 2D-Mesh, Ring, Hyper-

cube and butterfly networks are simulated on the simulator provided by [28] with

N = 64 terminals, and different number of virtual channels, namely a typical v = 4

setting and an aggressive v = 64 setting. Router switches have three cycle switch la-

tency per speculative virtual channel router design of [79]. MoT network is simulated

using an RTL SystemC simulator that we implemented and validated [8, 10].

95

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ax

im
um

 p
er

−
cy

cl
e

th
ro

ug
hp

ut
 (

fli
ts

 p
er

 c
yc

le
 p

er
 p

or
t)

Total number of registers

8 Terminal Networks

Hypercube with VCs
Butterfly with VCs
Replicated Butterfly
MoT
Ring with VCs

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ax

im
um

 p
er

−
cy

cl
e

th
ro

ug
hp

ut
 (

fli
ts

 p
er

 c
yc

le
 p

er
 p

or
t)

Total number of registers

16 Terminal Networks

Hypercube with VCs
Butterfly with VCs
Replicated Butterfly
MoT
Ring with VCs
2D−Mesh with VCs

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1

m
ax

im
um

 p
er

−
cy

cl
e

th
ro

ug
hp

ut
 (

fli
ts

 p
er

 c
yc

le
 p

er
 p

or
t)

Total number of registers

32 Terminal Networks

Hypercube with VCs
Butterfly with VCs
Replicated Butterfly
MoT
Ring with VCs

0 2 4 6 8

x 10
4

0

0.2

0.4

0.6

0.8

1

m
ax

im
um

 p
er

−
cy

cl
e

th
ro

ug
hp

ut
 (

fli
ts

 p
er

 c
yc

le
 p

er
 p

or
t)

Total number of registers

64 Terminal Networks

Hypercube with VCs
Butterfly with VCs
Replicated Butterfly
MoT
Ring with VCs
2D−Mesh with VCs

Figure 5.13: Cost-performance comparison of networks. On the curves, number of

virtual channels for hypercube, butterfly, 2D-mesh and ring are doubled from left

(v = 2) to right (v = N). With Replicated butterfly, the number of copies is doubled

from left (r = 1) to right (r = N).

We vary the input traffic from the low 0.1 fpc per port to the maximum

1.0 fpc. The latency of a flit is measured as the time from it is generated to the

time it is received at the destination, which includes the waiting time at the source

queue. For each input traffic rate, we use different seeds to generate a set of traffic

with the same traffic rate. These input traffic sets are injected to simulators for each

96

network model and the average throughput and latency are reported in Figure 5.14.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Input Traffic (flits per cycle per port)

La
te

nc
y

(c
yc

le
s)

MoT
Hypercube v=4
Hypercube v=64
Butterfly v=4
Butterfly v=64
2D−Mesh v=64
Ring v=64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Traffic (flits per cycle per port)

T
hr

ou
gh

pu
t (

fli
ts

 p
er

 c
yc

le
 p

er
 p

or
t)

MoT
Hypercube v=4
Hypercube v=64
Butterfly v=4
Butterfly v=64
2D−Mesh v=64
Ring v=64

Figure 5.14: Throughput and latency of various networks for N = 64 terminals.

MoT network provides competitive throughput and latency and has a clear ad-

vantage over others when the input traffic is high. More importantly, MoT network

has a more predicable latency when the input traffic varies. For example, when we

increase the input traffic from 0.1 fpc per port to 0.9 fpc, the hypercube latency

increases by a factor of 3.2, butterfly network latency increases by a factor of 3.9,

while MoT latency increases only by a factor of 1.6. This could allow more accurate

design and analysis of algorithms as described in [101].

97

5.6 Summary

In this chapter, we described the switch primitives of MoT network. First,

we discussed reduced synchrony arbitrate-and-move circuits, and evaluated them.

Next we detailed the operation of synchronous switch primitives. We synthesized

each primitive, and compared experimental results with existing switches for similar

purposes. We built a MoT network with these primitives, and simulated it with a

cycle-accurate simulator written in C++ and SystemC. We compared the network

performance with existing network architectures.

Our results show that MoT switch primitives operate faster than virtual-

channel switches, that are used with popular network topologies such as 2D-mesh,

ring, butterfly, hypercube, and fat trees. When wire delays are not considered, this

advantage immediately translates into higher throughput in terms of Gbps. Wire

delays will cause some degradation in performance, which we evaluate in Chap-

ter 6. We note that wire delays can be reduced by inserting pipeline stages following

latency-insensitive design principles [18,19]. Therefore, the simplicity and high speed

of MoT switches is a significant advantage over more complicated virtual-channel

switches.

98

Chapter 6

Layout

6.1 Introduction

Previous chapters presented the Mesh of Trees network, and evaluated its cost

and performance with comparisons to existing networks. This chapter brings the

concept of MoT network closer to reality by generating a chip layout, and evaluating

its layout-accurate cost and performance. Specifically, we measure clock rate, and

power consumption of MoT networks of different sizes, and show the effects of wire

pipelining. The layout of an 8-terminal network is fabricated using IBM 90nm

technology [44], and tested.

Our design flow starts with RTL-level verilog description of switch primitives.

Our own high-level synthesizer generates verilog files higher level modules, such as

balanced binary trees. All verilog files are then synthesized and mapped to ARM

standard cells [6] using Cadence RTL Compiler tool, and placed and routed using

Cadence Encounter tool. Measurements are taken using the Cadence Encounter

tool.

We connect the fabricated chip to an FPGA board for testing. The FPGA is

programmed to generate the input signals we used during verilog simulations. We

expect to obtain the same output signals as we observed during verilog simulations.

Although we lowered operating frequency significantly, we were unable to observe

99

Terminals 4 8 16 32 64

Bits per flit 26 28 30 32 34

Cell Area 0.064 0.314 1.419 6.166 26.289

Wire Area 0.003 0.020 0.135 0.863 5.197

Table 6.1: Wire and cell area (in mm2).

any meaningful output. From output pins, we observe that none of the tested chips

transition to the output state. This is a clear mismatch with gate-level simulations

before we release to manufacturing, and could indicate manufacturing defects.

6.2 Network Layout

The wire area of the MoT network grows as O(N2 log2 N), and the number

of tree nodes grow as O(N2), where N is the number of terminals [10]. This would

imply that the wire area will dominate the cell area, and the floorplanning must

consider wire area constraints. Synthesis results with this particular technology and

standard cell library show that cell area is larger than the wire area for practical

number of terminals. Table 6.1 shows these results for different network configura-

tions that are considered in this paper.

Wire area grows faster and it can exceed cell area for higher number of ter-

minals and bits per flit. We estimate wire and cell area for different number of

terminals for 90nm and 32nm technologies. Our estimation (Figure 6.1) shows that

this does not happen for networks with practical sizes at least until 32nm technol-

ogy node. This justifies our assumption that register area and count is a reasonable

100

measure for area cost.

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Number of Terminals (N)

A
re

a
(m

m
2)

Cell Area (90nm)
Wire Area (90nm)

(a) 90nm

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of Terminals (N)

A
re

a
(m

m
2)

Cell Area (32nm)
Wire Area (32nm)

(b) 32nm

Figure 6.1: Wire and cell areas for 90nm and 32nm technology nodes. For 90nm,

we assumed 52-bit wide flits, and 8 layers of metal. For 32nm, we assumed 80-bit

flits, and 11 layers of metal. In both technology nodes we reserved bottom 3 and

top 2 layers of metal for standard cell and power routing respectively, and did not

include in our estimation. For the rest of the routing, we assumed 2 vertical and 1

horizontal layers with 90nm, and 3 vertical and 2 horizontal layers with 32nm.

Our floorplan and placement strategy in this study is based on the cell area of

the network. In a network with N terminals, we create N/2 partitions in order to

improve layout quality during placement and routing. Figure 6.2 shows a network

with 8 terminals that has 4 partitions marked P0 to P3. An initially square floorplan

is separated into partitions, and each partition is individually placed, routed, and

optimized. Depending on other geometrical factors, such as height and width of

terminal modules, two partitions could be separated by a gap.

101

6.2.1 Terminal Circuits

Ideally, our network would interconnect parallel processors and memory mod-

ules. We use a terminal node to replace a pair of cluster and memory module.

In order to focus on the interconnection network, these nodes are dummy termi-

nals that generate random requests based on programmable parameters, and record

statistics upon receiving a packet.

The terminal modules do not affect critical delay path of the network modules.

However, since they are generating packets and recording arrivals at each cycle, their

critical delay path affects the operation frequency of our taped-out chip. Therefore,

we report critical delays for the network module separately.

L

P0

P1 T2

T1

pipe

P3

P2

T0

T7 T6

T5 T4

T3

Figure 6.2: High level chip floorplan for 8-terminal network. Terminal modules: T0

to T7. Network partitions: P0 to P3.

6.2.2 Pipeline Insertion

Long wires of MoT network could increase the clock period and reduce the

throughput. Inserting pipeline registers to long wires would improve performance

102

[4,22,39,62]. Earlier work [10] proposed to use a pipeline primitive to cut long wires

in shorter segments. However, the benefits could not be demonstrated without a

physical layout.

Pipeline insertion can be automatized by several ways. State of the art syn-

thesis tools are capable of inserting repeaters. However, they are usually unaware

of final wire lengths. Place and route tools can insert any standard cell or module

to an existing netlist and connect them to rest of the circuit. However, this requires

use of low level commands of the specific tools, and may not be portable. Further-

more, state changes in the circuit cannot be traced back to RTL-level. This could

complicate verification and performance evaluation. Our high level synthesis tool

inserts pipeline registers at RTL level. Then, the network would have a portable

and coherent state machine view through the entire physical design flow.

It is challenging to estimate the optimal wire length to fit in a single pipeline

stage. It involves multiple physical design iterations. Furthermore, CAD tools

perform several proprietary and heuristic optimizations. Therefore, it is virtually

impossible to estimate the exact wire length between two consecutive registers before

the layout is finalized.

In this prototyping study, we follow a high level heuristic approach to deter-

mine the amount of pipelining, guided by the wire length between the centers of

partition Pi and the second partition Pi+2, denoted as Lpipe in Figure 6.2. Thus,

we allow the signals to pass over one full partition Pi+1 without being stored in

a pipeline register. For lack of space, we only note that following this model, an

8-terminal network would not require pipelining. Furthermore, 16 and 32-terminal

103

networks will ideally operate at the same frequency as the 8-terminal network.

6.3 Results and Discussion

In this section, we first present simulation results that validate the claims

of [10] and provides average throughput per cycle. Then, we lay out networks with

4, 8, 16 and 32 terminals, and obtain their clock rate. The combination of both

results will give layout-accurate average throughput for MoT. Finally, we taped-out

the 8-terminal design for fabrication.

We used IBM CMOS9SF 90nm technology [44] and regular ARM/Artisan

SAGE-X standard cells [6]. Typical operating conditions (VDD; T) for this library

is given as 1.2V ; 25◦C. In this paper we report delay estimations for a slow corner

(worst case) operating conditions, such as 1.08V ; 125◦C. We use NC-Verilog for

simulations, Cadence RTL Compiler for synthesis, and Cadence SOC Encounter for

layout generation. For tape-out, we use Synopsys Hercules for DRC, and Cadence

Virtuoso for final details in layout.

6.3.1 Simulation Results

Latency and throughput results with verilog simulations for a 64-terminal

network is compared with results in Section 5.5.3 in Figure 6.3. Table 6.2 compares

the average throughput at highest traffic rate, and latency at three traffic levels.

Low, High, and Max represent flit generation rates of 10%, 90%, 100% of network

capacity. Throughput is averaged over all terminal ports, and latency is averaged

104

over all recorded packets.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Traffic Rate

T
hr

ou
gh

pu
t

Earlier results with SystemC simulator
Verilog simulation results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Traffic Rate

La
te

nc
y

Earlier results with SystemC simulator
Verilog simulation results

Figure 6.3: Throughput, and latency of 64-terminal MoT at various traffic rates.

Verilog simulations compared to earlier results. Throughput is measured in terms

of flits per cycle and averaged over all ports.

Compared to results of [10], throughput differs between 1% to 2%. Latency re-

sults for 64 terminal MoT network are 17% higher for low-traffic case and 6.5% lower

for high-traffic case. Such deviations are expected due to different implementation

of source queue component as described in Section 3.5.2.

Next, we simulate the network with different ratios of 1-flit and 2-flit packets,

to model a mixture of load and store operations. Traffic rate is adjusted for each

run so that average flit injection rate remains constant at the maximum capacity of

105

Terminals 4 8 16 32 64

Tput from [10] N/A N/A 0.95 0.96 0.98

Average Tput 0.88 0.91 0.93 0.95 0.96

Latency (low) 8.64 10.8 12.8 14.8 16.9

Latency (high) 18.0 16.9 17.9 19.3 21.6

Latency (max) 26.6 29.8 33.6 38.0 42.7

Table 6.2: Simulation results for different network configurations. Throughput is

measured in flits per cycle per port, at the maximum traffic generation rate of 1 flit

per cycle per port. Latency is measured in cycles.

the network, namely 1 flit per cycle per port. Higher traffic rates would saturate the

source queue in the terminal. In that case several packets would be dropped, and

the mixture rate could change. For example, a mixture ratio of 30% means that each

cycle there is a 77% probability of generating a packet. Additionally, the generated

packet has two flits with a probability of 30%, and one flit with a probability of

70%. As a result, the average rate of flit generation is 1.0 per cycle.

We simulated fair arbitration and winner-take-all arbitration methods as de-

scribed in Section 5.4.3.3. The variation in latency and throughput for 64-terminal

network is shown in Figure 6.4. The wide flit case assumes that the flit width is

doubled so that any one of load or store operations fits in a single flit.

Simulations show that using multiple flits for store instructions improves through-

put for almost all mixture ratios. There is no significant difference between two

methods of arbitration. Layout of both arbitration primitives shows that the in-

106

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Rate of store instructions

T
hr

ou
gh

pu
t i

n
fli

ts
 p

er
 c

yc
le

Winner take all
Fair arbitration
Wide flits

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Rate of store instructions

La
te

nc
y

in
 c

yc
le

s

Winner take all
Fair arbitration
Wide flits

Figure 6.4: 64-terminal MoT simulation results for different methods of handling

store operations.

crease in clock period due to additional logic is negligible. Latency is improved for

low amounts of store instructions, but this could also be caused by the source queue

implementation.

For 64-terminal network, fair arbitration has slightly lower latency. Additional

simulations show that for a 4-terminal network, winner-take-all has lower latency.

We conclude that the number of flits in a store instruction is not sufficiently high

to make a difference in latency. Further studies with more flits per packet would

be beneficial to evaluate MoT performance for cases where multiple data words are

moved through the network, such as loading or storing long vectors or streams.

107

Config. 4 8 16 32 16 p 32 p

Clock Rate 970 890 680 578 748 764

Bits per flit 26 28 30 32 30 32

Peak Tput 101 199 326 592 359 782

Avg Tput 88.6 180 302 563 334 747

Low trf lat 8.64 10.8 12.8 14.8 13.5 17.8

High trf lat 18.0 16.9 17.9 19.3 18.7 22.6

Cell area 0.08 0.41 1.89 6.5 1.88 7.3

BBbox area 0.16 0.74 3.21 13.4 3.21 13.4

Power 72 268 794 N/A∗ 967 N/A∗

Table 6.3: Comparison of MoT configurations after layout. The letter ’p’ indicates

pipelined configuration. “BBox” stands for bounding box. Clock rates are in MHz;

throughput values are in Gbps; latency values are in cycles; area values are in mm2;

power is in mW . ∗Due to constraints on computing resources, these results are not

available.

6.3.2 Layout Results

Following the standard flow of the Cadence tools, we synthesized, placed and

routed networks with different configurations. Table 6.3 shows the area and perfor-

mance results.

We extended the 8-terminal configuration with power routing and I/O pads

for fabrication. The final layout is shown in Figure 6.5.

Table 6.3 shows that the clock frequency decreases as the number of terminals

108

PLL

T1 T0
T2T3
T4T5

T7 T6

IN

Figure 6.5: Final layout of 8-terminal chip.

increases. This is mainly caused by longer wires on the critical path. Results of

pipelined configurations 16p and 32p show the benefit of pipelining on frequency and

throughput. Average latency increases in pipelined configurations due to increased

number of stages between some sources and destinations.

Partitioning constraints prevented optimal pipeline placement on long wires.

Therefore, the improved frequency did not reach the expected level of an 8-terminal

network. Reducing the critical length for pipelining could improve performance.

Pipeline circuits would be placed within the partitions, instead of between them.

Such improvements could incur additional area and latency cost. Evaluation of these

trade-offs requires further studies.

Table 6.3 shows that the cell area of laid-out networks exceeds estimations

(Table 6.1), since the layout tool optimizes for performance by inserting repeaters

and using larger cells.

Cell area of 32p is larger than 32, as expected, due to additional pipeline

stages. In 16p, the area of added pipeline stages turn out to be comparable to large

repeaters on long wires of 16. Therefore, the area of 16p is approximately equal to

the area of 16.

109

The area of the bounding box is approximately twice as much as the cell

area, because of the gaps between partitions, and overestimated design margins.

We introduced gaps between partitions in order to level the partitions with the

terminals (Figure 6.2). The amount of gaps depend on the area and aspect ratio of

terminal circuits. In an ongoing study, we are investigating the relationship between

processor geometry, and MoT area and performance. In this prototyping study we

did not optimize for the area. However, based on Table 6.1, we expect the actual

area to be close to the cell area.

Power consumption has been estimated based on the layout, and simulated

switching activity with highest traffic rate. As expected, the power consumption

grows quadratically with the number of terminals, that is, at the same rate as the

number of cells. Pipelining increases power consumption by both adding more cells,

and increasing operating frequency. In this study, we did not optimize for power

consumption. However, typical approaches such as clock-gating could reduce power

consumption.

6.4 Physical Testing

After fabrication, bare dies of the MoT chip (Figure 6.6) have been packaged

(by third-party suppliers), and tested, as previously described in Section 3.5.3.

A functionally correct chip is expected to operate similar to the simulations,

and generate same statistical data for throughput and latency. It turns out that

none of the tested chips generate any data, and they show signs of being defective.

110

Figure 6.6: Die photo of 8-terminal chip.

Our tests and results are listed below.

First, we verified that the inputs to the network chip are similar to the sim-

ulation signals. In that case, a regular write-execute-read sequence is expected to

produce the simulated waveform shown in Figure 6.7. Instead, we observed the

waveform in Figure 6.8, where no output is produced at SEROUT signal.

Figure 6.7: Simulation output.

Next, we tried to observe the read phase of our regular sequence in isolation.

111

Figure 6.8: Test output 1.

Simulation suggests that we expect to observe a change in SEROUT signal, which

is a 2-bit wide serial output signal. However, as shown in Figure 6.9, no output is

observed, again.

This behavior, namely no output at SEROUT, is unexpected; because accord-

ing to the state machine design, and the simulations of the terminal module, a state

change occurs when MODE2 input receives a pulse. In the new state, SEROUT

cannot have the value 0, but it must have a value of 1 or 3. Two experiments that

we described above suggest that this state change may not be occurring as expected.

Another alternative is that the state changes properly, but SEROUT is defective.

Our tests are not conclusive, because we cannot observe any repeatable pattern

as response to out inputs. Furthermore, we cannot observe or control any signal in

the chip. Next, we discuss how this can be achieved in the future.

112

Figure 6.9: Test output 2.

6.4.1 Lessons Learned

As a result of this experiment, we realize that on-chip diagnosis and testing

mechanisms are crucial for such prototyping studies. These mechanisms are available

as part of industry-standard design tools, and they are called “Design For Testing”

(DFT) components [17].

Our network chip did not include these components because of time constraints

that we had during layout design. The layout that has been embedded in XMT

processor design has been finished later, and as a result it contains these components.

According to [17], DFT components can be inserted in a design with either

partial, or full coverage over all flip-flops in the design. Full coverage provides the

ability of observing all flip-flops at a desired instant during operation. On the other

113

hand, with partial coverage some flip-flops cannot be observed.

Based on our experience with this prototyping study, we strongly believe that

there are great benefits to apply full DFT coverage for any chip that contains com-

plicated digital systems such as the MoT network and multiple terminal circuits, at

least for the first prototype.

114

Chapter 7

Area Improvement Through Hybridization

7.1 Introduction

In earlier chapters we discussed the Mesh-of-Trees (MoT) network, and eval-

uated its cost and performance. Our results show that the register area of MoT

grows quadratically with number of network terminals, making it impractical for

large systems with many terminals.

In this Chapter, we propose hybrid MoT networks called MoT-BF, where

we replace part of MoT network by butterfly (BF) networks of small scale. A

BF network is area efficient, but it performs poorly under heavy traffic in terms of

throughput and latency, particularly when the number of network terminals is large.

In a hybrid network, traffic is diluted through MoT network; hence each mini-BF

is subject to low traffic, mitigating the high traffic performance loss of pure BF

network. We conduct a comprehensive evaluation of the proposed hybrid MoT-BF

network in terms of area, latency and throughput. Mathematical analysis, cycle-

accurate simulation and post-layout results all show that the proposed hybrid MoT-

BF network can significantly reduce the area cost of MoT network with negligible

performance degradation.

115

7.2 Hybrid MoT Network

Earlier studies considered hybrid networks to optimize network cost and per-

formance. A notable example is the Cube Connected Cycles (CCC) network [82],

proposed to optimize high switch degree of hypercube networks. CCC network is

built by replacing corners of a 3-dimensional cube with a group of terminals that are

interconnected by a smaller ring network. This reduces the degree of each switch

node of a CCC network from O(log N) to O(1), where N is the number of terminals.

We propose a hybrid MoT-BF network, where inner levels of trees are replaced

by mini-butterfly networks. We chose BF network due to its proven area efficiency

[28].

7.2.1 Network Architecture

In a regular MoT network with N PCs and N MMs, we enumerate the levels of

fan-out and fan-in trees by {0, 1, ..., log N − 1}, where the root node is at level 0, its

children are at level 1, and so on. In a hybrid MoT-h-BF network, we replace the h

inner levels (levels numbered {log N −h, log N −h+1, ... log N −1}) of both fan-out

and fin-in trees by BF networks. We refer the number h ∈ {0, 1, 2, ... log N−1, log N}

to as the hybridization level. The remaining fan-out and fan-in trees both have

log N − h levels. They are connected by (N/2h)2 mini-BF networks with h stages

or 2h terminals. (see Figures 7.1(b) and 7.1(c) for an MoT-1-BF network with N=8

terminals). Also note that pure MoT and pure BF networks can be represented as

MoT-0-BF and MoT-log N -BF, respectively.

116

BF

BF

BF

BF

BF

BF

BF

BF

BF

BF

BF

BF

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(a) 8-terminal butterfly network.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(b) 8-Terminal MoT.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(c) 8-Terminal MoT-1-BF.

BF

Detail of MoT

Detail of MoT−1−BF

To 1

To 0

To other fan−out nodes

From 0

From other fan−in nodes

To other mini−BF
From other mini−BF

From 0

To 0

To 1

From 1

From 1

(d)

Figure 7.1: Butterfly, Mesh-of-Trees, and Hybrid Networks. (a) Butterfly network

with 2x2 BF switch primitives, connecting 8 sources (numbered squares) and 8 desti-

nations (numbered circles). (b) MoT network. (c) MoT-1-BF network. 3 Innermost

columns of MoT network are replaced by mini-BF networks (black squares). (d)

Details of the conversion. BF box in (a) and (d) represents the butterfly primitive

in Figure 5.11.

117

The main drawback of BF network is its poor performance (low throughput

and high latency) at high traffic rate [10]. The proposed hybrid MoT-h-BF network

reduces the traffic through mini-BF networks by the fan-out trees. Each root of the

fan-out tree in the MoT-h-BF network will have 2log N−h = N/2h leaves. If λ is the

amount of uniform traffic in terms of flits per cycle that enters the root of fan-out

tree, each input to the mini-BF networks, which is the leaf of the fan-out tree, will

have a reduced traffic rate of 2hλ/N in average, which is 0.25λ for the MoT-1-BF

network with N=8 in Figure 7.1(c). This will significantly reduce the congestion

and performance loss in BF networks at high traffic rates.

The original MoT tree [10] is built with three primitives (Figures 5.8, 5.9,

and 5.10). The fan-out tree primitive performs a routing operation by directing

an incoming flit to one of the two outputs. A fan-in tree primitive performs an

arbitration between two incoming flits and sends the winner to the next stage.

Finally, a pipeline primitive is used to cut long wires in shorter segments if necessary.

An additional butterfly primitive (Figure 5.11) is used for building the hybrid MoT-

BF network. Each primitive consists of 2 clocked wc-bit1 registers per input channel,

several mux and demux and control logic that handles routing and arbitration. In

an empty network, a packet spends one clock cycle in each primitive. In case of

contention and stalls, proper backward signaling and using the second wc-bit buffer

prevents overwriting stalled data.

1wc is the number of bits in a channel, typically 32.

118

7.3 Evaluation

We evaluate the proposed hybrid MoT-BF network in five categories, register

count, minimum latency, throughput-area trade-off, network latency at different

traffic rates, and post-layout throughput. We compare the proposed network to

MoT, replicated BF, and virtual-channel BF networks.

7.3.1 Register Count

Modern VLSI processes can provide almost up to 10 metal layers, and this

number increases every few generations. As a result, wire complexity becomes a

secondary concern, at least for reasonably small scale networks, such as 64 terminals.

The network area is dominated by the data registers. Therefore, we measure register

count of networks, which is directly related to the area cost.

In typical virtual-channel routing switches [28], there are v virtual channels

per input and output port to improve performance. Each virtual channel uses

at least one wc-bit register for one data packet. In MoT, RBF and MoT-h-BF

networks, each switch primitive has either one or two input and output ports and

no virtual channels. In all types of switches, the control circuit consumes negligible

area compared to data registers.

Mesh of Trees A MoT network consists of N fan-out and N fan-in trees,

each with (N − 1) nodes. The leaves do not contain switching circuits, since they

are only wire connections. Using the primitive circuits of [10], the total number of

wc-bit registers is R = 6N (N − 1) = O(N2).

119

Virtual-Channel Butterfly Switches of butterfly network have a total of

2 ·N log N input and output ports with v virtual channels each. Then, the number

of registers becomes R = 2 · v · N log N = O(vN log N).

Replicated Butterfly Replicated butterfly switches have two registers per

input, and no virtual channels. The network consists of r copies of a regular butter-

fly, and binary trees between the network and source/destination modules In total,

they have R = 6 · N(r − 1) + 2 · r · N log N = O(rN log N) registers.

Hybrid MoT-BF A MoT-h-BF network with N terminals has N fan-out and

fan-in trees, with log N−h levels. Additionally, there are (N/2h)2 mini-BF networks

with h stages. BF primitives have two registers per input, and no virtual channels.

As a result, a MoT-h-BF network has R = 6N(N/2h − 1) + (N/2h)2 · 2h · 2h =

O(hN2/2h) registers.

Table 7.1 compares register counts of MoT-BF and pure MoT networks for

small number of terminals, up to N = 64. A 64-terminal MoT-1-BF network has

approximately 34% less registers compared to pure MoT.

It is also important to observe the asymptotical behavior of register count.

Since h varies between 0 and log N , the number of registers for MoT-h-BF net-

work is asymptotically upper bounded by pure MoT network; and asymptotically

lower bounded by pure BF network. For example, if h = log N/2, then R =

O(N
√

N log N).

120

N 8 16 32 64

MoT 336 1440 5952 24192

MoT-1-BF 0.62 0.64 0.66 0.66

MoT-2-BF 0.33 0.38 0.40 0.41

MoT-3-BF 0.14 0.20 0.23 0.24

Table 7.1: Register count of some hybrid MoT-BF networks normalized to MoT

with same number of terminals.

7.3.2 Minimum Latency

Minimum latency is the time in clock cycles, for a packet to travel from source

to destination through an empty network. Usually it is averaged over all source-

destination pairs, however it does not vary between such pairs in any of the consid-

ered networks.

Mesh of Trees A packet travels log N stages in the fan-out tree, and log N

stages in the fan-in tree. Each stage takes one clock cycle [10]. The overall latency

is L = 2 log N .

Virtual-Channel Butterfly The butterfly network has log N stages of switch

nodes. A packet takes three cycles to pass through a regular virtual-channel switch,

or at least two cycles to pass through a speculative virtual-channel switch [79].

Assuming regular switches, the minimum latency of a virtual-channel butterfly is

L = 3 log N .

Replicated Butterfly In a replicated butterfly network with r copies, the

packets travel through a log r stage trees before and after the butterfly. Assuming

121

single-cycle switches, the minimum latency is L = 2 log r + log N .

Hybrid MoT-BF In a MoT-h-BF network, packets pass through log N − h

levels of fan-out and fan-in trees before and after h level butterfly. With single-cycle

switches, the minimum latency is L = 2 log N − h.

As h is limited between 0 and log N , the minimum latency of MoT-h-BF

network varies between log N and 2 log N for different hybridization levels.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ax

im
um

 p
er

−
cy

cl
e

th
ro

ug
hp

ut
 (

fli
ts

 p
er

 c
yc

le
 p

er
 p

or
t)

Total number of registers

8 Terminal Networks

Hybrid MoT−BF
Butterfly with VCs
Replicated Butterfly
MoT

0 2 4 6 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ax

im
um

 p
er

−
cy

cl
e

th
ro

ug
hp

ut
 (

fli
ts

 p
er

 c
yc

le
 p

er
 p

or
t)

Total number of registers

64 Terminal Networks

Hybrid MoT−BF
Butterfly with VCs
Replicated Butterfly
MoT

v=2

v=4

v=8

r=1

r=8

h=3

h=0

Figure 7.2: Cost-performance comparison of different network configurations. In

each plot, upper left region represents high performance and low area. On the

curves, number of virtual channels for VCBF doubles from left (v = 2) to right

(v = N). For RBF, the number of copies doubles from left (r = 1) to right (r = N).

For MoT-h-BF, the hybridization level decreases from left (h = log N) to right

(h = 0).

7.3.3 Throughput-Area Trade-off

We evaluated maximum throughput of each network by cycle-accurate simu-

lations. For virtual-channel butterfly network, we used the simulator of [28]. For

122

other networks, we use the simulator of [10].

In order to evaluate the maximum throughput provided by each network

model, we assume the maximum packet generation rate of one flit per cycle at

each input port of the network2. At this generation rate, the network will saturate

with packets, and the injection and delivery rates will come to balance at the max-

imum throughput. We assume uniform traffic pattern, which is expected for the

memory architecture described in Section 2.2. Uniform traffic pattern is a reason-

able assumption due to the use of hashing mechanism, which has an effect similar to

randomization that distributes the memory accesses evenly among modules [2,7,35].

We simulated networks for N = 8, 16, 32 and 64 (see Figure 7.2 for N = 8

and N = 64). For each network size, we tuned the throughput by modifying the

amount of registers, which are directly related to area cost. Specifically, we modified

number of virtual channels v in virtual-channel butterfly, and number of copies r in

replicated butterfly networks. As expected, we see that the maximum throughput

increases for each network as the number of registers increases, Hybrid MoT-BF

network outperforms both BF networks.

7.3.4 Latency and Throughput vs. Traffic

As network traffic increases, packets will experience longer latencies, and net-

work throughput will saturate. We use a Bernoulli model to generate packets [28],

with generation rates varying from 0.1 to 1.0 flits per cycle per port. The network is

2Note that in several other studies of interconnection networks, long data packets may be

divided into shorter units, called flits. In this network, each packet consists of a single flit.

123

warmed up until throughput saturates, then marked packets are injected for latency

measurement. We are particularly interested in the case when traffic rate, or the

on-chip parallelism is high.

Results are shown in Figure 7.3. At lower traffic rates networks with high

hybridization levels have lower latency, because they have fewer stages. At higher

traffic rates, packets start to interfere with each other. Networks with lower hy-

bridization levels perform better, and their throughput saturates at higher traffic

rates.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

Input Traffic (flits per cycle per port)

La
te

nc
y

(c
yc

le
s)

MoT
MoT−1−BF
MoT−3−BF
MoT−5−BF

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.6

0.7

0.8

0.9

1

Input Traffic (flits per cycle per port)

T
hr

ou
gh

pu
t (

fli
ts

 p
er

 c
yc

le
 p

er
 p

or
t)

MoT
MoT−1−BF
MoT−3−BF
MoT−5−BF

Figure 7.3: Latency and throughput of 64-terminal hybrid networks as input traffic

changes. There is no notable difference among networks when traffic rate is lower

than 0.6 flits per cycle. Pure MoT results are also plotted for comparison.

124

7.3.5 Post-Layout Throughput

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140

160

180

200

220

A
ve

ra
ge

 c
um

ul
at

iv
e

th
ro

ug
hp

ut
 (

G
bp

s)

Total number of registers

8 Terminal Networks

Replicated Butterfly
MoT
MoT−h−BF

r=1

r=2

r=3
r=4

h=3

h=2 h=1

h=0

Figure 7.4: Post-layout throughput of MoT, replicated BF and MoT-h-BF networks.

Each flit is assumed to be 32-bits wide.

In general, throughput is measured in terms of Gigabits per second (Gbps).

This value is determined by number of bits in a flit, number of flits delivered per cycle

(per-cycle throughput), and clock rate. The number of bits in a flit usually depends

on the width of the data path, and it depends on the environment, i.e. the parts of

the system that remain outside the network. We assume that this parameter will

remain constant with different networks and configurations. Per-cycle throughput

depends on network type and architecture. It is usually measured through network

simulations (Sections 7.3.3 and 7.3.4). The clock rate depends on technology-specific

parameters, network and router architecture, and physical layout of the network.

125

Many earlier studies of interconnection networks omit this component, or make safe

assumptions because VLSI issues such as wire delays could be neglected at older

technologies. On the other hand, some recent studies recognize the importance of

the issues and discuss clock rate as well [4].

We create layouts for 8-terminal MoT, RBF and MoT-h-BF networks in order

to compute their highest clock frequency and layout-accurate throughput in terms

of Gbps. We use ARM regular-Vt standard cell library and IBM 90nm (9SF) CMOS

technology. Results are shown in Figure 7.4.

Clock rate of a pure MoT network is the highest among all measured networks,

because MoT primitives have shortest delays. Therefore, it has highest throughput

in Figure 7.4. BF primitives perform more complex operation, and this increases

their delay. Hybrid networks contain both faster MoT primitives and slower BF

primitives. Place and route tools are capable of balancing the wire delays among

these primitives to optimize clock rate. As a result, the operation frequency of

hybrid MoT-BF networks lies between pure MoT and pure BF networks.

7.4 Summary

A hybrid network architecture incorporating mesh-of-trees (MoT) and butter-

fly (BF) networks was presented. MoT provides superior performance with O(N2)

area cost, where N is the number of network terminals. BF network provides poor

performance with O(N log N) area cost. We replaced inner levels of MoT network

with mini-BF networks to build the MoT-BF hybrid network. Based on our analy-

126

sis, area cost of MoT-BF network lies between pure MoT and BF networks. Under

uniform traffic assumption, traffic through mini-BF networks is diluted by preced-

ing fan-out trees. This reduces congestion and related performance loss in mini-BF

networks. Simulation results validated that MoT-BF performance is between MoT

and BF networks up to 64 network terminals.

Operating at same clock rate, a 64-terminal MoT-1-BF network gains 34%

area by sacrificing only 0.5% throughput with respect to pure MoT network. At

the same time it has approximately 2.5% higher throughput with respect to a RBF

network with similar area.

Combining simple MoT primitives with more complex BF primitives allows

place-and-route tools to balance wire delays accordingly. Resulting layouts of hybrid

networks have maximum clock frequencies between pure MoT and pure BF networks.

Post-layout throughput of 8-terminal MoT-1-BF is 22% higher than a RBF network

with comparable area cost. Pure MoT network has much higher throughput, mostly

because of its higher clock rate.

127

Chapter 8

MoT Network as Part of XMT Parallel Processor

In earlier chapters we presented and evaluated the MoT network. In this

chapter we embed the MoT network in eXplicit Mult-Threading (XMT) parallel

processor architecture, and evaluate in that context.

First, we discuss deadlock conditions, and evaluate methods to eliminate dead-

lock. Next, we run several applications on the XMT processor, and evaluate the MoT

network by comparing it with a butterfly network.

8.1 Deadlock

Earlier, we focused on a single MoT network, that transmits messages from

sources to destinations. In a single-chip parallel processing context, the communi-

cation between PCs and MMs is two-directional. Namely, memory requests are sent

from PCs to MMs; and memory responses, such as data or acknowledgment, are

returned from MMs to PCs.

First, we consider a configuration, where both requests and responses use a

single network, and show that deadlock can occur in this arrangement. Next, we

discuss four methods to eliminate deadlock, and evaluate their cost and performance

effects.

128

0

1

2

3P
ro

ce
ss

in
g

C
lu

st
er

s
2

0

1

3

M
em

or
y

M
od

ul
es

A1

A2

A3

A0

R0

R1

R2

R3

(vi)
(iv)

(v)

(i)
(ii)

(iii)

Figure 8.1: Single MoT network in XMT.

8.1.1 Conditions for Deadlock

Without loss of generality we assume that each PC injects at most π flits to the

network, until the response of one of the injected messages returns. We also assume

that each MM has µ buffers to store incoming messages before processing them.

Once a message is processed, it is removed from the buffer, and an appropriate

response is injected to the network. We also assume that each routing (fan-out)

primitive has enough buffers for βR flits; and each arbitration (fan-in) primitive has

enough buffers for βA flits per input.

Consider Figure 8.1, where memory requests and responses share the same

network. We call this single network configuration. In the figure, only connections

to and from PC0 and MM0 are shown for clarity. Memory access from PC0 to

MM0 occurs as follows. The request leaves PC0 as shown in arrow (i), and enters

the network after one level of arbitration at node A0. When it reaches its destination,

it passes through one level of routing in R0, and enters MM0 (ii). A response leaves

129

MM0 (iii), and passes through one level of arbitration in A0 (iv) before entering the

network. After the network, it passes through one level of routing in R0 (v), and

enters PC0 (vi).

A necessary condition for deadlock is cyclical dependencies between network

resources [28]. Although the MoT network does not contain such dependencies, they

may arise when we consider round-trip memory accesses as described above. For

example, with sufficiently many memory accesses from PC0 to MM0, all buffers

on the path between A0 and R0 nodes and all µ buffers in the memory can be

occupied with requests. Then, once MM0 tries to send a response, it cannot enter

the network because of the blocked path. More formally, if Bcycle represents the

total message buffering capacity of the above mentioned cycle, deadlock occurs if all

Bcycle resources are occupied. Bcycle is computed as shown in Equation (8.1). This

example shows that deadlock is possible in single network configuration.

Bcycle = µ + (log N + 1) (βR + βA) (8.1)

In the worst case, all of the N PCs send π requests to one of the MMs, say

MM0, without receiving any response. If the total number of flits, Nπ is less than

Bcycle (8.2), there will be at least one empty buffer space that will allow the flow of

responses. If Nπ ≥ Bcycle, deadlock is possible.

N · π < µ + (log N + 1) (βR + βA) (8.2)

130

8.1.2 Deadlock Prevention Methods for XMT

Typically, deadlock can be avoided by eliminating cycles that are explained in

previous section, or preventing the occurrence of them. We consider the following

approaches for this purpose.

1. Increasing µ. More buffers can be added at each MM. This increases the

capacity of deadlock-causing cycles. Such buffers may already be in use in

MMs, since some memory requests are sent off-chip, and some record of these

requests need to be stored until off-chip response is available.

2. Limiting π. By means of software or hardware methods, the injection process

from PC to the network can be controlled [61]. If the amount of injected flits

is limited, buffers in the cycles fill not fill-up and cause deadlock.

3. Increasing βR or βA. Increasing the number of buffers in a fan-out and

fan-in nodes would increase cycle capacity, but incur performance penalties as

discussed in Chapter 5.4.

4. Using virtual channels. Cycles can be eliminated by assigning requests

and responses to different virtual channels [28]. This approach would increase

hardware cost, as well as the complexity of the switch primitives, causing lower

performance [79].

5. Using a second network. By directing request and response traffic in two

different networks in opposite directions, cycles can be eliminated [28]. Fig-

ure 8.2 shows this configuration with 4 PCs and 4 MMs.

131

0

1

2

3

2

0

1

3P
ro

ce
ss

in
g

C
lu

st
er

s

Memory Modules

2

0

1

3

Figure 8.2: Two-network configuration of XMT with 4 PCs and 4 MMs. PCs on

the left are also drawn with dotted lines on the right to show the connection of the

second network.

8.1.3 Cost of Deadlock Prevention

Most of the proposed methods require additional amounts of buffers. First

three methods increase the capacity of deadlock causing cycles, and the last two

methods eliminate such cycles completely. We evaluate and compare each method

below and summarize in Table 8.1.

Based on (8.2), deadlock can be avoided if µ is increased as shown in (8.3).

If π = O(1), this approach requires an additional cost of O(N2) buffers in all N

memory modules. Otherwise, the cost is O(πN2). Additional buffers may increase

logic complexity of MM and cause performance penalties.

µ > Nπ − (log N + 1) · (βR + βA) (8.3)

In order to prevent deadlock by limiting π, the relation (8.4) shows the nec-

essary condition. This method may be suitable for small systems, or systems that

132

already imply a limit on π by using blocking memory accesses. However, as N in-

creases π is limited by O(log N/N), and does not scale well. Furthermore, artificially

limiting π may have adverse effects on overall system performance, when functional

units in PCs depend on the availability of data. For medium-sizes systems, this can

be combined with the first approach to increase memory buffer by less than O(N)

per MM as shown in (8.3).

π <
µ

N
+

1

N
(log N + 1) · (βR + βA) (8.4)

Based on (8.2), deadlock can also be prevented as shown in (8.5). If we rewrite

equation (4.9) to reflect variable values of βR and βA in MoT area, we obtain that

MoT area is O((βR + βA)N2). Combining this with (8.5), the area cost of this

approach becomes O(N3

log N
π(βR + βA)). This approach increases the complexity of

switch primitives and reduces clock rate. Furthermore, increased area implies longer

physical distances for wires. This reduces clock rate further.

N · π − µ

log N + 1
< βR + βA (8.5)

Virtual channels can be used to break dependency cycles that may cause dead-

lock [26]. In a plain MoT network, a single physical channel between two switch

primitives ends at the input buffer of a primitive. With virtual-channel method,

one can split the input buffer into two, and use one of them for requests, and the

other one for responses. As a result, requests and responses do not use same re-

sources, and no cyclical dependency is created. Assuming that the additional logic

133

area in negligible, this method requires double the amount of buffers in a MoT net-

work. Therefore, its hardware cost is the same as the cost of a regular MoT network

(Table 8.1). Using virtual channels in switch primitives increases the logic complex-

ity and delay [79], as we already demonstrated in Chapter 5.5.1. Larger area also

increases the wire lengths and consequently the wire delays.

Finally, we consider using a second MoT network to avoid deadlock. Memory

requests use one network, and responses use the other network. This approach has

the same register cost as the virtual channel approach. Essentially, this method

duplicates physical channels, as well as the input buffers. As a result, the amount of

wires will increase compared to virtual channel approach. In terms of performance,

the logic complexity of switch primitives does not increase, as it is the case with

virtual channels. On the other hand, wire delays will increase similar to the virtual-

channel approach, because the area increase is same.

In terms of hardware and performance, virtual channels and second MoT seem

to be the least expensive methods for XMT context. We assume that the perfor-

mance loss due to wire delay is same for both approaches, because of same amount

of change in area. Second MoT does not have the disadvantage of increased logic

delay. Therefore, this approach seems to be the most feasible method.

8.1.4 Summary

We evaluated deadlock conditions of MoT network in XMT context. Similar

to some other networks, such as butterfly, MoT network is deadlock free, when it is

134

Method Hardware Cost Performance Cost

Increasing µ O(πN2) in MM Higher MM complexity

Limiting π None in PC, MM or MoT Idling units in PC

Increasing βR + βA O(N3

log N
π(βR + βA)) in MoT Longer logic and wire delay

Using virtual channels O(N2) buffers in MoT Longer logic and wire delay

Using a second network O(N2) second MoT Longer wire delay

Table 8.1: Comparison of deadlock avoidance methods.

considered individually. In a parallel processor context, the environment surround-

ing the network imposes additional constraints. We discussed these constraints, and

compared five methods to avoid deadlock. Based on register area and performance

costs, using a second network seems to be the least expensive method.

8.2 Application Simulation on XMT

We use a development version of XMT compiler to compile and execute the

following applications:

1. Array Increment We perform an arithmetic operation (increment by one) on

each element of an 256k-long array. The inc-1 program computes one element

of result array in one parallel iteration, whereas inc-8 computes 8 elements at

once.

2. Matrix Multiplication In matmul-1 and matmul-2 we compute the product

of 2 64×64 matrices. In one parallel iteration matmul-1 computes one element

135

of the result matrix, and matmul-2 computes 2 elements. Programs inc-8 and

matmul-2 are expected to generate higher traffic than inc-1 and matmul-1

respectively.

3. Fixed-point FFT In FFT, we apply a fixed-point FFT implementation on a

64k-long data array, where each parallel iteration computes fixed-point FFT

of two points, and intermediate results are stored in the memory.

We tune these programs to generate low or high traffic, without changing the

total amount of work required by the data set. In all cases we use the same data

set and algorithms.

First, we vary the number of execution units (or hardware threads) connected

to each network port based on the available options in the hardware model of [105].

In this specific implementation, one network port can connect to a cluster of 4, 8 or

16 hardware threads. If one hardware thread generates a specific amount of traffic

when executing a given piece of code, multiple threads executing the same code will

generate a higher amount of traffic.

Second, we vary the number of computed result elements in each parallel

thread. We assume that there is a constant overhead for creating each parallel

execution thread [105]. As a result, if each thread computes multiple elements of

the result set, the average amount of traffic generated during each thread will be

larger compared to computing single element per thread.

136

8.2.1 Application Traffic and Execution Time

We conduct preliminary study on the execution of real life program to demon-

strate the effectiveness of the proposed MoT network. The five applications we use

are listed in Table 8.2. In inc-1 and inc-8 we perform an arithmetic operation (incre-

ment by one) on each element of an 256k-long array. The inc-1 program computes

one element of result array in one parallel iteration, whereas inc-8 computes 8 el-

ements at once. In matmul-1 and matmul-2 we compute the product of 2 64 × 64

matrices. In one parallel iteration matmul-1 computes one element of the result

matrix, and matmul-2 computes 2 elements. Programs inc-8 and matmul-2 are ex-

pected to generate higher traffic than inc-1 and matmul-1 respectively. In FFT,

we apply a fixed-point FFT implementation on a 64k-long data array, where each

parallel iteration computes fixed-point FFT of two points, and intermediate results

are stored in the memory. The programs are compiled by a development version of

XMT compiler.

The FPGA prototype of XMT processor, as described in [105], consists of 64

light-weight processors (hardware threads) grouped in 4 clusters. We configure its

hardware model to generate 1024 light-weight processors grouped in 64 clusters.

We build two MoT networks with N = 64 using Verilog, one form processors to the

memory modules and another one in the opposite direction, and integrate them into

the XMT processor. We execute the compiled programs and measure the execution

time in terms of cycles as reported by verilog simulator. We exclude the time,

during which data is uploaded before execution, and the result is downloaded after

137

execution. We also measure the average traffic rate that enters the interconnection

network from processors towards the memory, by tracing the flits at network ports.

For comparison, we implement a butterfly network (Replicated Butterfly with N =

64, r = 1) in Verilog and conduct the same simulation.

Table 8.2 reports the execution time (in 103 cycles) and traffic rates (in flits

per cycle per port) on two interconnection networks for the same processor. We

make the following observations:

1. In average, MoT network accepts more traffic per cycle, for example, 69%

more on the tested applications compared to the butterfly network.

2. The execution time of these applications is reduced by approximately the same

amount as the increase in traffic rate. This indicates that processor-memory

communication strongly impacts the execution time of the tested applications;

and the use of a high-throughput MoT network improves execution time.

3. The improvement is significant, even if the corresponding BF traffic is below

BF’s saturation throughput (Figure 5.13). This could be due to temporary

bursts in traffic demand, which are more efficiently handled by MoT.

4. When we increase the traffic rate of same program and data set, (from inc-1

and matmul-1 to inc-8 and matmul-2) the performance of the system with MoT

improves, whereas the performance of the system with BF slightly degrades.

This could be caused by higher contention due to increased flit conflicts.

138

App. inc-1 inc-8 matmul-1 matmul-2 FFT

BF Traffic 0.338 0.384 0.243 0.242 0.082

BF Exec 32.0 32.4 36.2 36.8 3007.3

MoT Traffic 0.527 0.929 0.392 0.458 0.085

MoT Exec 21.5 13.5 23.2 19.8 2934.4

Trf. Ratio 1.49 2.42 1.61 1.89 1.04

Exec. Ratio 0.674 0.412 0.641 0.538 0.964

Table 8.2: Simulation Results for Execution Time and Traffic Rate.

8.3 Layout of XMT ASIC chip

The XMT processor design [104,105] has been advanced from Verilog-HDL de-

scription to ASIC layout using standard-cell design methodology [6], and fabricated

at 90nm technology [44]. It contains 64 processors, also called hardware threads or

Thread Control Units (TCUs), grouped into 4 clusters of 16 TCUs. The chip also

includes a Master TCU, the MoT interconnection network, 8 cache modules, and

an interface for external memory. The individual components of MoT are outside

the scope of the thesis, with the exception of MoT network. This section briefly

describes the layout efforts, and performance results.

The final layout of XMT ASIC chip is shown in Figure 8.3. Its components

are shown in Figure 8.4:

• 1 Mesh of Trees Interconnection network is placed in the center of the chip,

between processing clusters and memory modules.

139

Figure 8.3: 10mm × 10mm layout of XMT ASIC chip with 64 processors.

• 2 Master TCU is placed close to network.

• 3-6 Processing clusters 0, 1, 2, and 3 are placed on one side of the network.

• 7 Phase Locked Loop (PLL) clock generator is placed close to the mid-section

of the chip, based on vendor specifications.

• 8-15 Cache modules 0 . . . 7 are placed on the right of the network. The network

has 4 outputs on the memory side. Each are split into in the space between

caches.

• 16 Memory controller and external memory interface, with I/O signal drivers,

covers the remaining portion of the chip.

The typical operating conditions for the standard cell library at IBM 90nm

140

2

3

4

5

6

7

8 9

1
10 11

12 13

14 15

16

16

Figure 8.4: Modules of XMT ASIC chip.

technology is 1.2V supply and 25oC temperature. The The layout results indicate

that the slow corner (1.08V, 125oC) operating frequency of this design is 154MHz.

This value reflects the operating frequency of the core components in the chip; the

external memory interface is designed to operate at 1/4 of that frequency, specifically

at 38.5MHz.

141

Chapter 9

Discussion

In this section we discuss the limitations of our approaches and results, and

potential benefits of overcoming them.

9.1 Limiting Factors for Clock Rate

In this section we discuss the factors that limit the clock rate presented in this

study. First we discuss three reasons that we observed between different stages of

our studies. Next, we discuss a limitation based on a standard method for VLSI

circuits.

9.1.1 Clock Rate Decrease Between Development Stages

We observe that the clock rate decreases as we move (1) from synthesis results

to layout results; (2) from single primitive results to network results; and (3) from

small scale networks to large scale networks.

The main reason for the decrease between synthesis and layout in case (1) is

the wire delay, which can be accurately evaluated only after the layout is completed.

This is a general issue with integrated circuits, including digital circuits following

similar design flows, and has been shown in other network studies [4]. As a related

issue, the floorplan also plays a role in determining the clock rate. We used a

142

partitioned floorplan approach to obtain our earlier published results [8], which is

also summarized in Chapter 6. It turns out that higher clock rates can be achieved

without partitioning the floorplan, and keeping the aspect ratio as close as possible

to a square. To support our reasoning, we performed preliminary experiments with

4, 8 and 16-terminal networks under these new conditions, and we compare clock

rates in Table 9.1. One disadvantage of this approach is that 32-terminal and larger

networks are too large for us to handle in one piece with the available computing

equipment. As a result there are too few data points to extrapolate to larger-scale

networks.

Configuration (Number of Terminals) 4 8 16

Clock rate with partitioned and separated floorplan [8] 970 890 680

Clock rate with unpartitioned and square floorplan 1010 1007 854

Improvement 4% 13% 26%

Table 9.1: Performance improvement with square floorplan. Clock rate is measured

in MHz.

In case (2), the reason of clock rate decrease between single primitive and

network is the changing critical path. In evaluating a single switch primitive, the

critical path is contained withing the primitive. On the other hand, in the network,

the critical path can be between two consecutive switch primitives. For example, the

critical path of arbitration primitive contains 6 levels of logic; and the critical path

of a fan-in tree, consisting of the arbitration primitives, contains 7 levels of logic.

This issue can be overcome by adding input and output registers to each primitive;

143

by separating logic operations of each primitive. However, this adds an additional

pipeline stage, and increases network latency.

As the network scales up in case (3), there is a fundamental limitation that

decreases the clock rate. In order to analyze that limitation, we first focus on switch

primitives, and note that the clock rate is determined by the largest sum of logic

and wire delay between two consecutive registers, or primitives. Assuming that

logic delay remains constant; increasing wire delay will reduce the clock rate. With

optimal amount of repeaters, the wire delay increases at the same rate (linearly)

as its length [84, 93]. Next, we focus on a network layout with area A. There are

multiple paths from inputs to outputs of the network. The physical distance of

longest path is Ω(
√

A). Assuming a square layout in the best case, the longest

distance is Θ(
√

A). If logic delay of all O(log N) switch primitives on the longest

path are equal, this path will be divided into O(log N) segments with equal distance

and equal delay in the best1 case. This delay will determine the clock rate. Now

we consider the best case scenario for clock rate as we scale up number of terminals

in MoT. As the MoT network with N terminals and O(N2) area scales up, the

physical length of the longest path will increase as O(N); however, the number

of segments will increase as O(log N). Then, the length of critical segment will

increase as O(N
log N

). As a result, large scale networks will suffer more from the wire

delay effects. A similar decrease in performance can also be observed in results of

Table 9.1. Additionally, this effect will also arise, when the network layout is not

1In worse cases, a suboptimal segment may have longer delay than others, and that particular

segment determines the clock rate.

144

square. As the layout shape approaches a long and thin rectangle, the longest path

approaches to O(N2). In that case, the longest segment will approach O(N2

log N
) and

clock rate will decrease.

Based on the above observation, clock rate can be improved by inserting

pipeline stages, or reducing the network area. As shown in Chapter 6, specifically in

Table 6.3, a heuristic pipeline insertion approach improves clock rate. On the other

hand, the hybrid network approach discussed in Chapter 7 reduces the network area

considerably. However, since butterfly primitives have higher logic delays, our lay-

out results with 8-terminal hybrid networks have lower performance compared to

regular MoT network, and performance gain from lower area cannot be observed in

this case. For larger-scale networks, a pipelined hybrid network may further reduce

the effects of wire delay. We outline the desired features of this approach as part of

future directions in Section 10.1 (NW.2).

9.1.2 Limitations of Standard-Cell Design Method

Another performance limiting factor is the logic delay of standard cells. In

practice, digital VLSI circuits are developed hierarchically. The design process ad-

vances from higher levels of abstraction to lower-level modules and components

(top-down design). The implementation process advances from lowest-level devices

to components, modules and the system (bottom-up implementation). Since it is not

practical to build large systems by manually implementing each transistor, libraries

of most commonly used logic functions are developed. These components, called

145

standard-cells, can be used as building blocks to develop larger systems. One dis-

advantage of this practice is that the circuit performance is limited by the features

and the quality of the available libraries.

We used commercially available standard cell libraries [6] with regular-threshold

voltage (RVT). Alternative libraries with low-threshold (LVT) cells provide the same

logic functionality with lower delay but increased power consumption. For example,

a FO4 delay in the slow process corner2 of LVT library is 45.4ps, which is 32% faster

than the FO4 delay of RVT library. On the other hand, power consumption of a

DFFX13 cell in LVT library is 10 − 18% higher compared to the same cell in RVT

library. In our studies we used regular cells because the definition of “low” threshold

may change depending on the foundry and advances in integration technology.

9.2 Potential Impact of Multi-GHz Operation

In this section, we discuss the difference that improving the clock rate of the

MoT network can make for XMT performance, and motivate further research. First,

we focus on the general impact, then we present a brief case study with preliminary

experiments.

Considering MoT network in isolation, higher clock rates imply higher band-

width and throughput, and lower latency in terms of wall-clock time. Based on our

discussion in Sections 2.3.1 and 4.7.3, the bandwidth of the network is computed as

N ·wc · fMoT , where N is the number of terminals, wc is the number of bits in each

2Same conditions as RVT library
3DFFX1 stands for regular (×1) sized D flip-flop in the standard cell library.

146

channel, and fMoT is the operation frequency of the MoT network. For example,

a 32-terminal network with 32-bit channels, operating at a hypothetical 1GHz fre-

quency, will have a cumulative bandwidth of 1024 Gbps. Assuming uniform traffic,

this network could reach a cumulative throughput of 986 Gbps, which is 96.3% of

its bandwidth (Table 5.4). The network latency in terms of cycles does not change,

regardless of the frequency value. On the other hand, with high-frequency operation

cycles become shorter. Therefore, latency decreases in terms of wall-clock time.

In the context of XMT, the benefits of high-frequency operation is limited by

the memory access characteristics of the application, and off-chip memory communi-

cation performance. We assume that, in general, off-chip memory bandwidth is less

than on-chip bandwidth; and off-chip latency is much larger than on-chip latency.

If an application frequently misses the cache, and issues off-chip memory requests,

the execution time will be limited by the off-chip access latency and bandwidth. In

practical implementations [101, 104, 105], effects of this bottleneck can be reduced,

but not completely eliminated, by prefetch operations. On the other hand if an ap-

plication frequently utilizes the on-chip cache, and rarely requires off-chip memory

access, benefits are significant, as we discuss next.

9.2.1 Case Study

We consider the MoT network in XMT context by observing a system with

three parts, namely N processing clusters (PC), an N -terminal network (MoT),

and N memory modules (MM). Each part can produce (generate) or consume at

147

most one flit per cycle per network terminal. We assume the operating frequency

of MoT network (fMoT) is maximized for a given implementation. We also assume

that MMs (fMM) operate at least at the same rate as PCs (fPC), because otherwise

MMs would create a significant bottleneck regardless of the network type, size and

performance. First, we discuss four interesting cases, then we support our discussion

with preliminary experimental results shown in Table 9.2. In the table, case numbers

correspond to the following cases.

1. fMoT = fMM = fPC . When the frequency of all three components increase

at the same rate, more memory requests will be generated per second, more

will be transferred to the consumers, and more will be consumed. If all three

frequencies are increased by factor of m, the execution may accelerate by up

to a factor of m. As a side effect, the m-times increase in frequencies will

generate up to m-times off-chip memory traffic, and off-chip access latency

increases by m in terms of PC cycles. This may reduce the speed-up, unless

the application entirely relies on on-chip memory.

2. fMoT > fMM = fPC . When the frequency of MoT network increases by

m, but other on-chip components remain same, same amount of memory re-

quests are transferred at a higher rate. Assuming that the production and

consumption rates at PCs and MMs remain same, the benefit in this case

the reduced latency of memory accesses. From PC’s point-of-view, transfers

occur up to m-times faster. The network’s internal bandwidth increases by

m due to increased frequency. However, the PC-to-network and network-to-

148

MM connection bandwidths remain the same, and they become throughput

bottlenecks.

3. fMoT = fMM > fPC . When the frequency of MoT is increased by m, together

with MMs, the bottleneck at the network-MM connection is eliminated. From

network’s point-of-view, the PC uses at most 1/mth of the available bandwidth.

As a result, memory access latency at comparable loads will be lower compared

to case (2). However, similar to case (1), this may increase off-chip memory

communication.

4. fMoT > fMM > fPC . Assume that fMoT = m1 · fPC , fMM = m2 · fPC , and

m1 > m2 > 1. From the network’s point-of-view, the bandwidth is capped by

MM, at m2

m1

of the network capacity. PC does not suffer from this cap, since

the cap is greater than the maximum generation rate of the PC, namely 1
m1

of

the network capacity. From the PC’s point of view, memory requests travel

up to m2 times faster in the network.

The above discussion shows potential benefits of operating the MoT network

at high clock frequencies in XMT context. A detailed analysis requires modification

of XMT components, which is beyond the scope of the current study. The cost of

such operation also needs to be investigated. We outline a relevant future study

direction in Section 10.1 (PP.1).

We support our performance analysis with preliminary experiment results in

Table 9.2. We simulated a 32-terminal MoT network with low, medium and high

traffic generation rates. We measured latency in network (MoT) cycles and PC

149

Case — Load PC gen. rate

(w.r.t. MoT)

MM acc. rate

(w.r.t. MoT)

Latency

MoT cycles

Latency

PC cycles

1 — L 0.1 1.0 13.1 13.1

1 — M 0.5 1.0 13.5 13.5

1 — H 0.9 1.0 17.4 17.4

2 — L 0.05 0.5 13.6 6.8

2 — M 0.25 0.5 14.5 7.3

2 — H 0.45 0.5 22.7 11.4

3 — L 0.05 1.0 13.0 6.5

3 — M 0.25 1.0 13.2 6.6

3 — H 0.45 1.0 13.4 6.7

4 — L 0.025 0.5 13.6 3.4

4 — M 0.125 0.5 13.8 3.5

4 — H 0.225 0.5 14.3 3.6

Table 9.2: Benefits of high-frequency network operation. PC generation and MM

acceptance rates are given with respect to MoT cycles. Load configurations labeled

as L, M and H represent 10% (low), 50% (medium) and 90% (high) of maximum

PC generation rate respectively.

cycles. To represent each case, we cap flit generation rate at PCs, and request

acceptance rate at MMs. Specifically, we used m = 2, m1 = 4, and m2 = 2 in

our simulations. Our results show the benefits in network latency as observed from

the PC’s point-of-view. Recent performance modeling of PRAM-like programming

150

(on XMT), links the execution performance improved by reducing the round-trip

time to memory. As a result our analysis can be used to motivate further studies to

optimize XMT architecture.

9.3 Applicability to Other Systems

The features and requirements of the eXplicit Multi-Threading (XMT) ar-

chitecture motivated and guided specific decisions and optimizations in the MoT

network described in this dissertation. However, the MoT network can be used in

other systems that require high throughput and low latency at high traffic rates.

In this section, we discuss some features of MoT network that allow inte-

gration in other systems without significant changes in the network architecture

or functions. We also note that some modifications may come with performance

penalties, requiring implementation-specific optimizations.

• Location. The MoT network can be placed between different levels of mem-

ory hierarchy, for example, between first and second levels of on-chip caches.

If the first level cache is able to catch most of the requests, then fewer re-

quests are sent to the second level. As a result, the bandwidth requirement

will be different from our current setting. Depending on the required band-

width, different configuration of hybrid networks may be used. In addition,

at different locations in the memory hierarchy, the network may need to carry

longer packets. We discuss that issue next.

• Packet Length. The MoT network is optimized to carry mostly one-flit

151

packets. For two-flit store packets, we relate two flits using a single extra

bit (chain or glue bit), that triggers a winner-take-all operation in arbitration

primitives, as described in Section 5.4.3.3. This method can be used to carry

longer packets with more flits, as well as a mixture of long and short packets,

without any hardware addition or modification in the network. However, the

performance of the network will suffer, since long packets will create head-of-

line blocking, and interfere and block others (Section 4.7.6).

Our preliminary experiments show that the maximum throughput of a 64-

terminal MoT network reduces from 0.98 fpc to 0.84 fpc per port, when

we use 8-flit packets, and keep generation rate at 1.0 fpc. This represents

a throughput reduction of 14%. A mixture of long and short packets may

improve performance. Furthermore, increasing number of registers in each

primitive may reduce the blocking effect and improve throughput at expense

of increased area.

• Data Width. The width of data channels has no effect on throughput and

latency, when measured in fpc and cycles respectively. However, it is an

important factor in determining the throughput and latency in terms of Gbps

and ns. Our network evaluations in Chapters 4 and 5 (e.g. Figures 5.13

and 5.14) do not assume a specific data width. Therefore, similar results are

expected with any number of bits in terms of data width. Furthermore, for

synthesis and layout generation, data width is used as a parameter, which can

be easily modified for different instances of MoT.

152

On the other hand, wider data may cause lower performance after layout;

however, such problems are not specific for MoT network, and can affect other

networks similarly. For example, the number of bits in the data directly affects

the number of flip-flops or latches in the design. This will result in increased

area and power figures with respect to presented results. Finally, as we dis-

cussed in Section 9.1.1, increased area may also impact clock rate.

• Tree Radix. Based on the specific requirements of the XMT system, we

used binary trees, with k = 2 children per parent, for routing and arbitration.

However, for different systems, trees with higher radix, i.e. with k > 2 children

per parent, can be used. We showed in Section 5.4.2 that the delay from

internal registers to output ports increases logarithmically with k. On the

other hand, the logarithmic increase of arbitration delay is shown in [91]. If

such delay can be tolerated, using trees with higher radix reduces the number

of hops between sources and destinations; and reduces latency.

It is also possible to build trees with varying radix at different levels. For

example, the root node of the arbitration tree may be chosen with k = 2, and

internal nodes can be chosen with k > 2. If the logical operation of primitives

is preserved, the layout tools need to balance the delays by modifying the

placement (wire length and delay) of the network. On the other hand, the

operation of an internal node is not as demanding as the job of the root node

due to diluted traffic at internal levels. Therefore, the operation of internal

nodes can be further optimized to reduce the cycle time.

153

Chapter 10

Future Directions and Conclusion

This thesis presented the Mesh of Trees network, and evaluated it in an easy-

to-program, explicitly multi-threaded parallel processor context. In this concluding

chapter we first discuss some possible future directions for research and development.

Following that, we present our concluding remarks.

10.1 Future Directions

We present and briefly discuss the following directions to extend this study in

the future. We separate them in three main groups: directions towards improving

network performance, labeled NW, directions towards improving parallel processor

(XMT or another architecture) performance, labeled PP; and a third group, labeled

O, representing other directions.

NW.1 Analysis and evaluation of MoT and hybrid MoT with finite-queue

models. We stated earlier that the classic infinite-queue analysis is not ac-

curate. As a result, we rely on more accurate simulation results for our eval-

uation. By modeling the MoT network using finite queues in each switch

primitive, design space exploration and performance evaluation can be sped-

up. Similar to infinite-queue models, finite-queue models can be probabilistic.

For example, consider the pipeline primitive as discussed earlier in Section 5.4

154

with three states, labeled 0, 1 and 2.

Following the “Markovian” queue properties, the steady-state probabilities

of each state can be written as shown in (10.1-10.5). This approach can be

applied to other primitives, and used to determine the steady state properties

of the entire network.

P (0) = P (0) · P (rAB = 0) + P (1) · P (rAB = 0&ksCB = 1) (10.1)

P (1) = P (0) · P (rAB = 1) + (10.2)

P (1) · (P (rAB = 1&ksCB = 1) + P (rAB = 0&ksCB = 0)) +

P (2) · P (ksCB = 1)

P (2) = P (1) · P (rAB = 1&ksCB = 0) + P (2) · P (ksCB = 0) (10.3)

P (rBC = 1) = P (1) + P (2) (10.4)

P (ksBA = 1) = P (0) + P (1) (10.5)

(10.6)

NW.2 Layout optimizations for synchronous and asynchronous implemen-

tation, including varying module aspect ratios, and optimal pipelin-

ing. In Section 9.1, we discussed the clock rate limitations due to layout

issues, and showed preliminary results of improved layouts in Table 9.1. It

is reasonable to assume that in some cases the layout may not be in square

shape, depending on other factors such as the size and shape of surrounding

components. The network may need to fit a rectangular area, where the length

of one side is longer than the other by a factor of x. Assuming that (1) area is

155

dominated by logic cells, (2) a cell-based placement and routing methodology

is followed, and (3) x is not an extreme value such that wire height or width

becomes a limiting factor; the area of this rectangle is expected to be same as

the square-shaped layout. However, the distances between switch primitives

will be different, and that will affect the clock rate and network performance.

It is important to approximately predict the performance earlier in the design.

A study that could provide performance prediction methods for layouts of

same network with different aspect ratios would be valuable. As a further step,

optimal pipelining methods can be applied concurrently with such prediction,

in order to reduce performance loss caused by different aspect ratios.

NW.3 Transistor-level optimization of switch primitives. For recent technol-

ogy generations, standard-cell based design flow has been the industry stan-

dard for digital VLSI circuits. Commercially available libraries provide lay-

outs and abstracted properties (area, delay, power) of logic gates of different

kinds, and different load driving strengths. Design tools use these properties

to generate and optimize layouts of larger modules. One shortcoming of this

approach is that the tools are limited with the provided cells. Library ven-

dors, constrained by time and labor, supply the same set of most-commonly

used and basic cells to all customers. For example, the library used in this

study [6] contains 641 total cells with 121 different logic functions. Alterna-

tive methods such as direct transistor level design [34], flex cells [86] or virtual

libraries with transistor-level optimization [54], show about 10 − 20% perfor-

156

mance improvements, up to 23% area improvements, and between 15 − 42%

power improvements in various case studies. These methods include generation

and transistor-level optimization of custom cells with complex logic functions,

which are normally realized using multiple levels of standard cells. For ex-

ample, the virtual library of [54] includes 15000 total cells with 3500 logic

functions that are specifically optimized and used in their case studies. The

optimized custom cells are included in the regular design and optimization

flow with standard tools.

Considering the repetitive and regular structure of the interconnection net-

work, such methods can be applied to switch primitives in order to improve

the overall design quality beyond standard-cell methods.

NW.4 Improvement and use of reduced-synchrony circuits in a meso-chronous

design approach. In a meso-chronous design approach, components in a

design are operated at same clock frequency, however, unlike the regular syn-

chronous approach, the clock signal may have a different phase delay at each

component. This approach relaxes some of the constraints on the clock net-

work design on the entire chip. Most recently, the Teraflop project at Intel [99]

employs this meso-chronous approach in their design.

Our reduced-synchrony circuits [9] (summarized in Section 5.3.2), incorporates

clock signal distribution into logic function the switch primitives of the MoT

network. Therefore, it can be modified to support meso-chronous operation of

each switch primitive, and consequently, the entire network. We note that such

157

a modification also needs to consider the current limitations as we discussed

earlier in Section 5.3.4.

NW.5 Reconfigurable-radix networks. Depending on the bandwidth demand of

the system, or an application, the network can be reconfigured by changing

radix of routing and/or arbitration trees. The lowest-radix implementation

with binary trees, as presented in this dissertation, provides high throughput,

with at least 2 log N cycles latency. With higher radix implementations, flits

can be transferred in fewer cycles; however, maximum throughput may reduce

because of higher contention and lower clock rate.

The radix of routing and arbitration trees can be configured either during

the design of the network; or in run-time using reconfigurable hardware tech-

niques. The latter option would have performance overheads related to the

reconfiguration methods.

PP.1 Frequency-island operation of XMT with variable frequencies. In

some Globally Asynchronous Locally Synchronous (GALS) systems, tile-based

processors are interconnected using a 2D-mesh network-on-chip (NoC), and

groups of tiles are set to operate at different frequencies [73]. This frequency

isolation simplifies clock network distribution on the chip. Communication

between such frequency-islands is enabled using mixed-clock FIFO buffers [20].

Earlier in Section 9.2, we discussed operating XMT using different frequencies

for processors, network and memory modules, and the potential performance

benefits. Considering that the boundaries of these three components include

158

a FIFO operation by definition, mixed-clock interfaces can be built at these

boundaries, and the design can be divided in three (or more) frequency islands.

Furthermore, the frequencies can be dynamically modified during execution,

depending on factors such as network load, cache misses, and idling of proces-

sors. This can dynamically balance the operation speed of processors, network

and memory modules; and reduce idle cycles and power consumption.

PP.2 Architecture optimizations and evaluation of N × M networks. In

this study we evaluated N ×N networks, in other words, with N sources and

N destinations. It is possible that some systems may have differing number

of sources (N) and destinations (M). There are multiple methods to support

such designs. In order to achieve higher performance, such methods need to

be quantitatively evaluated within the context of parallel processors such as

XMT.

In the prototype XMT [104], a 4 × 8 network is realized by splitting the end

points of a 4 × 4 MoT into two. A disadvantage of this approach is that by

splitting after the network, two endpoints share the bandwidth of one network

port.

Another approach could be to use half of an 8 × 8 network, where only 4 out

of 8 input ports are active. The disadvantage in this case is the increased

area cost, and it is not clear if this overhead justifies the potential increase in

performance.

Alternatively, a different butterfly-hybrid approach may be applied at two

159

levels of the destination-end of the network. Here, each root node of a fan-in

tree is replaced by two roots connected with their children using a butterfly

topology.

O.1 3D-integration of MoT network. With the advances in IC technology, it is

possible to stack multiple silicon dies on top of each other [78], and provide 108

connections per cm2 between dies [97]. Some recent studies focus on extending

on-chip network structures towards stacked chips and demonstrate 3D layouts

[60]. Advancing MoT towards this direction, would be worth investigating.

An interesting questions is, how to best distribute an MoT network (or XMT

processor) over the stacked dies, if O(N) (or O(log N)) dies are stacked on top

of each other? Another question regarding performance is, how to tune the

MoT network for minimum bandwidth loss between stacks.

O.2 Fault tolerance in MoT network with reconfigurable or reprogrammable

hardware. As the number of components increase on chips, it is more likely

that defects will occur. Under such conditions, it is desirable that the sys-

tem keeps running, perhaps at a degraded capacity, as opposed to experi-

encing a complete failure. On-chip networks represent a critical component

in single-chip parallel processors or other Systems-on-Chip (SoC), because of

their central role to the operation. A small number of faults on the network

may prevent otherwise healthy components to communicate with each other.

As a result, research on fault tolerance in networks has attracted considerable

attention [63,76]. The MoT architecture consists of several modules, which are

160

identical except for their input and output connections. It is not unreasonable

to add reconfigurable or programmable redundant modules, which can replace

faulty modules by reconfiguring their connections after manufacturing.

10.2 Conclusion

The aim of this study is to show that Mesh-of-Trees network is a competitive

on-chip network, for highly parallel applications on single-chip parallel computing

systems with UMA-like globally shared caches. The PRAM-based XMT architecture

is a representative of such systems. The interconnection network in such a system is

desired to provide processor-memory communication with high-throughput and low-

latency, when memory accesses are uniformly distributed over all shared modules.

Tables 10.1 and 10.2 summarize our important results in absolute terms, such

as quantitative measures of achieved performance, and relative terms, such as com-

parisons to other network models, respectively. Our general conclusion is that the

MoT network provides the needed performance to XMT architecture, at an ac-

ceptable area cost. For better scalability, the MoT-BF hybrid network is a better

alternative. As the MoT is optimized for short packets such as memory requests

with one or at most two flits, it could incur performance penalties when used with

longer packets.

Our analysis and experimental results show that MoT has higher, and better

scaling (O(N)) bisection bandwidth, compared to mesh and ring topologies. As a

result, under uniformly random traffic, MoT reaches higher throughput with same

161

amount of hardware, compared to those topologies. Furthermore, MoT has lower

diameter with respect to these topologies. Therefore, while mesh and ring could

be beneficial for traffic between closer units in a memory architecture with Non

Uniform Memory Access (NUMA) model, for systems with UMA model MoT is a

better alternative.

We also compared MoT with other network architectures, such as butterfly, hy-

percube, and fat trees. These networks have similar O(N) bandwidth and O(log N)

diameter as MoT. The main problem with those networks is that packets between

different sources and destinations may interfere with each other. This will increase

latency, and lower performance. MoT network does not suffer performance penal-

ties from this kind of interference. Our analysis and experimental results show that

MoT provides higher throughput using same amount of hardware, when all net-

works operate at same clock rate. For example, comparing 64-terminal networks,

MoT throughput is 104% higher than a 2D-Mesh, 22% higher than a hypercube and

9% higher than butterfly with virtual channels.

The MoT network is built with less complicated switch primitives, compared

to networks with virtual-channel router circuits. Virtual channels are buffers that

can be used to improve network performance. However, they also increase switch

complexity and logic delay in switching circuits. Increased logic delay will be re-

flected as longer clock periods, and lower throughput when measured in terms of

bits per second. Comparing switch complexity in terms of technology-independent

delay units, the fastest virtual-channel switch with 2 ports and 2 virtual channels

is 21% slower than the slowest switch primitive of MoT network. Similarly, a 2D-

162

Mesh switch with 5 ports and 2 virtual channels is 46% slower. On the other hand,

replicated butterfly networks, which we built with similar design principles as MoT,

are 5% slower than MoT switch primitives.

We generated layouts of various MoT configurations using a standard-cell

based design at 90nm technology. The operating frequency of a pipelined 32-terminal

slow-process is reported as 764MHz at slow process-voltage-temperature (PVT) cor-

ner, where logic delay of gates are 1.92× slower compared to a typical PVT corner.

In other words, at typical operating corner, the clock rate for the same configuration

could reach 1.4GHz. Furthermore, the network can be realized using low-threshold

(LVT) gates. These gates run faster, but also consume more power. Depending

on the overall power budget of the system, LVT gates can improve performance.

According to data books [6]1 , slow and typical operation frequency of the above

32-terminal network with LVT gates could reach 1.1GHz and 1.9GHz respectively.

Based on this layout study, we fabricated and tested a prototype chip with 8-terminal

MoT network. Our test results were inconclusive, because the fabricated chips were

defective, and it was not possible to read the internal signals.

We proposed an area improvement to the MoT network, by replacing parts of

the MoT with butterfly (BF) networks of small scale. The MoT-h-BF hybrid net-

works with h levels of hybridization use less hardware area, but provide performance

close to MoT. For example, when operated at same clock rate, a 64-terminal MoT-1-

BF network uses 34% fewer registers than MoT, and provides 0.5% less throughput.

As we compare different levels of hybridization with regular butterfly networks with

1FO4 delay for 90nm LVT library is 45.4ps for slow, and 26.4ps for typical operating corners.

163

virtual channels or replicated butterfly networks, MoT-h-BF networks provide better

throughput with same number of registers. As we compare the layouts of 8-terminal

networks, MoT-1-BF has 22% higher layout-accurate throughput compared to a

replicated butterfly with comparable area cost.

Finally, we integrated the MoT network into XMT architecture. We evaluated

alternatives for avoiding high-level deadlock conditions, and concluded that using

two separate networks is better alternative in terms of area and performance costs.

We used a Verilog-HDL model of XMT processor to simulate some applications

and compared the throughput and execution time to a similar configuration with

butterfly network. In evaluated applications we observed an average speedup of 55%

with MoT network. We prepared the layout of an 10mm × 10mm XMT chip with

a 4-input-4-output MoT network. The layout was released for manufacturing in the

2nd quarter of 2008.

164

Item Metric Value Unit Stage Notes

MoT-64 Throughput 0.98 fpc/port simulation [10] flits per cycle per port

MoT-64 Latency 21.6 cycles simulation [10] average, traffic load at 90% of capacity

MoT-32p Frequency 764 MHz layout [8] RVT gates, slow PVT

MoT-32p Throughput 747 Gbps layout [8] avg., cum., 32-bit flits, RVT, slow PVT

MoT-32p Throughput 1.9 Tbps layout [8] avg., cum., 32-bit flits, LVT, typical PVT, projection

MoT-32p Latency 22.6 cycles RTL-verilog [8] avg., traffic load at 90% of capacity

MoT-16 Frequency 680 MHz layout [8] RVT gates, slow PVT

MoT-16 Frequency 854 MHz layout square layout, RVT gates, slow PVT

MoT-1-BF-64 Throughput 0.97 fpc/port simulation [11] per cycle per port

MoT-1-BF-64 Latency 18.4 cycles simulation [11] average, traffic load at 90% of capacity

MoT-1-BF-64 Register savings 34% - computation [11] -

Single Primitive Logic delay 8.98 FO4 synthesis -

Table 10.1: Summary of important results in absulute terms (quantitative measurements).

165

Item Metric Value Compared with Value Notes

MoT Bandwidth O(N) 2D-Mesh O(
√

N) -

MoT Bandwidth O(N) Ring O(1) -

MoT-64 Max Tput 0.98 fpc 2D-Mesh 0.5 fpc 104% improvement at comparable area

MoT-64 Max Tput 0.98 fpc Hypercube 0.8 fpc 22% improvement at comparable area

MoT-64 Max Tput 0.98 fpc Butterfly 0.9 fpc 9% improvement at comparable area

MoT Switch Delay 8.98 FO4 2D-Mesh 5-ports, 2 VC 13.1 FO4 2D-Mesh 46% slower.

MoT Switch Delay 8.98 FO4 Butterfly 2-ports, 2 VC 10.9 FO4 Butterfly 21% slower.

MoT Switch Delay 8.98 FO4 Replicated Butterfly 2-ports 9.4 FO4 Replicated Butterfly 5% slower.

Table 10.2: Summary of important results in relative terms (comparison to other networks).

166

Appendix A

MoT Network in XMT Architecture

Our high-level synthesizer generates a network module to be used in HDL

description of XMT. In accordance with the specifications in [104], we generate

two MoT networks. One network (CM Network) carries packets from processing

clusters to memory modules; the other network (MC Network) carries memory re-

sponses from memory modules to processing clusters. Figure A.1 shows both of

these networks combined into one block labeled IN.

Additionally, we have two balanced binary tree networks between the Mas-

ter TCU of the XMT processor and memory modules. The network labeled as

MX BBT carries requests from Master TCU to memory modules, and the network

labeled MX BBT INV carries the responses in the reverse direction.

The label and description of signals in synchronous MoT implementation as

shown in Figure A.1, are given below. To distinguish enumerated cluster and mem-

ory modules, names contain a 2-digit suffix such as 00, that represents the number

of corresponding component. Each signal bundle consists of Data, Request, and Ac-

knowledgment signals. The following list shows the label of the Data signal. Labels

for Request and Acknowledgment signals of the same bundle can be obtained by

replacing Data with Req and Ack respectively.

1 wClsInputDataCluster Flits from processing clusters to memory modules

167

Send
Clusteri

Receive
Clusteri

Signal Bundle
Req−Data−Ack

IN

M
X

_B
B

T

M
X

_B
B

T
_I

N
V

Send
Memory

Memory
Receive

i

i

Send Receive
Master TCU

1

9

2

8

3
4

7

6

5 10

Figure A.1: Block diagram of synchronous network in XMT.

(PC-to-MM) enter the icn.v module.

2 wClsOutputDataCache PC-to-MM flits leave the core interconnection network,

and enter an arbitration primitive with signal 3.

3 wMXOutputDataCache Flits from Master TCU to memory modules (MTCU-to-

MM) leave the balanced binary tree module MX BBT and enter an arbitration

primitive with signal 2.

4 wOutputDataCache The result of arbitration between signals 2 and 3 leaves

the icn.v module to arrive at its destined memory module.

5 wMXInputDataMX MTCU-to-MM flits enter icn.v and MX BBT.

168

6 wInputDataCache Response flits from MM enter icn.v and arrive at a routing

block. If their destination is one of the regular clusters, they are routed to

signal 8, if their destination is the Master TCU, they are routed to signal 7.

7 wMXInputDataCacheMM-to-MTCU flits enter the MX BBT INV module, which

arbitrates and carries them to the Master TCU.

8 wClsInputDataCache MM-to-PC flits enter the interconnection network.

9 wClsOutputDataCluster MM-to-PC flits leave inerconnection network and

icn.v module. Here, we note that the acknowledgment signal in this bundle is

hardwired as “logic 1”, meaning that the clusters always accept any incoming

flit. This is in accordance with the specification shown in [104].

10 wMXOutputDataMX MM-to-MTCU flits leave the icn.v module.

The asynchronous implementation contains multiple interfaces between syn-

chronous and asynchronous domains. A block diagram is shown in Figure A.2.

Blocks labeled as S → A and A → S represent synchronous-to-asynchronous and

asynchronous-to-synchronous interfaces respectively. Signals labeled 1-10 have the

same name and description as described above in the synchronous implementation.

Below, we list the additional signals

11 wClsIfInputDataCluster. PC-to-MM flits leave a synchronous-to-asynchronous

interface and enter asynchronous interconnection network.

12 wClsIfOutputDataCache. PC-to-MM flits leave asynchronous network and

enter an asynchronous-to-synchronous interface.

169

Send
Clusteri S A

M
X

_B
B

T

M
X

_B
B

T
_I

N
V

Send
Memory

Memory
Receive

i

i

Send Receive
Master TCU

3
4

7

6

5 10

Receive
Clusteri

Signal Bundle
Req−Data−Ack

1

9 IN

2

8

S A

A S

A S

11

12

13

14

Figure A.2: Block diagram of asynchronous network in XMT.

13 wClsIfInputDataCache. MM-to-PC flits leave synchronous-to-asynchronous

interface and enter asynchronous interconnection network.

14 wClsIfOutputDataCluster. MM-to-PC flits leave asynchronous network and

enter asynchronous-to-synchronous interface.

170

Bibliography

[1] F. Abel, C. Minkenberg, I. Iliadis, T. Engbersen, M. Gusat, F. Gramsamer,
and R. Luijten. Design issues in next-generation merchant switch fabrics.
Networking, IEEE/ACM Transactions on, 15(6):1603–1615, Dec. 2007.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and
B. Smith. The Tera Computer System. In Proc. Int. Conf. On Supercomputing,
pages 1–6, 1990.

[3] F. Angiolini, P. Meloni, S. Carta, L. Benini, and L. Raffo. Contrasting a NoC
and a Traditional Interconnect Fabric with Layout Awareness. In Design,
Automation and Test in Europe, 2006. DATE ’06. Proceedings, volume 1,
pages 1–6, 6-10 March 2006.

[4] F. Angiolini, P. Meloni, S. M. Carta, L. Raffo, and L. Benini. A Layout-
Aware Analysis of Networks-on-Chip and Traditional Interconnects for MP-
SoCs. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 26(3):421–434, March 2007.

[5] ARM Limited. Advanced Microcontroller Bus Architecture Specification, rev
2.0 edition, 1999.

[6] ARM Physical IP Inc. 90nm CMOS9SF LVT 1.2V SAGE-XTM v3 Standard
Cell Library Databook, rev 2.0 edition, May 2006. www.arm.com.

[7] P. Bach, M. Braun, A. Formella, et al. Building the 4 processor SB-PRAM
prototype. In Proceedings of the Thirtieth Hawaii International Conference
on System Sciences, volume 5, pages 14–23, Jan. 1997.

[8] A. O. Balkan, M. N. Horak, G. Qu, and U. Vishkin. Layout-Accurate De-
sign and Implementation of a High-Throughput Interconnection Network for
Single-Chip Parallel Processing. In Proc. IEEE Symp. on High Performance
Interconnection Networks (Hot Interconnects), Stanford University, CA, Au-
gust 2007.

[9] A. O. Balkan, G. Qu, and U. Vishkin. Arbitrate-and-Move Primitives for
High Throughput On-Chip Interconnection Networks. In Proceedings of IEEE
International Symposium on Circuits and Systems (ISCAS), volume II, pages
441–444, Vancouver, May 2004.

[10] A. O. Balkan, G. Qu, and U. Vishkin. A Mesh-of-Trees Interconnection Net-
work for Single-Chip Parallel Processing. In Proceedings of the Application-
Specific Systems, Architectures and Processors (ASAP), pages 73 – 80, 2006.

171

[11] A. O. Balkan, G. Qu, and U. Vishkin. An area-efficient high-throughput
hybrid interconnection network for single-chip parallel processing. In Proc.
IEEE/ACM Design Automation Conference (DAC), Anaheim, CA, June 2008.
IEEE/ACM.

[12] A. O. Balkan and U. Vishkin. Programmer’s Manual for XMTC Language,
XMTC Compiler and XMT Simulator. Technical Report 2005-45, UMIACS,
2006.

[13] W. Bein, L. Larmore, J. Shields, C., and I. Sudborough. Fixed layer em-
beddings of binary trees. In Parallel Architectures, Algorithms and Networks,
2002. I-SPAN ’02. Proceedings. International Symposium on, pages 248–253,
22-24 May 2002.

[14] V. E. Beneš. Rearrangeable Three Stage Connecting Networks. Bell System
Technical Journal, 41:1481–1492, 1962.

[15] S. N. Bhatt and F. T. Leighton. A Framework for Solving VLSI Graph Layout
Problems. Technical Report MIT/LCS/TR-305, Massachusetts Institute of
Technology, 1983.

[16] L. Bononi and N. Concer. Simulation and analysis of network on chip archi-
tectures: ring, spidergon and 2d mesh. In Design, Automation and Test in
Europe, 2006. DATE ’06. Proceedings, volume 2, page 6pp., 6-10 March 2006.

[17] Cadence Design Systems Inc. Design For Test in Encounter RTL Compiler,
March 2007. Product Version 6.2.2.

[18] L. P. Carloni, K. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli.
A Methodology for Correct-by-Construction Latency Insensitive Design. In
IEEE/ACM International Conference on Computer Aided Design (ICCAD),
pages 301 – 315, 1999.

[19] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory
of Latency-Insensitive Design. IEEE Trans. Computer-Aided Design of Inte-
grated Circuits and Systems, 20(9):1059 – 1076, September 2001.

[20] T. Chelcea and S. Nowick. Robust interfaces for mixed-timing systems. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, 12(8):857–
873, Aug. 2004.

[21] W.-M. Chen, G.-H. Chen, and D. Hsu. Combinatorial properties of mesh of
trees. In Parallel Architectures, Algorithms and Networks, 2000. I-SPAN 2000.
Proceedings. International Symposium on, pages 134–139, 7-9 Dec. 2000.

[22] P. Cocchini. Concurrent Flip-Flop and Repeater Insertion for High Per-
formance Integrated Circuits. In ICCAD ’02: Proceedings of the 2002
IEEE/ACM International Conference on Computer-Aided Design, pages 268–
273, 2002.

172

[23] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra. Spi-
dergon: a novel on-chip communication network. In System-on-Chip, 2004.
Proceedings. 2004 International Symposium on, page 15, 16-18 Nov. 2004.

[24] D. E. Culler and J. P. Singh. Parallel Computer Architecture. Morgan Kauf-
mann, 1999.

[25] J. N. Daigle. Queueing Theory with applications to Packet Telecommunication.
Springer, 2005.

[26] W. Dally and C. Seitz. Deadlock-free message routing in multiprocessor in-
terconnection networks. Computers, IEEE Transactions on, C-36(5):547–553,
May 1987.

[27] W. J. Dally. Virtual-Channel Flow Control. IEEE Trans. Parallel Distrib.
Syst., 3(2):194–205, Mar. 1992.

[28] W. J. Dally and B. Towles. Principles and Practices of Interconnection Net-
works. Morgan Kaufmann, San Fransisco, CA, 2004.

[29] A. DeHon. Compact, Multilayer Layout for Butterfly Fat-Tree. In Symposium
on Parallel Algorithms and Architectures (SPAA), pages 206–215, 2000.

[30] A. DeHon and R. Rubin. Design of FPGA interconnect for multilevel met-
allization. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 12(10):1038–1050, Oct. 2004.

[31] Y. Dinitz, S. Even, R. Kupershtok, and M. Zapolotsky. Some Compact Lay-
outs of the Butterfly. In SPAA ’99: Proceedings of the Eleventh Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 54–63, 1999.

[32] M. Drinic, D. Kirovski, S. Megerian, and M. Potkonjak. Latency-Guided On-
Chip Bus-Network Design. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 25(12):2663–2673, Dec. 2006.

[33] G. R. Goke and G. J. Lipovski. Banyan Networks for Partitioning Multi-
processor Systems. In Proc. 1st Annu. Symp. Computer Architecture, pages
21–28, 1973.

[34] P. Gopalakrishnan and R. A. Rutenbar. Direct transistor-level layout for dig-
ital blocks. In ICCAD ’01: Proceedings of the 2001 IEEE/ACM international
conference on Computer-aided design, pages 577–584, Piscataway, NJ, USA,
2001. IEEE Press.

[35] A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph, and M. Snir.
The NYU Ultracomputer–Designing an MIMD Shared Memory Parallel Com-
puter. IEEE Trans. Comput., pages 175–189, Feb. 1983.

173

[36] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivakumar, S. Keckler,
and D. Burger. On-chip interconnection networks of the trips chip. Micro,
IEEE, 27(5):41–50, Sept.-Oct. 2007.

[37] C. Grecu, P. P. Pande, A. Ivanov, and R. Saleh. Structured Interconnect
Architecture: A Solution for the Non-Scalability of Bus-Based SoCs. In Pro-
ceedings of the Great Lakes Symposium on VLSI, pages 192 – 195, 2004.

[38] R. I. Greenberg and L. Guan. On the Area of Hypercube Layouts. Information
Processing Letters, 84:41–46, 2002.

[39] S. Hassoun, C. J. Alpert, and M. Thiagarajan. Optimal Buffered Routing Path
Constructions for Single and Multiple Clock Domain Systems. In IEEE/ACM
International Conference on Computer Aided Design (ICCAD), pages 247 –
253, 2002.

[40] J. Henkel, W. Wolf, and S. Chakradhar. On-chip networks: a scalable,
communication-centric embedded system design paradigm. In VLSI Design,
2004. Proceedings. 17th International Conference on, pages 845–851, 2004.

[41] W. H. Ho and T. M. Pinkston. A Methodology for Designing Efficient On-
Chip Interconnects on Well-Behaved Communication Patterns. In Proceedings
of the International Symposium on High-Performance Computer Architecture,
pages 377–388, 2003.

[42] M. N. Horak. Asynchronous implementation of mesh-of-trees network for
explicit multi-threading parallel architecture. Master’s thesis, University of
Maryland, 2008.

[43] C. K. Hung, M. Hamdi, and C. Tsui. Design and Implementation of High-
Speed Arbiter for Large Scale VOQ Crossbar Switches. In Proceedings of IEEE
International Symposium on Circuits and Systems (ISCAS), volume 2, pages
308–311, 2003.

[44] IBM Corp. CMOS 9SF Technology Design Manual, September 2007.

[45] IEEE Computer Society. IEEE Standard SystemC Language Reference Man-
ual, March 2006. IEEE Std 1666-2005.

[46] M. Kistler, M. Perrone, and F. Petrini. Cell Multiprocessor Communication
Network: Built for Speed. Micro, IEEE, 26(3):10–23, May-June 2006.

[47] S. Konstantinidou. The selective extra-stage butterfly. VLSI, IEEE Transac-
tions of, 1(2):167–171, June 1993.

[48] G. Kornaros and Y. Papaefstathiou. A buffered crossbar-based chip intercon-
nection architecture supporting quality of service. In Proc. 2007 3rd Southern
Conference on Programmable Logic, 2007. SPL ’07., pages 51–56, 28-26 Feb.
2007.

174

[49] C. P. Kruskal and M. Snir. The Performance of Multistage Intercon-
nection Networks for Multiprocessors. Computers, IEEE Transactions on,
32(12):1091–1098, December 1983.

[50] D. J. Kuck. A Survey of Parallel Machine Organization and Programming.
Computing Surveys, pages 29–59, 1977.

[51] A. Kumar, L.-S. Peh, P. Kundu, and N. Jha. Toward ideal on-chip communi-
cation using express virtual channels. IEEE Micro, 28(1):80–90, 2008.

[52] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha. Express virtual channels: To-
wards the ideal interconnection fabric. In International Symposium on Com-
puter Architecture (ISCA), 2007, June 2007.

[53] V. Kumar and S. Reddy. Augmented Shuffle-Exchange Multistage Intercon-
nection Networks. Computer, 20(6):30–40, June 1987.

[54] C. Lazzari, C. Santos, A. Ziesemer, L. Anghel, and R. Reist. Efficient timing
closure with a transistor level design flow. In Very Large Scale Integration,
2007. VLSI - SoC 2007. IFIP International Conference on, pages 312–315,
Oct. 2007.

[55] K. Lee, S.-J. Lee, and H.-J. Yoo. A distributed crossbar switch scheduler for
on-chip networks. Custom Integrated Circuits Conference, 2003. Proceedings
of the IEEE 2003, pages 671–674, Sept. 2003.

[56] F. T. Leighton. New Lower Bound Techniques for VLSI. In Proc. Of the 22nd
IEEE Symposium on Foundations of Computer Science, pages 1–12, 1981.

[57] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann, 1992.

[58] C. E. Leiserson. Fat Trees: Universal Networks for Hardware-Efficient Super-
computing. IEEE Trans. Comput., 34(10):892–901, Oct. 1985.

[59] L. Lloyd, K. Heron, A. M. Koelmans, and A. V. Yakovlev. Asynchronous
Microprocessors: From High Level Model to FPGA Implementation, 1997.

[60] I. Loi, F. Angiolini, and L. Benini. Developing mesochronous synchronizers to
enable 3d nocs. In Design, Automation and Test in Europe, 2008. DATE ’08,
pages 1414–1419, 10-14 March 2008.

[61] P. Lopez, P. Lopez, J. Martinez, and J. Duato. Dril: dynamically reduced mes-
sage injection limitation mechanism for wormhole networks. In J. Martinez,
editor, Proc. International Conference on Parallel Processing, pages 535–542,
1998.

[62] R. Lu, G. Zhong, C. Koh, and K. Chao. Flip-Flop and Repeater Insertion for
Early Interconnect Planning. In DATE ’02: Proceedings of the Conference on
Design, Automation and Test in Europe, page 690, 2002.

175

[63] R. Marculescu. Networks-on-chip: the quest for on-chip fault-tolerant com-
munication. In VLSI, 2003. Proceedings. IEEE Computer Society Annual
Symposium on, pages 8–12, Feb. 2003.

[64] K. Mehlhorn and U. Vishkin. Randomized and Deterministic Simulations of
PRAMs by Parallel Machines with Restricted Granularity of Parallel Memo-
ries. Acta Informatica, 21:339–374, 1984.

[65] M. Mehmet-Ali, M. Youssefi, and H. Nguyen. The performance analysis and
implementation of an input access scheme in a high-speed packet switch. Com-
munications, IEEE Transactions on, 42(12):3189–3199, Dec 1994.

[66] D. Mitra and R. A. Cieslak. Randomized Parallel Communications on an
Extension of the Omega Network. Journal of the Association for Computing
Machinery, 34(4):802–824, October 1987.

[67] C. Molnar and I. Jones. Simple circuits that work for complicated reasons.
In Advanced Research in Asynchronous Circuits and Systems, 2000. (ASYNC
2000) Proceedings. Sixth International Symposium on, pages 138–149, 2000.

[68] MOSIS. http://mosis.org/cgi-bin/params/tsmc-018/t29b mm non epi-
params.txt.

[69] S. Murali, D. Atienza, P. Meloni, S. Carta, L. Benini, G. De Micheli, and
L. Raffo. Synthesis of predictable networks-on-chip-based interconnect archi-
tectures for chip multiprocessors. Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions on, 15(8):869–880, Aug. 2007.

[70] S. Murali, L. Benini, and G. De Micheli. An Application-Specific Design
Methodology for On-Chip Crossbar Generation. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 26(7):1283–1296, July
2007.

[71] D. Naishlos, J. Nuzman, C.-W. Tseng, and U. Vishkin. Towards a First Ver-
tical Prototyping of an Extremely Fine-Grained Parallel Programming Ap-
proach. Theory of Computer Systems, 2003. Special Issue of SPAA 2001.

[72] J. Nuzman. Memory Subsystem Design for Explicit Multithreading Architec-
tures. Master’s thesis, University of Maryland, 2003.

[73] U. Ogras, R. Marculescu, P. Choudhary, and D. Marculescu. Voltage-
frequency island partitioning for gals-based networks-on-chip. In Design Au-
tomation Conference, 2007. DAC ’07. 44th ACM/IEEE, pages 110–115, June
2007.

[74] P. P. Pande, C. Grecu, A. Ivanov, and R. Saleh. Design of a Switch for Network
on Chip Applications. In Proceedings of IEEE International Symposium on
Circuits and Systems (ISCAS), pages V–217 – V–220 vol.5, 2003.

176

[75] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. Evaluation of
MP-SoC Interconnect Architectures: A Case Study. In IEEE International
Workshop on System-On-Chip for Real-Time Applications, pages 253 – 356,
2004.

[76] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. Das. Exploring
fault-tolerant network-on-chip architectures. In Dependable Systems and Net-
works, 2006. DSN 2006. International Conference on, pages 93–104, 2006.

[77] S. Pasricha, N. Dutt, and M. Ben-Romdhane. Bmsyn: Bus matrix communi-
cation architecture synthesis for mpsoc. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 26(8):1454–1464, Aug. 2007.

[78] R. Patti. Three-dimensional integrated circuits and the future of system-on-
chip designs. Proceedings of the IEEE, 94(6):1214–1224, June 2006.

[79] L.-S. Peh and W. J. Dally. A Delay Model and Speculative Architecture for
Pipelined Routers. In Proceedings of the International Symposium on High-
Performance Computer Architecture, pages 255–266, 2001.

[80] F. Petrini and M. Vanneschi. Performance Analysis of Wormhole Routed
K-Ary N-Trees. International Journal of Foundations of Computer Science,
9(2):157–178, 1998.

[81] F. Petrot and D. Hommais. A Generic Programmable Arbiter with Default
Master Grant. In Proceedings of IEEE International Symposium on Circuits
and Systems (ISCAS), volume 5, pages 749–752, 2000.

[82] F. P. Preparata and J. Vuillemin. The cube-connected cycles: a versatile
network for parallel computation. Commun. ACM, 24(5):300–309, 1981.

[83] A. Pullini, F. Angiolini, S. Murali, D. Atienza, G. De Micheli, and L. Benini.
Bringing nocs to 65 nm. Micro, IEEE, 27(5):75–85, Sept.-Oct. 2007.

[84] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits,
A Design Perspective. Prentice Hall, second edition, 2003.

[85] T. G. Robertazzi. Networks and Grids. Springer, 2007.

[86] R. Roy, D. Bhattacharya, and V. Boppana. Transistor-level optimization of
digital designs with flex cells. Computer, 38(2):53–61, Feb. 2005.

[87] J. T. Schwartz. The Burroughs FMP Machine. Ultracomputer Note 5, Courant
Institute, NYU, New York, NY, 1980.

[88] Semiconductor Industry Association. The International Tech-
nology Roadmap for Semiconductors, 1999. Available online:
http://public.itrs.net/Files/1999 SIA Roadmap/Home.htm.

177

[89] Semiconductor Industry Association. The International Tech-
nology Roadmap for Semiconductors, 2003. Available online:
http://public.itrs.net/Files/2003ITRS/Home2003.htm.

[90] M. Shams, J. Ebergen, and M. Elmasry. A Comparison of CMOS Implementa-
tions of an Asynchronous Circuits Primitive: The C-Element. In ISLPED ’96:
Proceedings of the 1996 international symposium on Low power electronics and
design, pages 93–96, Piscataway, NJ, USA, 1996. IEEE Press.

[91] E. S. Shin, V. J. M. III, and G. F. Riley. Round-Robin Arbiter Design and Gen-
eration. In Proc. 15th International Symposium on System Synthesis, pages
243–248, 2002.

[92] J. Sparsø and S. Furber, editors. Principles of Asynchronous Design. Kluwer
Academic Publishers, 2001.

[93] S. Srinivasaraghavan and W. Burleson. Interconnect effort - a unification
of repeater insertion and logical effort. In VLSI, 2003. Proceedings. IEEE
Computer Society Annual Symposium on, pages 55–61, 20-21 Feb. 2003.

[94] I. Sutherland. Micropipelines. Communications of the ACM, June 1989. Tur-
ing Award Lecture.

[95] M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agrawal. Scalar Operand
Networks: On-Chip Interconnect for ILP in Partitioned Architectures. In
Proceedings of the International Symposium on High-Performance Computer
Architecture, 2003.

[96] C. D. Thompson. A Complexity Theory for VLSI. PhD thesis, Carnegie
Mellon University, 1979.

[97] A. W. Topol, J. D. C. La Tulipe, L. Shi, D. J. Frank, K. Bernstein, S. E. Steen,
A. Kumar, G. U. Singco, A. M. Young, K. W. Guarini, and M. Ieong. Three-
dimensional integrated circuits. IBM Journal of Research and Development,
50(4/5):491–506, July/September 2006.

[98] E. Upfal. An O(log N) Deterministic Packet-Routing Scheme. Journal of the
Association for Computing Machinery, 39(1):55–70, January 1992.

[99] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar,
and S. Borkar. An 80-tile sub-100-w teraflops processor in 65-nm cmos. Solid-
State Circuits, IEEE Journal of, 43(1):29–41, Jan. 2008.

[100] U. Vishkin. Tutorial on how to develop PRAM-like programs and run them
on the FPGA prototype. ICS 2007, June 2007.

178

[101] U. Vishkin, G. Caragea, and B. Lee. Handbook on Parallel Computing: Mod-
els, Algorithms, and Applications, chapter Models for Advancing PRAM and
Other Algorithms into Parallel Programs for a PRAM-On-Chip Platform.
CRC Press, 2008. Ed: S. Rajasekaran and J. Reif;.

[102] U. Vishkin, S. Dascal, E. Berkovich, and J. Nuzman. Explicit Multi Threading
(XMT) Bridging Models for Instruction Parallelism. In Symposium on Parallel
Algorithms and Architectures (SPAA), pages 140–151. ACM, 1998.

[103] U. Vishkin and J. Nuzman. Circuit architecture for reduced-synchrony on-chip
interconnect. US Patent 6,768,336.

[104] X. Wen. Hardware Design, Prototyping and Studies of the Explicit Multi-
Threading (XMT) Paradigm. PhD thesis, University of Maryland, 2008.

[105] X. Wen and U. Vishkin. FPGA-Based Prototype of a PRAM-on-Chip Pro-
cessor. In Proc. ACM Computing Frontiers, Ischia, Italy, May 2008.

[106] T. Wu, C.-Y. Tsui, and M. Hamdi. A 2 gb/s 256*256 cmos crossbar switch
fabric core design using pipelined mux. Circuits and Systems, 2002. ISCAS
2002. IEEE International Symposium on, 2:II–568–II–571 vol.2, 2002.

[107] T. T. Ye and G. D. Micheli. Physical Planning for On-Chip Multiproces-
sor Networks and Switch Fabrics. In Proceedings of the Application-Specific
Systems, Architectures and Processors (ASAP), pages 97 – 107, 2003.

[108] C.-H. Yeh. Optimal Layout for Butterfly Networks in Multilayer VLSI. In
International Conference on Parallel Processing (ICPP), pages 379 – 388,
2003.

[109] C.-H. Yeh, B. Parhami, E. A. Varvarigos, and H. Lee. VLSI Layout and
Packaging of Butterfly Networks. In Symposium on Parallel Algorithms and
Architectures (SPAA), pages 196–205, 2000.

[110] J. Yuan and C. Svensson. New Single-Clock CMOS Latches and Flipflops with
Improved Speed and Power Savings. IEEE J. Solid-State Circuits, 32(1):62–
69, January 1997.

[111] Y. P. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G. Gao. A study
of the on-chip interconnection network for the ibm cyclops64 multi-core ar-
chitecture. In Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International, pages 10 pp.–, 25-29 April 2006.

[112] S. Q. Zheng, M. Yang, J. Blanton, P. Golla, and D. Verchere. A Simple
and Fast Parallel Round Robin Arbiter for High-Speed Switch Control and
Scheduling. In Proc. 45th Midwest Symposium on Circuits and Systems, vol-
ume 2, pages 671–674, 2002.

179

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background and Related Work
	PRAM-On-Chip Vision
	Underlying Memory Model
	Review of Existing Interconnection Network Models
	Definitions
	Bus
	Crossbar
	Fat Tree Networks
	Mesh Networks
	Ring Networks
	Hypercube Networks
	Butterfly Networks

	Performance Improvement with Additional Resources
	Virtual-Channel Routers
	Virtual Output Queuing and Buffered Crossbars
	Tuned Butterfly Networks

	Deficiency of the Existing Interconnection Networks
	Interference
	Global Synchronization

	Advantages of MoT Network
	Earlier Implementations of Mesh-of-Trees Network

	General Methodology of Evaluation
	Introduction
	Topology Evaluation
	Wire Area Complexity
	Register Count
	Bisection Bandwidth
	Network Diameter
	Deadlock

	Switch Evaluation
	Modeling Interconnection Network Components as Queues
	Hardware Models
	Switch Delay

	Network Performance Evaluation by Simulation
	The Network Simulator
	Artificially Generated Traffic

	Layout Evaluation
	Layout Design and Verification
	Cycle-Accurate Validation
	Physical Testing of Network Chip

	Mesh-of-Trees Network in XMT Context

	Mesh-of-Trees Interconnection Network
	Introduction
	Topology
	Routing
	Flow Control
	Floorplan
	Differences with Existing MoT Implementations
	Evaluation
	Wire Area Complexity
	Register Count
	Bisection Bandwidth
	Network Diameter
	Deadlock
	Interference

	Summary

	Switches of MoT Network
	Introduction
	Queue Model of MoT Network
	Earlier Arbitrate-and-Move Primitive Implementations
	Asynchronous Implementation
	Reduced Synchrony Implementation
	Simulation Results
	Discussion

	Synchronous Switch Primitives
	Pipeline Primitive
	Routing Primitive
	Arbitration Primitive
	Butterfly Primitive

	Evaluation
	Logic Delay of Switch Primitives
	Maximum Network Throughput
	Throughput and Latency Under Varying Traffic

	Summary

	Layout
	Introduction
	Network Layout
	Terminal Circuits
	Pipeline Insertion

	Results and Discussion
	Simulation Results
	Layout Results

	Physical Testing
	Lessons Learned

	Area Improvement Through Hybridization
	Introduction
	Hybrid MoT Network
	Network Architecture

	Evaluation
	Register Count
	Minimum Latency
	Throughput-Area Trade-off
	Latency and Throughput vs. Traffic
	Post-Layout Throughput

	Summary

	MoT Network as Part of XMT Parallel Processor
	Deadlock
	Conditions for Deadlock
	Deadlock Prevention Methods for XMT
	Cost of Deadlock Prevention
	Summary

	Application Simulation on XMT
	Application Traffic and Execution Time

	Layout of XMT ASIC chip

	Discussion
	Limiting Factors for Clock Rate
	Clock Rate Decrease Between Development Stages
	Limitations of Standard-Cell Design Method

	Potential Impact of Multi-GHz Operation
	Case Study

	Applicability to Other Systems

	Future Directions and Conclusion
	Future Directions
	Conclusion

	MoT Network in XMT Architecture
	Bibliography

