10 research outputs found

    Simulator adaptation at runtime for component-based simulation software

    Get PDF
    Component-based simulation software can provide many opportunities to compose and configure simulators, resulting in an algorithm selection problem for the user of this software. This thesis aims to automate the selection and adaptation of simulators at runtime in an application-independent manner. Further, it explores the potential of tailored and approximate simulators - in this thesis concretely developed for the modeling language ML-Rules - supporting the effectiveness of the adaptation scheme.Komponenten-basierte Simulationssoftware kann viele Möglichkeiten zur Komposition und Konfiguration von Simulatoren bieten und damit zu einem Konfigurationsproblem für Nutzer dieser Software führen. Das Ziel dieser Arbeit ist die Entwicklung einer generischen und automatisierten Auswahl- und Adaptionsmethode für Simulatoren. Darüber hinaus wird das Potential von spezifischen und approximativen Simulatoren anhand der Modellierungssprache ML-Rules untersucht, welche die Effektivität des entwickelten Adaptionsmechanismus erhöhen können

    Arquitectura de un sistema integrado para diseño dirigido por modelos en el contexto de internet de las cosas con aplicaciones en medicina

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 14-10-20222Over the past few years, we have seen how processing and storage architectures become cheaper and more efficient, communication infrastructures become faster and more scalable, and many new ways of interacting with the world around us are being developed. Every day more devices are connected to the network, and the generation of data worldwide is growing exponentially. In this context, the Internet of Things promises to be the new technological revolution, as was the introduction of the network of networks or universal mobile accessibility in tis day...A lo largo de los últimos años hemos visto cómo las arquitecturas de procesamiento y almacenamiento se vuelven más baratas y eficientes, las infraestructuras de comunicación se hacen más rápidas y escalables, y se desarrollan multitud de nuevas formas de interactuar con el mundo que nos rodea. Cada día más dispositivos se conectan a la red, y la generación de datos a nivel mundal está creciendo exponencialmente. En este contexto, el Internet de las cosas promete ser la nueva revolución tecnológica, como en su día lo fue la introducción de la red de redes o la accesibilidad móvil universal...Fac. de InformáticaTRUEunpu

    xDEVS: A toolkit for interoperable modeling and simulation of formal discrete event systems

    Get PDF
    Employing Modeling and Simulation (M&S) extensively to analyze and develop complex systems is the norm today. The use of robust M&S formalisms and rigorous methodologies is essential to deal with complexity. Among them, the Discrete Event System Specification (DEVS) provides a solid framework for modeling structural, behavior and information aspects of any complex system. This gives several advantages to analyze and design complex systems: completeness, verifiability, extensibility, and maintainability. DEVS formalism has been implemented in many programming languages and executable on multiple platforms. In this paper, we describe the features of an M&S framework called xDEVS that builds upon the prevalent DEVS Application Programming Interface (API) for both modeling and simulation layers, promoting interoperability between the existing platform-specific (C++, Java, Python) DEVS implementations. Additionally, the framework can simulate the same model using sequential, parallel, or distributed architectures. The M&S engine has been reinforced with several strategies to improve performance, as well as tools to perform model analysis and verification. Finally, xDEVS also facilitates systems engineers to apply the vision of model-based systems engineering (MBSE), model-driven engineering (MDE), and model-driven systems engineering (MDSE) paradigms. We highlight the features of the proposed xDEVS framework with multiple examples and case studies illustrating the rigor and diversity of application domains it can support

    Automatic Algorithm Selection for Complex Simulation Problems

    Get PDF
    To select the most suitable simulation algorithm for a given task is often difficult. This is due to intricate interactions between model features, implementation details, and runtime environment, which may strongly affect the overall performance. The thesis consists of three parts. The first part surveys existing approaches to solve the algorithm selection problem and discusses techniques to analyze simulation algorithm performance.The second part introduces a software framework for automatic simulation algorithm selection, which is evaluated in the third part.Die Auswahl des passendsten Simulationsalgorithmus für eine bestimmte Aufgabe ist oftmals schwierig. Dies liegt an der komplexen Interaktion zwischen Modelleigenschaften, Implementierungsdetails und Laufzeitumgebung. Die Arbeit ist in drei Teile gegliedert. Der erste Teil befasst sich eingehend mit Vorarbeiten zur automatischen Algorithmenauswahl, sowie mit der Leistungsanalyse von Simulationsalgorithmen. Der zweite Teil der Arbeit stellt ein Rahmenwerk zur automatischen Auswahl von Simulationsalgorithmen vor, welches dann im dritten Teil evaluiert wird

    Advanced Remote Attestation Protocols for Embedded Systems

    Get PDF
    Small integrated computers, so-called embedded systems, have become a ubiquitous and indispensable part of our lives. Every day, we interact with a multitude of embedded systems. They are, for instance, integrated in home appliances, cars, planes, medical devices, or industrial systems. In many of these applications, embedded systems process privacy-sensitive data or perform safety-critical operations. Therefore, it is of high importance to ensure their secure and safe operation. However, recent attacks and security evaluations have shown that embedded systems frequently lack security and can often be compromised and misused with little effort. A promising technique to face the increasing amount of attacks on embedded systems is remote attestation. It enables a third party to verify the integrity of a remote device. Using remote attestation, attacks can be effectively detected, which allows to quickly respond to them and thus minimize potential damage. Today, almost all servers, desktop PCs, and notebooks have the required hardware and software to perform remote attestation. By contrast, a secure and efficient attestation of embedded systems is considerably harder to achieve, as embedded systems have to encounter several additional challenges. In this thesis, we tackle three main challenges in the attestation of embedded systems. First, we address the issue that low-end embedded devices typically lack the required hardware to perform a secure remote attestation. We present an attestation protocol that requires only minimal secure hardware, which makes our protocol applicable to many existing low-end embedded devices while providing high security guarantees. We demonstrate the practicality of our protocol in two applications, namely, verifying code updates in mesh networks and ensuring the safety and security of embedded systems in road vehicles. Second, we target the efficient attestation of multiple embedded devices that are connected in challenging network conditions. Previous attestation protocols are inefficient or even inapplicable when devices are mobile or lack continuous connectivity. We propose an attestation protocol that particularly targets the efficient attestation of many devices in highly dynamic and disruptive networks. Third, we consider a more powerful adversary who is able to physically tamper with the hardware of embedded systems. Existing attestation protocols that address physical attacks suffer from limited scalability and robustness. We present two protocols that are capable of verifying the software integrity as well as the hardware integrity of embedded devices in an efficient and robust way. Whereas the first protocol is optimized towards scalability, the second protocol aims at robustness and is additionally suited to be applied in autonomous networks. In summary, this thesis contributes to enhancing the security, efficiency, robustness, and applicability of remote attestation for embedded systems

    Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems

    Get PDF
    This open access book coherently gathers well-founded information on the fundamentals of and formalisms for modelling cyber-physical systems (CPS). Highlighting the cross-disciplinary nature of CPS modelling, it also serves as a bridge for anyone entering CPS from related areas of computer science or engineering. Truly complex, engineered systems—known as cyber-physical systems—that integrate physical, software, and network aspects are now on the rise. However, there is no unifying theory nor systematic design methods, techniques or tools for these systems. Individual (mechanical, electrical, network or software) engineering disciplines only offer partial solutions. A technique known as Multi-Paradigm Modelling has recently emerged suggesting to model every part and aspect of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s), and then weaving the results together to form a representation of the system. If properly applied, it enables, among other global aspects, performance analysis, exhaustive simulation, and verification. This book is the first systematic attempt to bring together these formalisms for anyone starting in the field of CPS who seeks solid modelling foundations and a comprehensive introduction to the distinct existing techniques that are multi-paradigmatic. Though chiefly intended for master and post-graduate level students in computer science and engineering, it can also be used as a reference text for practitioners

    Toward composing variable structure models and their interfaces: a case of intensional coupling definitions

    Get PDF
    In this thesis, we investigate a combination of traditional component-based and variable structure modeling. The focus is on a structural consistent specification of couplings in modular, hierarchical models with a variable structure. For this, we exploitintensional definitions, as known from logic, and introduce a novel intensional coupling definition, which allows a concise yet expressive specification of complex communication and interaction patterns in static as well as variable structure models, without the need to worryabout structural consistency.In der Arbeit untersuchen wir ein Zusammenbringen von klassischer komponenten-basierter und variabler Strukturmodellierung. Der Fokus liegt dabei auf der Spezifikation von strukturkonsistenten Kopplungen in modular-hierarchischen Modellen mit einer variablen Struktur. Dafür nutzen wir intensionale Definitionen, wie sie aus der Logik bekannt sind, und führen ein neuartiges Konzept von intensionalen Kopplungen ein, welches kompakte gleichzeitig ausdrucksstarke Spezifikationen von komplexen Kommunikations- und Interaktionsmuster in statischen und variablen Strukturmodellen erlaubt
    corecore