
Copyright

by

Dylan Conrad Pfeifer

2013

The Dissertation Committee for Dylan Conrad Pfeifer Certifies that this is the

approved version of the following dissertation:

Parallel and Distributed Cyber-Physical System Simulation

Committee:

Jonathan Valvano, Co-Supervisor

Andreas Gerstlauer, Co-Supervisor

Derek Chiou

Ranjit Gharpurey

Gian Gerosa

Parallel and Distributed Cyber-Physical System Simulation

by

Dylan Conrad Pfeifer, B.A.; B.S. Math; M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2013

Dedication

To my parents, Walt and Jeri Pfeifer.

 v

Acknowledgements

This work concludes a journey that has required the faith and support of many

participants. Acknowledgement first goes to my research supervisor, Jonathan Valvano,

who took me on as a Ph.D. student and proposed a course of research in the hybrid

simulation of hardware and software systems, which evolved into the rich study of

parallel and distributed simulation. Next, my co-supervisor, Andreas Gerstlauer, and

committee members Derek Chiou, Gian Gerosa, and Ranjit Gharpurey deepened the

work with supportive and consistent challenges during the course of research and

discovery. Jonathan and Andreas provided substantial direction as well guiding the

conference and journal publications resulting from the work.

While attending conferences and presenting papers during the research, I had

great opportunities to meet recognized researchers in the field of parallel and distributed

simulation, particularly Edward Lee of U.C. Berkeley, Richard Fujimoto of Georgia

Tech, and David Jefferson of Lawrence Livermore National Laboratory. I also had the

fortune to meet Christoph Grimm of SystemC-AMS development, Rishiyur Nikhil of

Bluespec, Inc., who encouraged me to give a faculty talk at the University of Manchester,

and Jim Garside of the University of Manchester, who was kind enough to facilitate the

talk. These were great experiences, and these research leaders were kind to me and

attentive to my ideas and questions.

Grateful acknowledgement is due to Intel Corporation, which allowed me to

pursue Ph.D. research while also working as an Intel employee through the years 2009-

2013. My managers, Sanjoy Mondal, Pankaj Kukkal, Nick Samra, and Haytham

Samarchi were supportive during critical times of the work and committed to seeing me

reach the final phases of the degree.

vi

Family and friends have provided unflagging support, particularly my parents,

brother, and grandmother, as they have in everything I have endeavored. The doctoral

tradition established by my grandfather and continued through my mother and aunt

helped me feel I could complete the journey, and my grandmother provided superior

wisdom from many years of faculty roles. My father helped grow my imagination skills

at a young age with discussions about the sciences, and my paternal grandmother started

teaching me very early. The indefatigable support of my mother and father through the

journey to doctorate can only be compared to the divine.

In that direction, I must acknowledge a faith in and gratitude towards a higher

power, which created this universe with sufficient complexity that Ph.D. degrees may

continue to be earned by students for some time to come. The acknowledgement of this

creator is the beginning of knowledge. We are granted a partnership, such that if we try,

we are met with wonders.

 vii

Parallel and Distributed Cyber-Physical System Simulation

Dylan Conrad Pfeifer, Ph.D.

The University of Texas at Austin, 2013

Supervisors: Jonathan Valvano and Andreas Gerstlauer

The traditions of real-time and embedded system engineering have evolved into a

new field of cyber-physical systems (CPSs). The increase in complexity of CPS

components and the multi-domain engineering composition of CPSs challenge the current

best practices in design and simulation. To address the challenges of CPS simulation,

this work introduces a simulator coordination method drawing from strengths of the field

of parallel and distributed simulation (PADS), yet offering benefits aimed towards the

challenges of coordinating CPS engineering design simulators. The method offers the

novel concept of Interpolated Event data types applied to Kahn Process Networks in

order to provide simulator coordination. This can enable conservative and optimistic

coordination of multiple heterogeneous and homogeneous simulators, but provide

important benefits for CPS simulation, such as the opportunity to reduce functional

requirements for simulator interfacing compared to existing solutions. The method is

analyzed in theoretical properties and instantiated in software tools SimConnect and

SimTalk. Finally, an experimental study applies the method and tools to accelerate Spice

circuit simulation with tradeoffs in speed versus accuracy, and demonstrates the

coordination of three heterogeneous simulators for a CPS simulation with increasing

model refinement and realism.

 viii

Table of Contents

List of Tables ... xii

List of Figures ... xiii

List of Illustrations ...xv

CHAPTER ONE. INTRODUCTION 1

1.1 Challenges of Cyber-Physical System Simulation ...2

1.2 Leading Coordination Solutions and Limits with CPS Simulation5

1.2.1 The IEEE 1516 High Level Architecture (HLA)6

1.2.2 The Discrete Event System Specification (DEVS)7

1.2.3 Other Significant Solutions ...8

1.3 Thesis Statement: The KPN-IE Method for PADS10

1.4 Original Contributions ..10

1.4.1 Original Contributions to the Field of PADS10

1.4.2 Original Contributions through Enabling Technologies11

1.4.3 SimConnect and SimTalk Features ...11

1.5 Overview of the KPN-IE Method for CPS PADS ..12

1.5.1 The Interfacing Approach ...12

1.5.2 The Dataflow Approach ..13

1.5.3 Simplified Interfacing ...13

1.5.4 Simplified Messaging ...14

1.5.5 Analysis...14

1.5.6 Non-exclusivity ...15

1.6 Organization of Thesis ..15

CHAPTER TWO. THEORY OF MODELING AND SIMULATION 18

2.1 Modeling ...20

2.1.1 State Transition Systems ...20

ix

2.1.2 Timed Models ...21

2.1.3 Time Driven Models ...22

2.1.4 Event Driven Models ..22

2.1.5 Errors in Modeling ..24

2.2 Simulation ...25

2.2.1 Accounting for Time in Digital Simulation ..26

2.2.2 Simulating Timed, Event Driven Models ...27

Equivocating Time Driven and Event Driven Models27

Discrete Time, Discrete Event Simulation28

Logical Processes ..29

The DEVS Formalism...29

Subtleties between LP and DEVS...30

2.2.3 Distributed, Parallel, Timed, Discrete Event Models31

The Challenges of Distribution and Parallelism32

Coupling Error ..34

2.2.4 Methods of Parallel and Distributed, Timed Discrete Event

Simulation ...34

Definitions...34

Conservative Simulation ...36

Optimistic Simulation ...37

2.3 Chapter Summary ..39

CHAPTER THREE. INTERPOLATED EVENTS AND PORTS 40

3.1 Interpolated Events ...40

3.1.1 Definition and Properties ..40

3.1.2 Operations on Interpolated Events ..41

3.2 Interpolated Event Ports ..43

3.2.1 Interpolated Event Output Ports ..43

3.2.2 Interpolated Event Input Ports ..46

 x

3.3 A Simulation Time Cost Function with IEs and IE Ports48

3.4 Error and Accuracy with IEs and IE Ports ..60

3.5 Chapter Summary ...68

CHAPTER FOUR. KAHN PROCESS NETWORKS AND INTERPOLATED EVENTS 69

4.1 Kahn Process Networks ..69

4.2 Dynamics of Kahn Process Networks and Interpolated Events......................71

4.2.1 Kahn Process Networks and Simulator Coordination71

The Simulator IE Port Servicing Sequence71

A Conservative Coordination Example73

The KPN-IE Connection Servicing Sequence83

4.2.2 Properties of KPN and IE Servicing ...84

4.3 An Optimistic Coordination Algorithm with the KPN-IE Method86

4.4 A Combined Conservative and Optimistic Coordination Algorithm

 with the KPN-IE Method ..89

4.5 Chapter Summary ...91

CHAPTER FIVE. SIMCONNECT AND SIMTALK IMPLEMENTATION 92

5.1 The KPN-IE Method with SimConnect and SimTalk92

5.2 SimConnect ...95

5.3 SimTalk ...96

5.4 Dynamic Resolution..98

5.5 Distribution, Synchronization, and CPS Simulators99

5.6 Software Metric Comparisons with HLA ...103

5.6.1 Source Code Comparisons ..103

5.6.2 Application Layer Messaging Comparisons106

 xi

5.7 Chapter Summary ..109

CHAPTER SIX. EXPERIMENTS AND RESULTS 111

6.1 Homogeneous Coordination ...111

6.1.1 Distributed Spice Coordination...111

6.1.2 Distributed Spice Summary and Conclusions...................................120

6.2 Heterogeneous Coordination ..121

6.2.1 Distributed PID/PWM Software-based Motor Control121

6.2.2 Heterogeneous Simulation Summary and Conclusions139

6.3 Dynamic Resolution in Heterogeneous Coordination140

6.4 Chapter Summary ...147

CHAPTER SEVEN. THESIS SUMMARY AND FUTURE WORK 149

7.1 Benefits of the KPN-IE Method, Implementation, and Results....................149

7.2 Opportunities...153

BIBLIOGRAPHY 155

xii

List of Tables

Table 1. SimConnect/SimTalk code sizes and development costs104

Table 2. Open source HLA code metrics ..105

Table 3. DC motor model parameters ...122

Table 4. Simulation times, configurations and message traffic139

Table 5. Dynamic resolution case times and counters ..146

Table 6. Simulation times, configurations and traffic legend146

 xiii

List of Figures

Figure 1. Ngspice transient analysis time for 1.5 µs of simulation time as

counter width increases ...115

Figure 2. Speedup at 10 ns IE resolution ..117

Figure 3. Percent error of measurement at 10 ns IE resolution118

Figure 4. Percent error of measurement at 2 ns IE resolution119

Figure 5. Speedup at 2 ns IE resolution ..119

Figure 6. Model rotor speed versus time, open-loop transient response to a

5 Volt step function ...124

Figure 7. Model rotor speed versus time in Simulink continuous PID

controller closed-loop transient response..125

Figure 8. Model controller effort in Simulink continuous PID controller

transient applied voltage ...125

Figure 9. Quantized output controller effort in Simulink quantized PID

controller applied voltage ...127

Figure 10. Model output speed versus time with Simulink-only and

2-simulator PID control model cases ..129

Figure 11. Model speed versus time in 2 and 3-Simulator configurations134

Figure 12. Variation in model rotor output speed versus time as a function

of IE resolution ...135

Figure 13. Discrete versus continuous model controller effort, applied motor

torque versus time in 1-simulator and 3-simulator cases137

Figure 14. Discrete versus continuous model controller effort, applied motor

torque versus time in 1-simulator and two 3-simulator cases138

 xiv

Figure 15. Model output speed versus time with Simulink-only and

2-simulator PID control model cases ..140

Figure 16. Case C model output speed versus time ..141

Figure 17. Case D model output speed versus time ..141

Figure 18. Case D dynamic IE duration change ...142

Figure 19. Case E model output speed versus time ..142

Figure 20. Case E dynamic IE duration change ..143

Figure 21. Case F model output speed versus time ..143

Figure 22. Case F dynamic IE duration change ..144

Figure 23. Case G model output speed versus time ..144

Figure 24. Case G dynamic IE duration change ...145

Figure 25. Speedup versus accuracy with dynamic resolution cases146

 xv

List of Illustrations

Illustration 1. Quadrant based categories of timed state transition systems23

Illustration 2. State elements of the Interpolated Event Output Port44

Illustration 3. Interpolated Event Output Port pseudo code example45

Illustration 4. Interpolated Event Input Port state elements46

Illustration 5. Interpolated Event Input Port pseudo code example47

Illustration 6. The Kahn Process Network node read, wait, and execute cycle71

Illustration 7. The simulator IE port servicing flowchart72

Illustration 8. Conservative KPN-IE coordination example74

Illustration 9. Conservative KPN-IE coordination example continued 175

Illustration 10. Conservative KPN-IE coordination example continued 276

Illustration 11. Conservative KPN-IE coordination example continued 377

Illustration 12. Conservative KPN-IE coordination example continued 478

Illustration 13. Conservative KPN-IE coordination example continued 579

Illustration 14. Conservative KPN-IE coordination example continued 679

Illustration 15. Conservative KPN-IE coordination example FIFO point of

view ...80

Illustration 16. Conservative KPN-IE coordination example port servicing

point of view ...81

Illustration 17. The KPN-IE backplane connection servicing flowchart83

Illustration 18. Heterogeneous client-server hierarchy and network

distribution ..99

Illustration 19. SimConnect/SimTalk client-server network distributions101

Illustration 20. Conservative, predicted event synchronization102

 xvi

Illustration 21. SimConnect/SimTalk conservative mode single simulation

cycle ..107

Illustration 22. Example conservative time driven federate-RTI simulation

cycle [74] ..109

Illustration 23. SimConnect/SimTalk relationship for distributed, parallel

Ngspice instances ..113

Illustration 24. <n>-bit asynchronous ripple counter ..113

Illustration 25. Edge-triggered D flip-flop ..114

Illustration 26. Partitioned subcircuit with socket devices116

Illustration 27. 2nd order DC motor model transfer function [18].......................122

Illustration 28. Simulink DC motor electro-mechanical model123

Illustration 29. Simulink open-loop 5V step-function stimulus124

Illustration 30. Simulink continuous PID controller ...125

Illustration 31. Simulink quantized PID controller ...126

Illustration 32. 2-Simulator configuration ..127

Illustration 33. Simulink DC motor model with SimTalk I/O interface128

Illustration 34. 3-Simulator configuration ..130

Illustration 35. Ngspice model for motor driver circuit131

Illustration 36. Ngspice models for DC motor electrical and mechanical

components ...131

Illustration 37. Ngspice deck for motor and driver ...132

Illustration 38. Ngspice SimTalk devices 100 µs IE resolution133

Illustration 39. Simulink co-simulation model with mechanical only DC

motor model ..133

Illustration 40. Simulink mechanical only DC motor submodel134

1

CHAPTER ONE. INTRODUCTION

Cyber-physical systems (CPSs), defined as systems that integrate computation

and physical processes, are becoming increasingly important for their transformative

potential. Inheriting the field of embedded systems, but offering more distribution,

communication, and computation capabilities, CPSs suggest new engineering and

scientific opportunities as the number computational elements per device grows while

devices shrink in terms of power requirements, cost, and size. The transformative power

of what CPSs may have to offer in terms of controlled, coupled computation and physical

processes has the “potential to dwarf the 20th century IT revolution” by virtue of ubiquity

and impact [1]. The impact reaches everything from medicine to civil engineering,

energy, defense, transportation, and smart consumer homes and devices [2].

Heterogeneous by definition, cyber-physical systems challenge their constituent

disciplines, including electrical and computer engineering, computer science, mechanical

engineering, biomedical engineering, and the traditional sciences. By consequence of

their multi-domain composition, CPSs also challenge the discipline of simulation.

Simulation is useful for systems where constructing a physical prototype and verifying

functionality through build and test iterations is costly or perhaps impossible. Even if

physical prototyping is manageable, simulation may still benefit the engineering design

cycle, particularly for the computational side of the system during phases of integrated

circuit design and verification, software development, and board-level circuit design.

CPSs involving many independent computational elements interacting with the physical

environment through transducers and actuators may have emergent properties that may

not be discovered until the system is constructed and tested with real world physical

processes. It is desirable to discover some of these properties in simulation rather than

 2

reality, so that the software for the CPS is in an advanced state of functionality by the

time the system is physically constructed. Therefore, simulation is beneficial not only to

CPS behavioral discovery, but also to the best practices of CPS engineering. Robust,

diverse, accurate, observable, and time-feasible simulation can enable adept and elegant

CPS design.

1.1 Challenges of Cyber-Physical System Simulation

CPSs are composed of heterogeneous computation and physical processes [1]. At

a system level, CPS simulation can require coordinating models of electrical hardware

components (such digital processors, analog electronics, and mixed-signal application-

specific integrated circuits), software components (real-time operating systems, software-

based digital filters, software-based control, networking protocols), and physical models

(such as transducers, dynamical systems, mechanical devices, and biological systems),

each at potentially different levels of abstraction. These models may be simulated with

continuous differential equation-based mathematical models of world physical processes,

such as fluid dynamics or electromagnetics, and discrete based models for computational

components. The challenge of mixing these components from different engineering and

modeling domains for CPS simulation is called the “heterogeneous domain” challenge.

No single simulator or model of computation arguably spans the range of

components that must be simulated by this challenge. For example, a cycle-estimating

processor instruction set simulator may not be adequate for simulating an electrical

network at the voltage and current level, but may be adequate for simulating the register

and memory state of a processor for software development. A lumped element circuit

simulator such as Spice [33], while popularly used for simulating circuits at the electrical

level, may not be sufficient for simulating world-physical effects in CPSs that may need

 3

to be modeled with space and time resolution, such as computational electromagnetics

(CEM) or computational fluid dynamics (CFD). Finally, gate-level, clock-cycle accurate

simulators supporting languages such as Verilog or VHDL can simulate large-scale VLSI

circuits with gate-level resolution, but may not be sufficient for simulating high level

software running over a virtual model for minutes of simulated software time.

Each of these domains, models, and simulation environments can be combined

and coordinated to overcome some of their individual limitations. Mixes of simulators

specializing in individual subsystems and modeling domains can increase the modeling

range of simulation compared to a single simulator solution. Multiple simulator

communication and coordination is both a benefit and challenge for system-level CPS

simulation. The challenge arises as a consequence of model and model-of-computation

diversity in CPSs, and as a consequence of simulation time cost. As the number of

modeled components in a system increases, the time cost of simulation for some single

simulators may increase exponentially. For some simulations, it may be possible to

reduce the time cost of sequential simulation by partitioning the system among parallel,

independent simulators, or leveraging algorithmic parallelism in the simulator where it

exists. However, parallel simulation can introduce even more simulator communication

and synchronization challenges.

Because software components (firmware, real-time operating systems, middle-

ware, communication stacks, protocols, digital filters, and so on) are significant

components of CPSs [4][5], simulation of software interacting with virtual models is

another challenge to CPS simulation. Software is conventionally developed and modeled

with a debugger running over a real, emulated, or virtual target such as a processor

instruction set simulator.

 4

Debugging software over virtual processor targets that include extra-processor

models (like interfacing electronics, discrete hardware, transducers, and physical

processes) is a challenge to system-level CPS simulation. Software debugging requires

the ability to insert breakpoints into the debugger, single-step the program counter, or

stop the debugger in time to inspect the target processor state, such as registers and

memory. This is the source level debugging requirement of CPS software simulation.

Yet, a CPS includes more components interacting with the software than just the

simulated processor state. So, source-level debugging of software at system-level CPS

simulation requires the ability to stop and inspect the state of other simulated models

running outside of the processor target model that are affected by the simulated software.

Also, a CPS may include not just one processor target and software stack, but

many virtual processors such as with a multi-core system, sensor grid, or multi-node

industrial automation network. To support source level software debugging, extra-

processor models must be able stop in time with each CPS software component being

simulated and debugged, and then be able to resume without losing state or having state

become altered by the pause and inspection. This is a distributed breakpoint problem

across coordinated models, compared to single target breakpoints.

The software challenge of CPS simulation is further elaborated in [1] and [3].

Traditional embedded systems may couple computation with physical inputs through

processor interrupts or cyclic polling. Testing software behavior to these inputs in

simulation over a virtual processor model requires being able to pass extra-processor state

into the processor model from a simulate peripheral in order to generate a simulated

interrupt as it would occur in real hardware. For a CPS simulation, it is desired that these

inputs actually come from simulated world physical process models acting through

modeled transducers and peripherals. So, model coupling is a challenge because the

5

extra-processor models may be entirely different models of computation than the

processor models. Therefore, just as CPSs challenge the scientific intersection of

physical processes and computation interacting in real life, so also do they challenge the

intersection of physical processes and computation modeled together in simulation.

1.2 Leading Coordination Solutions and Limits with CPS Simulation

Each of these challenges places CPS simulation firmly in the field of parallel and

distributed simulation (PADS) [6][7][8], but with new challenges of diverse model

coordination. Since the parallel and distributed simulation (PADS) challenge has been

well represented in the modeling and simulation literature over the past three decades,

with fundamental results by [6][7][8], it is important to identify contributions that may

also benefit distributed CPS simulation.

PADS methods fall into categories of conservative or optimistic simulator

coordination, or a mix of both [30]. These can be implemented with conservative

messaging schemes such as the Chandy/Misra/Bryant-style null messages for

conservative coordination [7], the numerous lookahead-based schemes for conservative

coordination inspired by the Chandy/Misra/Bryant solution [36], or optimistic

coordination approaches inspired from the Jefferson Time Warp solution [65].

 Two important solutions among PADS implementations that inherit strengths of

these approaches are the United States Department of Defense originated “High Level

Architecture” (HLA), which has become IEEE standard 1516 [19], and the set-theoretic

Discrete Event System Specification (DEVS) formalism, originating from Bernard

Ziegler [20], resulting in tools such as Oak Ridge National Lab’s ADEVS suite [21].

 6

1.2.1 THE IEEE 1516 HIGH LEVEL ARCHITECTURE (HLA)

HLA has shown particularly effective with large-scale, real-time, distributed

military simulations with humans-in-the-loop (HIL) in the simulation federation. HLA’s

success in military simulation and training has earned it recognition as “the most

influential standard in the field of distributed simulation” [22]. HLA is an architectural

specification, and implementations offer simulator synchronization through the time

management services of the Run-Time Infrastructure (RTI) specification of the

architecture, which controls when time regulated federated simulators may advance in

time [23]. Federates declare a Federation Object Model (FOM) of signals they will

exchange and their attributes, and the HLA RTI supports techniques from the PADS

literature for combined conservative and optimistic distributed simulation [23].

However, HLA has not yet been widely employed in engineering system design,

embedded systems, or CPS system-level simulation to the definitive level of contribution

it has provided for defense simulation and training. RTI software ambassadors for CPS

components, for example, presently lack widespread instantiation among popular

engineering software debuggers, logic simulation tools, and design automation tools.

Yet, the potential for HLA as an embedded system and CPS simulation solution is

recognized [27]. Also recognized is the outstanding effort to enable it by connecting

tools such as VLSI electronic design automation tools into an HLA federation [24]. A

shift of support for HLA RTI plugins among the major VLSI design vendors such as

Cadence [25] and Synopsis [26] could signal a possible EDA industry migration to the

solution. While Matlab/Simulink [21] now supports an HLA-Toolbox, and

Matlab/Simulink is used as a numerical simulation federate in some reports [30], in CPS

simulation we also desire to simulate numerous electronic components, such as ones

widely supported by Spice models [31]. The authors in [27] state that their technique to

 7

transform Simulink models into an HLA federate merits improvement, supporting only

fixed time step advancement, for example.

Therefore, for complexity challenges of integrating numerical system simulation,

software debuggers, and VLSI design automation integration into RTI-enforced

coordination, HLA as stand-out solution to system-level design and simulation

coordination for CPS engineering is open to be demonstrated. However, it is clearly

valuable to CPS simulation for the multitude of world effects by HLA-compliant

simulators offered and its IEEE standardization [19]. Its primary drawback to CPS

simulation is that many diverse simulators must be coordinated to achieve a broad reach

for CPS modeling and simulation, and the HLA RTI interfacing approach demands very

tight integration with simulator runtime kernels. The tight simulator-level interfacing

required to coordinate a closed architecture simulator with an HLA RTI may be an

important market and research time cost. For CPS simulation, we volunteer a solution

with coordination fidelity (attention to time synchronization and causality) and an

interface specified primarily in the model definition layer rather than simulation kernel

layer. We also seek to impose fewer and more simple functional interfacing requirements

on federated simulators.

1.2.2 THE DISCRETE EVENT SYSTEM SPECIFICATION (DEVS)

The Discrete Event System Specification (DEVS), introduced in 1976 [20],

focuses on model formalisms and formal algorithms to correctly simulate them, thereby

separating as much as possible the art of modeling from the art of simulation. In this way

a model can be verified to the degree it complies with a DEVS formalism, and a

simulator can be verified to the degree executes a DEVS algorithm. The strength of

DEVS is that it defines model interfacing channels for a variety of set theoretic models,

 8

allowing for a general modeling specification with closure under model composition.

When any DEVS conforming model is expressed in the DEVS notation, it can be

coordinated with any other model in the DEVS system through DEVS model channels.

ADEVS (“A Discrete Event System Simulator”) [21] is a coordination solution in a set of

open source C++ libraries that offers hybrid and distributed co-simulation for models

conforming to the DEVS formalisms [20].

The primary limitation of DEVS for CPS PADS is that models must be expressed

in a DEVS formalism to participate. For the range of models and devices we should like

to include in a CPS simulation, such as the many circuit-level devices modeled in Spice

simulators [31], we may not have market or research time to remodel the components of

the CPS in DEVS. Rather, we should like to pick up a model as given, or where expertly

simulated in the best environment, and interface that model and environment to other

models and environments. We call this the “interfacing approach.”

1.2.3 OTHER SIGNIFICANT SOLUTIONS

Other notable solutions include SimBus/Xyce [48], a parallel VHDL and parallel

Spice solution from Sandia National Labs, backplane based solutions (examples of which

are [12][13][14]), and 2- to 3-simulator special case coordinations, instances of which are

numerous in the IEEE and ACM literature. However, these classes of solutions can

require internal modification of the coordinated simulator kernels, which may not be

allowed when interfacing proprietary, closed architecture simulators. While there are

numerous examples in the space of special purpose 2- to 3-simulator coordination

solutions, a solution is desired with the generality of a DEVS or HLA class solution.

Hybrid languages also offer hybrid modeling and simulation, the most flexible of

which is arguably SystemC-AMS [47]. However, no single hybrid modeling

 9

environment, such as SystemC-AMS, Verilog-AMS, or VHDL-AMS [34] is sufficient to

cover the range of CPS simulation, by virtue of the number of models (sometimes

proprietary) that a CPS system must simulate, and the potential localization of domain

expertise in established simulators. Another honored solution is the Ptolemy system [35],

from the University of California at Berkeley. The Ptolemy system has been recognized

for real-time embedded system design [1][3][40].

 We seek, however, an interfacing based approach to CPS PADS, rather than

uniform modeling or uniform simulator approach, mainly because practitioners in CPS

simulation may not be able to remodel all desired components in a uniform modeling or

single simulation environment. It is also impracticable to assume domain expertise in

every domain of the CPS simulation on the part of the modeler or simulation integrator.

Therefore, we select the approach of collecting existing and upcoming tools from

multiple engineering simulation domains that best model components and systems in

their domain expertise, and interfacing them. We call the effort of synchronizing and

providing communication between different simulators the effort of “simulator

coordination” for this work. The method we introduce compared to the DEVS or HLA

RTI based coordination approach is a dataflow based approach. We apply the properties

of a well-defined dataflow formalism, the Kahn Process Network (KPN) [29], to ensure

scheduling and synchronization properties of simulator coordination, and we innovate on

the data tokens of the KPN with a type called Interpolated Events (IEs) to provide the

required time and causal fidelity of a PADS solution. This approach may lessen

functional burdens where simulators are interfaced compared to existing solutions, while

still providing model and simulator-independent generality.

 10

1.3 Thesis Statement: The KPN-IE Method for PADS

The Kahn Process Network (KPN) and Interpolated Event (IE) method of parallel

and distributed simulation (PADS) offers conservative and optimistic coordination for

multiple concurrent, distributed, and heterogeneous closed architecture simulators and

can reduce time managing functional requirements for the coordination backplane and

connected simulators compared to existing PADS solutions. A protocol based on KPN

and IE facilitating PADS may reduce the time advancement and application layer

messaging traffic to the coordination backplane. Additionally, an implementation based

on KPN and IE based protocols may reduce the functional interfacing requirements and

optimistic support requirements for federated simulators compared to the existing

solutions.

1.4 Original Contributions

In this thesis, original contributions are offered to the field of parallel and

distributed simulation from the KPN-IE method. The contributions are described in the

following categories.

1.4.1 ORIGINAL CONTRIBUTIONS TO THE FIELD OF PADS

 The Interpolated Event (IE) data type, which when forwarded according to the

rules of Kahn Process Networks (KPNs), enables PADS with adherence to the

local causality constraint, without logical process scheduling requirements

 The Interpolated Event Input Port and Interpolated Event Output Port plugin

specification, which offers a lightweight interface for models and simulators to be

coordinated, and enables a PADS model-level interface for closed architecture

simulators

 11

 An optimistic time management algorithm using the KPN-IE formalism that can

reduce simulator interfacing and messaging requirements compared to existing

solutions

1.4.2 ORIGINAL CONTRIBUTIONS THROUGH ENABLING TECHNOLOGIES

 A simulation message protocol, “SimTalk,” realizing the method of IEs, which

captures, independently, in a dataflow network, the synchronization information

necessary to coordinate the simulation, conservatively or optimistically

 A simulation backplane, “SimConnect,” realizing the KPN formalism, which,

when paired with the SimTalk protocol, may not incur the functional management

requirements of existing interfacing-based solutions, but can still enable

conservative and optimistic coordination of connected simulators

 A method using SimConnect and SimTalk to coordinate multiple Spice simulators

without internal modification of the Spice kernel, with tradeoffs in simulation

speed versus accuracy

1.4.3 SIMCONNECT AND SIMTALK FEATURES

 A lightweight solution for PADS coordination targeting the needs of cyber-

physical system simulation

 A means to conduct conservative simulation without null message traffic

overhead

 A means to offer optimistic simulation but with no additional functional

requirements for simulators other than the ability to save a 1-deep history of

simulator state. Anti-message queues and other Time Warp style overheads [65]

are not imposed on the simulators.

 12

 Reduction in backplane functional requirements for coordination, because

SimConnect (SC) is not required compute the global Lower Bound Time Stamp

(LBTS) for conservative synchronization or the Global Virtual Time (GVT) for

optimistic simulation. This information is captured in the IE data streams, and

bounds on it can be monitored with tracking counters.

 A means for dynamic resolution in the distributed simulation that can be

controlled by any participating simulator, observer, or the coordinating backplane

 Well-defined, expressible trade-off equations between the speed of simulation and

accuracy in terms of IE primitives

 Mathematical analysis on IE signaling information through zero-order hold

interpolated events

1.5 Overview of the KPN-IE Method for CPS PADS

1.5.1 THE INTERFACING APPROACH

CPS simulation can benefit from an interfacing approach instead of a unified

modeling approach or uniform simulation environment. The interfacing approach allows

CPS simulation to benefit from established and specialized models and simulators with

closed architecture. This can reduce the modeling burden on CPS researchers, because

they may not have to port strong existing models into a new language, model of

computation, or simulation environment. Rather, models and environments are

interfaced through the Interpolated Event Input and Output Port specifications introduced

in Chapter Three. By taking the interfacing approach, the modeling capability of the

KPN-IE method may increase on the cardinality of the power set of the set of all

simulators for which Interpolated Event Input and Output Ports have been implemented.

 13

1.5.2 THE DATAFLOW APPROACH

The KPN-IE method moves some of the coordination challenges of PADS into

the dynamics of a KPN dataflow system, so that the simulation may be characterized by

the interconnection dataflow. The KPN-IE approach is an observable, mathematically

well-defined, distributable, and scalable data-flow network formalism that provides,

through interpolated event data tokens, the synchronization and communication

requirements of parallel and distributed CPS simulations. The capture, replay, and

visibility of CPS system traffic in IE token format is convenient to a host of powerful

software tools for analysis. The simulation can be completely characterized and

evaluated in terms of events in the dataflow network and streams of interpolated events,

rather than internal simulator events.

By design, the KPN-IE method achieves coordination and simulator advancement

strictly through the KPN dataflow network and IE format, freeing the simulator

coordination backplane from specific simulator object management and internal

simulator time management. This can simplify the effort of implementing coordination

software for a simulator.

1.5.3 SIMPLIFIED INTERFACING

A challenge of HLA RTI interfacing is that the RTI interface can be tightly

coupled to the simulator internal kernel and time advancement. Simulator time

advancement is managed explicitly by the external controlling software agent, the RTI.

Because a simulator software layer may be proprietary, or of sufficient complexity that

interfacing to an HLA RTI implementation through RTI and Federate Ambassadors

(software interfaces) exceeds the budget of a researcher or the simulation vendor, the

Interpolated Event Input and Output Port specification attempts to reduce the burden of

simulator interfacing. By requiring only a user-level, device-model software interface

 14

from the simulator and the ability to include OS-level libraries and compile OS-level

system calls for tasking and network communication primitives, the IE port specification

can be adept from a software engineering perspective. Most simulators offer a user-level,

device-model software interface as a service, allowing users to monitor simulator signals

and time, assign signals in time, and schedule events, but without exposing internal

proprietary simulator time management software or intellectual property.

1.5.4 SIMPLIFIED MESSAGING

The KPN-IE method combines synchronization and communication in the IE

token format, potentially reducing the messaging burden for conservative and optimistic

coordination. With the HLA RTI, in addition to implementing callback functionality for

signal update messages, the simulator must implement the Time Advance Request

function or its sibling functions [74], which are separate messaging calls to the HLA

backplane from the object attribute update functions. For a simulator time advance cycle,

many signal update callbacks may be issued in addition to the time advance messaging

requests. In KPN-IE method, only the IE token format is used for signal and time

information, which may reduce the backplane messaging traffic at the application level.

This traffic does not include the messaging costs of carrier technology, such as TCP/IP,

or MPI, or the link and physical layers to the backplane.

1.5.5 ANALYSIS

KPN-IE offers a means for mathematical analysis of communication streams,

because IEs are formally zero-order hold (ZOH) interpolators for continuous signals.

This interpolation, along with the IE port specification, enables closed-form analytical

expressions for tradeoffs in simulation resolution versus speed, and simulation resolution

 15

versus accuracy for classes of model conditions. These expressions are constructed in

Chapter Three.

Another important benefit of the IE token and port specification is that bounds on

important conservative and optimistic coordination variables, namely the conservative

Lower Bound Time Stamp (LBTS) and optimistic Global Virtual Time (GVT) values,

automatically fall out of maintaining the KPN dataflow dynamics in the KPN-IE

coordinating backplane. Additional messaging or simulator blocking is not imposed on

the system to calculate these values, nor imposed on the coordinating backplane in a

complex algorithm. The KPN backplane, therefore, is primarily a token router, focused

on managing KPN and IE dynamics.

1.5.6 NON-EXCLUSIVITY

Lastly, KPN-IE method does not exclude participation in an HLA, or other hybrid

simulation suite such as SystemC-AMS, Verilog-AMS, Ptolemy, or DEVS, if interfacing

connectors such as SimTalk plugins are written for simulation suites that offer OS-level

software interfaces. The goal of the IE port specification and SimTalk protocol is to be

sufficiently light weight to interface to different environments with a short learning curve

required from the simulation integration engineer.

1.6 Organization of Thesis

The organization of this work is as follows. Chapter Two covers primary material

and concepts prerequisite to a discussion of PADS dynamics achieved through KPN-IE.

The theory of modeling and simulation within the needs of CPS simulation is presented

with no prior assumption of knowledge upon the reader. Important concepts and

definitions that have persisted in PADS theory, composing a language for researchers in

the field, are presented in preparation for the original work of Chapters Three and Four.

 16

Terms such as state transition systems, modeling and simulation, conservative and

optimistic coordination, logical processes, and timed, discrete event models are covered.

Chapter Three introduces the theoretical contributions to PADS provided by the

KPN-IE method. Interpolated Events are introduced and defined, including operations on

Interpolated Events, and the Interpolated Event Input and Output Port specification for

allowing models to interface at the model-definition layer. Next, a simulation time cost

function is constructed in terms of IEs and IE ports, leading to expressions for simulation

speed versus IE resolution. Expressions for simulation error in terms of IE resolution are

also constructed.

In Chapter Four, Kahn Process Networks are introduced, with elaboration of their

formal properties, and the dynamics of Kahn Process Networks with Interpolated Event

data tokens are covered. An example of conservative coordination with the KPN-IE

method is given step by step. Next, the ability of the KPN network to yield bounded

tracking of the important Lower Bound Time Stamp (LBTS) and Global Virtual Time

(GVT) values for optimistic and conservative simulator coordination is described. An

optimistic coordination algorithm is offered, which can reduce the anti-message queue

maintenance burden on IE port-conforming models compared to existing leading Time

Warp-inspired solutions [36][65]. Finally, a combined conservative and optimistic

coordination scheme is offered based on the ability of the KPN to track bounds on LBTS

and GVT in the IE token streams in the KPN FIFOs.

In Chapter Five, the software implementation of the KPN-IE method through

original tools SimConnect and SimTalk is presented with examples of synchronization,

dynamic resolution management, and example simulation configurations. The

architecture of the SimConnect KPN backplane is discussed, and the SimTalk KPN-IE

messaging protocol is discussed.

 17

In Chapter Six, results from application of the KPN-IE method through

SimConnect and SimTalk tools are covered for homogenous (many identical simulator)

and heterogeneous (many different simulator) systems. The application of the KPN-IE

method for parallel Spice circuit simulation at the model expression level is presented,

offering a means of Spice acceleration by the coordination of many independent Spice

simulators. Next, application of the KPN-IE method to simulate a software-managed,

microcontroller PID/PWM based DC motor controller is presented. Tradeoffs in

simulation resolution versus speed and accuracy are explored for both systems in each

experiment.

Finally, in Chapter Seven, primary conclusions of the thesis are re-summarized,

and areas of future work are offered based on new opportunities the KPN-IE method may

offer to CPS simulation. A bibliography of important references in the field of CPS

PADS is presented including peer-reviewed conference and journal articles generated by

this work.

 18

CHAPTER TWO. THEORY OF MODELING AND SIMULATION

This work concerns the theory and practice of engineering simulation for cyber-

physical systems (CPSs). Simulation can be defined as the practice of building one

system to discover the properties of another system. Simulation endeavors to reveal

properties of a system desired to be observed without actually having to build the final

system, but rather by building a similar system with similarly observable properties.

Recommended fundamentals of simulation theory and practice are [20] and [36].

Several needs motivate the simulation of cyber-physical systems. First, during

the engineering design cycle, repeated physical prototypes of the cyber-physical system

may be expensive to build. For example, a system may contain new computational

system-on-chip designs, which are costly to manufacture for each new production mask.

A system may contain complex mechanical systems with high manufacturing costs or

scarce materials. A system may contain complex software, the cost of which, due to

writing and testing, can postpone timely delivery of the system. In simulation, however,

these prototyping costs can be reduced by building and testing a similar system rather

than repeated iterations of the physical one.

In the extreme, building the physical side of the CPS target system may not be

possible. For example, it may be desired to know the transient dynamics of an early

warning CPS system, such as a hurricane or earthquake warning system, but some

physical parts of those systems (like hurricanes and earthquakes) are not possible to

build. We must rather wait for those systems to occur and study them, with potential

hazards. A similar model, however, might be constructed of those systems to provide

insight into their behavior without the hazard of their physical reality. This model may

 19

be tested with a model of the computational side of the CPS in the safety of a simulated

world.

Other important motivations for CPS simulation are discovery, testing, and

validation. For discovery, a model of a physical process may be so complex that

emergent properties are not easy to predict. It may be beneficial to discover unstable,

emergent properties of a system in simulation before they happen in physical reality.

Additionally, some mathematical models of physical processes have no analytical,

closed-form solution, but can only be simulated with numerical differentiation and

integration [77] to observe their trajectories, or observed in real life.

For testing and validation, it is desired to know whether the system will function

to a measure of confidence. Design flaws are desired to be identified before the system is

constructed, particularly if resources only allow the system to be constructed once, or

only allow the system to be exercised once (such as with some space probes). If a

simulation exposes design flaws, there is a chance to eliminate them before the final

system is built. In some CPS systems, such as biomedical devices [43], design flaws may

be fatally dangerous. Simulation enables early testing of the system to eliminate design

flaws so they are not present in the final system.

In each of these categories of need for simulation, a model of the system is

created. The goal of model is to describe the system components and their behavior. A

model is exercised in another system called a simulator. Therefore, modeling and

simulation are distinct, but cooperating endeavors. A model and simulator may share a

common underlying model of computation, which enables the simulator to correctly

instantiate the model dynamics. This relationship is called a homeomorphism between

the model and simulator [20], provided through the model of computation.

 20

Modeling and simulation always encounter tradeoffs in detail and accuracy. A

model may or may not be able to describe all of the system dynamics, and a simulator

may or may not be able to instantiate all elements in the model and all element transitions

specified in the model. Because of the limitations of models and simulators, errors can

be introduced, which can be described as differences between a modeled or simulated

property of a system and its composition and behavior in physical reality. These errors

may be within a tolerance or critically misleading. The presence of error in each stage of

the definition of modeling and simulation will be tracked as we introduce terms and

concepts. We begin with a discussion of models.

2.1 Modeling

2.1.1 STATE TRANSITION SYSTEMS

Modeling concerns the representation of elements and dynamics of a system. A

starting point for models that evolve in some manner is the state transition system [68]-

[72]. A state transition system is a pair (S, →) where S is a set of states and → ⊆ S × S is

a binary relation over S of transitions. If p, q ∈ S, then (p, q) ∈ → is notated as p → q and

indicates there is a transition from state p to state q. State transition systems are a bridge

from the domain of mathematics, where they are subclasses of “abstract rewriting

systems,” [68] to the realm of engineering, where they are a superclass for finite

automata, labeled transition systems, and discrete event systems [68].

 A transition system can be defined as a collection or set of elements (things to

observe), with each element having a set of properties, or “states,” assigned to it. The

cardinality of the set of states S of elements in the system can be infinite, even

uncountable (isomorphic to the set of real numbers), but for this work it will be finite.

Let the system model be a set of elements E, and for each element e, let there be a set Se

 21

of properties the element could obtain at any instance of observation. That is for each

element e ∈ E, at any point of observation, there is a state s ∈ Se given to the element. Se

could be the set of integers, reals, complex numbers, the set of colors, letters in the Latin

alphabet, or a simple binary set {0, 1}. Specification of Se is open to the modeler.

The set of states for a state transition system (denoted S) is defined as the set of all

states the elements in the system may obtain. That is, at any one point of observation, the

system state is represented by the tuple {s0, s1,…, sn}, where si ∈ Si is the state of element i

in the system, for all elements n in the system, for all set of states Si associated with each

element. If the system is dynamic or state changing, it may occupy different points, each

represented a state tuple {si}, at any point of observation. The state transition model, or

the relation → ⊆ S × S, specifies how the system evolves from one state tuple to the next,

giving the system behavior.

2.1.2 TIMED MODELS

Subclasses of state transition system models and how they are simulated are

numerous [71], but for this work a primary classifier of systems will be the system

element of time. A timed state transition system contains a model of time as an element

of the system. For this work, timed models are models for which the state transition

function is primarily a function of time, but may also be a function of time and also other

state variables. For this work, no transition in a timed model is specified without the

element of time associated with the transition. Untimed models, conversely, are not

required to associate a time with every state transition. Untimed modes are a rich and

important field in modeling research [35], but because this work concerns cyber-physical

systems, which are engineered systems that transition in time, we are interested in timed

models. The simulation of timed models may be time driven or event driven.

 22

2.1.3 TIME DRIVEN MODELS

Time driven models have transitions with time as a primary stimulus of each

system state transition. The simulation of time driven models involves choosing a point

in the model time, inputting that time to the system, and evaluating the state transition

function as a result of the input. The simulation then advances time to the next time point

and repeats the process. The system may produce outputs during this cycle. Time driven

models can be simulated discretely in a digital computer by capturing the system state in

variables, choosing a start value t for time, and then evaluating the state transition

function STF(t) for some finite subset of the discretely modeled time. Because the

evaluation of STF(t) is countable and finite in a digital system, the simulation of the

model can incur discretization errors. Digital simulation only proceeds through a finite

subset of the system states, and each system state has finitely discretized element state.

2.1.4 EVENT DRIVEN MODELS

 Event driven models are static until “something happens,” that is, an event occurs

[36]. The model receives notice of the event, and the transition function evaluates the

new state as a function of the event. Event driven models may be discretely or

continuously defined, but, like time driven models, their simulation is discrete in digital

simulators. A timed, event driven model (TEDM) is one for which time is an element of

the system state, and evolution of the system is specified in terms of events, not in terms

of the advancement of time. Each event is associated with a point in time, since the

model is timed, but simulation of the model involves creating an event e, and then

evaluating the state transition function STF(e) as a function of the received event e.

Background for event driven models and timed models is excellent in [36].

We can construct a classifier of models based on their representation of time and

how they are simulated, whether time driven or event driven. Illustration 1 offers a

 23

quadrant based classifier, where each quadrant represents a grouping of models. We can

populate this classifier with examples from engineering simulation. Register transfer

level (RTL) simulations are discretely simulated, discrete time, event driven models and

simulations, with examples from Verilog and VHDL-based simulators occupying points

in the +X, +Y, +Z quadrant. Simulations on analog computers occupy points in the -X, -

Y plane. While simulation by analog components such as operational amplifiers may, in

fact, still occupy discrete states in space and time (a topic beyond this work), we say that

they are continuously simulated (CS) because time is not discretized in the analog

computer in the manner it must be in a digital computer. Spice-based [31] circuit

simulations can occupy the +Y, -X, -Z quadrant. Their models are expressed in

continuous time differential equations, but their simulation is discretely conducted by

algebraic difference equations in a digital machine.

Illustration 1. Quadrant based categories of timed state transition systems

Discretely Modeled

Time (DT)

Continuously Modeled

Time (CT)

Discretely Simulated (DS)

Continuously Simulated (CS)

Time Driven (TD)

Event Driven (ED)

Z

X

Y

 24

We are primarily concerned in cyber-physical systems with timed, discrete time,

discrete event, event driven models. These are models conveniently simulated by a

digital computer. As timed models, time is an element of the system state, but the

advancement of the model is specified in terms of how the system reacts to events. A

time change in the system without an event associated with it may be a modeled as a null

event, so event driven models can capture a time driven simulation model of

computation. The field of timed, event driven, discrete time modeling and simulation is

rich [36], and we will continue to introduce terms, but we must account for categories of

error early in the discussion.

2.1.5 ERRORS IN MODELING

The definition of modeling with state transition systems introduces errors as we

depart from a physical reality. These are errors of representation. First, we may not

know all the elements in the system, or the set of elements specified the model may be

less than the set of all elements exercised in the simulator. This is the error of

simplification. It can arise because we may not chose to study or model every element

in the system, or because the simulator can only instantiate a subset of elements of the

system model. Next is the error of assignment. This is the error that the set of states

assigned to elements in the model to an element may or may not represent completely or

exactly the set of physical states the element may obtain. The states of an element

specified in the model may be a subset, or simplification, of the states it may obtain. For

example, a switching element of a model may have a property state of {on, off}, or {0,

1}. However, its electrical signal level in the physical system might be a larger set (a

subset of the real numbers assigned to model voltage, for example). So we have

encountered an error of assignment by abstracting the element state.

 25

Along with the state set of elements in the system, the state transition function

may have representational error. The error of simplification implies that the state

transition function may not be defined (or known) for all points in the system state. For

example, we may say a state transition function is continuously defined if one of the

elements of the system has a state set equivalent to R1, the set of real numbers, and that

the state transition function is surjective for that element. A state transition function may

be discretely defined if all of the state sets for each element in the system are countable

(equivalent to a subset of Z), or if the transition function is only defined for countable

subsets of the system state. However, although a continuously defined transition function

may be defined in closed form, when the model is exercised in a digital simulator, it

becomes necessarily discrete. Therefore, we commit an error of simplification in the

state transition simulation, because we cannot model all of the states specified in the

system state set and transition function. It is sometimes necessary to simplify a model

because the number of states and system elements increase simulation time costs when

the model is simulated. It costs memory to store the model states, and it costs

computation time to evaluate the state transition function. For some models these costs

can increase nonlinearly as the number of elements in the system increases.

2.2 Simulation

The act of simulation is to realize the behavior of a model by instantiating

elements of the model in simulator resources and executing the model transition function

in a selected model of computation offered by the simulator. Executing the model of

computation in the simulator takes a model through a state trajectory to observe

simulated system properties. Simulation can be conducted with analog or digital

computers, but this work concerns digital simulation. Separating the act of modeling and

 26

the act of simulating allows separating the acts of verification and validation of the model

and simulator [20]. Examining the model might ask if the right model is made, or if the

errors of representation are tolerable. The art of simulating might ask if we are

simulating the model correctly to its formalism within a tolerance of error [20][75].

The act of digital simulation is to realize a model and its transition function in a

computationally realizable algorithm in a digital machine. The element properties are

mapped to computer variable primitives and the transition function is mapped to

instructions that the computer may execute on those variables. The act of simulation

incurs the error of discretization. The error of discretization applies to both elements and

the state transition function because the element property sets must be mapped to finite

machine precision (encountering round-off error), and the state transition function must

be mapped to finite machine arithmetic (encountering round-off and truncation errors)

[76][77].

2.2.1 ACCOUNTING FOR TIME IN DIGITAL SIMULATION

Two expressions of time are frequently given when accounting for time in a

simulation. The time to execute the simulation, called wall clock time, or ∆𝑻𝒘𝒂𝒍𝒍, is the

observed time elapsed for a simulation to start and stop as the observer experiences time.

The simulation time, or ∆𝑻𝒔𝒊𝒎, is the time in the simulation that the model completes

during a segment of wall clock time. In similar language, adopting the definitions of [36]

physical time refers to time in the “real life” system being modeled. Simulation time is

an “abstraction used by the simulation to model physical time” [36]. Simulation time is

an element of the system state for timed models. Wall clock time refers to time during

the execution of the simulated program, the time we experience as the simulation

proceeds.

 27

A timed, event driven model advances ∆𝑇𝑠𝑖𝑚 by processing events. We can

construct a real-time ratio,
∆𝑇𝑤𝑎𝑙𝑙

∆𝑇𝑠𝑖𝑚
 , which quantifies how “quickly” a simulation advances.

If ∆𝑇𝑤𝑎𝑙𝑙 >> ∆𝑇𝑠𝑖𝑚, the simulation can be said to be “slow.” If
∆𝑇𝑤𝑎𝑙𝑙

∆𝑇𝑠𝑖𝑚
= 1, the simulation

is said to be running in real-time, or processing events and advancing as fast as the

physical system would in “real life.” If ∆𝑇𝑤𝑎𝑙𝑙 << ∆𝑇𝑠𝑖𝑚, the simulation is said to run

“as-fast-as-possible,” meaning the system simulation advances much more quickly than

the physical system would, processing events as quickly as it can. If ∆𝑇𝑤𝑎𝑙𝑙 << ∆𝑇𝑠𝑖𝑚

and real-time simulation is desired, ∆𝑇𝑠𝑖𝑚 can be scaled to match wall clock time by

connecting the rate of event processing with a local real-time clock [36].

For cyber-physical system simulation and engineering simulation, it is most often

the case that ∆𝑇𝑤𝑎𝑙𝑙 >> ∆𝑇𝑠𝑖𝑚, due to complexity of state or compute time to evaluate the

state transition function. Additionally, for CPS simulation in engineering product design,

it is most often “as-fast-as-possible” simulation, rather than scaled real-time simulation,

which proceeds at the same rate as wall clock time. Also, CPS simulation experiences a

challenge in the difference in frequency of circuit level events that must be modeled

versus software-level events, which might occur several orders of magnitude less

frequently. Yet, both of these resolutions must be simulated with correct causal

interaction with circuit-level and physical effects to reliably observe the system as it

would behave if constructed.

2.2.2 SIMULATING TIMED, EVENT DRIVEN MODELS

Equivocating Time Driven and Event Driven Models

The simulation of time driven, discrete time models can be mapped to the

simulation of event driven models if a change in simulation time is considered an event

from the event driven viewpoint. In this mapping, the simulation chooses a countable,

 28

finite subset of time (time points) to evaluate the state transition function, and then

evaluates the system at those points. This is equivalent to making time an internal event

queue, where the contents of the event queue are simulated time points when the

simulation chooses to evaluate the state transition function STF(t). This mapping is

important, because it can focus our view, without loss of generality, to event driven,

discrete event simulation.

Discrete Time, Discrete Event Simulation

The timed, discrete event model (TDEM) is central to this work. Two prominent

examples of TDEMs are “Logical Processes” [36] and the Discrete Event System

Specification (DEVS) formalism [20]. We examine each in turn. First, we must define

model inputs and outputs.

An input to a discrete event model is an event not generated internally by the

model. An input is applied from sources “external” to the model. The input is applied

through an input port, an abstract means to collect information into the model from

sources not a part of the model set of elements.

An output is an event that can be generated as a function of the model’s state

and/or inputs. An output event may be fed back into the model through an input port for

feedback. For these definitions, an output is considered to be an event that is sent

“outside” of the model to another consumer.

A timed event, as described by [35], is a tuple (v, t), a value v and a tag t, taken

from the product set V x T, where V is a set of values and T is a set of tags. Timed, event

driven models advance in simulated time by processing timed events, whether generated

internally in the model from its state transition function or supplied externally to the

model through input ports.

 29

Logical Processes

The Logical Processes viewpoint, covered by Richard Fujimoto in [36], points to

a legacy of insights and techniques that influenced the IEEE 1516 High Level

Architecture (HLA) standard [19] for distributed simulation coordination. Logical

processes are event-driven processes with the following elements and definitions.

System state variables are elements “describing the state of the system” [36].

These are precisely the system elements and their properties defined in state transition

systems. An event list contains events that are to occur at a “time in the simulated

future” of the system [36]. An event list is a list of timed events ordered on T, the set of

tags representing modeled time. A local clock denotes “the instant on the simulation

time axis at which the simulation now resides” [36].

The simulation cycle of the sequential, discrete event Logical Process can be

expressed as follows. While the simulation is in progress, remove the smallest time

stamped event from the event list. Set the simulation clock to the time stamp of this

event. Then execute all event handlers in the application to process the event [36].

The transition function consists of the actions of all the event handlers in the

system model. Executing the event handlers moves the system from one point state to

another and may add more events (internal events) to the event queue in the process. The

state transition function for the Logical Process is therefore a function of S (the system

state), E (the set of possible events), and T (the set of local time points).

The DEVS Formalism

The Discrete Event System (DEVS) formalism, attributed to Bernard Ziegler [20],

is a set theoretic formal system. It attempts to classify and describe a model in terms of a

DEVS set theoretic formalism, and then describe the concurrent simulation and

composition of these models through formal interfaces. DEVS has a rich legacy dating to

 30

1976 [20][21], and offers a means to separate the problems of verifying models and

validating the correct simulation of models. The formalism has evolved in the PADS

literature over the past three decades and is still actively researched [21][51][59][66].

Subtleties between LP and DEVS

The original atomic DEVS and Logical Process models encounter the challenge

of simultaneous events, described as “events with the same time stamps” [36]. If a model

receives two events of different values, but each with the same time stamp, which event

shall the model process first? It turns out the correctness of the model can depend on the

order in which the model processes the two events. Both system descriptions have been

adapted in definition to handle simultaneous events.

Simultaneous events raise a challenge regarding event causality based on time

stamps alone. A strongly causal system is said to have outputs that are strictly a function

of present and past state and previous inputs. A weakly causal system has outputs that

are a function of present and past state and present inputs. When simulating cycles of

weakly causal systems, the simulation may depend on the order that events are received,

even if they have the same time stamp. The receive order of simultaneous events may

then not be repeatable over some networks from one run of the simulation to the next.

Methods, such as extra lower precision bits added to event time stamps to differentiate

between simultaneous events are offered in [36] and [51]. Another approach is to let the

receiver decide between simultaneous events based on an internal priority [36]. A unified

approach to DEVS and Logical Processes, offered by Nutaro [51], adds measures for

simultaneity and causality in cycles of weakly causal processes.

 31

2.2.3 DISTRIBUTED, PARALLEL, TIMED, DISCRETE EVENT MODELS

Distributed simulation means that the system simulation processes potentially

run on spatially separate machines. Distributed simulation requires a means for processes

to communicate events that they produce for each other. Parallel simulation means that

the processes potentially execute concurrently. Parallel simulation requires a means to

synchronize timed models so that processes receive and process timed events “when they

are supposed to.” That is, causality of events must be no different in parallel simulation

compared to the causality of events in the same system simulated sequentially.

Therefore, parallel and distributed simulation requires both communication and

synchronization, terms this work combines together in the word “coordination.”

Several needs motivate the creation and coordination of distributed and parallel

TDEM process rather than sequential simulation of them over fast machines. First, the

wall clock cost of simulating the state transition function STF(e) for event e may grow

exponentially as the cardinality of S, the set of system states, increases for a model. This

is an issue for models such electrical circuit models where the number of nodes or

transistors in a system is large, as it is for VLSI systems. The reduction of STF(e) so that

more elements of state may be simulated is a strong motivator for parallel and distributed

simulation if STF(e) reduces for some domain over the set of parallel simulators.

Another motivation is model complexity. The system state S may be of such

complexity that domain experts must define elements and properties, but cannot define

all of them. For this reason, a model may be partitioned into domain groupings. The

simulation of those models may only be available on proprietary simulators or only in a

limited number or difficult to write from scratch simulation packages. Modelers may

wish to focus on some elements of S and not burden themselves with other elements of S.

 32

Another motivation is “level of abstraction.” Level of abstraction can be a

qualitative measure of the cardinality of the system state set and the domain and range of

the system state function. A “low level of abstraction” may represent “many” elements

of the physical system with refined state transition function, or a “high level of

abstraction” may model “fewer” elements of the physical system at selected points of the

system state (for accelerated simulation or more coverage of a subset of the system state).

These terms are loosely applied, but good examples are conservative, electrical level

modeling of a circuit for a low level of abstraction, and transaction-level-modeling

(TLM) of the circuit for a high level of abstraction. It may be desired to model some

components of the system state set at one level of abstraction and another set of system

components at a different level. For example, it may be desired to model the processor in

a system at an instruction-set-accurate level of abstraction, and the board circuitry of a

system at an electrical signal level of abstraction. The error of simplification in

representing the processor at a higher abstraction is not critical to the simulation purpose

if we don’t care about the internal circuit electrical levels of the processor, but only about

the effect of the processor instruction events on the processor architectural state.

Therefore, the three motivating factors for distribution and parallelism are the

reduction of the wall clock time cost to compute STF(e), heterogeneous model

complexity, and heterogeneous levels of abstraction. Cyber-physical system simulation

can encounter all three of these motivating factors for distributed and parallel simulation.

The Challenges of Distribution and Parallelism

Simulating a model or multiple models in parallel over distributed resources

introduces challenges. These are the challenges of distribution, synchronization, and

causality.

 33

Because distributed simulation means that some aspects of the state transition

function are evaluated over spatially separate compute resources, the models may need to

exchange information (events) with each other. So, distribution brings the challenge of

model and simulator communication.

Furthermore, because parallelism can mean that multiple logical processes

execute in simulation with independent clocks local to each (and not modifiable or

accessible by another process), parallel execution brings the synchronization challenge of

control of model advancement in time. Note that distributed simulation does not

necessarily mean parallel simulation. Parallel simulation means that the processes

evaluate STF(e) and advance their local clocks potentially at the same wall clock time or

over individual segments of simulated time. A simulation may still be sequential if

distributed processes execute “one at a time,” or if for any segment of wall clock time, for

all segments of wall clock time, only one process is evaluating the state transition

function and advancing its local time.

The primary hazard of the parallel simulation of timed, event driven models is

event causality. With parallel simulation of timed models, each model has a local copy

of time and simulation of the model advances independently. Therefore, at any instance

in wall clock time, the local simulation time of each simulated model may be different.

However, the parallel simulation must process events with the same outcome as if the

simulation were sequential. If one model produces an event with a time stamp earlier

than the simulation time of the model set to receive the event, then a causality error may

occur. That is, a model has proceeded into simulated future beyond events that it could

receive, so its state trajectory may no longer be correct.

Due to the challenge of causality, a means for synchronizing simulators is

required, defined as a mechanism of ensuring causal correctness between processes.

 34

Because models must communicate events to each other, the challenge of coordination is

the bipartite challenge of providing communication and synchronization service among

parallel, distributed simulation processes.

Coupling Error

 Parallel and distributed models are coupled by the coordination scheme assigned

to the simulation. This introduces a possibility of coupling error, the third major source

of error in modeling and simulation after representational error and discretization error.

Coupling error is primarily a simulation-introduced error, where representational error is

largely a modeling-introduced error. Coupling error may introduce in accuracies in the

simulation of distributed models. Coupling error can introduce delay, which is both a

wall clock time delay and simulation time delay. This delay can introduce causality and

stability errors dependent on the coupling method if processes have independently

running local clocks.

2.2.4 METHODS OF PARALLEL AND DISTRIBUTED, TIMED DISCRETE EVENT

SIMULATION

The challenges of coordination in parallel and distributed simulation (PADS) and

the assessment of error in the PADS have perpetuated the field as an active and open

research area. The literature of PADS has grown its own lexicon in addressing open

challenges, with signification contributions since the 1970s as concurrent computing

resources became more accessible to researchers. Fundamental PADS concepts are next

summarized, with recommended reading of Fujimoto [36].

Definitions

Local Causality Constraint: “A discrete-event simulation, consisting of logical

processes (LPs) that interact exclusively by exchanging time stamped messages obeys the

 35

local causality constraint if and only if each LP processes events in nondecreasing time”

[36].

The local causality constraint (LCC) becomes challenging when a process does

not know when it will receive the next external event. If a process consumes a future

event e from an internal event queue, and advances its local clock to the time stamp of the

event e, but later receives an external event with a time stamp less than event e, it violates

the local causality constraint. For this reason, a process must determine which events in

its event queues are “safe to process.”

Safe to process: “An event e is ‘safe to process’ if the logical process can assure

that it will not receive a future unprocessed event with a time stamp less than event e”

[36].

 An important result of the local causality constraint is that if each LP in a

coordinated simulation obeys it, the “parallel/distributed execution will yield exactly the

same results as a sequential execution of the same simulation program provided that

events containing the same time stamp are processed in the same order in both the

sequential and parallel execution” [36]. Some evaluation must be made for events with

the same time stamp, because the order of execution of these events may affect the

simulation outcome.

Lookahead: “If a logical process at simulation time T can only schedule new

events with time stamp of at least T + L, then L is referred to as the lookahead for the

logical process” [36].

 Lookahead is an important concept in conservative simulation. A lookahead of l

implies that there is a delay of at least l time units in a simulation for the process to

output an event as a result of an input event. If a process p is at time t and has lookahead

36

l, other processes can know that they will not receive any events from process p until

time t + l.

Zero-lookahead: A process has “zero-lookahead” if at logical time t, it may

schedule new events at time stamp t.

Zero-lookahead implies that there may be no simulated time delay from

consumption of an input event in a logical process to the production of an output event

from the logical process caused by the input event. If a model has zero-lookahead, it may

consume an input event at time t and produce an output event “caused” by that event also

at time t. Zero-lookahead processes may lead to deadlock if connected in a dependency

cycle. Also, zero-lookahead or small-lookahead processes degrade the performance of

conservative simulations due to increased messaging per advancement of a segment of

simulated time.

LBTSp: The lower bound time stamp (LBTS) of future inputs for logical process

p is a lower bound on the time stamp of any message that the process may receive in the

future at the time of measure. The LBTSmin is the minimum LBTSp for all processes p in

the simulation at any point of observation.

Globally safe events: Events in the simulation at wall clock time t with time

stamp less than or equal to LBTSmin across all processes are safe to process.

If at any wall clock time t, each process in the simulation could know LBTSmin, it

could execute all safe-to-process internal events (those less than LBTSmin) and meet the

local causality constraint.

Conservative Simulation

A logical process is conservatively simulated if it only processes internal and

received input events that are “safe to process.” Conservative simulations process events

 37

with time stamp t greater than or equal to local time if and only if it can be certain that the

process will receive no new events with time stamp less than t. Conservative simulations

require some means of communicating to processes which events are safe to process.

Lookahead serves as means to evaluate event safety. A seminal conservative

coordination scheme utilizing lookahead is the Chandy/Misra/Bryant null-message

algorithm [7][36]. Processes send events with a null event value on all outputs every

time the process local time advances so that consuming processes may have a lower

bound (the null event time stamp) for when the process will next send an event. The

algorithm can result in many null messages for processes with a small lookahead

compared to the overall simulated time interval for the simulation.

Optimistic Simulation

A logical process is optimistically simulated if it may consume and process events

speculatively and correct itself if a future event is received with time stamp less than the

local clock. Optimistic simulations speculatively advance to processes future time events

already scheduled, and if they receive an event with time stamp less than local time t

(called a “straggler event”), there is a means, such as “rollback,” to reverse the effects of

the optimistic processing. The process must be able to cancel the effect of the optimistic

event processing and return to an earlier state with time less than or equal to the time of

the straggling event, and reverse effects of optimistic output events it has sent.

A seminal optimistic coordination scheme is the Jefferson Time-Warp scheme

[65]. Jefferson Time Warp introduces the notion of “anti-messages” along with normal

simulator event messages. A Time Warp Logical Process (TWLP) keeps internal queues

with anti-message copies of all events it has sent out to other TWLPs through output

queues. Anti-messages can be implemented with a sign bit. A normal message has a

 38

positive sign bit and its anti-message, with exactly the same content, can have a negative

sign bit. When a TWLP receives a straggling message and must rollback to an earlier

time point, it must also undo the effects of all the speculative output messages it has sent.

It does this by forwarding all anti-messages in its anti-message queues. When a TWLP

receives an anti-message in an input queue, it “annihilates” its corresponding normal

message (borrowed from the concept of particle/anti-particle annihilation). In this way a

TWLP can cancel speculatively forwarded output events. There are other subtleties in

this method, such as cascading rollback and the cancellation of already processed events,

so [36] and [65] are recommended reading.

Optimistic simulation originating with Jefferson Time Warp adds the notion of

Global Virtual Time (GVT). GVT is considered the earliest time in the simulation that a

rollback may occur. Similar to LBTSmin, events in the simulation with time stamp less

than or equal to GVT are safe to process and retire without fear of receiving a straggling

event.

Global Virtual Time: “Global Virtual Time at wall clock time t (GVTt) during

the execution of a Time Warp simulation is defined as the minimum time stamp among

all unprocessed and partially processed messages and anti-messages in the system at wall

clock time t” [36].

Algorithms for determining GVT and the LBTSmin of the entire system are critical

to determining which events in the simulation are safe to process. Some coordination

schemes require centralized blocking and additional simulator messaging to determine

GVT and the LBTSmin in the simulation [36].

The KPN-IE dataflow solution, however, may not impose upon coordinated

simulators the same functional overhead required to support optimistic or conservative

simulation. Because event messages are limited to interpolated event (IE) messages

 39

coordinated among simulators with the rules of Kahn Process Network, calculation of

bounds on LBTSmin and GVT fall automatically out of implementation of the dataflow

network, potentially reducing messaging burdens on the simulators and the coordination

scheme. This tracking is explained in detail in Chapter Four.

2.3 Chapter Summary

 This chapter provided an introduction to fundamental concepts in the field of

modeling and simulation theory. Models for this work were derived from state transition

systems, a formality sufficient to include subclasses of timed, time driven, event driven,

discrete event or discrete time models. Event driven, discrete time, and discrete event

models are central to this work. Fundamental concepts of timed, event driven models

were given, and fundamental concepts of error encountered in modeling were introduced.

Two important solutions for parallel and distributed simulation (PADS) were mentioned,

the DEVS formalism [20] and the IEEE 1516 HLA standard [19]. Finally, fundamental

definitions in the field of PADS were given. These definitions are important for

understanding the dynamics of the KPN-IE method in Chapter Four.

 40

CHAPTER THREE. INTERPOLATED EVENTS AND PORTS

This chapter introduces Interpolated Events (IEs) as a communication format and

Interpolated Event ports as an input and output mechanism for parallel and distributed

simulation (PADS) of cyber-physical systems (CPSs). Interpolated Events capture signal

values and assign a segment of simulated time over which the signal is declared to be

constant by the signal producer. Interpolated Events and their properties are formally

defined, followed by the Interpolated Event Input and Output Port specification for

sending and receiving IEs in a logical process model of computation. An equation for the

time cost of simulation with IEs and IE ports is then constructed, followed by a

discussion of categories of simulation error possible IEs and IE ports.

3.1 Interpolated Events

Interpolated Events are an important concept in this work. A conventional event

inherited from the literature is a tuple (v, t), where v is from a set of values V, and t is

from a set of tags T [35]. An ordering on conventional events can be associated with an

ordering on T, particularly if T is R1 under the Euclidean metric. An Interpolated Event

(IE) is a 3-tuple, (v, t, t’), where v is from a set of values V, and t and t’ are from a set of

tags T [10].

3.1.1 DEFINITION AND PROPERTIES

Interpolated Events are 3-tuple elements (v, tm, tn) of the product set V × T × T,

where V is a set of values, and T is a set of tags. This nomenclature borrows from the

value/tag “(v, t)” definition of a conventional event [35]. For a given Interpolated Event

(v, tm, tn), the value v is defined to be constant on the half open interval [tm, tn) specified in

the IE, such that the tag set T is ordered. T is conventionally the real number set R1 in

 41

timed, event driven simulations representing the simulated time when an event occurs.

For an Interpolated Event (v, tm, tn), the range [tm, tn) assigns a “stable” time to the signal

value v for producers and consumers.

If a simulator receives an Interpolated Event (v, tm, tn), it may assume the value v

is constant on the tag range [tm, tn), and not need to sample the value again until

expiration time tn. So, an Interpolated Event encapsulates both communication (the

signal value) and synchronization (the start and end time). Mapped to nodes in a Kahn

Process Network, simulators consume IEs, run, and produce IEs until the expiration tag

of the last consumed IE, at which point simulators sample their FIFOs again for new IEs.

If their input FIFOs are empty, simulators block, enforcing the local causality constraint,

because each simulator cannot advance in time beyond the expiration tags of IEs on its

input FIFOs. A feature of the sampling captured in the duration of an IE (tn – tm), or

“∆IE,” is that tradeoffs in simulation speed versus accuracy may be studied. An IE

assigns a stable value to a signal for a duration, during which local time a consuming

simulator can operate on it without re-querying the value. The speed versus accuracy

tradeoff can be statically or dynamically adjusted, as explored in [11][17][18].

3.1.2 OPERATIONS ON INTERPOLATED EVENTS

We next define groupings and operations on Interpolated Events. These

definitions enable techniques of optimistic and conservative simulator coordination

where signals are communicated as streams of Interpolated Events.

IE stream: An IE stream { IE } is a set of IEs, {(v0, tm0, tn0) … (vk, tmk, tnk)}.

An IE stream is connected if and only if for every tn value in { IE } less than the

max tn value in the stream, there is at least one other IE’ in the stream, different from the

IE containing tn, for which tn is contained in [tm’, tn’) of IE’. That is, there is at least one

 42

other IE for which tm’ ≤ tn ≤ tn’ for an IE (v’, tm’, tn’). An equivalent statement is that for

any t in the interval [tm min, tn max] in the stream, there is at least one IE containing t. That

is, there is an IE (v’, tm’, tn’) for which tm’ ≤ t ≤ tn’.

An IE stream is connected and non-overlapping if it is connected and for every

tn value in { IE } less than the max tn value in the stream, there is at most one IE’ in the

stream for which tm’ = tn for the IE’, (v’, tm’, tn’), and there are no other IEs in the stream

for which tm’’ < tn < tn’’ for an IE’’ (v’’, tm’’, tn’’). Connected and non-overlapping IE

streams have non-duplicate tm values among the tm values, and non-duplicate tn values

among the tn values, and all IEs have non-zero ∆IE.

An IE stream is connected and overlapping if it is connected and for any tn value

in the stream less than the max tn in the stream, there is at least one other IE in the stream

(v’, tm’, tn’) for which tm’ < tn ≤ tn’. An equivalent statement is that for at least one time t

in the interval [tm min, tn max] in the stream, there are at least two IEs in the stream

containing time t.

IE output ports can produce connected and overlapping IE streams in tracking

mode (Chapter 3.2.1). Corrected IEs overlap with previously posted IEs. IE output ports

in sampling mode produce connected and non-overlapping IE streams.

 IE splitting: The split operation on an IE divides its ∆IE interval. Let the IE be

given by (v, tm, tn), and tm < tn. Let ts be contained in the interval [tm, tn). The split

operation split(IE, ts) is a mapping from [tm, tn) -> [tm, tn) x [tm, tn) as follows:

split(v, tm, tn, ts) = (v, tm, ts), (v, ts, tn). The split divides the IE into two connected IEs with

value v connected at time ts contained in [tm, tn).

 IE concatenation: IE concatenation combines IEs. For two IEs given by (v1, tm,

tn), (v1, tn, to), tm < tn < to, the operation concat((v1, tm, tn), (v1, tn, to)) produces (v1, tm, to).

Concatenation lengthens a ∆IE segment for connected IEs of the same v value.

43

The act of concatenating a connected and non-overlapping IE stream can produce

a stream with the same event structure but with fewer IEs. The act of splitting a

connected and non-overlapping IE stream can produce the same event structure but with

more IEs.

IE sharpen: The IE sharpen operation resolves overlapping IEs in a stream of

IEs into a stream of connected and non-overlapping IEs. For any two overlapping IEs,

(v1, tm1, tn1), (v2, tm2, tn2), we have tm1 < ttn2 ≤ tn1. Which IE should have precedence? If

∆IE0 < ∆IE1, we choose ∆IE0 to have precedence, because it is more refined (smaller

∆IE). If the two tm are equal for the two IEs, we simply choose the IE with the smaller

∆IE and discard the other. If they have the same ∆IE, we choose the one appearing later

in LIFO order, and discard the other. If neither of these conditions, we let tm be the

smaller of the tm values of the two IEs. We construct a new IE with v equal to the value

associated with the IE with the smaller tm. The IE has value v, tm, and the tn as the greater

tm of the two. Then we create another IE with v equal to the v of the later appearing IE

(larger tm), and with tn of the last of the two IEs in LIFO order. The sharpening is then

continued over each remaining overlapping IE in the stream.

3.2 Interpolated Event Ports

3.2.1 INTERPOLATED EVENT OUTPUT PORTS

The Interpolated Event Output Port (IEOP) is a timed, discrete event driven

model that has the logical process internal clock tied to the model using the port. We

define an abstract state machine for generating interpolated events or consuming them on

model input and output ports. The IEOP can be an independent logical process as long as

it receives synchronous local clock updates from its parent model (the model that uses the

 44

port). IEOPs produce an interpolated event stream and have an event driven logical

process structure as described in the following.

Event Queues

Time
 Event

Value

Port State Output

t2 e2 Last

Event

ΔIE IEs IEe Mode

 Output

IE t1 e1

t0 e0 le0 dn tm tn m0 ie

 Process

Illustration 2. State elements of the Interpolated Event Output Port

Illustration 2 shows the logical process, timed, discrete-event model for the

Interpolated Event Output Port. The process contains two input event queues, named

“Time” and “Event Value.” It contains five state variables, “Last Event, ΔIE, IEs, IEe,

and Mode.” These can also be considered single item event queues rather than state

variables for event-driven generality. The state transition function STFIEOP is triggered

when the Event Value queue receives an event. The function is blocked if any of the

event queues are empty. The logical clock of the process advances with events in the

Time queue. The state transition function determines an output when the time and event

queues are non-empty. By design, because input queues are from a timed discrete event

driven system, when an event is added to the event input queue, a corresponding time

event with equal time stamp resides in the time queue representing the local time of the

deposit of the event in the IEOP. Expressed in pseudo code, the transition function is:

if (time queue is non-empty) {

 if (mode = sampling) {

 if (pop(Time) ≥ tn) {

 if (Event queue is non-empty) {

STFIEOP(Time, Event, Last Event, ΔIE, IEs, IEe, Mode)

 45

 Output IE v = pop(Event);

 flush(Events);

 } else {

Output IE v = Last Event value;

 }

 Output IE tm = tm; Output IE tn = tn;

tm = tn;

 tn = tn + ΔIE;

 Last Event value = Output IE v;

 flush(Events);

 } else {

 pop(Time);

}

 }

 if (mode = tracking) {

 if (Event queue is non-empty) {

 Output IE v = pop(Event);

 // send correction on last output IE

 Output IE tm = tm;

 Output IE tn = pop(Time);

 tm = tn;

 tn = tn + ΔIE;

 } else {

 pop(Time);

 }

 }

 }

Illustration 3. Interpolated Event Output Port pseudo code example

Two output modes are available on the IEOP. In sampling mode, the process

outputs an IE every ΔIE event samples. If no new events are queued each ΔIE interval,

the last event forms the output IE. Sampling mode IEOPs can mask events if ΔIE is

greater than the period of input events.

In tracking mode, the IEOP outputs a correcting IE if a new event arrives before

ΔIE expires. Although output IEs will overlap in tracking mode, the IEOP will not miss

any input events. Tracking mode can be used for correction of optimistic IE streams.

 46

Two important aspects of the IEOP concern lookahead. If the LP using the port

has non-zero lookahead K, and ΔIE = K, then the IEOP will behave as if in tracking

mode and output an IE stream with no overlap. If ΔIE < K and divides K, then the IEOP

will behave as if in tracking mode and output an IE stream with no overlap, but with

more IEs than if ΔIE = K. If ΔIE < K and does not divide K, or if ΔIE > K and the port is

in sampling mode, then the port may mask events. That is, the event will not output

because it does not fall on the boundary of a ΔIE time interval.

ΔIE can be changed by the process using the port or by external IE consumers.

The tuning ΔIE affects the speedup and accuracy of a parallel simulation and is an

important configuration parameter. ΔIE provides an optimistic prediction of the stability

of an event e. The ΔIE configuration declares the output will not change over the interval

of ΔIE unless corrected in tracking mode.

3.2.2 INTERPOLATED EVENT INPUT PORTS

The Interpolated Event Input Port receives IEs from an external provider and

creates internal events for the consuming logical process.

Input

ie0

 Port State Output

ie1
 Last IE

Rec’d

tm tn

 Local

Time

Event

… iel iel tm iel tn t (iel v, tm)

Process

Illustration 4. Interpolated Event Input Port state elements

The Interpolated Event Input Port consumes IEs from an input source external to

the model and produces conventional internal events for the TDEM logical process

STFIEIP(local time, Last IE Received, tm, tn)

 47

connected to the port. The conventional event (iel v, tm) is an event (v, t) where v is the

value of iel and tm is the iel tm value. If the process local time is equal to the last tn value

of the last IE the port received, the port performs a process blocking read from its input

source for a new IE. The blocking read prevents the attached TDEM from advancing

local time beyond the time of incoming IEs, forcing the local causality constraint. If no

new IEs are available, the process waits in a blocking executive. If a new IE is available,

the port consumes the IE, updates the last IE received state, tm and tn states, and queues an

internal conventional event in the TDEM model with value v equal to the received IE v

value and the time of the event set to tm. This event “persists” until expiration time tn. If

the model consumes the event at local time t ≥ tm, the port abstractly places another

conventional event in the input queue with value (v, local time) so that the TDEM can

never become blocked on an empty input event queue during duration tn – tm for the last

received IE. The TDEM process may safely execute any other internal events during this

time and run independently because the IE value is declared unchanging. A pseudo code

state transition function for the Interpolated Event Input Port is:

if (local time = tn) {

while (dequeue(input IE) = empty) \

 TDEM process block;

 // a new IE’ is available

 consume IE’ (v’, tm’, tn’) from input IE FIFO;

 Queue TDEM event (v’, local time);

 // update states

Last IE Received = IE’; tm = tm’; tn = tn’;

} else {

if (output queue = empty) {

Queue TDEM event (Last Received IE v, local

time);

}

}

Illustration 5. Interpolated Event Input Port pseudo code example

 48

Models with Multiple Ports

The KPN-IE method declares that ports for coordinated models may only be of

these two types: IEIPs or IEOPs. This allows for analytic closed-form expressions of

simulation speed versus IE resolution, for assuring the local causality constraint, and for

other coordination benefits that will be introduced. Timed, discrete event models can

have multiple Interpolated Event Input and Output Ports. The IE port models impose

light weight requirements on the simulators, namely that they offer inspection of internal

local time and internal events to be communicated through the port, that they offer an

operating system (OS)-level system interface to implement the messaging scheme

(format, verification, and carrier) and a process blocking OS primitive, and that they

allow scheduling of future internal events. These interfaces may be provided in

proprietary simulators to offer a means of user-based interfacing without exposing

internal simulator source code or intellectual property.

3.3 A Simulation Time Cost Function with IEs and IE Ports

We can now formulate a detailed simulation time cost tradeoff function with IEs,

IE ports, and timed, discrete event simulation. This time cost function will result in

expressions for system simulation speed versus simulation resolution.

Total wall clock time cost of single process, timed, discrete event simulation

The timed, discrete event simulation time cost equation is the wall clock time

required to simulate a sequence of events within a segment of simulated time. The

expression is given in Equation 1.1.

 49

 ∆𝑇𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚 = ∑𝛶𝑆𝑇𝐹(𝑒𝑖 , 𝑆)

𝑛

𝑖=0

 | 𝑒𝑖 ∈ 𝐸∆𝑇𝑠𝑖𝑚

(Eq. 1.1)

𝑆𝑇𝐹(𝑒𝑖, 𝑆)

𝛶𝑆𝑇𝐹(𝑒𝑖, 𝑆)

𝐸∆𝑇𝑠𝑖𝑚

𝑛

∆𝑇𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚

= the state transition function for event 𝑒𝑖 ∈ 𝐸∆𝑇𝑠𝑖𝑚

and system state tuple S

= the wall clock time to compute 𝑆𝑇𝐹(𝑒𝑖, 𝑆) for each 𝑒𝑖

= the set of all events simulated by the model with

time stamps contained in 𝛥𝑇𝑠𝑖𝑚

= |𝐸∆𝑇𝑠𝑖𝑚
|, the cardinality of 𝐸∆𝑇𝑠𝑖𝑚

= the wall clock time cost for the simulation to

advance ∆𝑇𝑠𝑖𝑚 units of simulation time

Accounting for outputs in the simulation time of single processes

Equation 1.1 assumes that outputs are contained in the system state, meaning that

an output is a copy or reference to an element of the system state and is known when

𝑆𝑇𝐹(𝑒𝑖, 𝑆) is evaluated. However, an output may be a function of the system state, a map

from S to a set of outputs, and evaluated whenever the model is to “output” an event. We

use the DEVS notation for the system output function, λ. Because λ is a function, if

system state S1 equals system state S2, then λ(S1) = λ(S2). So, at most, λ is evaluated

every 𝑆𝑇𝐹(𝑒𝑖, 𝑆). So, accounting for the evaluation of outputs by the model, Equation

1.1 becomes:

 ∆𝑇𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚 = ∑ 𝛶𝑆𝑇𝐹(𝑒𝑖, 𝑆)𝑛
𝑖=0 + ∑ 𝛶𝜆𝑖

(𝑆)𝑚
𝑖=0 | 𝑒𝑖 ∈ 𝐸∆𝑇𝑠𝑖𝑚

(Eq. 1.2)

𝛶𝜆𝑖
(𝑆)

𝑚

= the time cost to compute the system output function

= the number of times 𝜆 is evaluated in ∆𝑇𝑠𝑖𝑚

 50

Partitioning 𝑬

We declare |𝐸|, the cardinality of set 𝐸, which is the set of events processed by

an event driven model, to be countable for the discrete event, event driven simulation. It

may also be finite, but is not required to be (the simulation can always be stopped

manually). 𝛶𝑆𝑇𝐹(𝑒𝑖, 𝑆), the wall clock time to evaluate 𝑆𝑇𝐹(𝑒𝑖 , 𝑆) for each event 𝑒𝑖 in 𝐸,

may dependent on the number of states in the system, the compute resources evaluating

the event, and the event itself. In some simulations the cost may be known; in others it

can only be measured or bounded.

We can partition the set 𝐸 into categories of events. First, there are internal and

external events. External events are events provided to the model, such as initial

conditions or inputs, and are not generated by the model itself during simulation. Internal

events are events created by the model for itself from the action of processing external

events. So, 𝐸 = 𝐸𝑒𝑥𝑡 ∪ 𝐸𝑖𝑛𝑡, where 𝐸𝑒𝑥𝑡 = {𝑒𝑒𝑥𝑡 ∈ 𝐸 |𝑒𝑒𝑥𝑡 𝑖𝑠 𝑎𝑛 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑣𝑒𝑛𝑡},

 𝐸𝑖𝑛𝑡 = {𝑒𝑖𝑛𝑡 ∈ 𝐸 |𝑒𝑖𝑛𝑡 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑣𝑒𝑛𝑡}, and 𝐸𝑒𝑥𝑡 ∩ 𝐸𝑖𝑛𝑡 = ∅ by definition.

It is important to distinguish between pre-scheduled events and run-time

originated events. Pre-scheduled events are events and times scheduled for a model in

simulation before the simulation is run. These may be called “pre-scheduled time

points.” For example, if a model must evaluate state at minimum every ∆t simulation

seconds, then there will ∆Tsim /∆t are pre-scheduled time points for every segment of

simulation time ∆Tsim. 𝑆𝑇𝐹(𝑒𝑖, 𝑆) will be evaluated at each of the pre-scheduled points,

where ei will be the time point event.

We define inputs further to clarify the concept of external events. An input is a

via into a model through which information is passed. For this work, inputs are restricted

to arrive through IEIPs and contain IEs.

 51

Input events are external events in that they are not originated by the model itself.

Output events may be fed back into the input for feedback, but we identify this case

separately. So, continuing to partition categories of external events, 𝐸𝑒𝑥𝑡 = 𝐸𝑖𝑛𝑝𝑢𝑡𝑠 ∪

𝐸𝑝𝑟𝑒𝑠𝑐ℎ𝑒𝑑, where 𝐸𝑖𝑛𝑝𝑢𝑡𝑠 = {𝑒𝑖𝑛𝑝 ∈ 𝐸 |𝑒𝑖𝑛𝑝 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑝𝑢𝑡 𝑒𝑣𝑒𝑛𝑡}, and 𝐸𝑝𝑟𝑒𝑠𝑐ℎ𝑒𝑑 =

 {𝑒𝑝𝑟𝑒𝑠𝑐ℎ𝑒𝑑 ∈ 𝐸 |𝑒𝑝𝑟𝑒𝑠𝑐ℎ𝑒𝑑 𝑖𝑠 𝑎 𝑝𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑒𝑣𝑒𝑛𝑡}. 𝐸𝑖𝑛𝑝𝑢𝑡𝑠 ∩ 𝐸𝑝𝑟𝑒𝑠𝑐ℎ𝑒𝑑 = ∅ by

definition. The set of inputs may be pre-specified, such as an event segment stimulus, but

they arrive through input ports, where prescheduled events are pre-filled in the model

event queues prior to the simulation. Therefore the set of input events and the set of

prescheduled events are separate.

Expanded equation for abstract input and output ports and partitioned E

 ∆𝑇𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚 = ∑ 𝛶𝑆𝑇𝐹(𝑒𝑖 ∈ 𝐸𝑖𝑛𝑝𝑢𝑡,∆𝑇𝑠𝑖𝑚
, 𝑆)𝐿

𝑖=0 + ∑ 𝛶𝑆𝑇𝐹(𝑒𝑖 ∈
𝑀
𝑖=0

𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,∆𝑇𝑠𝑖𝑚
, 𝑆) + ∑ 𝛶𝑆𝑇𝐹(𝑒𝑖 ∈ 𝐸𝑝𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑,∆𝑇𝑠𝑖𝑚

, 𝑆) +𝑁
𝑖=0 ∑ 𝛶𝜆𝑖

(𝑆)𝑂
𝑖=0

𝐿

M

N

O

= the number of external input events during ∆𝑇𝑠𝑖𝑚

= the number of internal events generated during ∆𝑇𝑠𝑖𝑚

= the number of prescheduled events during ∆𝑇𝑠𝑖𝑚

= the number of times the output function is evaluated in ∆𝑇𝑠𝑖𝑚

(Eq. 1.3)

Equation 1.3 accounts for the event category decomposition. Since inputs are

restricted to arrive through interpolated event ports, they may be counted. Let ΔIEi be the

interpolated event duration for an interpolated event IEi arriving in simulation time period

ΔTsim. Assuming ΔIE constant for interpolated events in ΔTsim, there will be ΔTsim/ΔIE

such interpolated events during that time period. Each interpolated event is an external

 52

event for the model. So the interpolated event input ports add the wall clock time cost of

servicing the port (receive costs) and the wall clock time cost of waiting for the next

event, since inputs block at IE expiration times.

Accounting for Interpolated Event Input Ports

In Equation 1.4, the event category decomposition is accounted for with

interpolated event inputs. K is generally one (the interpolated event is processed once as

a single event with time stamp tm from the ie), but the model may consume the event at

multiple time points, re-evaluating the state transition function each time.

 ∆𝑇𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚 = ∑ ∑ [𝛶𝐼𝐸𝐼𝑃(𝑖𝑒𝑖,𝑗 ∈ 𝐼𝐸𝑗,∆𝑇𝑠𝑖𝑚
)

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸𝑗

⁄

𝑖=0
+ 𝐽

𝑗=0 𝛶𝑤𝑎𝑖𝑡(𝑖𝑒𝑖+1,𝑗) +

∑ 𝛶𝑆𝑇𝐹(𝑒𝑙 ∈ 𝑖𝑒𝑖,𝑗, 𝑆)𝐾
𝑙=0] + ∑ 𝛶𝑆𝑇𝐹(𝑒𝑖 ∈ 𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,∆𝑇𝑠𝑖𝑚

, 𝑆)𝐿
𝑖=0 +

∑ 𝛶𝑆𝑇𝐹(𝑒𝑖 ∈ 𝐸𝑝𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑,∆𝑇𝑠𝑖𝑚
, 𝑆) +𝑀

𝑖=0 ∑ 𝛶𝜆𝑖
(𝑆)𝑁

𝑖=0

(Eq. 1.4)

𝐽

K

L

M

N

𝛶𝑤𝑎𝑖𝑡(𝑖𝑒𝑖+1,𝑗)

𝛶𝐼𝐸𝐼𝑃(𝑖𝑒𝑖,𝑗 ∈ 𝐼𝐸𝑗,∆𝑇𝑠𝑖𝑚
)

𝐼𝐸𝑗,∆𝑇𝑠𝑖𝑚

𝛶𝑆𝑇𝐹(𝑒𝑙 ∈ 𝑖𝑒𝑖,𝑗 , 𝑆)

= the number of interpolated event input ports

= the number of internal events created by iel,j

= the number of internal events generated during ∆𝑇𝑠𝑖𝑚

= the number of prescheduled events during ∆𝑇𝑠𝑖𝑚

= the number of times the output function is evaluated

= the wall clock wait time for the next input ie i+1, j

= the wall clock time cost of servicing received iei,j

= the set of ie’s received on port j during ∆𝑇𝑠𝑖𝑚

= the wall clock cost of evaluating the state transition

function for internal events created by received 𝑖𝑒𝑖,𝑗

 53

A critical wait introduced in Equation 1.4 is 𝛶𝑤𝑎𝑖𝑡(𝑖𝑒𝑖+1,𝑗), the wall clock time for

the process to wait while it is blocked waiting for the next ie input on port j. Processes

block for the local causality constraint and wait on new interpolated events. As such,

𝛶𝑤𝑎𝑖𝑡(𝑖𝑒𝑖+1,𝑗) is the wall clock time required for the process sending 𝑖𝑒𝑖+1,𝑗 to advance

∆𝑖𝑒𝑖,𝑗 time points in simulation time plus the transmit delay of the IE information, which

can be network dependent. We can see from Equation 1.4 that ΔIE and 𝛶𝑆𝑇𝐹(𝑒𝑖, 𝑆) are

significant factors in the wall clock time cost of simulation where message transmit time

and port processing time 𝛶𝐼𝐸𝐼𝑃(𝑖𝑒𝑖,𝑗) are insignificant. Simulation resolution is changed

by changing the interpolated event duration ΔIE on a port. We seek a relationship

between ΔIE and ∆𝑇𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚
. Equation 1.5 accounts for interpolated event output ports

(IEOPs) and restricts models to communicate through IEOPs, which have no blocking

wait time on them in default configuration.

Accounting for Interpolated Event Input and Output Ports

∆𝑇𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚 = ∑ ∑ [𝛶𝐼𝐸𝐼𝑃(𝑖𝑒𝑖,𝑗 ∈ 𝐼𝐸𝑗,∆𝑇𝑠𝑖𝑚
)

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸𝑖𝑛𝑝𝑢𝑡,𝑗

⁄

𝑖=0

+

𝐽

𝑗=0

𝛶𝑤𝑎𝑖𝑡(𝑖𝑒𝑖+1,𝑗)

+ ∑𝛶𝑆𝑇𝐹(𝑒𝑙 ∈ 𝑖𝑒𝑖,𝑗 , 𝑆)

𝐾

𝑙=0

] + ∑𝛶𝑆𝑇𝐹(𝑒𝑖 ∈ 𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,∆𝑇𝑠𝑖𝑚
, 𝑆)

𝐿

𝑖=0

+ ∑𝛶𝑆𝑇𝐹(𝑒𝑖 ∈ 𝐸𝑝𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑,∆𝑇𝑠𝑖𝑚
, 𝑆) +

𝑀

𝑖=0

∑𝛶𝜆𝑖
(𝑆)

𝑁

𝑖=0

+ ∑ [∑ 𝛶𝐼𝐸𝑂𝑃(𝑖𝑒𝑖,𝑗 ∈ 𝐼𝐸𝑜𝑢𝑡𝑝𝑢𝑡,𝑗,∆𝑇𝑠𝑖𝑚
)

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸𝑜𝑢𝑡𝑝𝑢𝑡,𝑗

⁄

𝑖=0

𝑂

𝑗=0

+ ∑ 𝛶𝐼𝐸𝑂𝑃(𝑒𝑘 ∈ 𝐼𝐸𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑠,𝑗, ∆𝑇𝑠𝑖𝑚
)

𝑃

𝑘=0

]

(Eq. 1.5)

 54

𝐽

K

L

M

N

O

𝑃

𝛶𝐼𝐸𝑂𝑃(𝑖𝑒𝑖,𝑗

∈ 𝐼𝐸𝑜𝑢𝑡𝑝𝑢𝑡,𝑗,∆𝑇𝑠𝑖𝑚
)

𝐼𝐸𝑜𝑢𝑡𝑝𝑢𝑡,𝑗,∆𝑇𝑠𝑖𝑚

𝐼𝐸𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑗, ∆𝑇𝑠𝑖𝑚

∆𝐼𝐸𝑖𝑛𝑝𝑢𝑡,𝑗

∆𝐼𝐸𝑜𝑢𝑡𝑝𝑢𝑡,𝑗

= the number of interpolated event input ports

= the number of conventional events generated by iei

= the number of internal events generated during ∆𝑇𝑠𝑖𝑚

= the number of prescheduled events during ∆𝑇𝑠𝑖𝑚

= the number of times output function 𝜆 is evaluated in ∆𝑇𝑠𝑖𝑚

= the number of interpolated event output ports

= the number of corrected interpolated events if

the port is in tracking mode

= the wall cost time of servicing the interpolated

event output port for output iei, j

= the set of output ie’s posted on IEOP port j

= the set of corrected output ie’s posted on IEOP

port j if in tracking mode

= the interpolated event port input duration on

input port j

= the interpolated event port output duration on

output port j

If each IEOP is in sampling mode, there are no corrected output events, so P = 0.

There is also no wait time on sending output IEs, just the port servicing time 𝛶𝐼𝐸𝑂𝑃.

Expanding 𝜰𝒘𝒂𝒊𝒕(𝒊𝒆)

We see that the wall clock time simulation cost is dependent partly on the

𝛶𝑤𝑎𝑖𝑡(𝑖𝑒𝑖+1,𝑗) wall cost time of the next interpolated event on each IE input port j.

𝛶𝑤𝑎𝑖𝑡(𝑖𝑒𝑖+1,𝑗) is composed of the wall clock time cost of transmitting the IE, the cost

 55

𝛶𝑇𝑋(𝑖𝑒), which is a function of the IE transmit method and compute resources. It may be

network delay dependent. 𝛶𝑤𝑎𝑖𝑡(𝑖𝑒𝑖+1,𝑗) is also related to the cost of the input process to

advance ∆IE units of time. That cost is ∆𝑇𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚 for the input process, where ∆T𝑠𝑖𝑚

is ∆IE for the output port of the process. We expand the notation ∆𝑇𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚 to be

specific for a process. Let ∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚

𝑝
 be the wall clock simulation time cost of process

p advancing ∆T𝑠𝑖𝑚 units of simulation time. Therefore, 𝛾𝑤𝑎𝑖𝑡
𝑝′

(𝑖𝑒) = ∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑖𝑒𝑠𝑖𝑚

𝑝 +

𝛶𝑇𝑋(𝑖𝑒𝑝), for input process p sending an iep to process p’.

Minimum ∆𝑻𝒘𝒂𝒍𝒍, ∆𝑻𝒔𝒊𝒎 𝒕𝒊𝒎𝒆 for a parallel simulation

A parallel simulation consists of a finite set of P processes pi, each connected

through Interpolated Event Input and Output Ports. We can construct a directed graph of

the system connections through IE ports. Of interest is determining the reduction of

∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚

𝑃
, the wall clock time of the entire set of processes to advance ∆T𝑠𝑖𝑚

simulation units as a result of running the simulation in parallel. For the system to

simulate a time segment ∆T𝑠𝑖𝑚, each process must advance ∆T𝑠𝑖𝑚 simulation units by

virtue of the local causality constraint. Since each process runs in parallel, the system

simulation runs no faster than the process which takes the longest wall clock time to

advance a simulated time segment of ∆𝑇𝑠𝑖𝑚 units. This observation is important for

determining relationships between IE resolution and parallel speedup.

The ∆𝑻𝒘𝒂𝒍𝒍, ∆𝑻𝒔𝒊𝒎 and ΔIE relationship

We can gain some insight into the relationship between ∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚

𝑃
 for a

simulation of P processes and the choice of ΔIE for each port. Consider the following

simplifications: the service time of each IE (𝛶𝐼𝐸𝐼𝑃/𝐼𝐸𝑂𝑃) port is negligible, each process

has one IE input and one IE output port, and the system output function λ is only

evaluated at every IE input event. Further, there are no internal events, prescheduled

time points, or re-sourced events on each input port. The only varying parameters are

 56

𝛶𝑤𝑎𝑖𝑡(𝑖𝑒𝑖+1,𝑗) and 𝛶𝑆𝑇𝐹(𝑒𝑙 ∈ 𝐼𝐸𝑖,𝑗 , 𝑆), that is, the wait time on the input IE and the

system transfer function cost time of processing one event created by iei,j. Let ∆T𝑠𝑖𝑚 =

 ΔIE be constant for each port. We are simply evaluating the time for all of the processes

to advance one ∆T𝑠𝑖𝑚 = ΔIE time unit. Since they each must advance this unit in

parallel, and all must advance this unit, we have ∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚

𝑃 ≥

 max
𝑝=0… |𝑃|

[𝛶𝑤𝑎𝑖𝑡
𝑝 (𝑖𝑒𝑖+1,𝑗) + 𝛶𝑆𝑇𝐹

𝑝 (𝑒𝑙 ∈ 𝐼𝐸𝑖,𝑗 , 𝑆)]. This is the maximum wall clock cost of

each process to receive one IE and evaluate the state transition function for it. For each

process p’, 𝛾𝑤𝑎𝑖𝑡
𝑝′

(𝑖𝑒) = ∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑖𝑒𝑠𝑖𝑚

𝑝 + 𝛶𝑇𝑋(𝑖𝑒𝑝), that is, the wall clock wait time for the

input process to produce the IE and the wall clock cost of sending the iep, 𝛶𝑇𝑋(𝑖𝑒𝑝). Each

process produces one IE and processes one STF transition.

If we allow 𝛶𝑇𝑋(𝑖𝑒𝑝) to be a constant 𝛶𝑇𝑋(𝑖𝑒) for each process, the simplified

conditions equation becomes:

∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚

𝑃 ≥ (max
𝑝=0… |𝑃|

[𝛶𝑆𝑇𝐹
𝑝 (𝑒 ∈ 𝐼𝐸, 𝑆)]) + |𝑃| × 𝛶𝑇𝑋(𝑖𝑒)

(Eq. 1.6)

If each 𝛶𝑆𝑇𝐹
𝑝 (𝑒 ∈ 𝐼𝐸, 𝑆) can be approximated by a constant 𝛶𝑆𝑇𝐹

𝑝 (𝑒 ∈ 𝐼𝐸, 𝑆) = 𝑘,

then:

∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚

𝑃 ≥ (𝛶𝑆𝑇𝐹
𝑝 (𝑒 ∈ 𝐸, 𝑆)) + |𝑃| × 𝛶𝑇𝑋(𝑖𝑒)

(Eq. 1.7)

This is simply the cost of progressing one STF each process plus the cost of

sending |𝑃| ie messages. Several tradeoffs emerge. First, |𝑃| × 𝛶𝑇𝑋(𝑖𝑒) increases

linearly as parallelism increases (more processes are added) if 𝛶𝑇𝑋(𝑖𝑒) is invariant to the

number of ie messages sent in the system. In practice, 𝛶𝑇𝑋(𝑖𝑒) increases on message

volume, is dependent on network delay, and is dynamic. Also, in practice, 𝛶𝑆𝑇𝐹
𝑝 (𝑒 ∈

 57

𝐼𝐸, 𝑆) increases on the number of states and is dependent on computational performance

and resources at the time of evaluation.

But a simple relationship emerges: increasing messages increases simulation wall

clock time, and increasing a process state complexity increases simulation wall clock

time. If we reduce 𝛶𝑆𝑇𝐹
𝑝 (𝑒 ∈ 𝐼𝐸, 𝑆) by dividing the state of one process in the set into

two processes (adding one more process to the set a result) we increase the coupling cost

simulation of by adding |𝑃 + 1| × 𝛶𝑇𝑋(𝑖𝑒) messages. The partitioning of state is only

successful if max
𝑝=0… |𝑃+1|

[𝛶𝑆𝑇𝐹
𝑝 (𝑒 ∈ 𝐼𝐸, 𝑆)] < |𝑃 + 1| × 𝛶𝑇𝑋(𝑖𝑒). That is, the reduction of

the maximum 𝛶𝑆𝑇𝐹
𝑝 (𝑒 ∈ 𝐼𝐸, 𝑆) by adding a new process (and dispersing state) is less than

the cost of sending more messages, |𝑃 + 1| × 𝛶𝑇𝑋(𝑖𝑒). If we further account for multiple

IE ports and static ΔIE configuration for each port:

∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚

𝑃 ≥ max
𝑝=0… |𝑃|

[

∑ ∑ 𝑌𝑆𝑇𝐹
𝑝 (𝑒𝑖 ∈ 𝐼𝐸𝑖, 𝑆)

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸𝑖,𝑗

⁄

𝑖=0

𝐽

𝑗=0
]

+
(∑ ∑

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸𝑝,𝑘

⁄

𝐾𝑝

𝑘=0

𝑃

𝑝=0

)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝐸 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠)

× 𝛶𝑇𝑋(𝑖𝑒)

(Eq. 1.8)

In Equation 1.8, ∆𝐼𝐸𝑝,𝑘 refers to ∆𝐼𝐸 configuration for output port k of process p,

Kp refers to the total number of output ports for process p, and P refers to the total

number of processes. Also, in Equation 1.8, the wall clock cost of process p sending an

IE is 𝛶𝑇𝑋(𝑖𝑒) and assumed constant across processes for simplification. Another tradeoff

emerges from Equation 1.8. Each port may have different resolution (ΔIE). Driving a

low 𝑌𝑆𝑇𝐹
𝑝 (𝑒𝑖 ∈ 𝐼𝐸𝑖, 𝑆) process with many IEs may cost more than driving a high

 58

𝑌𝑆𝑇𝐹
𝑝 (𝑒𝑖 ∈ 𝐼𝐸𝑖, 𝑆) process with fewer IEs. Increasing resolution adds more 𝛶𝑇𝑋(𝑖𝑒) cost

(more messages) in both cases. Let process p be the process with highest

cost: max
𝑝=0… |𝑃|

[∑ ∑ 𝑌𝑆𝑇𝐹
𝑝 (𝑒𝑖 ∈ 𝐼𝐸𝑖 , 𝑆)

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸𝑖,𝑗

⁄

𝑖=0
𝐽
𝑗=0]. Increasing resolution will strictly

increase this cost (more ports or smaller ΔIE on that process is introduced). If we pick a

lower cost process p’, and increase input resolution to ΔIE’ on that process (or add more

ports), then the event handling time cost for that process increases to

∑ ∑ 𝑌𝑆𝑇𝐹
𝑝′

(𝑒𝑖 ∈ 𝐼𝐸𝑖, 𝑆)

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸𝑖,𝑗

′⁄

𝑖=0
𝐽
𝑗=0 . The net simulation cost bound does not change if:

∑ ∑ 𝑌𝑆𝑇𝐹
𝑝′

(𝑒𝑖 ∈ 𝐼𝐸𝑖, 𝑆)

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸𝑖,𝑗

′⁄

𝑖=0

𝐽

𝑗=0

 +
(∑ ∑

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸𝑝,𝑘

⁄

𝐾𝑝

𝑘=0

𝑃

𝑝=0

)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑤 𝐼𝐸 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠)

× 𝛶𝑇𝑋(𝑖𝑒)

≤ max
𝑝=0… |𝑃|

[

∑ ∑ 𝑌𝑆𝑇𝐹
𝑝 (𝑒𝑖 ∈ 𝐼𝐸𝑖, 𝑆)

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸𝑖,𝑗

⁄

𝑖=0

𝐽

𝑗=0
]

+
(∑ ∑

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸𝑝,𝑘

⁄

𝐾𝑝

𝑘=0

𝑃

𝑝=0

)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝐸 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠)

× 𝛶𝑇𝑋(𝑖𝑒)

(Eq. 1.9)

Although the summation notation looks the same for the number of IE messages

on each side of the equation, the ∆𝐼𝐸𝑝,𝑘 resolution is different for process p’ under

increased resolution (ΔIE’) of the left side of the equation compared to the right side.

Simplifying, if ΔIE is constant for each process, each process has one input and one

output port, and 𝛶𝑆𝑇𝐹
𝑃 (𝑒 ∈ 𝐸, 𝑆) is constant or maximum over the processes, then we can

derive a speed/resolution tradeoff. Equation 1.8 reduces to:

 59

∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚, ∆𝐼𝐸
𝑃 ≥

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸⁄ (𝛶𝑆𝑇𝐹

𝑃 (𝑒 ∈ 𝐼𝐸, 𝑆)) +
∆𝑇𝑠𝑖𝑚

∆𝐼𝐸⁄ × |𝑃| × 𝛶𝑇𝑋(𝑖𝑒)

(Eq. 1.10)

If we reduce resolution to ΔIE’ > ΔIE for speedup (fewer messages, but reduced

resolution over the same ∆𝑇𝑠𝑖𝑚), then:

∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚, ∆𝐼𝐸′
𝑃 ≥

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸′⁄ (𝛶𝑆𝑇𝐹

𝑃 (𝑒 ∈ 𝐼𝐸, 𝑆)) +
∆𝑇𝑠𝑖𝑚

∆𝐼𝐸′⁄ × |𝑃| × 𝛶𝑇𝑋(𝑖𝑒)

(Eq. 1.11)

 The speedup ratio (
∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚, ∆𝐼𝐸′

𝑃

∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚, ∆𝐼𝐸
𝑃), after simplification becomes:

(
∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚, ∆𝐼𝐸′

𝑃

∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚, ∆𝐼𝐸
𝑃) ≥

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸′⁄ (𝛶𝑆𝑇𝐹

𝑃 (𝑒 ∈ 𝐼𝐸, 𝑆)) +
∆𝑇𝑠𝑖𝑚

∆𝐼𝐸′⁄ × |𝑃| × 𝛶𝑇𝑋(𝑖𝑒)

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸⁄ (𝛶𝑆𝑇𝐹

𝑃 (𝑒 ∈ 𝐼𝐸, 𝑆)) +
∆𝑇𝑠𝑖𝑚

∆𝐼𝐸⁄ × |𝑃| × 𝛶𝑇𝑋(𝑖𝑒)

=

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸′⁄

∆𝑇𝑠𝑖𝑚
∆𝐼𝐸⁄

=
∆𝐼𝐸

∆𝐼𝐸′

(Eq. 1.12)

 This is a convenient relationship. If we decrease resolution, ΔIE’ = 2ΔIE, then the

speedup ratio is 2, or the simulation takes at least ½ as long. If we increase resolution,

ΔIE’ =1/2 ΔIE, then the simulation takes at least twice as long. This assumes the

following: 𝛶𝑇𝑋(𝑖𝑒) is constant for each message and does not increase on the total

number of messages. Next, it assumes 𝛶𝑆𝑇𝐹
𝑃 (𝑒 ∈ 𝐼𝐸, 𝑆) only evaluates on input events

(no prescheduled time points or internal events) and is constant or bounded across the

processes. Finally, every process has the same number of ports, each configured to the

same ΔIE duration, and the time cost of servicing each port is negligible.

 If 𝛶𝑆𝑇𝐹
𝑃 (𝑒 ∈ 𝐼𝐸, 𝑆) varies across processes or is bounded, and variable IE ports

and IE durations exist, then (
∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚, ∆𝐼𝐸′

𝑃

∆𝑇 𝑤𝑎𝑙𝑙, ∆𝑇𝑠𝑖𝑚, ∆𝐼𝐸
𝑃) must incorporate a detailed expansion

 60

which accounts for each variation. This can be accomplished by the implementation

software presented (Chapter Five), but for now a notated expansion occludes the

important details of parallelism and coupling costs. Equation 1.8 shows that the wall

clock costs of parallelism are bound by the state transition function computation time for

each process, or bounded by the cost of transmitting more messages. The state transition

function cost may be reduced by reducing the state size (by assigning it to more

processes), but the resulting increase of messages may not result in a total system

simulation wall clock time reduction. These tradeoffs are evident in the Spice

acceleration experiments in Chapter Six. Eventually in the tradeoff, as parallelism

increases and resolution increases, the cost of messaging increases. There exists

therefore an optimum balance between resolution, number of processes, and the wall

clock time for each process to evaluate its state transition function.

3.4 Error and Accuracy with IEs and IE Ports

 We should seek a relationship between the resolution, which affects speed of

simulation, and the accuracy of the simulation. Lower resolution may or may not be less

accurate. Accuracy requires a means to measure error in the simulation. The IEOP/IEIP

port restriction introduces an error of coupling. The IE is a zero-order sample-and-hold

on the port events, and it is a piecewise constant interpolation, which can introduce

sampling and delay errors. Categories of error conditions can be identified based on the

potential delay and resolution flexibility of IEs. We first examine event delay.

Event Delay

 Consider a process partitioned into multiple processes to reduce single process

state or because of applied partitioning restrictions. The processes must communicate

through events, which must traverse IE ports. Let the “distance” between two processes

 61

be d, the number of “hops” (logical processes) through which the event must propagate to

travel from process p to process q. It must at minimum traverse d-1 IEOPs and d-1

IEIPs. A critical factor is whether a process in the chain can produce an IE at the same

simulated time that it consumes one. Conventionally this is rejected in discrete-event

simulation programming, but we allow it here. We use the definitions from [51]: a

strongly causal process has an output that is a function of the present state and past inputs

only. A weakly causal process has an output that is function of present state and present

input as well as past inputs. A strongly causal process has non-zero lookahead [51]. A

weakly causal process has zero-lookahead for some inputs. The port-introduced delay for

a strongly causal process is the maximum of k (the lookahead) or ΔIE on the process

output port for the event. If the process is weakly causal, there may be no output port

delay, but there is no guarantee the weakly-causal simulator will process the effect of the

input event and send an IE on an output port in zero time. Let the path from p to q be

labeled as follows: 𝑝
𝑎
→ 𝑞 = {𝑝𝑖 ∈ 𝑃 |𝑝𝑖 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑝 𝑡𝑜 𝑞}. The

maximum simulation delay in event e traversing from p to q is:

 ∆𝐼𝐸𝑝 +∑max[𝑘𝑖, ∆𝐼𝐸𝑖]

𝑃′

𝑖=0

, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃′ ≤ |𝑝
𝑎
→ 𝑞| − 1

(Eq. 1.13)

ki = the lookahead for process i in the path

∆𝐼𝐸𝑝 = ∆IE of the output port of the processes relaying the event

P’

∆𝐼𝐸𝑖

= the number of processes in the path from p to q with

 non-zero lookahead

= the ∆IE configuration for process i in the path

 62

Since a strongly causal processes can produce events no faster than its lookahead

value, the highest event resolution an IEOP can apply to that process is ΔIE = k. If ΔIE >

k and the IEOP is in sampling mode, then the event will be delayed by at most ΔIE > k

after the process produces the event.

We see that decreasing resolution (ΔIE’ > ΔIE) for some processes along the

chain from p to q, while decreasing simulation wall clock time, can increase the event

delay in information getting from p to q in simulated time. In the extreme case, this can

create a causality error.

Delay Introduced Causality Error

If there are two paths for two successive events to travel from p to q, then

causality of the events arriving at q depends on the number of hops on each path and the

ΔIE tuning on them. We define an expression for path delay as follows.

Let 𝛿 (𝑝
𝑎
→ 𝑞) = ∆𝐼𝐸𝑝 +∑ max

𝑝𝑖

[𝑘𝑖, ∆𝐼𝐸𝑖]𝑃′

𝑖=0 , such that 𝑝𝑖 is in the path 𝑝

𝑎
→ 𝑞 and relays the event. Let there be a second path 𝑝

𝑏
→ 𝑞 with a different delay, 𝛿 (𝑝

𝑏
→ 𝑞). Assume, without loss of generality, 𝛿 (𝑝

𝑎
→ 𝑞) ≤ 𝛿 (𝑝

𝑏
→ 𝑞). Let p send an ie0 at

time t along path 𝑝
𝑎
→ 𝑞, and an ie1 along path 𝑝

𝑏
→ 𝑞 at time t+kp, where kp is the

lookahead of process p. Since ie0 happens before ie1 leaving p, and process q receives ie0

at time t+ 𝛿 (𝑝
𝑎
→ 𝑞) along 𝑝

𝑎
→ 𝑞, process q still “sees” ie1 happens after ie0 because it

receives ie1 at time t + 𝑘𝑝 + 𝛿 (𝑝
𝑏
→ 𝑞) along 𝑝

𝑏
→ 𝑞, and 𝛿 (𝑝

𝑏
→ 𝑞) ≥ 𝛿 (𝑝

𝑎
→ 𝑞). This

preserves causality (ie0 happening first from q’s perspective). However, if we change the

ΔIE along a, we can add more delay. Suppose we decrease resolution, and for some

process pi along a, we change ΔIEi’ > ΔIEi. If the new 𝛿′ (𝑝
𝑎
→ 𝑞) > 𝛿 (𝑝

𝑏
→ 𝑞) − 𝛿 (𝑝

𝑎
→ 𝑞) +kp, then process q will see event ie1 before event ie0. This is a causality error! In

general, a causality hazard is created when there are two or more paths 𝑝
𝑖
→ 𝑞, and the

ΔIEi tuning along anyone of them is greater than the lookahead for the process in 𝑝
𝑖
→ 𝑞

 63

outputting ie’s at rate ΔIEi > ki, the lookahead at process i. Let the “natural delay” from 𝑝
𝑖
→ 𝑞 be 휀 (𝑝

𝑎
→ 𝑞) = ∑ 𝑘𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃′

𝑖=0 {𝑝𝑖 ∈ 𝑃 |𝑝𝑖 𝑜𝑛 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑝
𝑎
→ 𝑞}. This is the

lookahead delay for all the processes on a. If 𝛿 (𝑝
𝑎
→ 𝑞) > 휀 (𝑝

𝑎
→ 𝑞), then a causality

hazard is opened if 𝛿 (𝑝
𝑎
→ 𝑞) > any 𝛿 (𝑝

𝑏
→ 𝑞) for which 휀 (𝑝

𝑎
→ 𝑞) < 𝛿 (𝑝

𝑏
→ 𝑞). That

is, 𝑝
𝑎
→ 𝑞 has now become a higher delay path than 𝑝

𝑏
→ 𝑞, and 휀 (𝑝

𝑎
→ 𝑞) < 휀 (𝑝

𝑏
→ 𝑞).

This is a coupling-introduced causality hazard completely due to ΔIEi > ki delay. It does

not guarantee a hazard will occur, but it opens the possibility for it. If p sends an “on”

message along a, then an “off” message along b, if 𝛿 (𝑝
𝑎
→ 𝑞) becomes greater than

𝛿 (𝑝
𝑏
→ 𝑞) after reducing resolution on 𝑝

𝑎
→ 𝑞 , then q will receive the “off’ message first,

where before the resolution change q would see “on” before “off” as long as 𝛿 (𝑝
𝑏
→ 𝑞) >

 𝛿 (𝑝
𝑎
→ 𝑞) ≥ 휀 (𝑝

𝑎
→ 𝑞).

Delay Introduced State Trajectory Error

If ΔIEi > ki for a process pi in P, that is, the output port ΔIE configuration for a

port in the process is greater than the process lookahead, then pi may delay the output of

and event e up to ΔIE units of simulation time if the port is in sampling mode. This

introduces trajectory error in the transitions of S, because the receiving process of pi will

“see” the event with delay up to ΔIE units of simulation time. So the subset of S modeled

by the receiver process will not advance to STF(et) at event et, where t is the time of the

event without IE port delay, but at time with delay up to t + ΔIE. If pi receives no other

events after et and is time-invariant, then STF(et) = STF(et + ΔIE). If a metric can be

established on Si, (the set of states modeled by process pi), then the error in processing et

at time et+ΔIE can be expressed. Let Si
t0 be the state of process pi at time t0. Let Si

et be

the state of pi at time et. Then the error of state at time t is || Si
et || - || Si

t0|| where || || is the

metric norm declared on points of Si. This error will persist until time t + ΔIE, at which

point Si will transition to STF(et+ΔIE).

 64

An important case where this delay does not introduce error is when the receiving

process has a natural sampling function, such as modeling an analog-to-digital converter

(ADC). If ΔIE is less than or equal to the sampling rate of pi, then no delay error is

introduced to the state of Si, since STFi(et) will not be evaluated until the end of the

sampling period of pi. Note that a causality error may still occur if there are multiple

paths to pi, but not a ΔIE-introduced state transition delay.

Masked Event State Trajectory Error

A more serious condition is if ΔIEi > ki for a process pi in P, and an IEOP of pi is

in sampling mode, and pi evaluates two event outputs on the port during time ΔIEi. Due

to sampling mode, only the last occurring event will be transmitted through the port. The

first event will be “missed,” or “ΔIE-masked.” This introduces a state trajectory error

because the receiving process never receives the first event. In fact, pi could completely

alias a changing event segment into a constant output event (if ΔIEi > ki). Once again, if

the receiving process has a sampling rate greater than ΔIEi, then the receiving process

would not see the event anyway. The effect of masked errors may not be measurable

without a metric over S, but their occurrence can certainly be counted in the simulation.

If a change in ΔIEi along some pi in P introduces more masked event errors, the accuracy

of the trajectory of S should be considered.

Sample-and-hold Error

In sampling mode, an IEOP is a zero-order sample-and-hold interpolation (ZOH)

on the event segment sent through the port. Sample-and-hold delay can be analyzed with

system theory if each pi in P is a linear, time-invariant process. In this case each pi can be

modeled with a continuous time transfer function H(s), and discrete time transfer function

H(z) for the time points pi. Each IEOP with constant in ΔIE can be modeled as a process

 65

with the zero-order sample-and-hold transfer function. The ZOH adds a potentially

destabilizing phase lag to any feedback loops in the system connectivity.

𝐻𝐼𝐸𝑂𝑃(𝑠) =
1− 𝑒−𝑇𝑠

𝑠
, such that T = ΔIE

(Eq. 1.14)

For a process G(s) preceded by an IEOP, the discrete-time transfer function of the

IEOP and system is:

𝐻𝐼𝐸𝑂𝑃∗𝐺(𝑠)(𝑧) = (1 − 𝑧−1)𝑍 {
𝐺(𝑠)

𝑠
}, such that z = 𝑒𝑠𝛥𝐼𝐸

 (Eq. 1.15)

The phase delay of the ZOH IEOP can create instability in feedback loops if the

nodes of the loop can also be represented with linear transfer functions [37]. The ZOH

adds a potentially destabilizing phase lag to any feedback and can shift poles outside of

the regions of stability in the complex s-plane and the z-plane.

Depending on the loop gain and bandwidth of a feedback loop in the system, each

IEOP adds a phase lag that can make the loop unstable. Franklin, et al. [37] recommend

the sampling rate of a feedback loop to be 20 to 30 times the bandwidth of the loop for

reliable stability and digital implementation of a continuous control system.

IE Signal Difference

Another metric of difference between two simulations where there is no metric on

the system state space may be established in terms of IE stream difference from one

simulation to the next. Because the KPN-IE simulation is completely determined by the

IE streams of the simulation, error in the simulation from one resolution to the next may

be parameterized by differences on IE streams after the stream concatenation operation is

applied to a record of the simulation. If a metric between IE streams is established, such

 66

as any function norm metric established on a function space, a difference between

simulations may be expressed by the magnitude of difference in IE streams established

by the function metric. The metric need not be complicated, since an IE stream is a

piecewise constant function.

Simultaneous Events

The KPN-IE method does not prevent the problem of ambiguous causality due to

simultaneous events, which are events with the same time stamp [36]. The behavior of a

system with simultaneous events may depend on the order in which the system processes

the events, which can be a function of when the system receives the events. This can be a

non-deterministic property external to the simulation determined by the particular

network conditions upon which the simulation is carried. Order-sensitive simultaneous

events introduce the problem of repeatability between two simulations [36].

In addition to non-repeatability, simultaneous events and zero-lookahead models

may assign causality between two events (say an input causing an output), but they will

have the same time stamp due to zero-lookahead in the process. Methods for marking

causality in the time stamp format field by adding additional lower-precision bits to the

time stamp while still preserving the time-based ordering of the upper bits are given in

[36]. The IE format does not preclude such packed time stamps, or “dense time,” as

described by Nutaro [51]. Rather, the IE format only requires that a total order be

defined on the set T of tags from which the tm and tn values are taken.

Another approach to the simultaneous events problem is that each node specify an

internal priority ranking of simultaneous input sources. The Parallel DEVS (PDEVS)

formalism adds a selection function to the DEVS formalism to accomplish this [21]. For

the cyber-physical systems studied in Chapter Six, the node-specified priority approach to

simultaneous events is assumed. For simulators with closed internal architecture, but an

 67

interfacing API sufficient to host an IEOP or IEIP, the internal node-specified priority

approach to simultaneous inputs may be required if dense time is not used. If the

simulator cannot guarantee a simultaneous event policy, simulations with zero-lookahead

cycles with KPN-IE may not be repeatable.

For systems that iterate with zero-time messages (“delta delay”) [34], KPN-IE

allows sending of IEs with tm = tn, equivalent to conventional events. However, KPN-IE

will not prevent deadlock in the dataflow with these conditions if there are cycles of zero-

time messages. However, if every cycle in the simulator connection dataflow graph has

at least one node with non-zero lookahead, then by the property of Chandy/Misra/Bryant

null message argument [7], the system will not deadlock. This can be achieved by

assuring that at least one IEOP port in every cycle of connected IE ports has a ∆IE

configuration greater than zero.

∆IE and a Subset of System State

If no metric exists over the entire system state S, but over a subset of elements of

S, the difference between one simulation at a resolution ∆IE and a repeat of the

simulation at a resolution ∆IE’ can be expressed by difference in the trajectory or final

state of elements in S that have a metric. This measure of accuracy in terms of a chosen

∆IE and the difference in trajectory over a subset of elements of S is applied in the

Chapter Six experiments. Under one resolution ∆IE, a control condition, the observed

trajectory of one element of the system state considered important is recorded during the

simulation. Under a second resolution ∆IE’, the simulation is repeated and the trajectory

for the same element recorded. Error can be expressed in terms of difference between the

final state of the element under the two resolutions, or a function metric between the two

trajectories over the entire simulation.

 68

3.5 Chapter Summary

 Interpolated Events (IEs) are a novel data type introduced in this work for

representing simulator signals and combining signal value information and simulator time

synchronization into a single message. Operations on IEs are defined in terms of the IE

signal value start and signal value expiration times captured in the IE token format. IEs

enter simulator logical processes through Interpolated Event Input Ports (IEIPs) and exit

through Interpolated Event Output Ports (IEOPs). IEOPs may be configured in a

sampling mode for flexible signal representation or in tracking mode for exact signal

representation. The chapter provides a formal specification for IEIP and IEOP behavior,

which is designed to be instantiated in simulator device level interfaces.

IE ports yield an analytic expression of the wall clock time cost of simulation for

a coordination of parallel logical processes in terms of IE resolution (∆IE). Under certain

restrictions, the time cost function yields a simple relationship between simulator wall

clock time speed up and IE resolution, becoming simply a ratio of one IE resolution

configuration to the next. Finally, IEs offer categories of error analysis of simulator

signals when expressed as streams of IEs. When a logical process IE resolution is less

than or equal to, and divides the logical process lookahead, IE streams may not introduce

and signal coupling errors. When IE resolution is greater than logical process lookahead,

or does not divide it, IE streams can mask or delay signal information in exchange for

potential simulation speed up gains due to relaxed IE resolution compared to the logical

process lookahead.

 69

CHAPTER FOUR. KAHN PROCESS NETWORKS AND

INTERPOLATED EVENTS

The Kahn Process Network (KPN) and Interpolated Event (IE) method (KPN-IE)

enables parallel and distributed simulation (PADS) through the synchronization

properties of KPN dataflow when restricted to IEs as the KPN data tokens. The IE

tokens provide signal information and simulated time communication, and the KPN

dynamics forward IEs through the KPN dataflow formalism from signal producers to

signal consumers. The blocking properties of KPN node rules enforce the important local

causality constraint of PADS upon connected simulators, and tracking of IEs in the KPN

data streams yields a bounded measure on important coordinating parameters for

conservative and optimistic coordination, namely, the conservative Lower Bound Time

Stamp (LBTS) and optimistic Global Virtual Time (GVT) values. The coordinating

properties of IEs and KPNs, embedded in their formalisms, endeavor to reduce the

simulator interfacing implementation burden for connected simulators and the

coordinating backplane functional complexity for a PADS solution, while still providing

capabilities of leading solutions.

4.1 Kahn Process Networks

Kahn Process Networks (KPNs), named for Gilles Kahn and defined in [29], are

dataflow networks with these properties:

 The KPN is a directed graph with arcs, representing point-to-point simplex

FIFOs, and nodes, representing concurrent compute elements without

interdependent side-effects.

 70

 Nodes may read from input FIFOs and write to output FIFOs, but reads

are blocking (the node stalls) if the FIFO is empty, while writes always

succeed (the node does not stall).

 Nodes may not conditionally execute by FIFO sniffing, and FIFOs are

unbounded (infinite depth).

The KPN is independent of the order of node execution if the KPN dataflow rules

are followed. KPNs reduce to synchronous data flow networks if token production rates

are static and known a priori [29]. KPNs, quite nicely, as shown by Gilles Kahn, are

deterministic (in that the input-output relationships are independent of the scheduling of

node execution) based on initial conditions if the FIFO rules are followed. The KPN

rules are sufficient to solve the PADS simulator coordination problem if the KPN tokens

are interpolated events, if FIFOs are simulator signal connections, and if the KPN nodes

are concurrent, distributed simulators. This can simplify the simulator interface and

backplane architecture functional requirements while providing a strong, analytical data-

flow model (KPN). A KPN is completely determined by its node set, arc set, initial

conditions, and FIFO producer rates. Illustration 6 shows the node state machine for

compute nodes in the KPN. Nodes consume input tokens, compute (and possibly

produce outputs), and then consume new tokens. If no new tokens are available for the

node from the KPN network, the node blocks (waits and performs no computation).

Applying the node compute sequence to PADS, each node in the KPN is a logical process

(LP) that blocks when no new tokens (IEs) are available from the KPN.

 71

Illustration 6. The Kahn Process Network node read, wait, and execute cycle

4.2 Dynamics of Kahn Process Networks and Interpolated Events

 4.2.1 KAHN PROCESS NETWORKS AND SIMULATOR COORDINATION

The Kahn Process Network restricted to IE data tokens yields a tracking of

bounds on both global virtual time (GVT) for optimistic connections and the lower bound

time stamp (LBTS) for conservative connections. Processes do not have to be messaged

from a central controller to compute GVT or LBTS as they must in some other schemes

[36]. The blocking property of KPN and IEIPs ensures a lower bound on the LBTS and

GVT. These aspects will be demonstrated as we describe KPN-IE port dynamics.

The Simulator IE Port Servicing Sequence

For each node in the KPN, the node or process executes the repeated cycle given

in Illustration 7. This is the simulator IE port servicing sequence, consisting of the cycle

as follows.

 Read/Get input IEs

 Process until local virtual time equals IE expiration time

 Post output IEs during processing

 Re-query for new IEs at expiration time

 Block if no new IEs are available

 72

Illustration 7. The simulator IE port servicing flowchart

From Illustration 7, we see the simulation cycle of each process is determined by

the IE port dynamics. The process creates the following properties.

KPN-IE Property I: A logical process cannot advance local time beyond the

minimum last-received tn value of each of the interpolated event input ports at any point

in simulated time.

Proof: A logical process issues a blocking read on input ports for which the IE

input port tn value equals the process local time.

KPN-IE Property II: A logical process will not post an IE on any output port

with a tm value less than the minimum last sent tn value across all IE output ports for the

process for conservative processes, and the last sent tm value for optimistic processes.

tlocal = 0:

Post initial condition IEs on

all IE output ports

Simulate while tlocal <=

minimum input IE tn. Post

output IEs for IE output tm <=

minimum input IE tn

Get IEs. New input IEs

increase min IEIP tn

Blocking read on IE input

ports with tn = tlocal

IEs

available?
Process block

no

Get new input

IEs

yes

 73

 Proof: The process logical clock is non-decreasing. In sampling mode, an IE is

not posted on an IE output port until the local time equals the IE port tn value. In tracking

mode, the tm value of a corrected IE is the last sent tm value for the port.

KPN-IE Property III: For conservatively posting IE output ports (ports in

sampling mode), the lower bound time stamp (LBTS) of any future events posted by

those logical process at any one point in the simulation is the minimum last-sent tn value

across all IE output ports.

Proof: By KPN-IE Property II, a conservative logical process will not post an IE

on any output port with a tm value less than the minimum last-sent tn value across all IE

output ports for the process. Let each LP keep track of the minimum last-sent tn value

across its output IE ports. The minimum tn across each LP minimum last-sent tn values is

earliest next IE that will be sent.

KPN-IE Property IV: If every KPN IE input port is blocked at any moment in

the KPN dataflow, or waiting for IEs, no new IEs will be produced in the simulation,

although posted IEs may still be in transit in the network.

Proof: A blocked LP cannot produce output IEs, by node rules of a KPN.

A Conservative Coordination Example

To enhance the discussion, a conservative coordination illustration is used with

three logical processes, LP0, LP1 and LP2. LP0 has one IEIP and one IEOP, LP1 has

two IEIPs and one IEOP, and LP2 has two IEOPs and one IEIP. The configuration is

depicted in Illustration 8.

 74

Illustration 8. Conservative KPN-IE coordination example

At simulation time zero, each LP has a local clock (l.c.) of zero and posts initial

condition IEs to their IEOPs. ∆IE for LP0:IEOP0 is 40, ∆IE LP1:IEOP0 is 30, ∆IE

LP2:IEOP0 is 20, and ∆IE LP2:IEOP1 is 50. The last IE posted tn value on each IEOP is

captured in the diagram. The IEs are posted to the KPN FIFOs as labeled. The IEs have

values 1,2,3 and 4 respectively, and all have tm values of 0 (initial condition IEs). Each

LP is shaded blue for being in their initial condition (start of simulation states). With IE

tokens in each FIFO, the LPs can now enter the running state (shaded green in Illustration

9). In Illustration 9, each LP has consumed an IE on its IEIPs, and the last received IE tn

value for each IEIP is depicted. Because each LP now has a LBTS of the minimum last

received tn value across its IEIPs, and because this value is greater than the local clock,

each LP may now simulate and advance its local clock to the min last received tn value

across its IEIPs.

 LP0

IEOP0 tn = 40

 LP1

IEIP1 tn = 0

IEIP0 tn = 0

1,0,20

IEA0

2,0,40

0

IEB0 FIFO A

FIFO B

l.c. = 0

3,0,50

IEC0

FIFO C

l.c. = 0 l.c. = 0
FIFO D

IEOP0 tn = 30

LP2

 IEOP1 tn = 50

 IEIP0 tn = 0

 IEOP0 tn = 20

IEIP0 tn = 0

4,0,30

IED0

 75

Illustration 9. Conservative KPN-IE coordination example continued 1

While simulating, each LP produces new IEs on IEOPs as shown in Illustration

10. LP2 changes its IEOP0 ∆IE value to 2. In Illustration 10, the LPs have reached their

LBTS across their IEIPs, that is, the local clock is equal to the minimum last received IE

tn value across the LP IEIPs. By the rules of the IEIP, the process must then query IEIPs

with last received tn values equal to the local clock (by the local causality constraint). In

Illustration 10, LPs 0 and 2 are in the running state because there are IEs in their input

FIFOS. LP1, however, has entered a blocked state (red), because its local clock is equal

to the last received IE tn value across its IEIPs, and there are no new IEs in its input

FIFOs. When the LP1:IEIP0 queries the KPN for a new IE, the process will block

because the FIFO is empty for LP1:IEIP0.

LP2

 LP1

 IEOP1 tn = 50

 IEIP0 tn = 30

 IEOP0 tn = 20

 LP0
IEIP0 tn = 20

IEOP0 tn = 30

IEIP1 tn = 50

IEOP0 tn = 40

IEIP0 tn = 40

FIFO A

FIFO B

l.c. = 0

FIFO C

(empty)

(empty)

FIFO D
l.c. = 0 l.c. = 0

(empty)

(empty)

 76

Illustration 10. Conservative KPN-IE coordination example continued 2

 In Illustration 11, LP0 has consumed IEIP0 input IEs, advancing its local clock to

30. LP2 has consumed input IEs in FIFO D, but blocks at local time l.c. = 42, because

this is the min tn value of the last IEs received across its IEIPs, and there are no new IEs

in the KPN FIFOs C and D. So it blocks when it services LP2:IEIP0. In the time of

advancing its l.c. from 30 to 42, however, it has produced new IEs on its LP2:IEOP0, still

configured with ∆IE(LP2:IEOP0) = 2.

 LP0
IEIP0 tn = 20

IEOP0 tn = 40

 1,28,30

IEA5

FIFO B
(empty)

1,20,22

IEA1

2,22,24

IEA2

0,24,26

IEA3

 1,26,28

IEA4

LP2

 IEOP1 tn = 50

 IEOP0 tn = 30

 LP1

IEIP0 tn = 40

IEIP1 tn = 50

FIFO A

FIFO C

1,38,42

IED3

0,34,38

IED2

(empty)

1,30,34

IED1

 IEIP0 tn = 30

IEOP0 tn = 42

FIFO D
l.c. = 30

l.c. = 20

l.c. = 40

 77

Illustration 11. Conservative KPN-IE coordination example continued 3

In Illustration 12, LP0, still in the running state, has consumed IEs in FIFO A

through LP0:IEIP0, and its logical clock has reached 40, the last min tn value of IEs sent

across its IEOPs. It may now produce a new output IE. It produces IEB1, with tn value =

80, which is the value of the tn sent on LP0:IEOP0 plus ∆IE(LP0:IEOP0) = 40. With an

IE now in its input FIFO, LP1 may receive the IEB1, and enter the running state (green).

 LP1

LP2

 LP0
IEIP0 tn = 30

IEIP0 tn = 40

l.c. = 30

FIFO B (empty)
FIFO A

 0,40,42

IEA10

(empty) IEOP0 tn = 42

 IEOP1 tn = 50

IEOP0 tn = 40

2,30,32

IEA6

IEIP1 tn = 50

0,32,34

IEA7

 1,34,36

IEA8

FIFO C

 1,36,38

IEA9

 IEIP0 tn = 42

l.c. = 42

(empty)

l.c. = 40

IEOP0 tn = 42

FIFO D

 78

Illustration 12. Conservative KPN-IE coordination example continued 4

After running to the next min tn received on its IEIPs, LP1 advances to local time

50, producing IEs on FIFO D in Illustration 13. This allows LP2 to enter the running

state, producing new IEs and advancing its local clock in Illustration 14 to the min last

sent tn value across its IEOPs, which is 50. At this time, by the rules of the IEOP, it

produces a new IE on FIFO C, allowing LP1 to enter the running state. Two properties

should be evident here. First, no LP advances its local clock (l.c.) beyond the minimum

last IE tn it has received. This prevents the LP from advancing time beyond an IE it has

not yet received (the local causality constraint). Next, no LP permanently blocks. This is

because each IEOP has a non-zero ∆IE configuration, and by the proof of

Chandy/Misra/Brant conservative LPs, no LP will permanently block if every IE

connection cycle in the KPN dataflow graph has at least one LP with non-zero ∆IE (that

is, at least one LP in every cycle has non-zero lookahead) [36].

LP2

 LP0
IEIP0 tn = 42

IEOP0 tn = 40

2,40,80

IEB1

 IEIP0 tn = 42

FIFO A

l.c. = 42

 LP1

(empty)

(empty)

IEIP0 tn = 40

FIFO D

 IEOP1 tn = 50

 IEOP0 tn = 42

l.c. = 40

FIFO C (empty)

l.c. = 40

FIFO B

IEIP1 tn = 50

IEOP0 tn = 42

 79

Illustration 13. Conservative KPN-IE coordination example continued 5

Illustration 14. Conservative KPN-IE coordination example continued 6

 LP1

LP2

 LP1

LP2

 IEOP0 tn = 50

 IEOP1 tn =100

IEIP0 tn = 80

IEIP1 tn = 50

 IEOP1 tn = 50

IEIP1 tn = 50

FIFO D l.c. = 50

FIFO C

2,50,54

IED6

 IEIP0 tn = 50

IEOP0 tn = 54

l.c. = 50

 LP0
IEIP0 tn = 42

IEOP0 tn = 40

IEIP0 tn = 80

 LP0

FIFO A

l.c. = 42

FIFO B

2,50,100

IEC1

IEOP0 tn = 80

FIFO A

1,42,44

IEA11

1,44,46

IEA12

1,46,48

IEA13

1,48,50

IEA14

l.c. = 40

IEIP0 tn = 42

FIFO C (empty)

(empty)

(empty)
FIFO B

1,42,46

IED4

 IEIP0 tn = 42

IEOP0 tn = 50

l.c. = 42 FIFO D

0,46,50

IED5

l.c. = 50

 IEOP0 tn = 42

 80

Important insight into the KPN-IE dynamics can be achieved if we take

Illustration 14 and see it from a FIFO point of view rather than an LP point of view.

Illustration 15 shows the KPN-IE network with FIFOs from their source IEOPs to their

destination IEIPs.

Illustration 15. Conservative KPN-IE coordination example FIFO point of view

FIFO A contains 4 IEs, FIFO B is empty, and FIFO C and D each contain one IE.

The last received IE tn value for each IEIP is given and the last posted IE output tn value

for each IEOP is given. We will see that the IE tn values govern the KPN-IE dynamics.

They are not strictly lookahead values because they will be used later to dynamically

change the simulation resolution. In this conservative example, though, they represent

lookahead values for each LP, but we have not been forced to send extra NULL messages

per the Chandy/Misra/Bryant NULL message synchronization [36]. We have, rather,

captured the information in the IE and let the KPN rules perform the blocking

synchronization of the LPs. Each LP has not been required to calculate LBTS across its

inputs, nor has the KPN network. The information is captured in the IE format.

Synchronization happens automatically by the KPN rules and the IEIP state machine.

FIFO A | IEA14, IEA13, IEA12, IEA11

IEA5,

LP2:IEOP0 tn = 50

LP0:IEIP0 tn = 42

FIFO B | (empty)

LP0:IEOP0 tn = 80

LP1:IEIP0 tn = 80

FIFO C | IEC1 LP2:IEOP1 tn = 100

LP1:IEIP1 tn = 50

FIFO D | IED6

LP1:IEOP0 tn = 54

LP2:IEIP0 tn = 50

 81

Illustration 16. Conservative KPN-IE coordination example port servicing point of view

In Illustration 16, we consider Illustration 15 from the point of view of a software

agent implementing the KPN. The software agent (the simulation backplane) contains

internal dynamic memory for the FIFO banks, storing IEs in them. The backplane

contains a circular linked list of connection objects representing connections to LP IEIPs

and IEOPs. The backplane maintains a loop of forwarding IEs from IEOPs to destination

IEIPs through the FIFO banks. When the cyclic service loop services an IEOP

connection, it checks to see if the connection is posting an IE. If so, it collects the IE,

FIFO A | (1, 48, 50), (1, 46, 48), (1, 44, 46), (1, 42, 44)

FIFO B | (empty)

FIFO C | (2, 50, 100)

FIFO D | (2, 50, 54)

F
IF

O
 b

an
k
s

 LP2:IEOP1 tm = 50, tn = 100

 LP0:IEIP0 tm = 40, tn = 42

 LP1:IEOP0 tm = 50, tn = 54

 LP0:IEOP0 tm = 40, tn = 80

 LP2:IEIP0 tm = 46, tn = 50

 LP1:IEIP0 tm = 40, tn = 80

 LP2:IEOP0 tm = 48, tn = 50

 LP1:IEIP1 tm = 0, tn = 50

Top of list

Counters each list

traverse:

min IEOP tn: 50

min IEOP tm: 40

min IEIP tn: 42

min IEIP tm: 0

max IEOP tn: 100

max IEOP tm: 50

max IEIP tn: 80

max IEIP tm: 46

S
eq

u
en

ti
al

 s
er

v
ic

in
g

C
ir

cu
la

r
li

n
k
ed

 l
is

t

 82

stores it in its destination FIFO bank, and moves to the next connection. If the

connection is an IEIP, and it is waiting for an IE, the backplane searches the FIFO banks

to see if the input FIFO for the IEIP contains an IE with a tm value equal to the last tn

value sent to the IEIP. If the IE exists in the FIFO bank, it dequeues it from the FIFO,

sends it to the IEIP, and moves to the next connection. The backplane repeats this

process cyclically, thereby providing the IE forwarding of the KPN network. This

servicing routing is given in Illustration 17, the KPN-IE connection servicing flowchart.

In the initialization phase, the KPN backplane software agent allocates internal

memory for its FIFO banks which will contain posted IEs from connections. It then

listens for IE port connections (nodes which connect to the backplane through SimTalk,

to be covered in Chapter Five), and organizes those connections in a circular linked list.

 Several properties emerge if we update counters each time we reach the top of

the connection list, as shown in Illustration 16. These counters are simply maximum and

minimum values of IEOP and IEIP port properties each cycle of servicing the connection

linked list. The counters are tracked as each connection is serviced and updated when the

top of the list is reached each cycle. The counters capture maximum and minimum port

IE tm and tn values across each connection. Note that no calculation or extra messaging is

performed here other than counter tracking and updating.

83

The KPN-IE Connection Servicing Sequence

Illustration 17. The KPN-IE backplane connection servicing flowchart

Initialize

Forward IE to process

Service next IE port

connection

Top of

connection

list?

CDF-LBTS = min

last sent tn over

sampling ports,

ODF-GVT = min

last sent tm over

tracking ports

yes

no

Is the

connection

an IEIP?

Connection

awaiting

IE?

IE available

in FIFOs?

 Is IEOP

posting an

IE?

Store IE in FIFOs

Update counters

yes

yes

no

no

no

no

yes

84

4.2.2 PROPERTIES OF KPN AND IE SERVICING

By tracking the counters as given in Illustration 16 each time the connection top

of the linked list is serviced, important synchronization properties emerge. These are

described as follows.

KPN-IE Property V: For IE input ports in sampling mode, the LBTSp at any

wall clock time t is the minimum tn value across all of the process IEIPs for a process p.

Proof: By construction of IE input ports, the process will not block and poll for a

new IE until expiration time tn on each input port. There is a minimum tn by the ordering

property on set T in IEs and the finite number of input ports. All internal events in

process p are safe to process until the minimum tn, because no new external IE will be

generated with tm < min tn over all input ports.

Definition of LBTSmin: The lower bound time stamp (LBTS) of all future

messages at any wall clock time t in the simulation across all processes is called LBTSmin.

LBTSmin is the min LBTSp across all processes in the simulation at wall clock time t [36].

Definition of CDF-LBTS: The conservative data-flow lower bound time stamp

(CDF-LBTS), an original term introduced by this work, is the minimum tn value of all

future IEs at any wall clock time t that any conservatively simulated (IE input ports in

sampling mode) node may receive. CDF-LBTS is called the dataflow LBTS because it is

measured from executing the properties of the KPN network of IE tokens.

KPN-IE Property VI: The CDF-LBTS at wall clock time t is the minimum last

sent tn value across all sampling mode IE output ports in the KPN linked list of

connections at any time of measure. For sampling mode nodes, because the tn value is

non-decreasing, and because there may be messages in transit, the CDF-LBTS is less

than or equal to LBTSmin for the network at any point of observation in the dataflow

network.

85

Definition of ODF-GVT: The optimistic data-flow, global virtual time (ODF-

GVT), an original term introduced by this work, is the minimum tm value of all future IEs

at any wall clock time t that any optimistically simulated (IE ports in tracking mode)

node may receive. ODF-GVT is called the dataflow GVT because it is measured from

executing the properties of the KPN network of IE tokens.

KPN-IE Property VII: The ODF-GVT at wall clock time t is the minimum last

sent tm value across all tracking-mode IE output ports in the KPN linked list of

connections. For tracking mode nodes, because the last sent tm value is non-decreasing,

nodes cannot receive an IE with an earlier tm. Therefore the GVT is the min tm across all

IE input ports. Because the ODF-GVT does not include messages in transport (which

will have non-decreasing tm values), the ODF-GVT is less than or equal to the GVT of the

simulation.

Each time the KPN sequential executive services a connection, it may update the

ODF-GVT and CDF-LBTS values. These are simply the minimum last sent tm and tn

values across the list of connections. These values on non-yet serviced connections will

be non-decreasing. So the KPN executive yields these important properties:

KPN-IE Property VIII: ODF-GVT <= GVT (optimistic simulators)

KPN-IE Property IX: CDF-LBTS <= LBTSmin (conservative simulators)

Because conservative and optimistic coordination algorithms [36] rely on

determining GVT and the LBTSmin at any wall clock time t, the ODF-GVT and CDF-

LBTS give lower bounds on these, and do not require extra simulator messaging to

calculate. Additionally, no centralized blocking or complex algorithm is required to

determine ODF-GVT and CDF-LBTS. They fall out of executing and servicing the

KPN-IE dataflow network. This differentiates KPN-IE from other conservative and

optimistic coordination schemes [36], which must enter barrier primitives or other

86

blocking primitives, calculate LBTSmin or GVT, and communicate the value to simulators

in order to process save events. KPN-IE rather allows the dataflow network to track

bounds on these values in the IE content, which offers a reduction of coordination

messaging at the simulation application layer based on the property that message parsing

(putting additional information in a message, such as the interpolated event rather than

the conventional event) can be less costly than message sending (event and time

synchronization control separated in different messages).

4.3 An Optimistic Coordination Algorithm with the KPN-IE Method

Some requirements of Time-Warp [65] capable logical processes are that they

maintain anti-message queues, support state-saving for rollback to earlier time points, add

support for message cancellation, and perform local resource recollection [36]. These

functional requirements may prevent some CPS simulators from participating in an

optimistic simulation. A means is desired to support optimistic simulation but with

potentially reduced functional burdens on the optimistic simulators.

With KPN-IE, lower bounds on GVT and the LBTSmin fall out of the processing

executive of the KPN without additional messaging or blocking required to the

simulators. The sequence is demonstrated above in the cyclic servicing of KPN IE

connections.

Furthermore, optimistic nodes must be able to roll back in time to previously

executed simulation time points and states and re-execute forwardly without irreversible

side effects to the simulation. Recognized coordination schemes impose additional

messaging and internal queue burdens on the simulators. We advance a way to conduct

optimistic simulation and only require that simulators be able to save state and roll back

to a saved state on command. We impose no additional burdens on the simulators.

87

Let 𝑆 be the last save point for each optimistic simulator. 𝑆 is a vector under the

Euclidean metric of time points (ti) for which process i of the set of processes P has last

saved state. 𝑆 is guaranteed to exist because each processor knows its state and initial

conditions at time t = 0 for all processes. This is the beginning save time vector.

A means is needed to tell simulators to save state. This is added to the response to

read messages on simulator FIFOs from the backplane. When a simulator issues a

blocking read at local time tn, the minimum expiration time on its input ports, it requests

from the KPN backplane the next IE with tm <= tn. Its local time is at tn. When the

simulator returns the IE, it prepends a “save state” message to it informing the simulator

to save its current state at local time tn before processing the new IE. If the simulator

must roll back to the saved tn, it will roll back to the time tn right before reading the FIFO

again for a new IE.

The KPN backplane tracks the time of the last save time vector, which is initially

< tp > = 0 for all processes p. The KPN backplane forwards IEs in normal operation, but

keeps local copies of delivered IEs for tm greater than or equal to the last time vector save

for each input port connection. A correction event is detected as receiving an IE on a

connection for which tm is the same for the last IE received on that connection. This

indicates an IE correction from a tracking-mode output port. The following algorithm

occurs in the backplane:

If the v and tn values of the corrected IE are the same (such as may happen in a

Spice simulation rollback), the IE is dropped and the KPN continues without change. If

the IE is different, either by different v or different tn value, the simulation must be

corrected. Let IEc be the first IE received with a correction after a save point tuple < ti >.

First, the KPN backplane suspends IE delivery, which eventually forces each IE input

port to block, by the blocking properties of the KPN. IE output port service is continued

 88

until each output IE is delivered and the nodes are blocked. This point can be reached

because no simulator will post more IEs while it is blocked on an input port read.

Because in optimistic mode all posted IEs are acknowledged, we know that the all

simulators blocked-condition indicates no simulators will be posting IEs. No IEs are in

transit because nodes execute the KPN cycle sequentially.

When all nodes are blocked, the FIFO banks are examined for the minimum

corrected IE that has been received. For tie-breaking, either the densely specified value

of t from a “dense set T” [51] value is used or the receiver-ordered priority is used. Let

the minimum corrected tn value be tcorrected. This is the point before which events are

safely known, but the simulators must re-simulate to this point.

Next, each FIFO bank is split on the corrected tn value, and after the split, IEs for

tm ≥ tn in the FIFOs are discarded. This discards IE and events greater in time than the

corrected IE, since they are speculative. Next, a sharpen function and concatenation

function are issued on each FIFO. This removes overlapping IEs (only one should exist

at the corrected IE), and combines IEs for faster re-simulation. When this is finished, the

corrected FIFOs have optimal and correct event information up to the correction time.

Simulation until tn then will not experience IE corrections from the last save time vector

to tcorrected.

Next, each optimistic and blocked IEIP is sent a rollback message in response to

its read FIFO request, rolling each simulation back to the last save point. Then, the KPN

forwarding continues as usual, bringing each simulator up to time tcorrected, after which the

simulation continues. Each rolled-back simulator will ask for the next IE at the rollback

time for each, which is in the FIFOs because the KPN saved IEs with tm values greater

than or equal to the last state save request sent to each input port connection.

89

How often should simulators be commanded to save state? It depends on the

FIFO memory depth of the KPN backplane and what simulation time distance is

acceptable in rolling forward from a save point to a corrected IE point. The larger the

distance, the longer the simulation time required for repeating corrected simulation

segments. The shorter the distance, the more state saving required of optimistic

simulators. The optimal tradeoff depends on the state saving cost of each simulator and

the wall clock cost equation.

What is significant about this algorithm is that we have the bounded lag property

of IEs in cycles due to IE tn values, but don’t have to worry about secondary rollback,

anti-messages, simulator queue support for fossil collection, and other Time-Warp

Logical Process (TWLP) overhead [36]. The overhead of event history is shifted to the

backplane and removed from simulators. This is useful to CPS simulation, where we

need to try to coordinate as many simulators as possible and minimize interfacing

functional burdens. Most importantly, the simulators do not have to maintain anti-

message queues and detect anti-messages, elegant though the anti-message annihilation

concept is in the original Time Warp proposal [65].

4.4 A Combined Conservative and Optimistic Coordination Algorithm

with the KPN-IE Method

It can be desired to coordinate simulators that are conservative with simulators

that are optimistic. In this arrangement, conservative simulators must not be forwarded

events or IEs that are subject to correction because they do not have the means to rollback

to earlier time points and correct state. The ODF-GVT and CDF-LBTS values of the

dataflow network can be used to guarantee safe IE forwarding between tracking mode

and sampling mode conservative nodes.

90

Conservative nodes cannot receive IEs subject to correction, because the

processes on the nodes may not have rollback capability. Conservative simulators using

KPN-IE have a known LBTS for future events, the LBTSmin, which is greater than or

equal to the CDF-LBTS as the KPN forwards IEs. So, optimistic simulators may process

IEs from conservative simulators for which tn < LBTSmin if they exist in the FIFOs and

have not been forwarded.

Similarly, conservative simulators may not receive IEs from optimistic simulators

that may be later corrected. Since no rollback may occur to a time earlier than GVT (by

definition), and since the ODF-GVT is less than or equal to the GVTsim, it is safe to

forward IEs to conservative simulators from optimistic sources for which the tn of the

forwarded IEs are less than or equal to ODF-GVT. If the consuming conservative node

reads the IE, it will not advance beyond tn, because of the blocking properties of IEs and

input ports. Since the tn is less than or equal to GVT(optimistic simulators), the conservative

node will not receive an IE correction with time less than tn, so it may safely execute.

It is therefore sufficient to therefore forward IEs from optimistic simulators to

conservative processes only when GVT ≥ LBTSmin. Since CDF-LBTS and ODF-GVT

are updated each traversal of the list of connections in the KPN, it may be sufficient to

repeat the following sequence in the KPN backplane:

While CDF-LBTS > ODF-GVT, do not forward IEs to conservative nodes while

servicing the KPN list of ports. When ODF-GVT becomes ≥ CDF-LBTS, perform a split

operation on conservative signal FIFO IEs at ODF-GVT. Then enable forwarding of IEs

to conservative nodes for all tn ≤ ODF-GVT. Conservative nodes will post new IEs and

increase LBTSmin. When CDF-LBTS becomes > ODF-GVT, suspend conservative node

IE forwarding again and repeat the cycle. This method should not deadlock as long as

there is one non-zero lookahead conservative node in every cycle of nodes.

91

4.5 Chapter Summary

The KPN-IE dynamics allow measurement of bounds on important conservative

and optimistic counters (LBTSmin and GVT) without the additional messaging overhead

of some centralized blocking based solutions [36]. The split and concatenation

operations on IE FIFOs allow for an optimistic simulation algorithm that does not require

anti-messages and other simulator overhead, potentially simplifying the interfacing

burden for simulators that can support optimistic simulation.

The important tn value of IEs forces simulators to obey the local causality

constraint (LCC), because at tn each input port will issue a blocking read to the KPN

backplane for the next IE with tm = tn. In this way, no simulator may advance beyond the

expiration time of its input IEs, so it cannot advance to a time ahead of not yet received

events. The cost of blocking simulators and calculating LBTSmin or GVT can add

messaging and organizational burdens to simulators. With KPN-IE, bounds on these

values are automatically extracted by the sequential processing and handling of

connection ports through the CDF-LBTS and ODF-GVT values.

A drawback of the KPN-IE method is that IE messages must go through a central

token router (the KPN backplane), which in this study is serviced sequentially. The

cyclic service loop of the KPN connection handler can add an additional delay bottleneck

when the number of connections becomes large. This cost can be lessened by creating

multiple backplanes, each with no zero-lookahead connections between them, as

illustrated in Chapter Five. However, in the class of studies in Chapter Six, the

computational cost of the state transition function for simulators and the network

messaging delay of IE tokens can far exceed the cyclic service loop time cost of

forwarding tokens in the KPN backplane.

92

CHAPTER FIVE. SIMCONNECT AND SIMTALK

IMPLEMENTATION

The SimConnect and SimTalk tools implement the KPN-IE method for parallel

and distributed simulation (PADS) of cyber-physical systems (CPSs). SimConnect is a

simulation backplane that routes IE tokens according to the rules of the Kahn Process

Network, and SimTalk is a messaging protocol that enables simulators to exchange IEs

with a SimConnect simulation backplane. Simulation clients connect to the SimConnect

backplane in a client-server hierarchy through SimTalk and exchange IEs with the

SimConnect backplane in publish-subscribe relationship. The implementation of the

tools is described, including example distributed configurations, and software

engineering factors are compared against two open source High Level Architecture

(HLA) [19] implementations.

5.1 The KPN-IE Method with SimConnect and SimTalk

The KPN-IE method, and the SimConnect and SimTalk (SC/ST) simulation tools

[10][11] implementing it, were developed as a backplane-based approach [12][13][14] to

the CPS PADS simulation challenge. SimConnect and SimTalk can connect and

coordinate large numbers of independent simulators running over distributed computation

networks using the interfacing approach. A simulator may participate in a SimConnect-

hosted combination of simulators if a SimTalk software connector has been written for it.

The SimTalk connector enables communication from a simulator to the SimConnect

backplane through the SimTalk protocol. Any two unrelated simulators may coordinate

with each other if SimTalk connectors have been written for them and they support an

OS-level software interface. The simulators communicate through SimTalk with the

backplane and exchange signal information with the backplane in a client-server, publish-

 93

subscribe architecture [11]. The simulators are decoupled from each other in terms of

internal time and state, as required by PADS logical processes [36], requiring only a

connection to the backplane. They send and receive signal information from the

backplane, as opposed to directly to and from each other. The number of simulators that

may communicate with a backplane is limited only by compute resources (distribution,

speed, and memory), and the number of simulators for which SimTalk connectors are

written. Multiple SimConnect backplanes may constitute a simulation as well, since they

can also communicate through SimTalk.

The tools have been shown to coordinate heterogeneous simulators not previously

connected [11] and large number of homogenous simulators for simulation speed up [17].

Speed up is obtained by increased parallelism (more simulators) for some systems, and

by the dynamic runtime control ability of the SimConnect backplane [18] for others.

Results from the tools [10][11][17] and [18], summarized in Chapter Six, emphasize the

flexibility of SimConnect and SimTalk to enable CPS simulation, particularly as more

SimTalk connectors are written for more simulators. A benefit of the KPN approach is

that control of the global simulation is achieved by dataflow dynamics rather than a

central controller. The backplane is not a controller, but rather a token router. If one

signal producer is paused, for example, each consuming simulator of the signal blocks

when it reads its input FIFO for that signal. This has a desired effect in source-based

debugging of software in a co-simulation. When a software breakpoint is reached in a

debugger, the architectural states (registers and memory) freeze for inspection. With

SimConnect, due to KPN dataflow dynamics, any other consuming simulators also

freeze, allowing inspection of system components (such as circuit levels) at the time of

the breakpoint without probe interference. This occurs because FIFOs empty when a

signal producer is paused, so consuming simulators therefore block. When the

94

breakpoint is passed, and the dataflow resumes, the consuming simulators continue with

their local time preserved, without direction of a central controller. Any signal producing

simulator can be paused to pause all of its consuming simulators and resume with time

correctness, completely as a result of dataflow and the KPN blocking read property.

Comparison of the approach to the literature of PADS and backplane techniques

is covered in [10][17]. Critically, the approach conforms to the required local causality

constraint (LCC) of distributed simulation, a coordination rule that simulators must

process external events in time stamp order if global event causality is to be preserved

[6]. The LCC is observed by two effects. First, a simulator blocks per the rules of a KPN

when an IE input FIFO is empty. Next, the simulator cannot advance in time beyond the

expiration tags of IEs it has consumed on an input FIFO. Once its Local Virtual Time

(LVT) [36] has reached the expiration time of the last interpolated event it consumed for

that signal, it must re-query the FIFO for a new IE. If the input FIFO is empty, the

simulator blocks, along with its LVT until a new IE arrives.

The approach has several advantages. First, because the interpolated event token

communicates signal value, signal start and signal expiration time, it provides a

schedulable, future LVT event when a simulator must re-sample its input FIFO, thus

removing the time step and simulator advancement control from the responsibility of the

backplane and interfacing API. The synchronization and control are captured rather in

the token data and dataflow network, configured the by token update rates and IE

durations of signal producers. Because these rates can be assigned statically or changed

dynamically during the simulation, synchronization can be changed statically or

dynamically, for simulation speed versus accuracy tradeoffs. The simulation can be

conducted at high signal and time resolution (a narrow IE duration per signal), or at a

coarse signal and time resolution (long duration IEs). Both resolutions are valuable.

95

By placing the synchronization effects in the dataflow network, where their

properties can be completely monitored (versus the internal state of some simulators,

which may not be monitored due to intellectual property), SimConnect and SimTalk can

facilitate simulation causal debugging, mathematical analysis, replay, and signal capture

(IEs streams are easily captured at runtime and copied into a database). Summarizing,

SimConnect and SimTalk endeavor to reduce of the implementation challenges of

alternative PADS solutions for coordinating CPS simulators by reducing the functional

burden of simulator interfaces and backplane functionality. They attempt to offer

simplicity and ease of adoption across engineering domains by virtue of a strict dataflow

architecture and IE data types. Elements of the implementation will be described.

5.2 SimConnect

SimConnect, a simulator backplane [12], is a software server agent. Functionally,

it forwards IE tokens from signal producer sockets to signal consumer sockets through

internal memory FIFOs per the rules of a KPN in a cyclic service loop. The KPN nodes

are connected, concurrent, and independently running simulators communicating through

SimTalk with the backplane, although technically the SimConnect backplane doesn’t

“know” they are simulators. It only forwards IEs among connected SimTalk sockets to

their destinations. A destination may be a monitoring terminal, for example, as long as it

supports the SimTalk protocol.

SimConnect is currently single-threaded, but it can be upgraded to support multi-

threaded servicing as high performance software server daemons do. But a CPS

simulation is not restricted to one SimConnect backplane. Multiple SimConnect

backplanes may be instantiated across resources, each with a client set of simulators.

96

SimTalk supports signal exchange from backplane to backplane, and thus from one

simulator to any other in the system, as shown in Illustration 19.

5.3 SimTalk

SimTalk is a light weight message passing protocol for simulators to send and

receive messages from a SimConnect backplane server. SimTalk is instantiated through

SimTalk software connectors written for simulators that support an operating system-

level programming interface. The messaging protocol facilitates IE signal publish and

subscribe requests, read or write operations to connection FIFOs per the rules of a KPN,

and communication for dynamic runtime control [17]. Implementing the SimTalk

protocol can be done through any blocking, distributed message-passing API. For these

studies, SimTalk is implemented through BSD/Unix socket calls with blocking reads,

non-blocking writes, and ASCII string message content sent over TCP/IP for reliable

delivery. A SimConnect/SimTalk hosted distributed simulation may send millions of IEs

through SimTalk among connected simulators over a few seconds of simulation time,

limited only by the speed of the network and distributed simulator assignment. Studies of

IE count and simulation time in a distributed SimConnect/SimTalk simulation are given

in [11] and [18].

The SimTalk messaging protocol defines four introductory basic messages from

client to server for exchanging IEs:

Subscribe <signal name> – declare to the backplane that the client will

receive interpolated events for signal <name>.

Broadcast <signal name> – declare to the backplane signal <name> and

allocate a FIFO arc to store posted interpolated events for signal <name>.

97

Get <signal name, t> – A FIFO read operation. Get the greatest

interpolated event (v, tm, tn) on the signal <name> FIFO such that tm ≤ t < tn. The

consuming simulator blocks until an IE is available from the server.

Set <signal name, v, tm, tn> – A FIFO write operation. Post an

interpolated event (v, tm, tn) on signal <name> FIFO. The server delivers it to all

FIFOs registered to receive interpolated events on signal <name>.

From server-to-client, there are three basic messages, supporting flow

control, rollback, and dynamic resolution:

TxACK – After a signal producer posts, it can optionally wait for a server-

to-client TxACK message indicating the posted IE has been consumed by at least

one consumer node. This can serve to flow control signal producers in acyclic

networks so that producing nodes do not excessively out-pace consuming nodes.

Rollback to <t> – For optimistic execution, a rollback message from

server to client directs the client to rollback to an earlier local time to process a

“straggling” event [10]. The node must support state saving and restoration to

support rollback messages.

Resolution change at <tk, ∆IE> – For dynamic IE signal resolution, the

server can instruct the client to change an IEOP ∆IE resolution at the node’s local

time of tk. For example, if a producer posts an IE (v, tm, tn), due to update again at

time tn, the server can send a “res <tk, ∆IE >” message instructing the producer to

post the next IE at time tk with resolution ∆IE instead. If ∆IE > tn - tm, the signal

resolution has been relaxed. If ∆IE < tn - tm, the signal resolution has been

increased. Resolution change messages persist until the port internally changes

the IEOP resolution or another resolution change message is received. Any

simulation agent in the simulation may send a resolution change request to

98

another IEOP in the system. This a strength of the centralized backplane, that any

participating agent can dynamically change simulation resolution.

5.4 Dynamic Resolution

Dynamic resolution is achieved with IEs by two means. First, a signal producer

has complete write permission over an IE’s posted tn value, the expiration time of the IE

(v, tm, tn). A signal producer may vary this value any time during the simulation based on

internal knowledge of the signal’s change frequency, lookahead, or some other criteria.

Changing the IE tn value will change the time that a consuming simulator of the IE next

queries the backplane for that signal, thereby changing the time of next synchronization.

As tn increases beyond tm, the IE duration increases, and therefore the event resolution

relaxes (the time between synchronizations on the IE signal increases). As tn approaches,

yet still is greater than tm, the IE duration decreases, so the event resolution increases, but

more synchronization events occur.

A second method to achieve dynamic resolution with IEs is for the backplane,

simulation operator, or another simulator to command a signal producer to change its [tn

– tm) duration of future IEs during the simulation. In this way an agent may externally

vary the IE duration of a signal producer, thereby throttling the rate of its incoming

signals. External IE resolution change requests are registered in the backplane in the

form of (signal name, time, resolution) 3-tuples. These can be entered at any time during

the simulation through the SimTalk protocol to the backplane by any simulation

participant (simulator or terminal). Application of these resolution change messages for

dynamic simulation runtime control is given in [18].

99

5.5 Distribution, Synchronization, and CPS Simulators

Cycle-estimating ISS

9S12 uController

Register State, ISA

Memory

SimConnect

Server

Services

Connections,

Forwards

Interpolated

Events

on FIFOs

TExaS

SimTalk

SimTalk

CAN Physical

Layer

CAN

Controller 0

Ngspice

VCS/ ModelSim

SimTalk

SimTalk

SimTalk

Clients Server Clients

CLI/

Logger

Telnet

SimTalk

IPC IPC

GTKWave

SimTalk

.fsdb

Viewer

Cycle-estimating ISS

9S12 uController

Register State, ISA

Memory

TExaS

CAN

Controller 1

VCS/ ModelSim

Illustration 18. Heterogeneous client-server hierarchy and network distribution

Illustration 18 shows how a CPS simulation of different component simulators

maps to the SimConnect/SimTalk client-server architecture. Consider an example

problem of source-level debugging of a real-time operating system (RTOS), controller

area network (CAN) protocol stack, and application layer code over two virtual Freescale

9S12 microcontroller targets in the TExaS 9S12 simulator [30]. These controllers could

be exchanging sensor information or actuating different components of the physical

system, with a high-speed, noise-resistive CAN data link to the sensors and actuators.

Simulation with component realism is desired. Let the cycle-accurate “soft-IP” for the

CAN controller peripherals be provided in Verilog or VDHL, and an Ngspice deck for

the CAN transceivers and physical layer. The microcontrollers communicate with the

CAN controllers through a memory-mapped register interface simulated with cycle-

estimating microcontroller ISA simulators. The clients all exchange signals through the

SimTalk protocol [10] to the backplane. There is no limitation on where these elements

100

(clients and server) reside, only that they support the SimTalk over TCP/IP. The system

simulation may be hosted over the Internet “cloud,” for example, a single site LAN, or

within one multi-core machine (process separated), or over a parallel high performance

machine (Illustration 19).

Internet

Host

SimConnect Server

SimTalk TCP/IP SimTalk TCP/IP

Host

Sim

Instance

Sim

Instance
. . .

Host

Sim

Instance

Sim

Instance
. . .

Host

Sim

Instance

Sim

Instance
. . .

a. High Performance Cluster with single SimConnect backplane

InternetSimTalk TCP/IP SimTalk TCP/IP

SimConnect Backplane

Sim

Instance

Sim

Instance
. . .

SimConnect Backplane

Sim

Instance

Sim

Instance
. . .

SimConnect Backplane

Sim

Instance

Sim

Instance
. . .

SimConnect Backplane

Sim

Instance

Sim

Instance
. . .

b. High Performance Cluster with single or multiple SimConnect backplanes

 Illustration 19. Continued next page.

101

SimConnect ServerSim

Instance

Sim

Instance
. . .

High Speed LAN

Node Node

SimTalk TCP/IP

Node Node

Sim

Instance

Sim

Instance
. . . Sim

Instance

Sim

Instance
. . .

c. High Performance Cluster with single SimConnect backplane

SimConnect Server

Sim

Instance

Sim

Instance
. . .

SimConnect Server

Sim

Instance

Sim

Instance
. . .

SimConnect Server

Sim

Instance

Sim

Instance
. . .

SimConnect Server

Sim

Instance

Sim

Instance
. . .

High Speed LAN

Node Node

SimTalk TCP/IP

Node Node

d. High Performance Cluster with multiple SimConnect backplanes

Illustration 19. SimConnect/SimTalk client-server network distributions

To illustrate synchronization with an example, IEs can achieve conservative,

predicted-event [16] synchronization, as employed in [10]. This synchronization

example must coordinate the TExaS 9S12 microcontroller simulator, a time-driven,

clocked synchronous model of computation (MoC), and Ngspice, a time-driven,

dynamically stepped model of computation. IEs enable this. In the clocked synchronous

MoC, input and output signal exchanges occur at ends of a fixed period, but a one

evaluation cycle delay occurs from signal input to output result. For example, the TExaS

simulator, a cycle-estimating simulator for the Freescale 9S12 microcontroller,

continually executes a GetInputs(), Evalutate(), PostOutputs() cycle in its time

advancement. With a local evaluation cycle of 125 ns, and static IE duration of 125 ns,

there is a 125 ns delay from the operational effect of an input appearing on an output if

they are related.

102

SimConnect Server

TExaS Simulator

Ngspice Simulator

IE0

IE1

IE1 IE2

IE2

IE0

TExaS time t = 0

TExaS Evaluate Cycle

Ngspice time t = 0

Ngspice Transient Time Progression

Sync. 0 Sync. 1

IE3

IE4 IE5

IE4 IE5

IE3

Independent TExaS

local advancement

Independent Ngspice

local advancement

P
T

[0
],
 0

,
1
2

5

P
M

[0
],
 0

,
1

2
5

P
M

[1
],
 0

,
1

2
5

P
M

[0
],
 0

,
1
2
5

P
M

[1
],
 0

,
1
2
5 P
T

[0
],
 0

,
1
2

5

P
M

[0
],
1
2
5
,
2
5
0

P
M

[1
],
1
2
5
,
2
5
0

P
T

[0
],
 1

2
5

,
2
5
0

P
M

[0
],
 1

2
5
,
2
5

0

P
M

[1
],
1
2
5
,
2
5
0

P
T

[0
],
 1

2
5

,
2
5
0

TExaS time t = 125 ns

Ngspice time t = 125 ns

Set

Set Set

Get Get Set Get Get

Get Set Set Get

KPN FIFO forwarding KPN FIFO forwarding

T
C

P
/IP

T
C

P
/IP

Illustration 20. Conservative, predicted event synchronization

In Illustration 20, the Xspice socket devices and TExaS post output IEs of (tn – tm)

= 125 ns duration, the predicted event interval, or the TExaS evaluation cycle. Initial

condition IEs of 125 ns duration are posted to FIFOs at startup so each simulator can

advance and post after the first Get() SimTalk operation. The IEs posted by TExaS,

consumed by Ngspice, allow the Ngspice kernel to compute freely for 125 ns, posting IEs

before blocking at sync point 1 in the illustration, where it re-queries the SimConnect

server again. Up to each sync point, established by the expiration time of an input IE,

simulators advance independently without local time coordination. For resolution, if the

IE durations are less than the TExaS evaluation cycle, that is (tn – tm) < 125 ns, the FIFOs

oversample. If the IEs are greater in duration, (tn – tm) > 125 ns, the execution is

optimistic, since TExaS advances to the next evaluation cycle on an IE that could change

during the evaluation cycle, but which was declared to be constant on an IE range larger

than the cycle. If the IE duration increases further, (tn – tm) >> 125 ns, the signal

 103

resolution decreases, decreasing message count, increasing the time between

synchronizations, but decreasing accuracy. However, for low frequency input signals

compared to the TExaS clock, resolution can be decreased to an appropriately large (tn –

tm) period, say the period of the Nyquist frequency of the input signal. If an appropriate

resolution is unknown, it can be observed first at a high resolution rate (tn – tm) << 125 ns,

then adjusted to a lower resolution to increase simulation speed.

5.6 Software Metric Comparisons with HLA

SimConnect and SimTalk were designed to impose lightweight interfacing

burdens on coordinated simulators from a software development and maintenance point

of view. The SimConnect backplane was designed for implementation simplicity as a

KPN token router compared to backplanes that tightly interface into coordinated

simulator time management algorithms. Comparing software engineering efforts can be

relative, but we can examine differences in code size for SimConnect and SimTalk versus

some open source HLA RTI implementations and can look at an example of comparative

application layer messaging for a time driven single simulation cycle in SC/ST compared

to HLA. Because SimTalk may not require internal modification of proprietary simulator

source code to interface to the simulation backplane SimConnect, the tools can result in

reduced code complexity and potential messaging overhead compared to solutions that

tightly interface simulator kernels.

 5.6.1 SOURCE CODE COMPARISONS

Table 1 summarizes some of the software engineering metrics during SimConnect

and SimTalk development.

 104

Software

Component

Man-months

to Develop

Lines of

Code

Files Build

Environment

Source Code

Framework

SimConnect Server 2 1541 9 Linux 2.6.16, gcc 4.2.2 C source code

TExaS SimTalk connector 1 288 1 Microsoft Visual

Studio 2010

TExaS C/C++ source

code

Ngspice SimTalk analog

port input connector

0.25 265

1 Linux 2.6.16, gcc 4.2.2 Ngspice user-defined

device macros in C

Ngspice SimTalk analog

port output connector

0.25 278 1 Linux 2.6.16, gcc 4.2.2 Ngspice user-defined

device macros in C

Ngspice SimTalk digital

port input connector

0.25 290 1 Linux 2.6.16, gcc 4.2.2 Ngspice user-defined

device in C

Ngspice SimTalk digital

port output connector

0.25 240 1 Linux 2.6.16, gcc 4.2.2 Ngspice user-defined

device in C

Simulink SimTalk input

port connector

0.25 250 1 Microsoft Visual

Studio 2010

MATLAB .mex

level-1 file

Simulink SimTalk input

port connector

0.25 280 1 Microsoft Visual

Studio 2010

MATLAB .mex

level-1 file

Total 4.5 3432 16

Table 1. SimConnect/SimTalk code sizes and development costs

In Table 1, the largest element of the implementation is the SimConnect

backplane. The backplane is a stand-alone server written in the C language that

implements dynamic IE FIFO management, socket connection management, SimTalk

message parsing, dynamic resolution management, and IE token delivery. The SimTalk

connectors for simulators TExaS, Ngsice, and Matlab implement SimTalk functionality

in whatever code interfacing environment the simulator offers. The plugins provide

socket management, SimTalk message parsing, and signal update and event scheduling

through simulator APIs provided for user-specified devices. The SimTalk plugins require

the ability to compile OS-level system calls, particularly to provide blocking reads on

TCP/IP sockets, which enable the blocking IE token read functionality of the Interpolated

Event Port specification of Chapter Three.

 105

Software

Component

Lines of

Code

Files Source Code

Framework

CERTI 3.4.1 RTI [80]

libCERTI/ 28769 112 C++

libHLA/ 7522 57 C++

libRTI/ 12465 28 C++

Total 48756 197

OpenHLA 1.3 RTI [82]

hla-1.3/ 3348 101 Java Classes

OpenHLA IEEE 1516 RTI [82]

ieee-1516e/ 3778 61 Java Classes

MatlabHLA13 [79]

m_files/ 2438 95 Matlab .m file format

rti.cpp 2466 1 C++

Total 4904 96

Table 2. Open source HLA code metrics

There is no unilateral way to compare the SimConnect/SimTalk software

complexity with implementations of HLA-based solutions [19], but Table 2 lists some

source code metrics from open source implementations of the HLA: the French

Aerospace Lab ONERA [81] CERTI suite [80], and the OpenHLA [82] implementation.

Source code sizes for the HLA RTI backplane are much larger than the SimConnect

backplane. This is because the HLA standard requires many other functions from the

RTI besides time management and signal value communication. The RTI must manage

simulator objects declared in the Federation Object Model (FOM) [19], manage simulator

object update calls and interaction calls, calculate equivalent Lower Bound Time Stamps

(LBTS) and Global Virtual Time (GVT) for conservative and optimistic coordination,

and implement many other duties given in the standard [19][74]. The SimConnect

backplane, however, must only implement the KPN dynamics, parse SimTalk messages,

and route IEs to simulator IE port connections. This is the primary benefit of a dataflow

 106

architecture compared to a library-of-classes: the functionality of simulator coordination

in the dataflow architecture is shifted into the inherent dataflow dynamics as much as

possible and removed from explicit APIs.

Based on differences in code size between the MatlabHLA13 solution [79] for

interfacing Matlab/Simulink into an HLA federation, and the .MEX file code sizes for the

Simulink SimTalk plugins of Table 1, we speculate that for a closed architecture

commercial simulator, the software engineering effort of implementing a SimTalk plugin

will hopefully be less than implementing an equivalent HLA ambassador.

5.6.2 APPLICATION LAYER MESSAGING COMPARISONS

Messaging traffic comparisons can depend on message format and size, means of

software transmission (such as BSD sockets, MPI, named FIFOs, or other solutions),

means of packet transmission (such as TCP/IP), means of circuit level bus transmission

(such as Ethernet or CAN or USB), means of physical transmission (copper wire, fiber

optic, or wireless RF), and then environmental circumstances (EM noise, network

demand, solar activity, and physical breakages). Therefore, comparison of messaging

burdens between two solutions can require a very limited context of observation, but not

hold true for all cases.

The HLA RTI specification [19] communicates with federate simulators through

code layer classes called the RTI Ambassador and the Federate Ambassador (Illustration

22) [74]. The ambassador classes provide APIs for the RTI backplane to make requests

upon a federate, such as a request to reflect object values that other federates have

updated), and APIs for federates to make requests upon the RTI backplane, such as a

request to advance time. An important difference between SimConnect/SimTalk and the

HLA API structure is that time and signal information are combined in one message in

 107

the KPN-IE method of SimConnect/SimTalk. That is, signal value and signal duration are

combined into one IE formatted message.

If we take a restricted example where a SimConnect/SimTalk simulator is

advancing a constant time step each cycle, and consuming one IE for signal_a and

posting one IE for signal_b in conservative mode, the simulation application layer

messaging cycle will appear as in Illustration 21.

Illustration 21. SimConnect/SimTalk conservative mode single simulation cycle

At time t, the simulator will post an IE for signal_b, without blocking, and then

issue a SimTalk get request to the SimConnect backplane for signal_a. The simulator

will block until the backplane responds with an IE. When it does, the simulator is free to

simulate and advance time to the IE tn value, because signal_a is declared to be

unchanging until tn by the definition of an IE (Chapter 3.1). When the simulated time

reaches tn, the simulator updates signal_b with a post message and continues the cycle.

In this mode, three messages per cycle occur between the backplane and simulator.

In the HLA case, in Illustration 22, there is some flexibility in the federate as to

how it uses the various flavors of the time advance request functions, the reflect object

SimConnect

 Server

S

i

m

T

a

l

k

get <signal_a, t>

IEsignal_a (v, t, tn)

set <signal_b, t>

Simulator

post IE

get IE

block until

IE rec’d

[simulate]

t = t + tn

S

i

m

T

a

l

k re
p
ea

t

 108

attributes function, and the update object attributes function. Illustration 22 assumes the

federate is not using the “interactions” API offered by an RTI. Importantly, the RTI API

separates messages of time management and signal information management. Because a

time-constrained federate must surrender time advancement to the RTI until the RTI

grants it a “Time Advance Grant” message [19][74] after a “Time Advance Request”

message, there can be two messages between federate and RTI per simulation cycle in

addition to signal updating messages (reflect and update object values). In the case of

Illustration 22, which assumes a time-driven simulation cycle, with a time-constrained

federate, and only one subscription object and one published object (no “interactions”),

there can be four federate-RTI application layer messages per simulation cycle compared

to the three of SimConnect/SimTalk Illustration 21.

This assumes that the conservative SimConnect/SimTalk simulator is not using

the TxAck (Chapter 5.3) server to client message given in response to the SimTalk “set

IE” message, which would add a fourth message per cycle. TxAck is required if the

simulator wants to block on posted IEs until a destination simulator consumes them, or if

the simulation has combined conservative and optimistic coordination, which can benefit

from the TxAck message on posted IEs for LBTS and GVT bounds tracking (Chapter

4.2.2).

Also significant in the HLA RTI case is that federates and RTIs communicate

through the ambassador code-level APIs, which interface into internal federate and RTI

functionality. In the open source cases of Table 2, these ambassadors are implemented in

C++ and Java classes, and the federate and RTI use them through class function call

methods as the classes are compiled into the federate and RTI executives. This can make

runtime debugging difficult, since the many APIs of the federate and RTI ambassador

specification [19] can require connecting a debugger to a runtime executive to examine a

 109

failure within a class method call or in the federate usage of an API. With SimTalk

plugins, however, the only included libraries are those needed to leverage TCP/IP

sockets. All other data exchange happens over the SimTalk messaging channel.

Therefore, simulator signal and time debugging can occur externally to the simulator by

tracking IE streams, rather than attaching a debugger to the simulator.

Illustration 22. Example conservative time driven federate-RTI simulation cycle [74]

5.7 Chapter Summary

The SimConnect and SimTalk tools implement the KPN-IE method for parallel

and distributed simulation coordination. SimConnect, a simulator coordinating

backplane, provides the behavioral and routing services of a Kahn Process Network,

forwarding Interpolated Event tokens from connection producers to connection

consumers in a publish/subscribe architecture. SimTalk, a messaging protocol, facilitates

the exchange of IEs between a participating simulator and the SimConnect backplane.

RTI

RTI

Ambassador
TIME ADVANCE REQUEST

REFLECT OBJECT

 ATTRIBUTES

Federate

advance

time

get

signals

wait

for time

advance

grant

[simulate]

set

signals

re
p
ea

t

Federate

Ambassador

TIME ADVANCE
GRANT

Federate

Ambassador

RTI

Ambassador
UPDATE OBJECT ATTRIBUTES

 110

Coordinated simulators connect to the SimConnect backplane through SimTalk in a

client/server relationship and are decoupled from awareness of one another,

communicating only with the SimConnect backplane. SimTalk is implemented over

TCP/IP sockets to enable simulator distribution over networked computation resources.

The ability of SimConnect/SimTalk to support dynamic simulation resolution by varying

Interpolated Event resolution (∆IE) was presented, highlighting the ability of any

participant in the simulation to dynamically change resolution on a signal producer. An

example of conservative, predicted events coordination between the TExaS simulator and

Ngspice simulator was also presented. Finally, some differences between the

SimConnect/SimTalk implementation of the KPN-IE method and open source HLA-

based implementations were examined, revealing a smaller source code footprint for

SimConnect/SimTalk. The significant functional differences required of the SimConnect

KPN-IE backplane versus a compliant HLA 1.3 or IEEE 1516 [19] implementation may

reduce the potential software engineering costs for integrating CPS simulators with the

KPN-IE method compared to an HLA based solution.

 111

CHAPTER SIX. EXPERIMENTS AND RESULTS

The SimConnect/SimTalk tools enabled the coordination of many homogenous

simulators, leading to a novel result in Spice simulation acceleration [17], and the

coordination of heterogeneous simulators [10][11] for realistic simulation of a cyber-

physical control system. Results for the coordination tradeoffs in simulation resolution,

speed, and accuracy are reported for each experiment, and results from dynamic

simulation resolution are reported from [18]. Results show the scalability of

SimConnect/SimTalk (up to 128 simulators) from [17], and the reach of

SimConnect/SimTalk for coordinating three diverse simulators not previously

coordinated with each other [11].

6.1 Homogeneous Coordination

6.1.1 DISTRIBUTED SPICE COORDINATION

In the case of homogeneous simulator coordination, SimConnect/SimTalk

(SC/ST) was used to coordinate up to 128 distributed Ngspice simulators [17] for the

parallel simulation of a counter circuit of over three thousand BSIM3 model transistors.

Parallel speed up gains of up to 52x by software parallelism alone (Figure 2) were

achieved with tunable tradeoffs in speed versus accuracy. This result in general can

enable simulation acceleration by coordinating multiple instances of a simulator if the

simulator offers a blocking, OS-level software interface, but has a closed internal

architecture preventing study of internal parallelism.

Expression Level Parallelism

Spice based circuit simulation has long been an area of research for acceleration,

due to the exponentially increasing simulation time of circuits as the number of circuit

nodes increase. Parallelism can be a means to achieve Spice simulation speedup.

 112

Expression-level parallelism starts at the model description layer. At this layer,

the model is inspected for points of partition, at which nodes the circuit is expressed as

new, independent subcircuits with communication interfaces. Each new subcircuit is

assigned to an independent simulator. The entire model then simulates in coordination

over the distributed, coordinated instances of the single simulator normally hosting the

non-partitioned model. In this way, if a communication interface is offered at the model

description layer, parallel execution may be gained for simulators not normally

supporting internal parallelism. The cost for the approach is the additional

communication overhead between simulators (both a computation and latency cost), and

the burden of coordinating distributed simulators with independent versions of time

advancement.

As an example of a partitioned distribution, Illustration 23 shows the coordination

of eight Ngspice instances connected to the SimConnect server through SimTalk, for a

concurrent 8x parallel simulation of the 128-bit counter described in Illustration 24. The

counter is partitioned into subcircuits 16 bits wide, connected at their MSB and LSB

nodes via Xspice [33] socket devices.

 113

Illustration 23. SimConnect/SimTalk relationship for distributed, parallel Ngspice

instances

Experiment Configuration

Consider simulating a wide-bit asynchronous ripple counter at the transistor level.

While ripple counters are impractical as real circuits, due to the rollover delay from

maximum value (0xFFF…) to zero, they are simple elementary circuits for

conceptualizing or simulating a propagation delay (the rollover delay as the carry bit

propagates from bit 0 to bit <n>-1, for counter width <n>). Consider the <n>-bit ripple

counter in Illustration 24, composed of inverters and positive edge-triggered D flip-flops.

Illustration 24. <n>-bit asynchronous ripple counter

 114

The inverters are implemented as a standard pmos/nmos pair, and the D flip-flop

at the gate level is implemented according to Illustration 25.

Illustration 25. Edge-triggered D flip-flop

Each bit, with two inverters and one flip-flop, consumes 30 MOSFETs, 15 pmos

transistors and 15 nmos transistors. The pmos transistors are oversized for symmetric

drive strength with respect to the nmos transistors.

Sequential Simulation

The single-instance counter is simulated in Ngspice [31], the open source

distribution of Berkeley Spice version 3 and Georgia Tech’s Xspice [33]. Figure 1 shows

the increase in transient analysis time as the number of transistors in the circuit increases,

per bit width of the counter. The counter is simulated at 4, 8, 16, 32, 64, and 128 bits for

1.5 µs of simulation time.

 115

Figure 1. Ngspice transient analysis time for 1.5 µs of simulation time as counter width

increases

From Figure 1, the increase in analysis time per number of transistors is non-

linear due to the non-linear increase in model evaluation time and matrix solution time in

the Spice kernel as the device count increases. As the number of bits in the counter

increases from 64 to 128 bits (1918 to 3838 transistors), for example, the analysis time

increases from slightly over a minute to more than five minutes on a single workstation

Linux 2.6.16 kernel machine with an Intel Xeon 2.93 GHz processor. This non-linear

increase limits the practicality of simulating complex circuits at the transistor level on the

order of modern VLSI transistor counts.

Parallel Simulation

For improvement, the circuit is partitioned at the expression level (the Ngspice

circuit deck) into subcircuits <m>-bits wide, where <m> is a power-of-two divisor of

128, and the factor of parallelization. Each subcircuit is then assigned to an independent

Ngspice process, coordinated with other Ngspice processes in parallel through

SimConnect and SimTalk.

0.45 1.34 5.22 18.26

77.35

340.25

0

50

100

150

200

250

300

350

400

118 238 478 958 1918 3838

Number of transistors in circuit

Se
co

n
d

s

 116

Illustration 26 shows an <m>-bit wide subcircuit of the counter, where Xspice

user TCP/IP socket devices connect the circuit to its neighboring subcircuits over

SimTalk.

Illustration 26. Partitioned subcircuit with socket devices

Between subcircuits, TCP/IP socket devices connect the most significant to least

significant bits from one subcircuit to the next. For example, bit 15 of the subcircuit for

bits [0:15] is connected to bit 16 of the subcircuit for bits [16:31], and onward through bit

127. The socket device services the SimTalk protocol and delivers IE tokens to the

SimConnect backplane, which distributes the IE tokens through KPN FIFOs from signal

producer to signal consumer.

Speedup Versus Accuracy Results

At 10 ns IE resolution, Figure 2 shows the speedup result per factor of

parallelization for the same 128-bit counter for 1.5 µs of transient analysis time.

 117

Figure 2. Speedup at 10 ns IE resolution

By dividing the 128-bit counter into two 64-bit subcircuits, we achieve a 2x

speedup alone, and then achieve a 52x speedup by subdividing into 64 subcircuits, each 2

bits wide. However, the speedup maximizes at this point, after which it diminishes as the

communication overhead per number of Ngspice instances increases. This manifests in

the loss of speedup from 64x to 128x parallel in Figure 2. The cost of fixed-resolution IE

duration also results in a non-zero percent error of measurement, shown in Figure 3,

where the rollover time of the ripple counter across the parallel cases is measured against

the rollover time of the non-parallel case.

2.21
4.52

8.93

16.84

28.32

52.15

29.77

0

10

20

30

40

50

60

2 4 8 16 32 64 128

Sp
ee

d
u

p
 F

ac
to

r

Number of parallel subcircuits

 118

Figure 3. Percent error of measurement at 10 ns IE resolution

The error in measurement occurs because the IEs are of finite duration, during

which sample time an event is declared constant. If an IE duration is greater than the rail-

to-rail fall time of a circuit inverter, for example, or on the order of it, conveying the

information of the inverter’s changed state may be delayed up to the duration of the IE,

depending on when the inverter output was sampled. Since this delay can continue from

one communication node to the next through each parallel instance, it can accumulate at

the output at bit 127 where the rollover delay is measured. The sum of accumulated

delay can increase as the parallelism increases. This is responsible for the positively

correlated relationship in Figure 3.

 Increased Resolution

However, if IE resolution increases (from 10 ns to 2 ns) in Figure 4, the percent

error of measurement decreases. This is because an inverter fall at communication nodes

is sampled every 2 ns, instead of 10 ns. Since the inverter fall time is on the order of 10

ns as these transistors were sized, a 2 ns sample results in smaller worst-case delay in

observing a rail-to-rail state change on an inverter output. Percent error of measurement

0.21

5.25 5.23

8.19 8.47 8.59

9.75

0

2

4

6

8

10

12

2 4 8 16 32 64 128

P
er

ce
n

t
er

ro
r

o
f

m
ea

su
re

m
en

t

Number of parallel subcircuits

 119

drops to below five percent for the 64x and 128x parallel cases in Figure 4, and to below

one percent for the 2x to 16x parallel cases, although the speedup decreases.

Figure 4. Percent error of measurement at 2 ns IE resolution

The transient analysis time for the same degree of parallelism increases as

resolution increases, shown in Figure 5, due to the increased communication rate with the

SimConnect server. The higher resolution results in smaller Ngspice time steps, resulting

in more IE tokens through the KPN FIFOs.

Figure 5. Speedup at 2 ns IE resolution

0.14
0.10 0.52 0.69

1.62 1.61

3.87

0

1

1

2

2

3

3

4

4

5

2 4 8 16 32 64 128

Number of parallel subcircuits

P
er

ce
n

t
er

ro
r

o
f

m
ea

su
re

m
en

t

2.18
4.57

9.19

17.84

28.74

11.94

5.40

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128

Sp
ee

d
u

p
 F

ac
to

r

Number of parallel subcircuits

 120

6.1.2 DISTRIBUTED SPICE SUMMARY AND CONCLUSIONS

Significant transient analysis time decrease (17x at less than 1 percent error) may

be achieved by partitioning the 128-bit counter into subcircuits each 128/<n> bits wide,

where <n> is a divisor of 128 and the desired factor of parallelism. Maximum speedup

occurs at a parallelization factor per IE resolution, beyond which, as parallelization

increases, speedup decreases due to increased communication and load on the

SimConnect backplane.

This cost of communication also occurs as IE resolution increases. However,

percent error of measurement can be reduced arbitrarily per degree of parallelization by

increasing the IE resolution, as shown in Figure 5. This speedup in transient analysis

time for the same 128-bit counter is achieved without modifications to the Ngspice

kernel, or the execution host, making it different than execution-level parallelization

schemes. In this method, the partitioning is performed at the circuit expression-level, in

multiple Ngspice decks spread over independent simulators, so both the model-evaluation

and the matrix-solving phases occur in parallel.

Choosing an appropriate degree of parallelization and IE resolution automatically

is not yet suggested by this work, since it is highly circuit dependent (the partitioning

should look for nodes of loose coupling or signal feed-forward cutsets). For accuracy, IE

resolution should be on the order of the maximum frequency content of the

communicated signal to minimize accumulated delay of rise or fall time information due

to sampling. In the example of Figure 5, decreasing the IE duration to one fifth (2 ns) of

the circuit inverter rail-to-rail fall time (approximately 10 ns) decreased the percent error

of measurement for each degree of parallelism by more than one-half for the 4x through

128x parallel cases.

 121

With this approach, there will always be tradeoffs between degree of

parallelization, total circuit analysis time, IE resolution, and percent error of

measurement. However, gains up to 52x transient analysis time at less than ten percent

error by this software technique alone, without modifying the simulator or execution host,

may be acceptable at some early investigation phases of system-level design (SLD) [3].

It may be possible to combine expression-level parallelization and execution-level

parallelization for further speedup. For example, if at execution-level, a K-times speedup

is achieved, then that same speedup would be achieved individually over <N> separate

Ngspice instances, since the speedup is internal to each instance. If at expression-level,

though, a J-times speedup is achieved, then combining both, a J times K factor of

speedup should be achieved for both techniques (the speedups should multiply, not add).

One speedup occurs at the execution-level, another at the expression-level. There will

still be an error in measurement due to the usage of IEs with this method at the

expression-level (compared to execution-level methods that may or may not introduce

error). It may be possible to apply this technique to simulators not initially written for

parallel internal execution, such that they offer a communication interface capable of

hosting a SimTalk connector, to see if similar speedup gains can be achieved.

6.2 Heterogeneous Coordination

6.2.1 DISTRIBUTED PID/PWM SOFTWARE-BASED MOTOR CONTROL

SimConnect and SimTalk (SC/ST) were applied to simulate a software-based

PID/PWM digital controller of a DC motor with electrical, instruction set-level, and

physical model realism [11]. This is significant for demonstrating the modeling range of

SC/ST based simulations as more SimTalk connectors are written for new simulators.

The many world-physical effects that can be simulated in multiple, coordinated

 122

Matlab/Simulink instances are enabled by the technique. In Figures 10 and 11, the

PID/PWM controlled run up time of the 2nd order, 6-parameter DC motor model is

plotted across different simulator and IE configurations to verify accuracy. We

progressively build up the model in terms of realism and heterogeneity.

Experiment: 1-Simulator classical continuous PID controller and second-order DC

motor model in Simulink

For a truth condition, we model the DC motor initially in Simulink in continuous

time as a 2nd order system in the Laplace domain, with a transfer function given in

Illustration 27. The model is taken from [37], where it is derived from first principles of

KVL, KCL, and Newton’s laws applied to rotation. The transfer function in the complex

frequency domain s, where V is the applied terminal voltage in Volts and Θ is the rotor

output position in radians.

Θ(𝑠)

𝑉(𝑠)
=

𝐾

𝑠(𝜏(𝑠) + 1)

 s.t. 𝐾 =
𝐾𝑡

𝑏𝑅+𝐾𝑡𝐾𝑒

and 𝜏 =
𝑅𝐽

𝑏𝑅+𝐾𝑡𝐾𝑒

Illustration 27. 2nd order DC motor model transfer function [18]

The model is parameterized for the simulation as follows:

R motor terminal electrical resistance 1.0 Ohm

L motor terminal inductance 0.001 Henry

Kt torque constant 0.1 Nm/Amp

Ke electrical constant 0.1 Nm/Amp

b rotor viscous friction coefficient 0.001 Nm∙s

J rotor moment of inertia 0.01 𝑘𝑔 ∙ (
𝑚

𝑠
)2

Table 3. DC motor model parameters

 123

 The torque constant Kt represents the electro-mechanical multiplier of the

armature current to rotor torque. The electrical constant Ke represents the multiplier of

back electromotive force (back-EMF) to rotor speed. The electrical equivalent circuit is

given in Illustration 36. Coefficient b is a drag force, and coefficients L and J are

integrating resistances to applied voltage and applied torque which go to zero in the

steady-state with a constant terminal voltage. The motor runs up to a steady state speed

as the back-EMF increases per the rotor speed, and current equalizes to meet resistive and

friction losses.

The model is converted to a Simulink block-diagram form as summing,

integrating, and gain blocks in Illustration 28, illustrating the feedback relationship

between the motor electrical and mechanical dynamics.

Illustration 28. Simulink DC motor electro-mechanical model

The model is encapsulated as a Simulink subcircuit, and an open-loop 5 Volt step-

function is applied in Illustration 29 to achieve the no-load, open-loop speed run up plot

in Figure 6.

 124

Illustration 29. Simulink open-loop 5V step-function stimulus

Figure 6. Model rotor speed versus time, open-loop transient response to a 5 Volt step

function

Result: 1-Simulator classical continuous PID controller and second-order DC

motor model in Simulink

With the no-load 50 radians/s speed as a ceiling, we add a Simulink continuous

time PID block in Illustration 30, configured to a set point of half-speed 24 radians/s, 5

Volt output ceiling, with Kp, Ki, and Kd coefficients of 8, 2, and 1 respectively. The

closed-loop transient response is plotted in Figure 7, with controller effort from the PID

block in Figure 8.

 125

Illustration 30. Simulink continuous PID controller

Figure 7. Model rotor speed versus time in Simulink continuous PID controller closed-

loop transient response

Figure 8. Model controller effort in Simulink continuous PID controller transient applied

voltage

 126

There is an expected overshoot in the continuous controller model with the given

coefficients and lack of any limiter such as anti-integrator windup [30]. From the

controller effort, the PID block outputs full ceiling power (5 Volts) until the set-point is

approached, after which it drops to the steady state output necessary to equalize

electrically resistive and mechanically viscous friction losses at the constant speed.

For a first departure away from the idealized continuous model, we quantize the

motor speed output to a range of 128 values with a Simulink 8-bit quantizing block with

an offset given in Illustration 31. This allows us to express the set point as one-half

(0x40) of full value (0x7F) rather than an absolute rotor speed, and serves as an

abstracted 7-bit analog-to-digital converter (ADC) that will be used as in input to the

software-based controller. The effect on controller effort from quantizing the measured

speed for the PID transient response is given in Figure 9.

Illustration 31. Simulink quantized PID controller

 127

Figure 9. Quantized output controller effort in Simulink quantized PID controller applied

voltage

Experiment: 2-Simulator Digital Software PID with PWM actuator in TExaS and

Simulink DC motor model

Next, the controller is refined to a software-based PID difference-equation

algorithm with PWM actuators hosted on the 9S12 microcontroller, simulated in the

TExaS simulator at the cycle-estimating, instruction-set architecture (ISA) level. The co-

simulation signal structure is given in Illustration 32.

Illustration 32. 2-Simulator configuration

V
o

lt
s

Seconds

 128

 The software-based PID algorithm in 9S12 assembly is adapted from [30]. The

PID coefficients are changed to Kp=24, Ki=2, and Kd=1 for the difference equation PID

coefficients in fixed-point arithmetic. Conversion of a continuous-time frequency-

domain specified controller to a digital controller is covered in [37]. Setup and allocation

code for the software out of 9S12 reset and PID assembly is omitted for space, but is

given in [30]. This implementation uses a free-running 1 kHz sampling rate PID main

loop of 63 9S12 assembly instructions, and a total code length of 158 instructions. The

algorithm also incorporates anti-integrator windup and output limit checking. The refined

Simulink model is given in Illustration 33. The “socket_input” and “socket_output” S-

Functions register SimTalk signals PortT[0] and PortM[7:0] for exchange with the

SimConnect server. The PortT[0] digital signal is the PWM wave generated by TExaS.

The 0/1 signal is amplified to 5 Volts for application to the motor terminals. The PWM

wave and voltage in this configuration is modeled as ideal (zero rise/fall time).

.

Illustration 33. Simulink DC motor model with SimTalk I/O interface

Results: 2-Simulator Digital Software PID with PWM actuator in TExaS and Simulink

DC motor model

The 2-simulator model is conducted at 100 µs IE resolution on signals PortT[0]

and PortM[7:0]. The transient response is plotted against the Simulink-only classical

 129

continuous and encoded continuous cases in Figure 10. The times and traffic rates of the

simulation are given in Table 4.

Figure 10. Model output speed versus time with Simulink-only and 2-simulator PID

control model cases

The functionality of the software-based PID controller is verified in Figure 10, as

the set point is reached in the steady-state. The set point approach differs from the

classical case due to sampling, digitization, increased proportional gain, and anti-

integrator windup. However, there is new departure from the continuous model because

the applied terminal signal is a PWM signal from the 9S12 microcontroller, and the PID

algorithm is realized in the microcontroller software. The 100 µs 2-simulator response is

used as a baseline for checking the 3-simulator case, where electrical realism in the motor

driver is added to the simulation.

R
ad

ia
n

s
p

er
 s

ec
o

n
d

Seconds

 130

Experiment: 3-Simulator Digital Software PID with PWM actuator in TExaS,

electrical driver and DC motor model in Ngspice, and Simulink DC motor mechanical

model

In the final configuration, electrical realism is added by modeling the motor driver

circuitry and motor electro-mechanical model in Ngspice, duplicating the motor

mechanical model in Simulink for output speed. Illustration 34 shows the cosimulation

structure.

Illustration 34. 3-Simulator configuration

The PWM driver circuit is adapted from [30] and given in Figure 17. Sometimes

called a “chopper” circuit [38], the power MOSFET circuit in Illustration 35 takes the

low-power PWM PortT[0] PWM signal from the 9S12 and amplifies it across the motor

terminals to the power voltage. When the PWM signal is high (5 Volts), the MOSFET is

fully on, so current flows through the motor coil, and when the PWM wave is low (0

Volts), the MOSFET is off, interrupting the flow of current from the power source.

There is still current flow when the MOSFET is off, however, due to the back-EMF and

impedance of the DC motor. The high-voltage back-EMF and impedance when the

 131

PWM wave changes, is collected through the 1N4004 “flyback” diode to protect over-

voltage at the MOSFET drain.

Illustration 35. Ngspice model for motor driver circuit

The DC motor electro-mechanical equivalent circuit is modeled in Illustration 36,

where the applied torque is captured with the Xspice SimTalk “socket_output” device for

delivery to the Simulink model.

Illustration 36. Ngspice models for DC motor electrical and mechanical components

 132

The sources “Back-EMF” and “Torque” are Ngspice Current-Controlled Voltage

Sources (CCVS) driven from the current sensed in 0V DC sources “Current_Sense” and

“Speed_Sense.” The mechanical components are modeled by their model-equivalent

electrical components: an inductance for the rotor inertia, resistance for the viscous drag

force, and voltage source for the torque. The Ngspice deck for the DC motor subcircuit

and driver is given in Illustration 37, with parameters from Table 3 as in the Simulink

model. Spice-3 compliant subcircuit models for the IRF540N, 1N4004, and Q2N2222

semiconductors are downloaded from [83] and [84].

V_Power 1 0 DC +5V

*Electrical motor components

D0 5 1 1n4004rl

R0 1 1 1

L0 2 3 .001

H_Back-EMF 3 4 v_Speed_Sense .1

V_Current_Sense1 4 5 dc 0V

* Mechanical motor components

H_Torque 10 0 V_Current_Sense .1

LJ 10 15 .01

Rb 15 16 .001

V_Speed_Sense 16 0 dc 0

* Power MOSFET

R1_pulldown 20 0 1000

X_IRF 5 20 0 irf540n

* IRF540N gate driver

R2 20 21 800

Q2 1 21 22 Q2N2222

Illustration 37. Ngspice deck for motor and driver

Two SimTalk sockets in the Ngspice deck provide the co-simulation I/O, an input

to capture the 9S12 PortT[0] PWM wave output, and one output sample the circuit motor

torque for consumption by Simulink. The Xspice and Simtalk components are specified

in Illustration 38.

 133

* SimTalk Inputs *

*

a4 100 socket_input_a

.model socket_input_a d_socket_input

+ (signal_name="portt0"

+ ip_address="SimConnectServer" port=8000)

*

a2 [100] [20] dac_bridge0

.model dac_bridge0 dac_bridge (out_low=0.0 out_high=5

+ out_undef=0

+ input_load=1.0e-12

+ t_rise=1.0e-8 t_fall=1.0e-8)

* SimTalk Outputs *

*

a5 [10] socket_output_a

.model socket_output_a a_socket_output

+ (signal_name="motor_torque"

+ ip_address="SimConnectServer" port=8000)

+ update_period=.00001

+ initial_value=0

+ initial_duration=.00001)

Illustration 38. Ngspice SimTalk devices 100 µs IE resolution

Finally, the Simulink model for the DC motor replicates the mechanical

components for speed sensing in Illustration 39, and reports back to TExaS through

SimTalk signal “PortM[7:0].”

Illustration 39. Simulink co-simulation model with mechanical only DC motor model

 134

Illustration 40. Simulink mechanical only DC motor submodel

Results: 3-Simulator Digital Software PID with PWM actuator in TExaS, electrical

driver and DC motor model in Ngspice, and Simulink DC motor mechanical model

The 3-Simulator configuration was executed over IE resolutions 10 µs, 50 µs, and

100 µs to measure speed versus accuracy against the 2-simulator case at 100 µs IE

resolution. Speed of the 3-simulator execution is affected by the IE event rate

(SimConnect traffic and time points) and internal simulator rates. In Figure 11, the 3-

simulator case rise time is plotted against the 2-simulator case baseline.

Figure 11. Model speed versus time in 2 and 3-Simulator configurations

As can be seen in Figure 11, the motor speed output profile as the electrical driver

realism is added in Spice in the 3-Simulator case agrees with the 2-simulator case output

to within ten percent error of measurement. The difference in output speed at a time point

Seconds

R
ad

ia
n

s
p

er
 s

ec
o

n
d

 135

in Figure 11 for the 3-simulator cases against the 2-simulator cases is due to the realism

added in the electrical driver, where a voltage divider is created between the motor coil R

and the IRF540N MOSFET Ron resistance, to a voltage divider ratio of 1/1.077. This

results in the motor coil not seeing a full 5V power when the MOSFET is on, but 1/1.077

less, where in the 2-simulator case, the electrical driver is ideal and created through a

Simulink 5 V gain block. Significant in Figure 11 is that the motor model profile agrees

when modeled in two completely different simulators (Ngspice and Simulink), and the

PID controlled speed output agrees in regard to rise time and steady state. Figure 11 also

indicates that from 100 µs to 10 µs IE resolution, there is not a significant difference in

output profile.

In Figure 12, however, as the IE resolution is decreased for simulation speed, the

measured rotor speed output begins to depart from the baseline result.

Figure 12. Variation in model rotor output speed versus time as a function of IE

resolution

The departure from the control case in Figure 12 can be attributed to the coarse

resolution in the IE period of measuring signals varying at 1 kHz in the PortT[0] PWM

Seconds

R
ad

ia
n

s
p

er
 s

ec
o

n
d

 136

wave signal. In the 100 ms IE case, for example, the IE is not able to pick up the

transition of the PWM wave to high until 100 ms into the simulation as the initial

condition IE is set to zero (and expires at 1 ms). If at 100 ms the signal happens to be

sampled at zero, the consuming simulator (Ngspice) will process that value until its next

expiration time at 100 ms later. This results in the Ngspice motor model not getting a

power value in Figure 12 in the 100 ms case until 250 ms into the simulation. As the PID

algorithm samples at 1 kHz, its PortM speed input is only reported every 100 ms,

resulting in not recalculating a new speed value until every 100 PID loops, and any PWM

updates only being sampled every 100 ms. As a result, although the simulation runs

faster, the accuracy of measured output begins to decrease.

Speed versus accuracy in the 3-simulator case

Figures 11 and 12 indicate that the IE resolution for a cosimulation should be

scrutinized against the bandwidth of the signals sampled by the IEs. The 100 ms IE

resolution in Figure 12 curve five does not meet the period of the PWM wave in the

simulation at 1 ms. However, a ceiling of 100 µs in the simulation meets the baseline of

the 2-simulator case, and increasing the IE resolution does not appreciably change the

accuracy of the observed rotor output speed.

Another point of comparison is to look at the controller effort in the 3-simulator

case against the truth condition in the 1-simulator classical PID case. This is a signal

with more variation over time than the controller rotor speed. The plot of the applied

motor torque in two cases is given in Figure 13.

 137

Figure 13. Discrete versus continuous model controller effort, applied motor torque

versus time in 1-simulator and 3-simulator cases

The applied motor torque is the motor current through the armature times the

motor Kt coefficient (0.1). With a coil resistance of 1 Ohm, this plot also tracks the curve

of the applied terminal current. The difference between the applied torque through 0.5

seconds in Figure 13 is due to the electrical realism in the 3-simulator case of the motor

coil resistance and IRF540N on resistance voltage divider, reducing the applied torque by

a factor of 1/1.077. Through 0.5 seconds the PWM wave is 100% in the discrete case,

and at maximum value (5 Volts) in the continuous case. The step nature of the discrete

output is due to the quantized PID speed and finite sample rate of the PID algorithm in

software.

In Figure 14, the controller effort is plotted against the continuous case for 100 µs

and 10 µs IE resolution and zoomed to 40 ms. The offset from the continuous case is

again due to the voltage divider electrical realism also seen in Figure 12. The plot,

however, shows the significance of an IE resolution matching the bandwidth of changing

signals shared between simulators. The spread effect in the 100 µs case is due to the time

constant of the RL motor circuit as the PWM wave is held constant over a 100 µs IE

T
o
rq

u
e
 (

N
m

)

Seconds

 138

versus a 10 µs IE. The resolution does not affect the general curve or the PID rotor

output, but RLC transient effects monitored in the Ngspice circuit will be more extreme.

Guidelines for choosing digital controller sample rates are given in [37], and it is

suggested here that the same approach apply to IE resolutions for simulated control

systems.

Figure 14. Discrete versus continuous model controller effort, applied motor torque

versus time in 1-simulator and two 3-simulator cases

Execution times, counters and software factors

Table 4 summarizes the different execution times, configurations, and metrics for

reported co-simulation configurations.

T
o
rq

u
e
 (

N
m

)

Seconds

 139

Column Legend

A Simulators: Simulink(S), Ngspice(N), TExaS(T)

B Interpolated Event (IE) resolution

C Number of SimTalk connectors

D Number of SimTalk messages (times 104)

E Number of 9S12 cycles (times 106)

F Number of 9S12 instructions (times 106, rounded 105)

G Simulated Time (seconds)

H Simulation Execution Time (minutes: seconds)

I Number of host machines

Data

A B C D E F G H I

S, T 10 µs 4 200 20 11.8 5.0 6.39 1

S, T 100 µs 4 20 20 11.8 5.0 3:07 1

S, N, T 10 µs 6 81.6 5.44 3.2 1.36 3:45 2

S, N, T 100 µs 6 12 8 4.7 2.0 3:36 2

S, N, T 1 ms 6 1.8 12 7.1 3.0 3:12 2

S, N, T 10 ms 6 0.3 20 11.8 5.0 4:09 2

S, N, T 100 ms 6 0.03 20 11.8 5.0 3:07 2

Table 4. Simulation times, configurations and message traffic

6.2.2 HETEROGENEOUS SIMULATION SUMMARY AND CONCLUSIONS

SimConnect and SimTalk enabled distributed, heterogeneous hardware/software

co-simulation of three independent simulators, TExaS, Ngspice, and Simulink, modeling

of a PID/PWM control system. The co-simulation and was tested against a baseline truth

condition of a single Simulink simulation of the controller PID response and DC motor

speed.

Significant to the SimConnect/SimTalk architecture is that once a SimTalk plugin

is written for one simulator, it can communicate through the SimConnect server to any

other simulator supporting a SimTalk plugin, for combinatorial growth in the number of

simulator configurations possible. This can differ from 2-simulator or ad-hoc approaches

written with specific simulator structures in mind. SimConnect/SimTalk meets a design

requirement of source-based debugging with the ability to pause the global simulation by

 140

breakpoints in the software-simulators by interrupting the KPN dataflow. In these

experiments, when a breakpoint was inserted in TExaS, or the PID algorithm was single-

stepped in the TExaS debugger, the Simulink and Ngspice interactive plots paused and

advanced accordingly, without trace intrusion. This adds circuit-level inspection during

the simulation as well as register-level inspection in software source debugging.

6.3 Dynamic Resolution in Heterogeneous Coordination

 Continuing the 2-simulator model configuration of Chapter 6.2, the simulation is

conducted first at a static 100 µs IE resolution on signals PortT[0] and PortM[7:0]. The

transient response is plotted against the Simulink-only classical continuous and cases in

Figure 15 to verify the functionality of the distributed modeling of the digital PID/PWM

microcontroller-based simulation versus the Simulink continuous-time non-distributed

controller.

Figure 15. Model output speed versus time with Simulink-only and 2-simulator PID

control model cases

In Figure 15, there is some departure from the continuous model because the

applied terminal signal is a PWM wave from the 9S12 microcontroller in a software PID

loop. However, the control profile shows set point agreement. The static 100 µs 2-

simulator Case A is used as a baseline for checking dynamic resolution experiments, with

R
a
d
ia

n
s
 p

e
r

s
e

c
o
n

d

Seconds

 141

simulation times given in Table 5. For Case B, the static simulation localized to one

machine to demonstrate the effect of network latency as a distribution cost.

In Case C, Figure 16, the IE resolution is dynamically changed early in the

simulation. The resolution begins at 100 µs IE resolution to set initial conditions, and

then is relaxed to 10 ms at simulation time 1 ms.

Figure 16. Case C model output speed versus time

Case C shows set point approach, but steady state instability as Simulink and

TExaS only receive signal updates every 10 ms (the relaxed IE duration). However, the

simulation time decreases significantly as shown in Table 5.

Figure 17. Case D model output speed versus time

R
a
d
ia

n
s
 p

e
r

s
e

c
o
n

d

R
a
d
ia

n
s
 p

e
r

s
e

c
o
n

d

Seconds

Seconds

 142

Figure 18. Case D dynamic IE duration change

In Case D, coarse resolution (10 ms IE) is used in the motor run-up phase (0 to

0.5) seconds, then finer resolution (100 µs IE) during the set point approach phase (0.5 to

1.5 seconds), then coarse resolution again in the steady state phase (1.5 to 5 seconds).

The control profile matches the static high-resolution case up to 1.5 seconds, where the

controller is unstable again in the error due to relaxed resolution (10 ms IE signals). The

simulation time is still decreased (Table 5).

Figure 19. Case E model output speed versus time

Seconds

∆
IE

 r
e
s
o
lu

ti
o
n
 (

m
s
)

R
ad

ia
n

s
p

er
 s

ec
o

n
d

Seconds

 143

Figure 20. Case E dynamic IE duration change

In Case E, coarse resolution IE (100 ms) is used to 0.5 seconds in the simulation,

then finer resolution (1 ms IE) as the set point approaches, and then 5 ms IE resolution in

the steady state after 3 seconds. The instability around the set point is reduced over the

Case E 10 ms IE resolution after 3 seconds, but variance persists due to controller only

getting samples once in every five PID loops (5 ms IE with a 1 kHz PID loop).

Figure 21. Case F model output speed versus time

IE
 d

u
ra

ti
o

n
 in

 m
ill

is
ec

o
n

d
s

R
ad

ia
n

s
p

er
 s

ec
o

n
d

Seconds

Seconds

 144

Figure 22. Case F dynamic IE duration change

In Case F, we suppose coarse resolution might apply during the run-up and set

point approach phases. Coarse resolution IE (100 ms) from 0 to 0.75 seconds is applied,

medium resolution (50 ms IE) from 0.5 to 1.5 seconds, and then 5 ms IE resolution after

1.5 seconds. Figure 21 shows that although the control oscillates coarsely under low

resolution, the oscillation decreases significantly when the resolution increases around

controller steady state set point.

Figure 23. Case G model output speed versus time

IE
 d

u
ra

ti
o

n
 in

 m
ill

is
ec

o
n

d
s

R
ad

ia
n

s
p

er
 s

ec
o

n
d

Seconds

Seconds

 145

Figure 24. Case G dynamic IE duration change

In Case G, coarse resolution IE (100 ms) from 0 to 0.5 seconds, finer resolution

IE (7 ms) approaching the set point, and then 1 ms IE resolution after 3 seconds is

applied. The steady state oscillation decreases significantly as the PID controller receives

IE updates ever 1 ms. Noise still exists due to 1 ms IE sampling of the PortT[0] PWM

wave that has a higher duty cycle resolution than 1 ms. However, Case F shows that we

can arbitrarily bring down the error term around the set point by increasing the

resolution, while using coarse resolution in the run-up and approach phases.

In Figure 25, the speed up multiplier of each case is plotted against the static

resolution simulation time of Case A. The maximum percent error of measurement

around the set point value of 23.44 after 3 seconds for each experiment is also plotted,

with Cases A and B considered the truth condition. Figure 25 shows that percent error

around the set point can be brought down arbitrarily while decreasing simulation time by

dynamic resolution. In the best trial, Case G, there is a maximum 0.21 percent error of

measurement around the set point but with a 6.14 times faster simulation time than the

static resolution Case A.

IE
 d

u
ra

ti
o

n
 in

 m
ill

is
ec

o
n

d
s

Seconds

 146

Figure 25. Speedup versus accuracy with dynamic resolution cases

Table 5. Dynamic resolution case times and counters

Column Legend

A Experiment case and distributed simulators : Simulink(S),

TExaS(T), SimConnect server(I)

B Static IE resolution, or (dyn) if dynamic resolution

C Number of instantiated SimTalk connectors

D Number of SimTalk messages (times 103)

E Number of 9S12 cycles (times 106)

F Number of 9S12 instructions (times 106, rounded 105)

G Simulated Time (seconds)

H Simulation Execution Time (minutes: seconds)

I Number of host machines

Table 6. Simulation times, configurations and traffic legend

Table 5 shows that distribution (2 machines versus 1 in Cases A and B) affects

simulation time as IEs must travel over a LAN. However, even with this cost, dynamic

3.88

3.46

1.15

1.15
0.21

1.00

2.38

5.60

2.60

5.28

5.32

6.14

0

2

4

6

8

A B C D E F G

Maximum Percent Error of Measurement
Simulation Speedup Factor

A B C D E F G H I

A. S,T,I 100 µs 3 4000 20 11.8 5.0 13:35 2

B. S,T,I 100 µs 3 4000 20 11.8 5.0 5:51 1

C. S,T,I (dyn) 3 4.8 20 11.8 5.0 2:29 2

D. S,T,I (dyn) 3 800 20 11.8 5.0 5:21 2

E. S, T,I (dyn) 3 24 20 11.8 5.0 2:38 2

F. S,T,I (dyn) 3 6.5 20 11.8 5.0 2:37 2

G. S, T,I (dyn) 3 19.7 20 11.8 5.0 2:16 2

P
c
t.
 E

rr
o
r

o
f

M
e

a
s
.

o
r

S
p

e
e
d

u
p
 F

a
c
to

r

Simulation Dynamic Resolution Case

 147

resolution still decreases simulation time in Cases C through G over the static resolution

cases. The SimConnect server in all cases but B ran on GNU/Linux 2.6.16 kernel

machine. The TExaS and Matlab/Simulink simulators ran on a Windows 8 OS Intel Core

i5 laptop computer.

Dynamic resolution implementation in the SimConnect/SimTalk tools was

straightforward with the interpolated event (IE) data type and SimTalk “res” messages.

In the space of simulated software-based PID control, these results show that more coarse

resolution is tolerable while the PID error value is high, while a higher resolution is

required as the controller settles around the set point. This can speed up PID/PWM-

based simulations in cyber-physical systems by relaxing resolution when a new controller

set point is ordered, then increasing resolution through the steady state of the simulated

controller.

6.4 Chapter Summary

 The SimConnect and SimTalk KPN-IE method tools enable cyber-physical

system simulation of homogenous (many identical simulator) and heterogeneous (many

different simulator) systems. For homogeneous simulation, SimConnect and SimTalk

enabled the coordination of up to 128 Spice simulators for the parallel speedup of the

simulation of a 128 bit digital counter at the transistor circuit level. Interpolated Event

resolution versus simulation speed enables a tradeoff in speed versus accuracy of the

simulation. For heterogeneous simulation, SimConnect and SimTalk were applied to

simulate a software-based PID/PWM controller of a DC-motor. The TExaS simulator

modeled a Freescale 9S12-based software PID controller driving a pulse-width

modulated (PWM) MOSFET circuit driver in Ngspice, followed by a 2nd order

differential equation-modeled DC motor in Matlab Simulink. Tradeoffs in speed with IE

 148

resolution versus accuracy apply, with simulation agreement between the 3-simulator

model of system and a 1-simulator model of the system as a truth condition. Finally,

means of dynamic runtime-based control of the simulation resolution was explored for

the 2-simulator based simulation. Dynamically varying the IE resolution at different time

points during the simulation created further increases in simulation speed with tunable

tradeoffs in accuracy.

 149

CHAPTER SEVEN. THESIS SUMMARY AND FUTURE WORK

This chapter summarizes important concepts of the KPN-IE method for CPS

PADS and the benefits of the SimConnect and SimTalk simulator coordination tools.

Additionally, future opportunities for new contributions from the KPN-IE method and

SC/ST tools are described.

7.1 Benefits of the KPN-IE Method, Implementation, and Results

Any method that tries to coordinate multiple, independently running,

heterogeneous simulators encounters challenges repeatedly seen in the field of parallel

and distributed simulation (PADS). These challenges are, but not limited to: simulator

messaging (format, content, and carrier), simulator synchronization (keeping simulator

events in sync compared to non-parallel execution), simulator event causality (preventing

simulators from advancing in time ahead of events that might come from other

simulators), simulator messaging deadlock (possible with simulators in zero-lookahead

cycles), and simulator deployment (resourcing and distribution).

Two strong PADS solutions that address each of these challenges are the DEVS

solution [20] and the IEEE 1516 HLA [19] solution. DEVS offers a unified modeling

based approach to PADS challenges. Systems are defined in terms of DEVS set theoretic

formalisms, which enable diverse systems to be modeled by virtue of the closure of

composition of the DEVS formalisms. DEVS models have continued to evolve from

contributions of researchers since the publication of the formalism by Bernard Ziegler in

1976 [20]. DEVS can be described as a unified modeling solution, where interfacing is

defined and analyzed at the level of models and models of computation.

Another solution, the IEEE 1516 HLA standard [19], offers an architecture for

interfacing diverse simulators, instead of interfacing diverse models over a single

 150

simulator environment. HLA was designed as a U.S. Department of Defense standard for

distributed military simulations dating to 1996 [36], and later became an IEEE standard

as its utility reached into other domains of simulation [19].

Cyber physical system (CPS) simulation, however, poses challenges to both

solutions. First, each component in the CPS may not be already modeled in a DEVS

formalism, and there may not be market or research time available to remodel the

components in DEVS. Second, simulators in a CPS system may not all have HLA

ambassador interfaces written for them to be coordinated by an HLA RTI. The cost of

writing and debugging an HLA ambassador for a closed architecture simulator can be a

significant market and research cost in a CPS simulation.

A third method, novel to this work, is the Kahn Process Network and Interpolated

Event method, or KPN-IE. The heart of the KPN-IE method is to leverage as many

inherent dynamics of a dataflow network formalism as possible to provide simulator

synchronization and communication services rather than explicitly conducting them

through dedicated function calls or additional coordination-dedicated simulator

messaging channels. In the KPN-IE method, the signal content and time synchronization

content of the simulation is embedded in the content of the KPN dataflow token (the

Interpolated Event) rather than in separate explicit signal value and time coordination

function calls. The primary advantage of this is that we can hope to reduce simulator

interfacing costs, particularly code development costs, by leveraging the inherent

synchronizing properties of a KPN with IE tokens. Additionally, we can hope to reduce

backplane functionality requirements by making the KPN backplane software primarily

an IE token router.

The synchronizing properties of the KPN-IE method were proven in Chapters

Three and Four. Namely, the method enforces the local causality constraint (LCC) for

 151

conservatively coordinated simulators, and provides an algorithm for optimistic and

combined conservative and optimistic coordination that removes some of the functional

burdens from the simulators (such as Time Warp [65] anti-message queues) by offloading

them to the KPN backplane. Further, bounds on important coordination values, such as

the conservative Lower Bound Time Stamp (LBTS) value and the optimistic Global

Virtual Time (GVT) value fall automatically out of managing the KPN IE data streams

rather than requiring the backplane to use a dedicated algorithm.

Implementation of the KPN-IE method was achieved with the SimConnect and

SimTalk software tools, which coordinated up to 128 Ngspice simulators and 3 diverse

simulators (TExaS, Matlab, and Ngspice) for homogeneous and heterogeneous system

simulation. These also provided speedup gains through runtime dynamic resolution of IE

token values, with tradeoffs in speed versus accuracy. The primary benefits of the

SimConnect/SimTalk tools are their code sizes compared to open source HLA

implementations. The SimConnect backplane is smaller in code size (up to a third of the

code size of the OpenHLA C++ RTI), and the SimTalk plugins for Ngspice and Matlab

are significantly smaller in code size than an example open source HLA RTI ambassador

for Matlab [79]. It is conjectured that the simplified functional requirements of the KPN-

IE method solution versus an HLA solution is the cause of the resulting differences in

software code sizes. The code comparisons reflect the hope that interfacing simulators

through a SimConnect/SimTalk solution will be less costly in software engineering effort

than interfacing them through an HLA RTI.

However, because the HLA RTI is increasingly studied in PADS literature and

popularly used and reported in PADS case studies, the KPN-IE approach does not

preclude the use of HLA. SimTalk connectors can be interfaced to RTI ambassadors to

coordinate a SimConnect/SimTalk simulation with an HLA simulation federation.

 152

In the realm of CPS simulation, which can require the coordination of many

diverse engineering design simulators, it is often the case that a simulator is a proprietary

solution maintained by professional developers specializing in a field. These simulators

may not expose all of their internal software or intellectual property, but may offer model

device-level interfaces, the ability to compile OS-system libraries, the ability to set and

read simulator signals, and ability to schedule simulator events. These are the only

interfaces and abilities a SimTalk IE port connector requires. The connector does not

need to tightly interface into the simulator’s time advancement kernel. An HLA federate

or RTI ambassador, however, requires a federate to surrender all internal simulator time

management for time regulated simulation to the RTI backplane. This can prohibit the

interfacing of closed architecture CPS simulators for simulation engineers that do not

have access to the simulator’s proprietary source code. Therefore, the KPN-IE method

can enable the interfacing of proprietary simulators without exposing their intellectual

property due to the light weight requirements of a SimTalk plugin compared to an HLA

ambassador.

Finally, IE dynamics are software friendly. KPN IE streams can be sent to or

sourced from databases, piped to diverse consumers, mathematically analyzed, and

exchanged between continuous time environments and discrete time environments.

Localizing simulator coordination to IE stream dynamics can also be of benefit when the

simulation increases in simulated time scale or the number of simulators participating.

 153

7.2 Opportunities

Future contributions are possible with the KPN-IE method for CPS PADS. These

opportunities aim to expand the range of CPS PADS simulations or to increase the

modeling capability of IE ports through higher order interpolation. Leading suggestions

are summarized as follows.

Expanding the number of SimTalk connectors for increased CPS simulation model

range

The system component range of SimConnect/SimTalk based CPS simulations can

be increased by writing more SimTalk plugins for established and emerging engineering

and physical system simulators. This includes, but is not limited to, writing plugins for

ModelSim [44], Cadence [25], Synopsis [26], ComSol Multiphysics [45], LabView [46],

SystemC-AMS [47], Xyce [48] and other popular, model-rich, domain-specific

simulators. As more plugins are written for different simulators, coordination among sets

of simulators not previously able to coordinate by their construction alone is enabled. As

more plugins are written for different simulators, the combinatorial mix of coordination

possible increases on the order of the power set (set of all subsets) of the set of SimTalk-

supported simulators, an exponential increase.

Simulating large-scale CPSs with multiple coordinated SimConnect backplanes over a

massively parallel cluster such as TACC Ranger [50] or an XSEDE resource [78]

Multiple SimConnect backplanes may be instantiated, each with local clusters of

simulators connected to them. This allows assigning one backplane per board on

massively parallel machine, with each simulator per backplane running multi-core on the

board, similar to a hybrid MPI/OpenMP distributed topology. Instantiating multiple

SimConnect/SimTalk networks in this configuration also provides a platform for

 154

researching convergence control and termination techniques in partially-asynchronous,

asynchronous, and synchronous parallel iterative numerical methods [41][42]. IEs and

KPNs directly map to the “partially asynchronous parallel iterative” approach for solving

linear systems and fixed point equations, described thoroughly in [39]. It is possible to

examine speed versus convergence tradeoffs in these systems by dynamic control of

interpolated event duration in the SimConnect backplane over large data sets.

Connecting SimConnect/SimTalk and HLA

A SimConnect/SimTalk simulation may itself be a federate of an HLA (IEEE

1516) simulation if SimTalk plugins are written for HLA federate and RTI ambassadors.

This can bridge a CPS system simulation supported by SimConnect/SimTalk and an

HLA-coordinated simulation.

Higher Order Interpolation on Interpolated Events

The Interpolated Event data type may be expanded to include additional signal

information, such as the first-order rate of change in the IE value v from tm to tn. This

provides a first-order interpolation on signals for which the set V is isomorphic to the set

of real numbers. First-order interpolation can support adding event quantizers [61] on IE

output ports rather than limiting ports to sampling mode or tracking mode.

 155

BIBLIOGRAPHY

[1] Lee, E.A. “Cyber-Physical Systems: Design Challenges.” The University of

California at Berkeley Center for Hybrid and Embedded Software Systems.

Technical Report No.UCB/EECS-2008-8, 2008.

[2] National Science Foundation. “Cyber-Physical Systems.”

http://www.nsf.gov/pubs/2012/nsf12520/nsf12520.htm. 2006.

[3] Sangiovanni-Vincentelli, A. “Quo Vadis, SLD? Reasoning about the Trends and

Challenges of System Level Design.” Proc. IEEE 95 (2007): 467–506.

[4] Klesh, A.T., Cutler, J.W., and E.M. Atkins. “Cyber-Physical Challenges for Space

Systems.” In IEEE/ACM Third International Conference on Cyber-Physical

Systems ICCPS, 2012, 45–52.

[5] Rajkumar, R., Lee, I., Sha, L., and J. Stankovic. “Cyber-Physical Systems: the

Next Computing Revolution.” In ACM/IEEE 47th Design Automation Conference

DAC, 2010, 731–736.

[6] Fujimoto, R.M. “Parallel Discrete Event Simulation.” In Proceedings of the

1989 Winter Simulation Conference, 1989, 19-28.

[7] Chandy, K.M., and J. Misra. “Distributed Simulation: A Case Study in Design

and Verification of Distributed Programs.” IEEE Trans Software Eng (1979): 5.

[8] Jefferson, D.R. “Virtual Time.” ACM Trans Program Lang Sys (1985): 7.

[9] Amory, A., Moraes, F., Oliveira L., Calazans, N., and F. Hessel. “A

Heterogeneous and Distributed Cosimulation Environment.” In Proceedings of

the 15th Symposium on Integrated Circuits and Systems Design, 2002, 115–120.

[10] Pfeifer, D., and J. Valvano. “Kahn Process Networks Applied to Distributed

Heterogeneous HW/SW Cosimulation.” In Electronic System Level Synthesis

Conference ECSI, 2011, 1-6.

[11] Pfeifer, D., Valvano, J., and A. Gerstlauer. “SimConnect and SimTalk for

Distributed Cyber-Physical System Simulation.” Simulation: Transactions of the

Society of Simulation and Modeling International SCS 89, no. 10 (2013): 1254-

1271.

[12] Schmerler, S., Tanurhan, Y., and K.D. Muller-Glaser. “A Backplane Approach

for Cosimulation in High-Level System Specification Environments.” In

Proceedings of the European Design Automation Conference EURO-DAC ’95

with EUROVHDL, 1995, 262–267.

[13] Atef, D., Salem, A., and H. Baraka. “An Architecture of Distributed Cosimulation

Backplane.” In 42nd Midwest Symposium on Circuits and Systems, vol. 2, 1999,

855–858.

 156

[14] Sung, W., and S. Ha. “A Hardware Software Cosimulation Backplane with

Automatic Interface Generation.” In Proceedings of the Asia and South Pacific

Design Automation Conference ASP-DAC, 1998, 177–182.

[15] Gheorghe, L., Bouchhima, F, Nicolescu, G., and H. Boucheneb. “Formal

Definitions of Simulation Interfaces in a Continuous/Discrete Cosimulation

Tool.” In Proceedings of the Seventeenth IEEE International Workshop on Rapid

System Prototyping, 2006, 186–192.

[16] Bouchhima, F., Briere, M., Nicolescu, G., Abid, M., and E.M. Aboulhamid. “A

SystemC/Simulink Cosimulation Framework for Continuous/Discrete-Events

Simulation.” In Proceedings of the 2006 IEEE International Behavioral Modeling

and Simulation Workshop, 2006, 1–6.

[17] Pfeifer, D., and A. Gerstlauer. “Expression-level Parallelism for Distributed Spice

Circuit Simulation.” In 15th IEEE/ACM International Symposium on Distributed

Simulation and Real Time Applications DS-RT, 2011.

[18] Pfeifer, D., Valvano, J., and A. Gerstlauer. “Dynamic Resolution in Distributed

Cyber-Physical System Simulation.” In Proceedings of the 2013 ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation SISIM-PADS, 2013,

277-284.

[19] IEEE Std 1516-2010. “IEEE Standard for Modeling and Simulation (M&S) High

Level Architecture (HLA)–Framework and Rules.” 2010, 1–38.

[20] Zeigler, B. Theory of Modeling and Simulation. 2nd ed. San Diego: Academic

Press, 2000.

[21] Nutaro, J. Building Software for Simulation: Theory and Algorithms, with

Applications in C++. New Jersey: Wiley, 2011.

[22] Dong, H., Dong, W., and Y. Ji. “A HLA-based Hierarchical Architecture for the

CTCS Hardware-in-the-Loop Simulation System.” In The 2nd IEEE International

Conference on Computer Science and Information Technology, 2009, 86–91.

[23] Fujimoto, R.M., and R.M. Weatherly. “Time Management in the DoD High Level

Architecture.” In Proceedings of the 1996 10th Workshop on Parallel and

Distributed Simulation, 1996, 60–67.

[24] de Mello, B.A., and F.R. Wagner. “A Standardized Co-simulation Backbone.” In

The 11th International Conference on Very Large Scale Integration of Systems-

on-Chip, 2001, 121–131.

[25] Cadence Design Systems, Inc. www.cadence.com. 2012.

[26] Synopsys, Inc. www.synopsys.com. 2012.

 157

[27] Zhou, Y., and M. Wang. “Launch Vehicle Testing Simulation System.” In The

2011 International Conference on Computational and Information Sciences,

2011, 921–924.

[28] Crowley, P. “A Dynamic Publish-Subscribe Network for Distributed Simulation.”

In The 22nd Workshop on Principles of Advanced and Distributed Simulation,

2008, 150.

[29] Kahn, G. “The Semantics of a Simple Language for Parallel Programming.” Inf

Process (1974): 471-475.

[30] Valvano, J. Embedded Microcomputer Systems: Real Time Interfacing. 3rd ed.

Stamford, CT: Cengage Learning, 2011.

[31] Nenzi, P., and V. Holger. “Ngspice Users Manual.” vol. 22.

ngspice.sourceforge.net. 2010.

[32] The MathWorks Corp. www.mathworks.com. 2012.

[33] Cox, F.L., Kuhn, W.B., Li, H.W., Murray, S.D, Tynor, S.D., and M.J. Willis.

“Xspice User’s Manual.” Computer Science and Information Technology

Laboratory, Georgia Tech Research Institute, 1992.

[34] Narayanan, R., Abbasi, N., Zaki, M., Al Sammani, G., and S. Tahar. “On the

Simulation Performance of Contemporary AMS Hardware Description

Languages.” In The 2008 ICM Tnternational Conference on Microelectronics,

2008, 361–364.

[35] Lee, E.A., and A. Sangiovanni-Vincentelli. “Comparing Models of Computation.”

In The IEEE/ACM International Conference on Computer-Aided Design Digest of

Technical Papers ICCAD, 1996, 234–241.

[36] Fujimoto, R.M. Parallel and Distributed Simulation Systems. New York: Wiley,

2000.

[37] Franklin, G., Powell, J.D., and A. Emami-Naeini. Feedback Control of Dynamic

Systems. 4th ed. New Jersey: Prentice Hall, 2002.

[38] Hughes, A. Electric Motors and Drives: Fundamentals, Types and Applications.

3rd ed. Oxford, UK: Elsevier, 2006.

[39] Bertsekas, D., and J. Tsitsiklis. Distributed and Parallel Computation: Numerical

Methods. Bemont, MA: Athena Scientific, 1997.

[40] Lee, E.A. “Cyber-Physical Systems – Are Computing Foundations Adequate?”

Position Paper for the NSF Workshop on Cyber-Physical Systems: Research,

Motivation, Techniques, and Roadmap. 2006.

[41] Bahi, J., Contassot-Vivier M., Couturier R., and F. Vernier. “A Decentralized

Convergence Detection Algorithm for Asynchronous Parallel Iterative

 158

Algorithms.” IEEE Transactions on Parallel and Distributed Systems 16, no. 1

(2008).

[42] Smith, S., and H. Krad. “A Parallel, Iterative Method For Solving Large Linear

Systems.” In IEEE Southeastcon Proceedings, 1990.

[43] Larsen, E. “Admittance Measurement for Assessment of Cardiac Hemodynamics

in Clinical and Research Applications.” PhD Diss., The University of Texas at

Austin, 2012.

[44] Mentor Graphics, Inc. www.mentorgraphics.com. 2013.

[45] Comsol, Inc. www.comsol.com. 2013.

[46] National Instruments, Inc. www.nationalinstruments.com. 2013.

[47] SystemC-AMS. www.systemc-ams.org. 2013.

[48] Xyce Parallel Electronic Simulator. www.xyce.sandia.gov. 2013.

[49] Texas Advanced Computing Center/ACES Visualization Lab.

http://www.tacc.utexas.edu/resources/visualization. 2013.

[50] Wang, X., Turner, S., Low, M., and B. Gan. “Optimistic Synchronization in

HLA-Based Distributed Simulation.” Simulation: Transactions of the Society of

Simulation and Modeling International SCS 81, no. 4 (2005): 279-291.

[51] Nutaro, J., and H. Sarjoughian. “Design of Distributed Simulation Environments:

A Unified System-Theoretic and Logical Processes Approach.” Simulation:

Transactions of the Society of Simulation and Modeling International SCS 80, no.

11 (2004): 577-589.

[52] Pawletta, S., Drewelow, W., and T. Pawletta. “HLA-based Simulation within an

Interactive Engineering Environment.” In Proceedings of the Fourth IEEE

International Workshop on Distributed Simulation and Real-Time Applications

DSRT, 2000.

[53] Quaglia, F., Santoro, A., and B. Ciciani. “Towards Transparent Optimistic

Synchronization in HLA.” In The 2005 Workshop on Techniques, Methodologies,

and Tools for Performance Evaluation of Complex Systems, 2005.

[54] Thepppaya, T., Tandayya, P., and C. Jantaraprim. “Integrating the HLA RTI

Services with Scilab.” In The Sixth IEEE International Symposium on Cluster

Computing and the Grid CCGRID, vol. 2, 2006.

[55] Sung, C., and T. Kim. “Framework for Simulation of Hybrid Systems:

Interoperation of Discrete Event and Continuous Simulators Using HLA/RTI.” In

The 2011 IEEE Workshop on Principles of Advanced and Distributed Simulation

PADS, 2011.

[56] Roth, C., Almeida, G.M., Sander, O., Ost, L., Hebert, N., Sassatelli, G., Benoit,

P., Torres, L., and J. Becker. “Modular Framework for Multi-level Multi-device

 159

MPSoC Simulation.” In The 2011 IEEE International Symposium on Parallel

and Distributed Processing Workshops and Ph.D. Forum IPDPSW, 2011.

[57] Permulla, K., Park, A., and V. Tipparaju. “GVT Algorithms and Discrete Event

Dynamics on 129k+ Processor Cores.” In The 2011 18th International

Conference on High Performance Computing HiPC, 2011.

[58] Liu, B., Yao, Y., Jiang, Z., Yan, L., Qu, Q., and S. Peng. “HLA-based Parallel

Simulation: A Case Study.” In The 2012 ACM/IEEE/SCS 26th Workshop on

Principles of Advanced and Distributed Simulation PADS, 2012.

[59] Nutaro, J. “On Constructing Optimistic Simulation Algorithms for the Discrete

Event Specification.” ACM Transactions on Modeling and Computer Simulation

TOMACS 19, no. 1 (2009): 1-21.

[60] Yilmaz, A., Jin, J., and E. Michielssen. “A TDIE-Based Asynchronous

Electromagnetic-Circuit Simulator.” IEEE Microwave and Wireless Components

Letters 16, no. 3 (2006).

[61] Nutaro, J. “Discrete Event Simulation of Continuous Systems.” Handbook of

Dynamic Systems Modeling. 2005.

[62] Zhang, C. “Integrating Existing DEVS Simulations With The HLA.” Master’s

Thesis, Carleton University, 2004.

[63] Nichols, K., Kazmierski, T.J., Zwolinski, M., and A.D. Brown. “Overview of

SPICE-like Circuit Simulation Algorithms.” IEEE Proceedings on Circuits,

Devices and Systems 141, no. 4 (1994).

[64] Ferenci, S., Permulla, K., and R. Fujimoto. “An Approach for Federating Parallel

Simulators.” In Proceedings of the Fourteenth Workshop on Parallel and

Distributed Simulation PADS, 2000.

[65] Jefferson, D., Beckman, B., Wieland, F., Blume, L., and M. Diloreto. “Time Warp

Operating System.” Proceedings of the Eleventh ACM Symposium on Operating

Systems Principles SOSP 21, no. 5 (1987): 77-93.

[66] Nutaro, J. “A Discrete Event Method for Wave Simulation.” ACM Transactions

on Modeling and Computer Simulation TOMACS 16, no. 2 (2006): 174-195.

[67] Lungeanu, D. “Distributed Simulation of Digital and Analog VLSI Systems.”

PhD Diss., The University of Iowa, 2000.

[68] Lam, S., and A. Shankar. “A Relational Notation for State Transition Systems.”

IEEE Transactions on Software Engineering 17, no 7 (1990).

[70] Keller, R. “Formal Verification of Parallel Programs.” Communications of the

ACM 19, no. 7 (1976): 371-384.

 160

[71] Broy, M., Jonsson, B., Katoen, J-P., Leucker, M., and A. Pretschner, eds. Model-

Based Testing of Reactive Systems: Advanced Lectures. Heidelberg: Springer,

2005.

[72] Olderog, E., and H. Dierks. Real-Time Systems: Formal Specification and

Automatic Verification. Cambridge, UK: Cambridge University Press, 2008.

[73] Rewienski, M. “A Perspective on Fast-SPICE Simulation Technology.” In

Simulation and Verification of Electronic and Biological Systems. Dordrecht:

Springer, 2011.

[74] Kuhl, F., Weatherly, R., and J. Dahmann. Creating Computer Simulation

Systems: An Introduction to the High Level Architecture. NJ: Prentice Hall,

1999.

[75] Ghosh, S., and T. Lee. Modeling and Asynchronous Distributed Simulation:

Analyzing Complex System. New York: IEEE Press, 2000.

[76] Turner, P. Guide to Scientific Computing. 2nd ed. Florida: CRC Press, 2001.

[77] Golub, G., and J. Ortega. Scientific Computing: An Introduction With Parallel

Computing. San Diego: Academic Press, 1993.

[78] Extreme Science and Engineering Discovery Environment (XSEDE).

www.xsede.org. 2013.

[79] Stenzel, C., and S. Pawletta. MatlabHLA Toolbox. http://www.mb.hs-

wismar.de/~stenzel/software/MatlabHLA.html#GetMatlabHLA. 2013.

[80] CERTI open source HLA RTI. http://savannah.nongnu.org/projects/certi. 2013.

[81] ONERA French Aerospace Lab. www.onera.fr. 2013.

[82] OpenHLA. http://ohla.sourceforge.net. 2013.

[83] ON Semiconductor Corp. www.onsemi.com. 2013.

[84] International Rectifier Corp. www.irf.com. 2013.

