
Simulator Adaptation at Runtime for

Component-Based Simulation Software

Dissertation

zur

Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Informatik und Elektrotechnik

der Universität Rostock

vorgelegt von

Tobias Helms, geb. am 01.08.1988 in Schwerin

Rostock, 03.05.2017

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2017-0134-6

zef007
Schreibmaschinentext

Principal Advisor:

Prof. Dr. Adelinde M. Uhrmacher (Universität Rostock, Germany)

External Reviewer:

1. Prof. Dr. Francesco Quaglia (Sapienza Università di Roma, Italy)

2. Prof. Dr. Georgios K. Theodoropoulos, (Durham University, England and

Southern University of Science and Technology, China)

Date of Submission: 03.05.2017

Date of Defense: 25.07.2017

Abstract

Component-based simulation software can provide many opportunities to compose and

configure simulators, resulting in an algorithm selection problem for the user of this

software. Further, as the state and structure of a model may vary during a simulation

run, the computational demands might also change during runtime. Therefore, it

is not only necessary to select a suitable simulator for executing a simulation run,

but this selection must regularly be reconsidered to adapt the chosen simulator to

changed computational demands. While this is a general and cross-cutting concern,

most adaptation schemes for simulators are tailored to specific application scenarios

that cannot be reused straightforwardly for other scenarios. Therefore, this thesis aims

to automate the selection and adaptation of simulators at runtime in an application-

independent manner. Further, it explores the potential of tailored and approximate

simulators — in this thesis concretely developed for the modeling language ML-Rules—

supporting the effectiveness of the adaptation scheme.

Specifically, for the automatic selection and adaptation of simulators at runtime, a

flexible and generic adaptive simulator is developed and integrated into the modeling

and simulation framework JAMES II. The adaptive simulator encapsulates available

simulators applicable to a specific problem and employs reinforcement learning to

explore and exploit the performance of these simulators. As it uses the encapsulated

simulators to calculate the state transitions of a model, it is not restricted to any

modeling language, but it can be applied to all modeling approaches available in

JAMES II. To improve the learning efficiency of the adaptive simulator, state space

generalization methods are applied. Further, different techniques to trigger adaptations

are explored, e.g., a changepoint detection method monitoring the event throughput

is integrated into the adaptive simulator.

A pool of efficient simulators is a prerequisite for the effectiveness of the adaptive

simulator. Therefore, in addition to the adaptive simulator itself, in this thesis

tailored and approximate simulators are developed and explored concretely for the

modeling language ML-Rules. Due to its expressiveness, it poses various computational

challenges tackled by the developed simulators. The efficiency of these simulators is

illustrated with complex ML-Rules models used in simulation studies.

Zusammenfassung

Komponenten-basierte Simulationssoftware kann viele Möglichkeiten zur Komposition

und Konfiguration von Simulatoren bieten und damit zu einem Konfigurationsproblem

für Nutzer dieser Software führen. Ausgelöst durch Zustands- und Strukturänderungen

eines Modells können sich die rechentechnischen Anforderungen an den Simulator

außerdem zur Laufzeit verändern. Daher ist es nicht ausreichend einen geeigneten

Simulator zur Ausführung eines Simulationslaufs einmalig auszuwählen — die Auswahl

muss regelmäßig überprüft und gegebenenfalls an veränderte Anforderungen angepasst

werden. Obwohl dies ein genereller Aspekt ist, sind die meisten Adaptionsmechanismen

für Simulatoren auf bestimmte Anwendungsszenarien zugeschnitten. Das Ziel dieser

Arbeit ist daher die Entwicklung einer generischen und automatisierten Auswahl-

und Adaptionsmethode für Simulatoren. Darüber hinaus wird das Potential von

spezifischen und approximativen Simulatoren anhand der Modellierungssprache ML-

Rules untersucht, welche die Effektivität des entwickelten Adaptionsmechanismus

erhöhen können.

Zur automatischen Selektion und Adaption von Simulatoren zur Laufzeit wird ein

flexibler und generischer adaptiver Simulator entwickelt und in das Modellierungs-

und Simulationsframework JAMES II integriert. Der adaptive Simulator kapselt

vorhandene Simulatoren und verwendet verstärkendes Lernen um die Leistung der

Simulatoren zu untersuchen und auszunutzen. Da die gekapselten Simulatoren zur

Berechnung der eigentlichen Simulationsläufe verwendet werden, ist der adaptive

Simulator nicht auf eine Modellierungsspache beschränkt, sondern kann für jede Mod-

ellierungssprache, die in JAMES II verfügbar ist, verwendet werden. Zur Verbesserung

der Lerneffizienz des adaptiven Simulators werden Generalisierungsmethoden für Zu-

standsräume angewendet und evaluiert. Zusätzlich werden verschiedene Techniken

zum Auslösen einer Adaption untersucht, beispielsweise eine Methode zur Erkennung

von deutlichen Änderungen der Ereignisrate.

Eine Menge von effizienten Simulatoren ist eine Grundvoraussetzung für die Effek-

tivität des entwickelten adaptiven Simulators. Daher werden in dieser Arbeit, neben

dem adaptiven Simulator selbst, zusätzlich spezifische und approximative Simulatoren

für die Modellierungssprache ML-Rules entwickelt. Durch dessen Ausdrucksstärke

entstehen verschiedene rechentechnische Herausforderungen, zu deren Bewältigung

die entwickelten Simulatoren beitragen. Die Effizienz dieser Simulatoren wird anhand

verschiedener komplexer ML-Rules Modelle, welche in Simulationsstudien verwendet

wurden, illustriert.

Acknowledgments

Writing a thesis is a long, challenging and fascinating journey including demanding as

well as exhausting phases. I would not have been able to finish this work without so

many people helping me. I express my greatest gratitude to Lin for always supporting

me during this journey with her motivation and knowledge and for giving me the

time to focus on this thesis. I also thank Professor Francesco Quaglia and Professor

Georgios Theodoropoulos for reviewing this thesis.

Special thanks go to Roland for arousing my interest to modeling, simulation and

algorithm selection topics and for always being fascinated by so many open problems.

I also want to thank in particular Danhua, John and Tom for being valuable and

constructive colleagues and friends. I had a great time at the modeling and simulation

group in general and also want to thank all former and all current colleagues.

During the last years, I had the honor to supervise many students writing their

Bachelor’s or Master’s theses contributing to my work. Thank you Marcel, Steffen,

Oliver, Sebastian, Jakob, and Pia for always being motivated and ambitious while

working on your theses.

I am also deeply grateful to my friends and family for all the support, understanding

and fun over the last years. In particular, I deeply thank Mareen and Paulina for

being the most important individuals in my life and making it wonderful.

Contents

List of Figures x

List of Algorithms xiii

1 Introduction 1

1.1 Contribution . 3

1.2 Outline . 4

1.3 Bibliographic Note . 4

2 Adaptivity in Modeling & Simulation 7

2.1 Simulation Experiments . 8

2.2 Continuous Simulation . 12

2.3 Parallel Discrete Event Simulation . 15

2.4 Simulation of Biochemical Reaction Networks 18

2.4.1 τ -leaping . 20

2.4.2 Combining Discrete and Continuous Simulators 22

2.5 Simulator Selection for Discrete Event Simulation 25

2.5.1 Simulators as Selection Trees 25

2.5.2 Simulator Selection via Supervised Learning 27

2.5.3 Simulator Selection via Unsupervised Learning 28

2.6 Summary . 30

3 Adaptive Software 34

3.1 Concepts for Compositional Adaptations 39

3.2 Techniques to Implement Adaptive Software 42

3.3 Summary . 44

4 The Adaptive Simulator — Compositional Simulator Adaptation

at Runtime 45

4.1 Requirements . 46

vii

CONTENTS

4.2 The Structure of the Adaptive Simulator 47

4.3 State Space Generalization . 55

4.3.1 Decision Boundary Partitioning 60

4.3.2 Adaptive Vector Quantization 64

4.4 Adaptation Conditions . 72

4.4.1 Changepoint Detection for Adaptive Simulation Algorithms . 74

4.5 Implementation & Integration in JAMES II 79

4.5.1 Information Retrieval . 81

4.5.2 Adaptation Condition . 84

4.5.3 Value Function . 85

4.6 Measuring Adaptation Performance 87

4.7 Limitations and Open Challenges . 88

4.7.1 Testing Component-based Stochastic Simulators 89

4.8 Summary . 92

5 Performance Experiments with the Adaptive Simulator 96

5.1 Experiments with ML-Rules . 97

5.1.1 Introduction . 98

5.1.1.1 Enzyme-Substrate-Product Model 98

5.1.1.2 Attributed Species 99

5.1.1.3 Compartments . 102

5.1.1.4 Multi-Level Rules . 106

5.1.1.5 Functions on Solutions 107

5.1.2 Experiments . 108

5.1.2.1 Experiments with a Benchmark Model 109

5.1.2.2 Experiments with Complex Models 115

5.1.2.3 Changepoint Detection Experiment 116

5.1.2.4 Dynamic State Space Generalization Experiment . . 118

5.2 Other Modeling Formalisms . 120

5.2.1 Species-Reactions (SR) . 120

5.2.2 PDEVS . 121

5.3 Summary . 125

6 Tailored and Approximate Simulators - A Case Study with ML-

Rules 127

6.1 Tailored Simulators for ML-Rules . 130

6.1.1 Static Species and Reaction Sets 131

6.1.1.1 Results with the Wnt/β-catenin Pathway Model . . 132

6.1.2 Species Bindings . 133

viii

CONTENTS

6.1.2.1 Reactant Swapping 134

6.1.2.2 Results with a Mitochondria Model 136

6.2 τ -leaping for ML-Rules . 138

6.2.1 Results and Accuracy Analysis with Visual Analytics 142

6.3 Hybrid Simulator for ML-Rules . 144

6.3.1 Reaction Partitioning . 145

6.3.2 Calculation of Deterministic Reactions 146

6.3.3 Results with a Benchmark Model 147

6.3.4 Results with a Dictyostelium Discoideum Model 149

6.3.5 Parallel Execution of Stochastic Reactions 152

6.4 Summary . 152

7 Conclusions and Outlook 156

7.1 Summary . 156

7.2 Outlook . 161

Bibliography 163

A ML-Rules Models 182

A.1 Cell Cycle Model . 182

A.2 Endocytosis Model . 183

A.3 Wnt/β-catenin Model . 185

A.4 Simplified Lipid Raft Model . 187

A.5 Dictyostelium Discoideum Model . 188

ix

List of Figures

2.1 Six tasks of a simulation experiment [116]. 9

2.2 Runtime influence of observation [77]. 11

2.3 The algorithm selection problem as defined by Rice [166]. 12

2.4 Equations of the Domarnd Prince 54 method [39]. 14

2.5 Possible improvement of reaction selection 20

2.6 Main packages of JAMES II [87]. 26

2.7 Example of a paramter block . 27

3.1 Spectrum of adaptivity . 35

3.2 Original and extended classification of adaptivity based on [135] . . . 37

3.3 The MAPE-K control loop based on [105] 41

3.4 UML class diagram of the wrapper pattern [60] 43

4.1 The wrapper pattern and Adaptive Simulator 48

4.2 The basic reinforcement learning model [185] 49

4.3 The main components of the Adaptive Simulator 52

4.4 State handling of the Adaptive Simulator 53

4.5 ML-Rules benchmark model runtimes [76]. 57

4.6 Runtime Boxplot of Adaptive Simulator for ML-Rules benchmark

model and grid generalization. 58

4.7 Grid-based state space generalizations 59

4.8 State splitting by the DBPA. 60

4.9 State space extension and the DBPA 62

4.10 State space generalizations created by the Adaptive Simulator using

the DBPA . 63

4.11 Runtime of Adaptive Simulator with DBPA compared to grid-based

generalizations . 64

4.12 Codebook extension by the AVQ. 66

4.13 Codeword merge by the AVQ. 67

4.14 State space generalizations of the Adaptive Simulator using the AVQ 71

x

LIST OF FIGURES

4.15 Runtime of Adaptive Simulator using AVQ compared to DBPA and

grid-based generalization. 72

4.16 Run length illustration [1]. 75

4.17 Overview class diagram of the Adaptive Simulator. 82

4.18 JAMES II context illustration. 83

4.19 Class diagram adaptation condition plugin type. 84

4.20 Class diagram value function plugin type. 86

4.21 Observation strategy to test simulators. 90

4.22 Trajectory distribution comparison. 91

5.1 ML-Rules enzyme-substrat-product model [82] 99

5.2 ML-Rules cell cycle model [82] . 101

5.3 Illustration of reaction execution with population-based compartments 103

5.4 Mapping of old and new contexts . 105

5.5 ML-Rules shuttling model [82] . 106

5.6 An abstract endocytosis model illustrating the creation and fusion of

compartments. 107

5.7 The benchmark model from [75] written in the current ML-Rules syntax.110

5.8 ML-Rules benchmark model runtimes [76]. 110

5.9 Detailed runtime results of the ML-Rules benchmark model [76]. . . . 111

5.10 Dynamic regret with different state space resolutions [76]. 112

5.11 Dynamic regret for several policies and the ML-Rules benchmark

model [76]. 114

5.12 Runtime results for the complex models [76]. 115

5.13 Number of executed adaptations [80]. 117

5.14 Performance results for the Wnt/β-catenin pathway model and the

Bayesian changepoint detection algorithm [80]. 117

5.15 Dynamic regret for the ML-Rules benchmark model and different state

space generalizations. 119

5.16 Performance results of dynamic state space representations in ML-Rules

[79]. 119

5.17 PDEVS Smoke Detector Example . 121

5.18 Dynamic regret of the Adaptive Simulator executing the forest fire

model in PDEVS [80]. 124

6.1 Automatic validity check for simulators 129

6.2 Wnt/β-catenin pathway model ML-Rules results. 133

6.3 ML-Rules model with bindings . 134

6.4 Runtime results of the tailored ML-Rules simulator for bound species [79].137

xi

LIST OF FIGURES

6.5 Impact of μ. 139

6.6 Firing probabilities based on Poisson distribution. 140

6.7 Firing numbers based on two independent Poisson distributions . . . 141

6.8 Visual Analytics Tool presented in [123] 142

6.9 Accuracy illustrations [78]. 143

6.10 Steady State Analysis and Stationary Distributions 147

6.11 ML-Rules benchmark for hybrid simulators 149

6.12 Hybrid ML-Rules simulator results. 150

6.13 Hybrid ML-Rules simulator results for the dictyostelium discoideum

amoebas model. 151

xii

List of Algorithms

2.1 The Direct Method [63]. 19

2.2 Reaction selection of the SSA [63]. 19

2.3 Hybrid simulator for biochemical reaction networks from [71]. 23

4.1 Pseudo-code of the adaptive simulator. 51

4.2 Pseudo-code of the AVQ algorithm [114]. 65

4.3 Pseudo-code of our intial AVQ algorithm. 68

4.4 Pseudo-code of our AVQ algorithm (without merge). 69

4.5 Merging part of our AVQ algorithm. 70

4.6 Pseudo-code of our adaptation condition method. 77

6.1 Java-code of reactant swapping. 136

6.2 Threshold calculation for reaction partitioning. 145

6.3 Hybrid Simulator for ML-Rules . 148

6.4 Hybrid Simulator for ML-Rules with multiple stochastic events per step.153

xiii

Chapter 1

Introduction

A good algorithm is the most important thing when it comes to fast

performance.

Scott Oaks [145]

In 2001, IBM published a perspective paper about autonomic computing [92].

The fundamental message of this paper referring to software systems is that “the

obstacle is complexity. Dealing with it is the single most important challenge facing

the I/T industry. It is our next Grand Challenge”. This challenge has also reached the

modeling and simulation community. Models are getting more complex, e.g., [103, 141],

simulation studies are getting more complex [100, 152], and simulation systems are

getting more complex [61, 197, 84].

Modeling and simulation are established tools to study existing or theoretical

systems. Their usage is motivated by various reasons, e.g., it could be too expensive

or morally not acceptable to study the system of interest directly. Furthermore, any

aspect of a model can be controlled, i.e., input and model parameters can be changed as

needed and all model properties are observable. Therefore, building simulation models

and performing experiments with them are valuable methods to gain information

about systems of interest.

To keep control about complexity, domain specific modeling languages often enable

modeler to create compact and succinct models that are easier to understand and less

error-prone than models written in a general-purpose programming language [192].

Moreover, composing and fusing models are established methods to built complex

models based on existing ones [153]. For simulation studies, domain specific languages

like the simulation experiment specification SESSL can also help to keep control about

complexity [53]. Besides, workflow concepts might be applied [167] and guidance

support to execute simulation experiments can be used [116, 154].

1

CHAPTER 1. INTRODUCTION

The complexity of simulation systems can be handled by using essential concepts

of software engineering, e.g., abstraction, separation of concerns, reuse, and design

patterns. These concepts have been the basis for the development of the modeling

and simulation framework JAMES II [87]. The framework realizes a component-based

structure and separates basic parts referring to modeling and simulation, e.g., it

requires a strict separation between a model and a simulation algorithm. It serves

as a basis to develop concrete simulation systems by reusing its architecture, many

features and processes. The component-based structure allows developing different

implementations for each component and to create compositions on the fly during

runtime. Nevertheless, this flexibility comes with its own challenge: selection decisions

have to be made. Which simulation algorithm shall be used and how shall it be

configured? Which steady state estimator shall be used? Which event queue fits the

requirements best?

Like suggested in IBM’s perspective paper, automatic approaches and paradigms

like self-adaptive software [105] or programming by optimization [91] are needed to

relieve the user from configuring and maintaining such a complex software system that

offers a vast variety of compositional options. Further, automatic concepts also relieve

the developers from premature commitments, i.e., selecting concrete components,

algorithms and data structures for tasks whose requirements are either not fully

clear during the development or whose requirements depend on concrete application

scenarios.

In general, simulation experiments do not only include the execution of one

simulation run, but they are complex tasks involving diverse phases and methods to

be executed [116]. For example, model configurations have to be selected purposefully

using statistical methods like Latin hypercube sampling [124]. Further, suitable

replication criteria and simulation termination criteria have to be determined [104,

p. 522ff.]. The observation of model states is another challenging task [77]. All

these tasks influence the performance of a simulation experiment and for all of them,

selection decisions have to be made.

However, automatic selection and adaptation methods are often developed explicitly

for simulation algorithms, i.e., simulators, to improve the runtime performance of

simulation runs, see Chapter 2. Adaptations of simulators are motivated by different

“simulation run phases” with different computational requirements [142]. Adapting a

simulator during runtime induces complex challenges. For example, suitable adaptation

trigger must be identified. Moreover, features must be determined to distinguish the

“simulation run phases”. Most existing adaptation mechanisms solve these challenges

concretely for specific application-scenarios, i.e., the developer of these mechanisms

determine suitable adaptation trigger, implement suitable adaptation functions etc.

2

CHAPTER 1. INTRODUCTION

Although these methods can be effective, they cannot be applied straightforwardly

to other application scenarios. In general, developing an adaptation method for

simulators in an application-independent manner is complex as it induces further

challenges, e.g., learning methods have to be applied enabling the adaptation method

to learn how to perform suitable adaptations.

1.1 Contribution

This thesis aims to automate the selection and adaptation of simulators at runtime in

an application-independent manner. Therefore, initially existing methods adapting

simulators are analyzed and categorized based on established features of adaptive

algorithms. Based on this analysis, a flexible and generic adaptive simulator (marked

as Adaptive Simulator) is developed for the automatic selection and adaptation

of simulators at runtime. It is integrated into the component-based modeling and

simulation framework JAMES II. Thereby, the Adaptive Simulator encapsulates

available simulators applicable to a specific problem and employs reinforcement

learning to explore and exploit the performance of these simulators. By exploiting

the component-based architecture of JAMES II, the Adaptive Simulator calculates

the set of available simulators and all of their configurations automatically. As it uses

the encapsulated simulators to calculate the state transitions of a model, it is not

restricted to any modeling language, but it can be applied to all modeling approaches

available in JAMES II.

To deal with large or infinite state spaces used to distinguish “simulation run

phases” [142], we integrate dynamic state space generalization methods into the

Adaptive Simulator. Furthermore, we apply a changepoint detection method [1]

monitoring the event throughput to trigger adaptations.

We illustrate the flexibility of the Adaptive Simulator by applying it to three

different modeling formalisms: ML-Rules [130], SR [97] and PDEVS [205]. Thereby, we

analyze different properties of the Adaptive Simulator, e.g., the impact of different

multi-armed bandit policies for the action selection on the performance of the Adaptive

Simulator.

To be efficient, an adaptive mechanism needs a pool of simulators and adaptation

options. In this context, expressive modeling languages inducing various computational

challenges are suitable candidates to develop different simulators. In the realm of

biochemical reaction networks, ML-Rules is such an expressive and complex modeling

languages aimed at dynamically nested biochemical reaction networks with attributed

entities [130]. Due to its expressiveness, the simulator of ML-Rules offers various

points to develop different methods and it is therefore a suitable candidate to explore

3

CHAPTER 1. INTRODUCTION

automatic adaptation methods. In this thesis, we develop tailored and approximate

simulators for ML-Rules achieving significant speed-ups. The efficiency of these

simulators is illustrated with complex ML-Rules models used in simulation studies.

1.2 Outline

The thesis is organized as follows. Initially, in Chapter 2, opportunities to apply adap-

tivity in modeling and simulation are illustrated with different application scenarios.

In the following Chapter 3, existing categorization approaches for adaptive software in

general are mapped to the methods identified in Chapter 2. Key characteristics and

approaches to implement complex adaptive software are presented. Chapter 4 presents

the concept of the Adaptive Simulator performing adaptations during runtime for

component-based simulation software. Thereby, methods to deal with large or infinite

state spaces and different methods to trigger adaptations are explored. Experiment

results with the Adaptive Simulator and the modeling languages ML-Rules, SR,

and PDEVS are presented in Chapter 5. The potential of tailored and approximate

simulators in the context of ML-Rules is shown in Chapter 6. Finally, Chapter 7

concludes the thesis and gives an outlook about future work.

1.3 Bibliographic Note

The first version of the Adaptive Simulator including experiments with ML-Rules

and SR has been published in the following publication.

Tobias Helms, Roland Ewald, Stefan Rybacki and Adelinde M. Uhrmacher (2013):

A Generic Adaptive Simulation Algorithm for Component-based Simulation

Systems. Proceedings of the ACM SIGSIM Conference on Principles of Advanced

Discrete Simulation, pp. 11-22.

A revised version of the Adaptive Simulator also including experiments with PDEVS

has been published in the following publication. The main difference compared to the

initial version of the Adaptive Simulator is that an action do not refer to a tuple of

a simulator and an adaptation condition, but only simulators represent actions and

adaptation conditions are handled separately. Further, we present initial ideas and

results for applying state space generalization methods.

Tobias Helms, Roland Ewald, Stefan Rybacki and Adelinde M. Uhrmacher (2015):

Automatic Runtime Adaptation for Component-based Simulation Algorithms.

4

CHAPTER 1. INTRODUCTION

ACM Transactions on Modeling and Computer Simulation (TOMACS), Volume

26 Issue 1, Article 7, pp 1-24.

We integrated the changepoint detection mechanism to trigger adaptations into the

Adaptive Simulator in the following publication.

Tobias Helms, Oliver Reinhardt and Adelinde M. Uhrmacher (2015): Bayesian

Changepoint Detection for Generic Adaptive Simulation Algorithms. Proceedings

of the 48th Annual Simulation Symposium, pp. 62-69.

State space generalization methods and their integration into the Adaptive Simulator

are presented in the following publication.

Tobias Helms, Steffen Mentel, and Adelinde M. Uhrmacher (2016): Dynamic

State Space Partitioning for Adaptive Simulation Algorithms. Proceedings of

the 9th EAI International Conference on Performance Evaluation Methodologies

and Tools, pp. 149-152.

Referring to ML-Rules, we developed its τ -leaping simulator in the following publica-

tion.

Tobias Helms, Martin Luboschik, Heidrun Schumann and Adelinde M. Uhrma-

cher (2013): An Approximate Execution of Rule-based Multi-level Models.

Proceedings of the 11th International Conference on Computational Methods in

Systems Biology, pp. 19-32.

An overview about ML-Rules and the tools we have developed for it including the

Adaptive Simulator is given in the following publication.

Tobias Helms, Carsten Maus, Fiete Haack and Adelinde M. Uhrmacher (2014):

Multi-level modeling and simulation of cell biological systems with ML-Rules: A

Tutorial. Proceedings of the Winter Simulation Conference, pp. 177-191.

The impact of different observation strategies for ML-Rules during a simulation run

are analyzed in the following publication.

Tobias Helms, Jan Himmelspach, Carsten Maus, Oliver Röwer, Johannes Schützel

and Adelinde M Uhrmacher (2012): Toward a language for the flexible obser-

vation of simulations. Proceedings of the Winter Simulation Conference, pp.

418-430.

We developed a formal semantics for ML-Rules in the following publication. This

formal semantics enables us to study the computational challenges of ML-Rules

simulations comprehensively and it allows comparing the validity of simulators.

5

CHAPTER 1. INTRODUCTION

Tom Warnke, Tobias Helms and Adelinde M. Uhrmacher (2015): Syntax and

Semantics of a Multi-Level Modeling Language. Proceedings of the ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation, pp. 133-144.

Based on the work with the ML-Rules semantics, we present the potential of tailored

and approximate simulators for ML-Rules in the following publication.

Tobias Helms, Tom Warnke, Carsten Maus and Adelinde M. Uhrmacher (2016):

Semantics and Efficient Simulation Algorithms of an Expressive Multi-Level

Modeling Language. ACM Transactions on Modeling and Computer Simulation

(TOMACS), in press.

6

Chapter 2

Adaptivity in Modeling &

Simulation

I believe the biggest impact on successful software development is

motivated, talented developers.

Martin Fowler

The purpose of modeling and simulation is to study existing or theoretical systems.

A model is an abstraction of the studied system that should be as complex as necessary

and as simple as possible to enable answering questions about the system suitably,

see Definition 1. Models can either be physical or mathematical models — the latter

“representing a system in terms of logical and quantitative relationships” [104, p.5].

Definition 1. Model A model (M) for a system (S) and an experiment (E) is

anything to which E can be applied in order to answer questions about (S) [28, p. 5].

There are various reasons to use a model of a system to study it. For example, the

system of interest might be too complex to study it practically without abstractions

reflected in a model. It could be too expensive or morally not acceptable to study

the system directly. Further, any aspect of a model can be controlled, i.e., input and

model parameters can be changed as needed and all model properties are observable.

If the system of interest does not exist yet, a model must be used to study its behavior.

As written in Definition 1, a model is not only related to a system and the

questions that shall be answered by using the model, but it is always also related to

an experiment, see Definition 2. Consequently, the validity of a model can only be

evaluated by also considering the experiment that shall be performed on the model.

Altogether, the terms model and experiment can be used to define the term simulation,

see Definition 3.

7

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

Definition 2. Experiment An experiment is the process of extracting data from a

system by exerting it through its inputs [28, p. 4].

Definition 3. Simulation A simulation is an experiment performed on a model [110].

A simulation gains data from a model by performing simulation runs, see Def-

inition 4. Algorithms that can execute a simulation run are called simulators, see

Definition 5. In case of stochastic models, simulation runs have to be repeated with

the same inputs but different seeds for the pseudo random number generators to gain

statistically suitable data. Such repeated simulation runs are called replications, see

Definition 6. In general, the complexity of a simulation is not restricted. For example,

one simulation can include several simulation runs using various input parameter

values that are selected based on analyzed intermediate results.

Definition 4. Simulation Run A simulation run is a single model execution, i.e.,

using the initial state of the model with specific input parameter values and calculating

successive state transitions until a termination criteria is fulfilled.

Definition 5. Simulator A simulator is an algorithm that executes simulation runs.

Definition 6. Replication A replication is one simulation run that is repeated

several times with the same input parameter values but different seeds for the random

number generator.

Following the terminology used by Leye in [116, p.3], in the rest of this thesis, the

term simulation experiment is used instead of the term simulation to emphasize

that a simulation typically corresponds to a complex experiment including the execution

of a set of simulation runs and further complex tasks, e.g., analyzing simulation run

results. Besides, the verb to simulate is used to describe the process of performing

an individual simulation run.

2.1 Simulation Experiments

A simulation experiment is a complex task including various aspects. Leye identified

six basic parts of a simulation experiment [116]:

• Specification: Ideally, a formal representation of the experiment goal.

• Configuration of model parameters: Determine a set of model input param-

eters chosen e.g., by parameter scan algorithms or parameter search methods.

8

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

Multi-RunMulti-Run

Specification

Configuration Evaluation

Multi-Run Analysis

Single-Run AnalysisSimulation Run Data Collection

Multi-Configuration

Multi-Run

Multi-RunMulti-RunSingle-Run

Figure 2.1: Layered view of the six tasks of a simulation experiment based on [116].

• Simulation Run: Perform a simulation run.

• Data Collection: Collect data during simulation runs. Only collect data that

is needed for a proper analysis.

• Analysis: Analyze simulation run results in two phases. First, analyze results

of a single simulation run (single-run analysis). Second, analyze the results of

multiple replications.

• Evaluation: Produce feedback, e.g., visualizations, based on the analysis results

for the configuration task to determine further interesting parameter settings.

Figure 2.1 shows the relation of these six tasks of a simulation experiment in a layered

view. All tasks play an essential role to perform a successful simulation experiment.

For example, even if the runtime of a simulation experiment is low, poorly chosen

model configurations might reduce the possible conclusions drawn from the gained

results.

To save computational time, as few simulation runs as possible should be executed

to produce sufficient useful data. For example, effectively selecting model parameter

settings can be done by factorial experiment designs [104, p. 656ff.] and sophisticated

sampling methods like Latin hypercube sampling [124]. Moreover, the executed

number of replications should be determined dynamically, e.g., by using confidence

intervals [104, p. 522ff.]. Besides, sophisticated termination criteria should be used to

terminate a simulation run, e.g., by using steady state analyzer [104, p. 544ff.]. Finally,

9

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

the minimum of data that is needed for the success of the simulation experiment

should be collected during the simulation runs. Figure 2.2 illustrates the importance

of data collection. It shows the runtime behavior of simulation runs performed with an

endocytosis and endosome maturation model implemented in the modeling language

ML-Rules [130] with different data collection settings that are specified with a SQL-like

domain-specific instrumentation language [77]. The results emphasize that writing

simulation run results to the disk can significantly increase the runtime of a simulation

run. To reduce the amount of data that is written to the disk, streaming approaches

can be used that directly stream observed data intelligently to components processing

this data [174].

Although all tasks of a simulation experiment are crucial for its success, simulators

are often in the focus of new approaches and concepts trying to improve the runtime

efficiency of simulation runs. Nevertheless, other performance metrics are also of

importance, e.g., the memory consumption, energy consumption, accuracy etc. In

modeling and simulation, especially the accuracy is often considered as many simulators

trade accuracy for runtime efficiency. The runtime performance of a simulator can be

analyzed theoretically, e.g., by determining its best-case, average-case, and worst-case

time complexity [109]. However, these theoretical measurements do not necessarily

reflect the runtime performance of a simulator’s concrete implementation. The area

of experimental algorithmics deals with theoretical and empirical analysis, i.e., it is

concerned with the analysis of algorithms to predict “[. . .] how well a given algorithm

will perform in a given scenario under given conditions and assumptions”.[134, p. 1].

Basically, theoretical questions are combined with empirical research methods.

The development of new simulators and the enhancement of existing simulators

eventually lead to sets of simulators and configurations available for executing simula-

tion runs. A user has to choose from the available options and therefore has to deal

with the well-known algorithm selection problem [166], see Figure 2.3. The algorithm

selection problem describes the problem to select an algorithm a ∈ A to solve a

problem instance x ∈ P, based on extracted problem features f(x) ∈ F, user criteria

w ∈ R
n,a performance metric p : A× P → R

n, and a performance weighting function

changing a calculated performance based on user criteria g : Rn → R
n×R

n. Generally

speaking, a selection mapping S : F × R
n → A has to be determined, i.e., given

some features and user criteria, determine an algorithm to solve the problem instance.

Solving the algorithm selection problem is a challenging task. For example, the

effectiveness of algorithm selection methods essentially depends on a suitable selection

of problem features that refers to the challenging feature selection problem [108, 67].

Referring to modeling and simulation, a problem instance x ∈ P represents the task to

execute a simulation run with a concrete model within a concrete environment. The

10

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

Query 1:
INSTRUMENT model OBSERVE COUNT(species.quantity) WHERE TRUE GROUP BY species.name

EVERY n STEPS;

Query 2:
INSTRUMENT model OBSERVE COUNT(species.quantity) WHERE (species.name = ’Endosome ’ AND

species.attribute (2) = ’late ’) GROUP BY species.name EVERY n STEPS;

Query 3:
INSTRUMENT model OBSERVE SUM[DOUBLE](species.attribute (1)), AVG[DOUBLE](species.

attribute (1)),

MIN[DOUBLE](species.attribute (1)), MAX[DOUBLE](species.attribute (1))

WHERE species.name = ’Endosome ’ GROUP BY species.name EVERY n STEPS;

1 2 3 4

140

160

180

200

R
u
n
ti
m
e
[s
ec
o
n
d
s]

1
10
100
no

(a) Runtime of observation code without data storing.

1 2 3 4

140

160

180

200

R
u
n
ti
m
e
[s
ec
o
n
d
s]

1
10
100
no

(b) Runtime of observation code including time for direct writing of the observations to the disc.

Figure 2.2: From [77]. Test queries (top) and runtime results (bottom) of simulation
runs with the endocytosis and endosome maturation model implemented in ML-Rules.
Presented are the minimal runtime values for each of the setups. The 4th setup
comprises all three queries in the same run. The instrumentation interval n is coded
in the colors. Query 1 simply counts the amounts of all species grouped by their name
(including attributes) after every n simulation events. Query 2 counts the amounts
of all Endosome species that have the second attribute value ’late’ after every n
simulation events. Query 3 computes the sum, minimum, maximum, and average of
the first attribute value of all Endosome species after every n simulation events. The
values {1, 10, 100} have been used for n. The red bars represent the runtime without
any observation.

11

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

x
Problem Space

a
Algorithm Space

w
Criteria Space

f(x) m
Feature Space

p n
Performance

Measure Space

Feature
Extraction

Algorithm Performance

S(f(x),w)

ǁpǁ = g(p,w)

p(a,x)

Selection
Mapping

Figure 2.3: The algorithm selection problem as defined by Rice [166].

algorithm set A includes all available simulators with all valid configurations, i.e., each

element a ∈ A represents a concrete simulator with a concrete configuration. Further,

the performance metric can include various measurements like the runtime and the

memory consumption to execute a simulation run or in case of approximate simulators

the accuracy of the results. Finally, selected problem features can for example refer to

model properties, software properties or hardware properties.

To deal with this selection challenge, concepts of adaptive software, see Definition 7,

are often applied. Generally, such concepts cannot only applied in simulation software

to change simulators, but also to adapt other parts of a simulation experiment, e.g.,

steady state estimator or replication number criteria [117]. A comprehensive adaptive

simulation software would be able to adapt itself referring to all tasks of a simulation

experiment. Nevertheless, in this thesis, we concentrate on the adaptation of simulators.

The next four sections illustrate existing concepts and algorithms adapting simulators.

Definition 7. Adaptive Software Software that is able to change its behavior

according to input and environmental changes is called adaptive.

2.2 Continuous Simulation

Models with state variables changing continuously with respect to time — the dynamics

typically described in form of ordinary differential equations — can be simulated with

numerical integration methods [104, p. 109]. By relying on the Taylor series, these

12

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

methods approximate solutions of initial value problems

dy

dt
= f(t, y), y(t0) = y0

and calculate approximations for discrete time points t1, t2, t3, etc. Many numerical

integration methods exist, e.g., the Euler method, the classical Runge-Kutta method,

or the Dormand-Prince 54 method [39]. The three mentioned methods are single-step

methods that only use the approximation of yi to approximate yi+1. As usual, no

method dominates the others and the performance of a concrete method depends

on the model to be simulated. Consequently, automatic selection mechanisms have

been developed to relieve the user selecting methods manually. For example, Kamel

et al. have developed an expert system (ODExpert) that analyzes a problem, e.g.,

its stiffness, to support the user selecting a suitable numerical integration method

from a pre-defined fixed set of methods based on a decision tree [102]. Similarly,

Bunus developed a framework called ModSimPack that also uses a decision tree to

select a solver for a given problem considering several features, e.g., its stiffness and

the structure of the Jacobian matrix [21]. In contrast to ODExpert, the framework

ModSimPack does not only recommend a method but also applies it automatically.

Another approach presented by Claeys et al. does not rely on problem features, but

uses a repository of test models to evaluate available solver [32, 33]. Nevertheless, how

the gained performance and accuracy knowledge shall be used to automatically select

a solver is not answered in detail.

Besides such selection mechanisms, adapting the selected method itself during

runtime is also an established approach for numerical integration methods. For

example, the step size h ∈ R
+, i.e., the interval between calculated time points,

essentially influences the performance of simulation runs and the accuracy of the

simulation run results. Typically, the smaller the step size, the more accurate are

the results. However, a smaller step size also results in a higher computational effort

since more steps have to be calculated. Further, using a fixed step size for a whole

simulation run is typically unsuitable — the smallest step size that achieves sufficient

accuracy for every phase of the simulation run must be selected, although it might be

acceptable to apply larger step sizes for some phases. To tackle this issue, step size

control mechanisms can be built on top of numerical integration methods. The basic

idea of these mechanisms is to approximate the error made and increase or decrease

the step size if the approximated error is high or low. Two approaches are typically

distinguished: step doubling and embedded error estimation [159]. In step doubling,

the approximation yn+1, tn+1 = tn + h is calculated twice with the same method —

once with h and once with h′ = h/2. Both approximations are compared and if the

13

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

k1 = f(tn, yn)

k2 = f(tn +
1

5
h, yn +

1

5
k1)

k3 = f(tn +
3

10
h, yn +

3

40
k1 +

9

40
k2)

k4 = f(tn +
4

5
h, yn +

44

45
k1 − 56

15
k2 +

32

9
k3)

k5 = f(tn +
8

9
h, yn +

19372

6561
k1 − 25360

2187
k2 +

64448

6561
k3 − 212

729
k4)

k6 = f(tn + h, yn +
9017

3168
k1 − 355

33
k2 +

46732

5247
k3 +

49

176
k4 − 5103

18656
k5)

k7 = f(tn + h, yn +
35

384
k1 +

500

1113
k2 +

125

192
k4 − 2187

6784
k5 +

11

84
k6)

y′n+1 = yn +
5179

57600
k1 +

7571

16695
k3 +

393

640
k4 − 92097

339200
k5 +

187

2100
k6 +

1

40
k7

y′′n+1 = yn +
35

384
k1 +

500

1113
k3 +

125

192
k4 − 2187

6784
k5 +

11

84
k6.

Figure 2.4: Equations of the Domarnd Prince 54 method [39].

difference is greater (smaller) than a threshold ε, the step size is decreased (increased).

This approach can directly be applied to single-step numerical integration methods, but

it does not exploit method specific information, e.g., no intermediate results needed to

calculate one approximation are reused to calculate the other approximation. Reusing

intermediate results is done by methods applying the embedded error estimation

like the Dormand-Prince 54 method1. The Dormand-Prince 54 method calculates

two approximations y′n+1 and y′′n+1 as shown in Figure 2.4. Whereas the value y′n+1

is a fifth-order approximation, i.e., the local truncation error is in the order O(h5),

the value y′′n+1 is a fourth-order approximation with a local truncation error in the

order O(h4). Consequently, y′n+1 is a better approximation than y′′n+1. The absolute

difference |y′n+1−y′′n+1| is interpreted as the error of y′′n+1 and used to decide whether a)

the step has to be repeated with a smaller step size, b) the step size has to be decreased,

or c) the step size can be increased. By reusing the terms k1 to k6 to calculate both

approximations, the computational costs to calculate the error approximation and

thus the computational costs of the step size control are comparably low.

1In Matlab, this method is called ode45. It is also available in the Apache Commons Math 3.6.1
library as DormandPrince54Integrator.

14

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

Although step size control can improve the performance of a simulation run with

an acceptable loss of accuracy, changing the integration method itself can also be

beneficial. For example, Petzold developed an algorithm that changes between a

method suitable for stiff systems, e.g., systems with different time scales, and a

method suitable for nonstiff systems during a simulation run based on the potential

step size of both methods [158].

2.3 Parallel Discrete Event Simulation

The parallel discrete event simulation (PDES) partitions a model into separated

logical processes (LP) that are simulated in parallel [58]. During the simulation,

logical processes communicate with each other via event messages. Only event

messages trigger state changes of LPs. The main challenge of PDES is to preserve

the causality constraint, i.e., all executed events on an LP must be processed in time

stamp order. Synchronization simulators are used to avoid causality errors. These

simulators can either be conservative or optimistic. Conservative simulators like the

Null Message Algorithm [29] only allow an LP to execute safe events and thus the

parallelism may not be fully exploited. In contrast, optimistic simulators process

unsafe events, but need rollback mechanisms to prevent incorrect results and thus

may process many events unnecessarily, e.g., Time Warp [96]. Various approaches

exist to realize the rollback mechanism [155], e.g., state saving methods or reverse

computation methods. To improve the performance of optimistic simulators, the

optimism is often restricted so that unsafe events are only allowed to be computed

if additional conditions are satisfied. For example, the moving time window (MTW)

protocol [181] limits the optimism of the LPs by only allowing to process events within

the time interval [GV T,GV T + ω], where ω ∈ R
+ is a parameter and GVT is the

global virtual time [58, p. 74].

Furthermore, adaptive methods are often applied to control the optimism of

optimistic simulators, e.g., if few rollbacks are executed, the optimism can be increased

and if many rollbacks are necessary, the optimism should be decreased. The MTW

protocol can easily be made adaptive by controlling the time window ω dynamically

during runtime [149]. The time window is adjusted after every GVT computation

depending on the relation of all events and unprocessed events. The Dynamic Local

Time Window Estimates (DLTWE) technique developed by Bauer et al. applies a

similar strategy that bounds the advancement of the LPs based on time estimates

of next events that are spread by the LPs [11]. Another approach is Penalty-Based

Throttling [163], i.e., an LP is penalized every time it is executing a rollback, i.e.,

it gets fewer resources to compute the simulation run. Child and Wilsey follow

15

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

this idea by using Dynamic Voltage and Frequency Scaling of modern processors

to throttle individual LPs [31]. Interestingly, their goal is not only to improve the

runtime efficiency of the simulation, but also to save energy. The Switch Time Warp

algorithm changes the prioritization of LPs to reduce the number of rollbacks [184].

The assumption is that the number of LPs is greater than the number of available

processors, so that a scheduling mechanism can prefer processors that execute few

rollbacks.

Ball and Hoyt introduce a blocking window between two successive event pro-

cessings [8]. This blocking window is adapted after every event execution for each

LP so that the time spent for blocking and doing rollbacks is minimized. Similarly,

Srinivasan and Reynolds designed the Elastic Time Algorithm (ETA) that introduces a

dynamic delay between the execution of two events [183]. The ETA has been extended

by Quaglia to also consider real costs of rollbacks, resulting in the Scaled Elastic Time

Algorithm (SETA) [161].

In [115], an adaptive simulator has been developed for the parallel simulation

of multi-agent systems. A shared state, which represents the agents’ environment,

is typically used for the parallel simulation of multi-agent systems. This state is

not associated with an individual LP, however, all LPs can read and write to each

variable of it. Rollbacks are necessary if an LP writes a variable of the shared state

at simulation time ti that has already been read by another LP at simulation time

ti + ε. Such read operations are called premature. Basically, the approach presented

by Lees et al. delays read operations depending on their probability to be premature

to reduce the number of rollbacks to be executed. The same group has also presented

an adaptive mechanism that dynamically distributes the shared state over the network

so that variables are stored on the physical machine that executes the LPs that mostly

access these variables [146]. A dynamic clustering algorithm for parallel simulation

exploiting state sharing has recently been designed by Marziale et al., which clusters

LPs into “groups depending on the volume of mutual state accesses along phases of

the model execution” [127]. Internally, each cluster executes all events sequentially so

that rollbacks are avoided within the cluster.

Another adaptive parallel simulator — in this case for network cluster simulation

— is presented in [54]. Each node of the modeled cluster is simulated by an LP and

messages sent represent packets sent through the network. The simulation proceeds

quantum-synchronized, i.e., all LPs are regularly synchronized to receive all transient

messages from the other LPs. The wallclock time length between two synchronizations

is referred to as the quantum. In contrast to other PDES simulators, this simulator

allows inaccuracy, i.e., if LPi sends a message with time stamp ti to LPj with the

current simulation time ti + ε, LPj does not execute a rollback, but it simply increases

16

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

the time stamp of the received message to ti + ε. Generally speaking, the simulation

time a packet needs from one node of a cluster to another node is simply increased

by ε. Although this approach creates an inaccuracy of the simulation results, no

rollbacks are needed. Clearly, the accuracy of this approach is influenced by the length

of the quantum. The algorithm developed by Falcon et al. dynamically increases or

decreases the quantum depending on the number of messages that are received within

one quantum.

In [182], the Clustered Adaptive Distributed Simulator (CADS) is presented. This

simulator partitions all LPs to clusters based on various properties of the LPs, so

that all LPs of one cluster are executed on the same physical machine. To reduce the

number of rollbacks, cluster buffers are introduced that delay messages that shall be

sent from one cluster to another cluster. For each buffer, the delay is dynamically

increased or decreased depending on the amount of messages to be delayed and

their relation to the global virtual time. An alternative approach is presented by

Sherer et al. that dynamically clusters messages to reduce the message overhead [175].

Therefore, the focus is not to reduce the number of rollbacks. However, this strategy

is particularly efficient if many messages would be sent with little content.

Load balancing algorithms, i.e., algorithms that distribute the LPs dynamically

during runtime over the available computing resources can also be referred to adaptive

algorithms used in PDES. The goal is to minimize the communication load and

to maximize the processor load. However, the more balanced the processor load

is, usually the more unbalanced is the communication load (and vice versa) [188].

This is why load balancing algorithms must find a trade-off between a balanced

processor and communication load. For example, Boukerche et al. developed a load

balancing algorithm for conservative algorithms that periodically analyzes the load

of the available CPUs and distributes the LPs accordingly to maximize the overall

load [18]. Peschlow et al. developed a dynamic load balancing algorithm for optimistic

algorithms that consider the capacity of each host, the computational load and the

communication load generated by each LP [156]. Two alternating cycles are introduced,

one that balances the computational load and one that minimizes the communication

costs. A user-defined number of seconds is waited between two adaptation cycles.

The adaptive load balancing algorithm designed by Meraji et al. in [137] adds a

further adaptivity level on top of load-balancing algorithms: it applies a selection

mechanism that repeatedly chooses from two load-balancing algorithms: one balances

the processor load and one balances the communication load. This approach uses

reinforcement learning for the adaptation decision making and executes an adaptation

after a user-defined number of cycles.

17

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

2.4 Simulation of Biochemical Reaction Networks

Simulating biochemical reaction networks is a popular approach to study such networks

like gene regulation, metabolisms or pathways. The state of a model at simulation

time t is represented by a vector X(t) = (x1(t), x2(t), . . . , xn(t)) ∈ N
n that describes

the amount values of considered entities, e.g., the numbers of specific proteins. The

dynamics of the model are defined by a set of reactions R = {R1, R2, . . . , Rm}. A

reaction Ri is described by a change vector vi = (v1, v2, . . . , vn) ∈ Z
n and a propensity

function ai : Nn → R
+. A biochemical reaction network can be simulated determinis-

tically by converting the reaction network to a set of ordinary differential equations

(ODEs) [113]. For example, given the initial state vector X(t0) = (x1(t0), x2(t0), x3(t0))

and the reaction network

x2 → x1 v1 = (1,−1, 0) a1(X(t)) = k1 · x2(t)

x3 → v2 = (0, 0,−1) a2(X(t)) = k2 · x3(t)

x1 + x3 → x2 v3 = (−1, 1,−1) a3(X(t)) = k3 · x1(t) · x3(t),

the resulting ODEs would look like follows

dx1

dt
= k1 · x2(t) − k3 · x1(t) · x3(t)

dx2

dt
= k3 · x1(t) · x3(t) − k1 · x2(t)

dx3

dt
= −k2 · x3(t) − k3 · x1(t) · x3(t).

This set of ODEs can be simulated deterministically with numerical integration meth-

ods, see Section 2.2. In this case, species populations are continuous, i.e., X(t) ∈ (R+)n.

However, in this case stochastic effects are not considered that become important in

case of small entity numbers. Based on the chemical master equation, biochemical reac-

tion networks can be simulated stochastically by interpreting them as continuous-time

Markov chains (CTMC) and applying the stochastic simulation algorithm (SSA) [63].

The basic algorithm (Direct Method) is described in Algorithm 2.1.

Many variants of this algorithm exist also producing exact results. For example,

the First Reaction Method computes the firing time for each reaction individually

by sampling numbers from exponential distributions with their propensities as rates

and executing the reaction with the lowest firing time next [63]. Afterward, the

propensities and firing times of all reactions are updated accordingly. To improve

this algorithm, Gibson and Bruck developed the Next Reaction Method, which firstly

uses a priority queue to store the firing times and by using a dependency graph

18

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

Algorithm 2.1 Sketch of a simulation step in the basic SSA (Direct Method [63]).
X(tj) = (x1(tj), x2(tj), . . . , xn(tj)) ∈ N

n: the state vector at time tj.
R = {R1, R2, . . . , Rm}: the set of reactions.
vi ∈ Z

n: state change vector of reaction Ri.
a1(X(tj)) . . . am(X(tj)): propensities of the reactions R1, . . . Rm.
a0(X(tj)): propensity sum of all reaction propensities.

1 // Calculate propensity sum of all reactions

2 a0(X(tj)) :=
∑m

i=1 ai(X(tj))
3

4 // Select a reaction to be executed , see Algorithm 2.2

5 i := select(R, a0(X(tj))))
6

7 // Advance simulation time by sampling a number from an exponential

8 // distribution with rate λ = a0(X(tj))
9 tj+1 := tj + Exp(a0(X(tj)))

10

11 // Execute selected reaction

12 X(tj+1) = X(tj) + vi

Algorithm 2.2 Algorithmic selection of a reaction in the SSA. The probability
P (Ri) to select reaction Ri is its relation of its propensity to the propensity sum:

P (Ri) =
ai(X(tj))

a0(X(tj))
.

a1(X(tj)) . . . am(X(tj)): propensities of the reactions R1, . . . Rm.
a0(X(tj)): propensity sum of all reaction propensities.

1 sum := 0

2 x := U(0, a0(X(tj)))
3

4 for (i ∈ (1, . . . ,m)) {

5 sum := sum + ai(X(tj))
6 if (sum > x) {

7 return i

8 }

9 }

secondly updates only those reaction propensities after a reaction execution that are

influenced by the currently executed reaction [62]. Similarly, the Optimized Direct

Method updates propensities only if necessary, but additionally also sorts the calculated

propensities based on precalculated reaction frequencies. Sorting propensities can

improve the efficiency of the reaction selection method [27], see Figure 2.5. However,

the propensities are not sorted based on their actual values directly, since that would

cause too much computational effort during runtime. The Sorted Direct Method

enhances the sorting idea by introducing an adaptive sorting scheme that calculates

19

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

0 a0

a8a1 a2 a3 a4 a5 a6 a7 a9 a10

0 a0

a8 a5 a3 a9a1 a2 a6 a7 a10 a4

x x

Figure 2.5: Selecting a reaction based on Algorithm 2.2 is more efficient when the
reactions’ propensities are sorted [27]. In the given example, eight iterations would
be needed for the unsorted case (assuming that propensities are considered from left
to right) to find the first propensity so that the sum of all considered propensities
is greater than x, whereas only three iterations would be needed for the (perfect)
sorted case. Although the concrete selected reaction differs, the probability to select a
reaction does not change.

the reaction frequencies during runtime and does not need any precalculations [133].

A last approach that shall be presented is the recently developed Rejection-based SSA

that reduces the number of propensity updates by computing propensity upper bounds

and lower bounds and calculating concrete propensity values only when needed [189].

So far, all presented simulators are variants of the basic SSA computing exact results.

None of these methods dominates the others, i.e., the performance of the methods

and also the best performing method depend on the model to be simulated [128].

Thus, this application field is suitable for applying algorithm selection methods.

In [47], Ewald applied a generic simulator selection mechanism implemented with the

simulation algorithm selection framework (SASF), see Section 2.5, for selecting exact

SSA simulators automatically.

2.4.1 τ-leaping

Besides these exact simulators, approaches exist that trade accuracy for runtime

efficiency analog to numerical integration methods and therefore these approaches

compute only approximations of the exact results. A common approximate SSA variant

is τ -leaping, which performs “leaps” along the time line executing many reactions

simultaneously during each leap [64, 25, 78]. Basically, one leap can be described by

X(t + τ) = X(t) +
m∑
i=1

vi · Pois(ai(X(t)) · τ), (2.1)

where τ is the interval of the leap and Pois(ai(X(t)) · τ) is a number of firings for

reaction Ri sampled from a Poisson distribution with rate ai(X(t)) · τ .

20

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

Definition 8. Leaping Condition Require τ to be small enough that the change

in the state during [t, t + τ] will be so slight that no propensity function will suffer an

appreciable (depending on an error parameter ε ∈ [0, 1]) change in its value [64].

Analog to step size control mechanisms used for numerical integration methods,

τ -leaping is adapting τ during a simulation. In principle, it would be possible to apply

step doubling (see Section 2.2) also for τ -leaping. However, the leaping condition is

applied instead, see Definition 8. For each leap, the largest τ that does not violate

the leaping condition shall be applied. A well-known variant to calculate τ has been

developed by Cao et al. [25] and works as follows (current simulation time is tj).

Before each leap, the reaction set R is divided into non critical reactions Rncr and

critical reactions Rcr, i.e., R = Rncr ∪ Rcr. A reaction is a non critical reaction if it

can be fired more often than nc ∈ N times; otherwise it is a critical reaction. Whereas

multiple non critical reactions are allowed to be executed several times during one

τ -leap, at most one critical reaction is executed once during one τ -leap. This is done

to reduce the probability to get negative species amounts due to the unbound Poisson

distribution. Next, a candidate τ ′ is computed based on the non critical reactions as

follows:

τ ′ = min
s∈RSncr

{
max{ε ·X(tj)s/gs, 1}

|μ̂s| ,
max{ε ·X(tj)s/gs, 1}2

σ̂2
s

}
. (2.2)

The set RSncr contains all reactants of all non-critical reactions. The value gs is used

to “guarantee that bounding the relative change of states is sufficient for bounding

the relative change of propensity functions” [173] and is computed as follows:

gs = hs +
hs

nr

ns−1∑
i=1

i

X(tj)s − i
, (2.3)

whereby hs denotes the highest order of all reactions in Rncr the species s is involved

and ns denotes the highest amount of the species s which is consumed in any of these

reactions. The variables μ̂s and σ̂2
s represent the mean and the variance of the change

of s for all reactions in Rncr in the current state:

μ̂s =
∑

r∈Rncr(X(tj))

vr,s · ar(X(tj)) σ̂2
s =

∑
r∈Rncr(X(tj))

vr,s
2 · ar(X(tj)) (2.4)

If the computed τ ′ is smaller than α · a0(X(tj)), α ∈ N, the firing numbers of most

reactions would probably be 0. Therefore, no leap is executed in this case but

NSSA ∈ N steps of the normal SSA are executed instead. If τ ′ is sufficiently large, a

second candidate τ ′′ using the critical reactions is calculated that represents the next

21

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

firing time of a critical reaction:

τ ′′ = Exp(
∑

cr∈Rcr

acr(X(tj))) (2.5)

The minimum of τ ′ and τ ′′ is used to calculate the leap as described in Equation 2.1.

Additionally, if τ ′′ < τ ′, one critical reaction is selected analogously to the reaction

selection of the SSA, which will also be executed. If any negative population occurs

after executing the reactions, all changes are discarded, τ ′ is halved and the procedure

is repeated until a valid τ -leap is executed. By introducing critical reactions executed

in an SSA manner — a feature not integrated into the initial version of τ -leaping

in [64] — the simulator basically performs an adaptive model separation into two

parts. The maximal time step method presented by Pucha�lka and Kierzek follows the

same idea as the τ -leaping variant of Cao presented in [25], but makes the separation

between τ -leaping and the SSA explicit as they refer to their algorithm as an “approach

combining the Gibson and Bruck algorithm with the Gillespie τ -leap method” [160].

Altogether, τ -leaping as described by Cao et al. in [25] is adaptive in several ways.

First, it adapts the step size each step. Second, it combines the original τ -leaping

with an SSA and decides to execute the SSA if the calculated τ is too small. Third,

the model is dynamically separated into critical reactions (simulated exactly) and

noncritical reactions (simulated approximately).

The presented τ -leaping method is explicit, i.e., only X(tj) is considered to approx-

imate X(tj + τ). Analog to the deficiencies of explicit numerical integration methods

for stiff systems, explicit τ -leaping is not suited to simulate stiff biochemical reaction

networks as it would perform tiny leaps. Thus, Rathinam et al. have developed an

implicit variant of τ -leaping in [162]. Computing a leap with the implicit τ -leaping is

more expensive, so that it should only be used for stiff systems, whereas the explicit

τ -leaping shall be used for nonstiff systems. Consequently, analog to the switching

approach developed by Petzold in [158] to switch between numerical integration meth-

ods suitable for stiff or nonstiff systems, an adaptive τ -leaping algorithm has been

developed that dynamically switches between the explicit and the implicit τ -leaping

during runtime [26, 173].

2.4.2 Combining Discrete and Continuous Simulators

Referring to the simulation of biochemical reaction networks, a common strategy is to

combine stochastic and continuous approaches, often referred to as hybrid simulators.

For example, Haseltine and Rawlings present a simulator that initially partitions

the set of reactions into fast and slow reactions (Rf and Rs) depending on their

22

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

Algorithm 2.3 Sketch of a simulation step in the hybrid simulator presented in [71].
tj: current simulation time after j simulation steps,

Rs = {Rs
1, . . . R

s
ms

}: slow reaction set, Rf = {Rf
1 , . . . R

f
mf

}: fast reaction set
as1 . . . a

s
ms

: propensities of slow reactions,

X̃(tj): intermediate state of the system after integrating the fast reactions and before
executing a slow reaction.

1 // Calculate propensity sum of slow reactions

2 as0(X(tj)) :=
∑ms

i=1 a
s
i (X(tj))

3

4 // Select a slow reaction to be executed based on the slow

5 // reaction set Rs, see Algorithm 2.2

6 i := select(Rs, as0(X(tj)))
7

8 // Calculate a simulation time advance by sampling a number

9 // from an exponential distribution with rate λ = as0(X(tj))
10 τ := Exp(as0(X(tj)))
11

12 // Integrate fast reactions until tj + τ

13 X̃(tj) := integrate(X(tj), Rf , τ)
14

15 // Advance simulation time

16 tj+1 := tj + τ
17

18 // Execute selected slow reaction

19 X(tj+1) := X̃(tj) + vs
i

propensities [71]. When models contain reactions with propensities differing by several

orders of magnitude, a purely stochastic simulator would spend most of the runtime

to execute firings of the fast reactions. The idea of the simulator by Haseltine and

Rawlings is to approximate these fast reactions deterministically by using numerical

integration methods and to only calculate the slow reactions stochastically by using

the exact SSA. A simulation step is sketched in Algorithm 2.3. The partitioning of

fast and slow reactions is done once at the beginning of a simulation run by using

heuristics considering the reactions and initial species amounts. Since slow reaction

propensities are probably dependent on species that are changed by fast reactions,

this approach is approximate. In [71], Haseltine and Rawlings themselves propose a

probability of no slow reaction to decrease the step size τ if necessary.

In general, many further hybrid simulators exist, which work similarly like the

presented one. For example, besides reaction propensities, species amounts are also

often considered while partitioning the reactions, i.e., a fast reaction should not change

a species with a small amount [171]. Another approach is to separate reactions in

terms of species components, as using propensities and species amounts do “not always

23

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

provide a convenient description of the hybrid stochastic process” [35]. Finally, many

hybrid simulators adapt the partitioning during runtime to respond to significant

propensity changes. For example, the simulator presented by Herajy and Heiner

performs a repartitioning if the propensity sum of all reactions leaves a user-defined

interval or the amount of a species drops below a user-defined threshold [83]. The

simulator presented in [112] dynamically splits species into discrete and continuous

species depending on their amount, i.e., if the amount drops below a threshold tlow,

a species is classified as discrete and if the amount exceeds a second threshold thigh
(thigh − tlow > K, e.g., K = 100), a species is classified as continuous. The two

thresholds tlow and thigh are used to avoid rapid changes of the species classification.

A reaction is a fast reaction only if all reactants refer to continuous species. In [148],

Pahle analyzes several hybrid simulators referring to their partitioning scheme and

applied continuous and stochastic simulators.

The hybrid simulators presented in [24] and [40] do not integrate the fast reactions

directly. Instead, they assume that stationary distributions exist for all species involved

in fast reactions that are either computed analytically ([25]) or empirically ([40]).

These distributions are used to update the propensities of slow reactions, which are

simulated as usual using the basic SSA. Although this approach avoids integrating

the fast reactions, it can only be applied if 1) fast reactions result in stationary

distributions for all involved species of the fast reactions and 2) these distributions

are reached fast, i.e., much faster than the next firing time of a slow reaction.

Hybrid simulators are also applied for spatial heterogeneous biochemical systems.

In [55], Ferm et al. present an adaptive variant of the Next Subvolume Method

(NSM)[42]. Basically, the NSM partitions the system space into artificial subvolumes

ensuring spatial homogeneity for each subvolume and adds diffusion reactions to the

system to enable entities to move between the subvolumes. The simulator developed

by Ferm et al. extends the NSM by using either a deterministic, an approximate or

an exact method to calculate the diffusion processes depending on the amounts of

diffusing species. Another hybrid spatial simulator is the Two-Regime Method, which

partitions the space into compartment-based and molecular-based areas [56]. Due to

the partitioning, suitable diffusion reactions are added for entities to change between

the two regimes. The partitioning of the space must be defined by the user and is

fixed throughout the simulation.

24

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

2.5 Simulator Selection for Discrete Event Simula-

tion

The adaptive means used by the simulators presented in the previous sections are

tailored to specific application scenarios or to simulators that are extended by these

means. For example, the step doubling method can only be applied to approximate

simulators like single step numerical integration methods. Further, selection mech-

anisms like ODExpert can only be applied to numerical integration methods. The

adaptive means of most of the parallel simulators presented in Section 2.3 are direct

extensions of existing simulators and are tailored to parallel optimistic discrete event

simulation. Some concepts are even only applicable in case of specific models to be

executed like the adaptive simulator developed in [54], which can only be used to

simulate network clusters in parallel. The τ -leaping algorithm is another example for a

simulator with a specific adaptation scheme particularly developed for it. Clearly, the

advantage of these tailored mechanisms is that properties of the application scenario

or the extended simulator can be exploited and the adaptive scheme can be tailored

by the developer to improve its effectiveness.

A more general approach has been explored by Ewald et al. [49]. The simulation

algorithm selection framework SASF has been developed, which can be used to

automatically select simulators for the execution of simulation runs. It is integrated

into the plugin-based modeling and simulation framework JAMES II [87] and it is

developed as a framework to “prescribe how the different [selection] techniques interact

with the host system, thereby hiding the internal complexity of the overall task as

much as possible“ [47, p. 140]. The SASF is neither restricted to a specific simulator

nor to any modeling paradigm. The following section 2.5.1 describes how simulators

can be represented generically in JAMES II. In the following sections 2.5.2 and 2.5.3,

both simulator selection approaches within the SASF are presented.

2.5.1 Simulators as Selection Trees

JAMES II is a plugin-based modeling and simulation framework written in Java, which

provides means to support the development of modeling formalisms and simulators and

means to support the experimentation with these [87]. It uses a plugin-based scheme

to follow the separation of concerns paradigm and to support a flexible architecture.

Figure 2.6 shows the core packages of JAMES II— the distance of a user from the

packages is thereby depicted by the layers. A strict separation between concrete models

and simulators is inherently supported by JAMES II. A registry — implemented as

a singleton [60, p. 144] — is responsible for the management of the plugin system

25

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

User interface

Database Experiment Model

Layer 1

Layer 2

Simulation SimulatorLayer 3

Re
gi

st
ry

Figure 2.6: The main packages of JAMES II as described by Himmelspach and
Uhrmacher [87].

of JAMES II. This concept of a central registry is common in component-based

software architectures, e.g., OSGi [2]. For every component of JAMES II that shall

be represented by a plugin, e.g., algorithms or data structures, a plugin type has to be

created. Every implemented plugin is assigned to exactly one plugin type. Following

the factory method pattern [60], plugins are created by factories that encapsulate

the concrete instantiation of plugins. Moreover, following also the abstract factory

pattern [60] for the selection of a concrete plugin, an abstract factory is created for

each plugin-type that selects a concrete factory that creates a concrete plugin.

Parameters for plugins are defined by parameter blocks, which are hierarchically

nested parameter structures. Every node of a parameter block contains exactly one

value and a map of sub parameter blocks grouped by identifier. Especially for the

configuration of hierarchical plugins in JAMES II, parameter blocks offer the needed

flexibility to configure them as detailed as necessary, see Figure 2.7. When calling

the plugin creation method of a factory, it also receives a parameter block containing

firstly information for all primitive parameters needed to create the plugin, e.g., the

size of a container, and secondly information for all sub plugins that are used by the

plugin to be created. To create the sub plugin, the value of the corresponding sub

parameter block contains the full qualified class name of the factory to use — by using

this name, a factory object of the according class is retrieved from the registry and

used to create the sub plugin given the sub parameter block to configure this sub

plugin.

Generally, parameter blocks can be used to describe simulator configurations,

which can be complex combinations and configurations of various plugins. Ewald

introduces the notion of selection trees for parameter blocks describing such simulator

configurations [47, p. 159]. For a simulator selection mechanism in JAMES II, the

algorithm set A can be represented as a set of selection trees that are applicable

to solve the given problem, i.e., to execute a simulation run with a given model.

By using the registry of JAMES II and filtering criteria for each plugin type to be

used, all applicable simulator structures to execute a simulation run can be generated

26

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

ConcreteSimulatorFactory

MersenneTwisterFactory

12345

MListFactory

Lifo

RandomNumberGenerator
EventQueue

Se
ed

O
rd

er
in

g
Be

ha
vi

or

HashMap

M
ap

Figure 2.7: An example of a parameter block. Each node contains a value and an
optional set of sub parameter blocks grouped by string identifier. Factories are used
to create and configure sub plugins.

during runtime automatically. Further, by using the default values for primitive

parameters, one valid parameter mapping for each vertex of the selection trees can be

generated. The usage of an automatic simulator selection mechanism is motivated

by large algorithm sets A resulted from the possible combinations of the available

plugins. For example, for the component-based implementation of the simulator for

the modeling language ML-Rules [130] in JAMES II (Version 0.9.7), more than 1400

valid selection trees can be generated.

2.5.2 Simulator Selection via Supervised Learning

The SASF comprises a performance database. Assuming that this database is filled

with comprehensive performance data from problems that have been fully explored,

supervised machine learning techniques can be used to generate simulator selection

mappings, i.e., the ASP shall be solved by these techniques. The SASF is not restricted

to one specific method, but various techniques have already been integrated, e.g.,

WEKA [70] to learn decision trees or JOONE [126] to apply neural networks. For

each integrated technique, a selector generator is implemented within the SASF.

Concrete simulator selectors are generated by these selector generators using available

performance data. Since a set of selector generators can be used, naturally the

question arises which one generates the best simulator selectors. This problem can

in turn be interpreted as an algorithm selection problem and solved via learning

methods. Meta-Learning methods can avoid this recursive application of machine

learning methods [194]. To evaluate the performance of selectors, several mechanisms

have been realized, e.g., cross validation [201, p. 152ff.] or a boolean measure of

misprediction [118].

In general, the quality of generated selectors essentially depends on the available

27

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

performance data and problem features. To produce sufficient performance data for

the selector generators, Ewald proposes to apply automated runtime performance

exploration techniques, e.g., using synthetic benchmark models to automatically

explore the problem space and gain suitable performance data, see [47, p. 225ff.].

The produced performance data can then be evaluated automatically [52]. Problem

features are essential to identify relations between concrete problems and to conclude

about their performance behavior, see the feature selection problem (Section 2.1,

page 10). In the SASF, no feature selection techniques have been integrated so far.

2.5.3 Simulator Selection via Unsupervised Learning

As discussed in Section 2.5.2, supervised learning methods for simulator selection

depend on past performance data that can be analyzed to create suitable algorithm

selection mappings. In contrast, unsupervised learning methods do not rely on

such performance data. Ewald et al. show in [50] how multi-armed bandit policies

(MABP) [7] can be used for the simulator selection.

The regret of the MABPs is of particular interest, i.e., the relative overhead induced

by exploration and sub-optimal decisions compared to an optimal policy. The regret of

zero-regret policies converges to zero over time [193]. For example, the ε-greedy policy

is not a zero-regret policy as it chooses for any state s the — based on its current

knowledge — best action a with the constant probability p(s, a) = 1− ε and otherwise

a random action. In contrast, the ε-decreasing policy is a zero-regret strategy. This

policy couples the probability p(s, a) to select the best action a for a state s on the

number n(s) of occurrences of s: p(s, a) = 1 − min(1, ε
n(s)

). Besides, the learning

speed of a policy, which determines how fast the decisions improve with the number

of decisions done, is also of great significance in practice [6]. However, many policies

choose each action once before applying heuristics for the selection. Such policies

cannot be used if the agent can choose from an infinite number of actions, e.g., if

actions comprise continuous parameters.

The selection method developed by Ewald et al. using the MAPBs is called

AdaptiveSimulationRunner. It is an extension of the ParallelSimulationRunner

of JAMES II that manages a parallel execution of replications. The selection of a

simulator for the execution of a replication is interpreted as a decision of the MABP

and the performance of the simulator is used to improve the MABP’s decisions. The

feature selection problem is avoided as the selection method does not consider model or

environment properties for the algorithm selection. Thus, for each batch of replications,

the policy has to start from scratch and cannot reuse any gained knowledge. To

apply an MABP, two further issues have to be considered: First, replications are

typically executed in parallel, i.e., the MABP must be able to make decisions without

28

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

the feedback of all previously made decisions. Second, the MABP must distinguish

between bad and faulty options, i.e., faulty options should be quarantined. Fortunately,

both requirements can be easily integrated into common MABPs.

To measure the effectiveness of an MABP p, Ewald et al. suggest to use a metric

called relative overhead opn for benchmark problems for which the performance of

the best available option is known [50]. The relative overhead measures the relative

performance overhead by using p for n replications instead of the best option constantly.

It is calculated by

opn =

∑n
i=1 reward

i
p

n · rewardopt (2.6)

where rewardip represents the reward, e.g., executed events per second, that policy

p has achieved by its i-th decision and rewardopt represents the expected reward of

the best option. Using the relative overhead to measure the performance of a policy

considers that it is not only important to find the best option in the long run, but —

as the number of replications to be executed is limited — also that the learning speed

of the policy is of significance.

Besides the learning speed of the MABP itself, the efficiency of this selection

mechanism essentially depends on the number of available algorithms (|A|) and the

number of replications to be executed. The more replications have to be executed,

the more can be explored to determine the best-performing option. Further, the

fewer options are available, the faster the best-performing option will be determined.

Whereas the number of needed replications cannot be influenced, the number of

options can be decreased by using algorithm portfolios. In [51], Ewald et al. present an

approach for the selection of simulator portfolios by genetic algorithms. The algorithm

works as follows. An individual of a generation represents a specific algorithm portfolio.

Each element of A is assigned to a unique number. The genome of individuals is

represented by a list of numbers representing the elements of A. Thus, the length of

the genome determines the maximum size of the portfolio which has to be set manually.

Empty slots can be used to consider portfolios with smaller sizes. The fitness of an

individual is calculated by using performance data of a set of known problem instances.

Assuming that the MABP will eventually find the best-performing option for a problem

instance, this best-performing option is used for a problem instance and an individual

to calculate its performance for this problem instance. Since the portfolio calculation

shall be performed before the simulation runs of a simulation experiment, the runtime

to compute a suitable portfolio has to be considered and therefore the number of

calculated generations is limited. Finally, the best performing individual from the last

generation is used for simulation runs of the concrete simulation experiment. The

29

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

portfolio is not changed during the execution of a simulation experiment. This can

be disadvantageous if the past performance data used to generate the portfolio do

not suitably reflect the actual performance features of the replications to be executed.

In [73], we developed a prototypical dynamic mechanism that creates and adapts an

algorithm portfolio during the execution of a simulation experiment by observing

the runtime performance. Although we achieved promising results with artificial

benchmark models and small numbers of algorithms (≤ 100), the approach has not

been evaluated in more complex and realistic scenarios yet.

2.6 Summary

Modeling and simulation offer many opportunities to apply adaptive algorithms.

Although a simulation experiment comprises various tasks that are essential for its

success, adaptive approaches are typically applied to improve simulators for a better

runtime efficiency of simulation runs. The techniques presented in the previous sections

differ in various properties. Table 2.1 illustrates these differences for the following

properties:

1. Considered Features / Measurements: What features and measurements are used

for the adaptation decisions (model properties, simulator properties, environment

properties, performance).

2. Adapted Property: primitive parameters (e.g., thresholds), complex parameters

(e.g., partitioning of LPs), simulator.

3. Trigger & Frequency: initialization (i.e., one adaptation during the initialization

of a simulation run), interval, conditional.

4. Quality Change: Whether adaptations change the quality of simulation results.

Referring to considered properties for the adaptation process, all kinds of properties are

used, i.e., model, simulator, and environment properties and performance. For example,

τ -leaping uses the model states to calculate suitable step sizes. In contrast, Penalty-

Based Throttling does not consider model states or model properties explicitly, but

only the execution of rollbacks influences the adaptation decisions. The conservative

dynamic load balancing algorithm developed by Boukerche in [18] considers the CPU

loads, i.e., environmental properties, to make adaptation decisions. However, although

the methods are applied to improve the runtime performance of simulation runs, in fact

only few of them observe the actual performance of a simulator to evaluate whether

the adaptations are beneficial or not. For example, the Supervised Simulator Selection

30

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

Table 2.1: Comparison of the presented adaptive means used by simulators.
Simulator / Framework / Technique Considered Features / Measure-

ments
Adapted Property Trigger &

Frequency
Quality
Change?

Step Doubling and Embedded Error Estima-
tion [159]

model properties primitive parameter interval yes

ODExpert [102], ModSimPack [21], Auto-
matic Solver Selection [33, 32]

model properties, performance simulator initialization yes

LSODA [158] model and simulator properties simulator interval yes

Adaptive Moving Time Window [149], Local
Time Window Estimates [11]

model and simulator properties primitive parameter conditional no

Penalty-Based Throttling [163] simulator properties complex parameter conditional no

Switchting Time Warp [184] simulator properties complex parameter conditional no

Core Frequency Adjustment [31] simulator properties primitive parameter interval no

Adaptive Blocking Window [8], ETA [183],
Scaled ETA [161]

simulator properties, perfor-
mance

primitive parameter interval no

Adaptive Throttling [115] simulator properties primitive parameter interval no

Adaptive Load Management [146] model properties complex parameter conditional no

Granular Time Warp Objects [127] model properties complex parameter conditional no

Adaptive Network Cluster Simulator [54] model properties primitive parameter interval yes

Clustered Adaptive Distributed Simulator [182] simulator properties primitive parameter conditional no

Adaptive Message Clustering [175] model properties primitive parameter conditional no

Conservative Dynamic Load Balancing [18] environment properties complex parameter interval no

Optimistic Dynamic Load Balancing [156,
137]

environment properties complex parameter interval no

Sorted Reactions [27] model properties complex parameter initialization no

Adaptive Sorted Reactions [133] model properties complex parameter interval no

τ-leaping [64, 25, 78] model properties primitive parameter interval yes

Extended τ-leaping [25], Maximal Time Step
Method [160]

model properties primitive parameter,
complex parameter
and simulator

interval yes

Implicit-Explicit Adaptive τ-leaping [26,
173]

model and simulator properties simulator interval yes

Hybrid Simulator for Biochemical Networks
(1) [71]

model properties complex parameter initialization yes

Hybrid Simulator for Biochemical Networks
(2) [83, 171, 112]

model properties complex parameter conditional yes

Dynamic Reaction Partitioning, e.g., [24, 40] model properties complex parameter interval yes

Adaptive Reaction-Diffusion Execution [55] model properties complex parameter interval yes

Two-Regime Method [56] model properties simulator conditional yes

Supervised Simulator Selection [49] model properties, simulator
properties, environment, per-
formance

primitive parameter,
complex parameter
and simulator

initialization no

Unsupervised Simulator Selection [49] performance primitive parameter,
complex parameter
and simulator

initialization no

and the Unsupervised Simulator Selection consider the runtime performance [47]. The

considered properties are always simple to be calculated — an expected characteristic

since complex calculations would reduce the effectiveness of the adaptation process.

The adaptation process itself is often also simple to be executed, i.e., most adap-

tive simulators change primitive parameters like thresholds, delays, or the step size.

Simulator changes are rarely used by the adaptation schemes. Referring to PDES,

adaptations are either be executed locally by each LP or globally by a global adaptation

instance. Similarly, some simulators for biochemical reaction networks partition the

set of reactions and apply one simulator for each partition and adapt this simulator.

The spatial adaptive NSM simulator presented in [55] uses local adaptation decisions

for each grid of the model space.

The adaptation frequency is mostly fixed and user-defined, e.g., often an adaptation

31

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

is triggered after each simulation step execution. None of the presented approaches

perform an adaptation during the execution of a simulation step. Some approaches

apply only one adaptation that is executed during the initialization of a simulation run.

Besides, in some cases, it might even be easier to apply adaptations during runtime

than initially, e.g., if problem features are difficult to be calculated before executing a

simulation run but simple to be observed during a simulation run. For example, load

balancing algorithms can observe the load of used processors during runtime to adjust

the LP partitioning. Calculating according data about the potential load during a

simulation run before executing it might be more difficult.

Some simulators change the accuracy of the simulation results due to adaptations,

e.g., the adaptive concepts for numerical integration methods and the approximate

simulators for biochemical reaction networks. If the quality of the results are changed

by adaptations, developers must provide a method to approximate or restrict the error

and the adaptation process must consider the potential error made by adaptations

so that simulation results have always an acceptable accuracy. If no restriction is

given, there is a risk that the simulator will trade too much accuracy to achieve a

better runtime performance, but makes eventually the whole simulation run execution

useless.

Generally speaking, besides applying individual adaptive means, in principle these

techniques can often also be combined. For example, a generic method that selects a

simulator during the initialization of a simulation run could automatically analyze a

PDES model and decides which optimistic simulator to use. The selected optimistic

simulator itself can be adaptive and could locally adapt parameters influencing the

optimism of the LPs. Orthogonally to the adaptations executed by the simulator, a

generic adaptation scheme could be applied on top of the simulator to adapt properties

that are not adapted by the simulator itself and that are not changing the execution

semantics, e.g., auxiliary data structures and sub algorithms.

All in all, most presented adaptive means are tailored to a specific application

scenario and apply adaptations during runtime. However, also more generic selection

methods like the methods integrated into the SASF exist and showed to be effective.

Nevertheless, these methods apply an adaptation only once during the initialization of

a simulation run. Altogether, a method is missing that is generic like the SASF and

that supports runtime adaptations. On the one hand, the great variety of existing

methods applying adaptivity during the execution of a simulation run emphasizes

that it is beneficial to react on changing computational demands during runtime. On

the other hand, generic approaches allow introducing adaptivity straightforwardly to

new application scenarios. Before we develop an adaptive simulator that combines

both aspects in Chapter 4, the next chapter introduces established categorization

32

CHAPTER 2. ADAPTIVITY IN MODELING & SIMULATION

approaches for adaptive software, connects these to the presented adaptive simulators,

and presents techniques needed to develop complex adaptive software.

33

Chapter 3

Adaptive Software

We may ask ourselves whether the execution of a simple branching

statement, like if tooHeavy then askForHelp else push can be

interpreted as a form of adaptation. The answer is: it depends.

Bruni et al. [20]

Typically, software that is able to change its behavior according to input and

environmental changes is called adaptive software, see Definition 7, page 12. The need

of adaptive software in general is usually motivated by two arguments. First, the ever

increasing complexity of software that requires a software to autonomously manage

itself by adapting to various changes [92, 105, 135]. Second, the ever increasing agility

of software development making it difficult to define a solid software specification so

that adaptability is needed to react on changed requirements or unforeseen changes [120,

138]. Although the given definition of adaptive software is vague and abstract, it is

used frequently, e.g., [66, 120, 147, 178]. Nevertheless, based on this definition, almost

any software can be defined as adaptive software depending on the point of view, e.g.,

Bruni et al. state that “[...] the judgment whether a system is adaptive or not is

often subjective”[20]. However, several categorization approaches and classification

concepts have been developed so far to structure the analysis of adaptive software.

Figure 3.1 illustrates a spectrum of adaptivity developed by Oreizy et al. in

1999 [147]. Referring to this spectrum, adaptive software that uses simple conditional

expressions to change its behavior is least adaptive. Online algorithms that use the

history of inputs to change their behavior are more adaptive. Generic or parameterized

algorithms have parameterized behavior that can be changed based on inputs, e.g.,

by generic type instantiation. The algorithm selection category refers to adaptive

algorithms that use properties of the environment to switch to the most suitable

algorithm among a predefined set of options. Finally, the most adaptive software is

34

CHAPTER 3. ADAPTIVE SOFTWARE

Conditional expressions

Online algorithms

Generic or parameterized algorithms

Algorithm Selection

Evolutionary programming (algorithm generation,
genetic algorithms, AI-based learning)

de
gr

ee
 o

f
ad

ap
tiv

ity

low

high

Figure 3.1: The spectrum of adaptivity from low (bottom) to high (top) based on [147].

able to create its adaptation options on its own by using some kind of evolutionary

programming.

This simple spectrum seems to be useful at first sight as it supports the intuition

that some approaches for adaptivity like conditional expressions are less adaptive than

more complex approaches like evolutionary programming. Apparently, it can also be

applied to adaptive simulators presented in Chapter 2. Some methods simply increase

or decrease a primitive parameter after every simulation step execution depending

on a predefined conditional expression, e.g., the Adaptive Blocking Window [8] or

Adaptive Throttling [115]. Others exchange the simulators during runtime and perform

some kind of algorithm selection, e.g., LSODA [158]. However, LSODA also uses a

simple conditional expression to realize the decision-making process. Compared to the

selection framework SASF [49], LSODA seems less adaptive as it cannot deal with a

set of available simulators, but it only chooses between two pre-selected options (one

simulator suited to stiff systems, one simulator suited to non-stiff systems). These

examples emphasize that the spectrum of adaptivity shown in Figure 3.1 neglects many

properties of adaptive algorithms that are necessary for a comprehensive categorization.

Nevertheless, this spectrum underlines an important facet of adaptive software from

rather simple to sophisticated variants that is commonly supported [135, 170, 30, 4].

The shown spectrum of adaptivity emphasizes that it is necessary to identify more

properties of adaptive software for an effective analysis and categorization. A more

comprehensive discussion about properties of adaptive software is given by Andersson

et al. [3]. Four groups of facets are identified:

1. Goals the software under consideration should achieve.

2. Changes that cause adaptations.

35

CHAPTER 3. ADAPTIVE SOFTWARE

Table 3.1: Exemplary illustration how some of the adaptive simulators presented in
Chapter 2 can be mapped to the four facets of adaptive software [3].

Simulator / Framework /
Technique

Goals Changes Mechanisms Effects

Step Doubling and Embed-
ded Error Estimation [159]

fixed and conflicting
goals: reduce runtime
and be accurate as
possible

strong dynamic adap-
tations: adapt after
each simulation step

parameter adaptation
(step size), no user in-
tervention

adapt accuracy to the
acceptable threshold

Switching Time Warp [184] fixed goal: reduce run-
time

strong dynamic adap-
tations: adapt after a
threshold for rollbacks
is crossed (not foresee-
able)

parameter adaptation
(LP prioritization), no
user intervention

reduce number of roll-
backs

Adaptive Sorted Reac-
tions [133]

fixed goal: reduce run-
time

strong dynamic adap-
tations: adapt after
each simulation step

parameter adaptation
(reaction order), no
user intervention

reduce costs of reac-
tion selection

Hybrid Simulator for Bio-
chemical Networks(1) [71]

fixed conflicting goals:
reduce runtime and be
accurate as possible

weak dynamic adapta-
tions: split reactions
(slow vs. fast) once
during initialization

parameter adap-
tation (reaction
partitioning), no user
intervention

use a partitioning re-
sulting in an accept-
able loss of accuracy

Unsupervised Simulator Se-
lection [47]

fixed goal: reduce run-
time

weak dynamic adapta-
tions: select simulator
once during initializa-
tion

compositional adapta-
tion (dynamic set of
simulators), no user
intervention

use an efficient simula-
tor to execute a simu-
lation run

3. Mechanisms that refer to the adaptation process itself.

4. Effects of applied adaptations.

Table 3.1 illustrates exemplarily how some adaptive simulators presented in Chapter 2

can be mapped to these facets.

Important properties of the goals facet refer for example to the number of goals

of the system, the relation between goals (e.g., conflicting goals), the rigidity of goals

or whether goals are fixed or dynamic. The goal of most presented adaptive means

used for simulators in Chapter 2 is to improve the runtime efficiency of a simulation

run. Adaptive strategies used for simulators trading accuracy for speed, e.g., step

doubling [159] and τ -leaping [25], have to deal with conflicting goals, i.e., perform

as fast as possible and be accurate as required. Few methods have other goals. For

example, besides improving the runtime performance, the method developed by Child

and Wilsey [31] also pursues reducing the energy consumption of the used processors.

With respect to changes, the source (e.g., environment, application, infrastruc-

ture), type (e.g., functional, non-functional, technological) and frequency of a change

should be considered. Further, it should be determined whether a change is foreseeable

or not. In addition, McKinley et al. also distinguish between adaptations applied

before a program runs (static adaptations), i.e., during development time, compile

time, and load time, and adaptations during runtime (dynamic adaptations) [135, 169].

Referring to adaptivity in the context of modeling and simulation, this categorization

has to be extended, see Figure 3.2. We refine the category of dynamic adaptations

to weak and strong dynamic adaptations. Weak dynamic adaptations are executed

during runtime, but only once during the initialization of a simulation run. Strong

36

CHAPTER 3. ADAPTIVE SOFTWARE

static dynamic

Development time Compile time Load time Runtime

Static adaptation Dynamic adaptation

dynamic

Runtime of
simulation run

Initialization of
simulation run

Weak dynamic
adaptation

static

Development time Compile time Load time

Static adaptation Strong dynamic
adaptation

Figure 3.2: Top: Temporal classification of adaptivity from static (left) to dynamic
(right) from [135]. Bottom: Extended temporal classification of adaptivity refining the
dynamic adaptation into two categories: adaptations executed during the initialization
of a simulation run (weak dynamic adaptation) and adaptations executed during a
simulation run (strong dynamic adaptation).

dynamic adaptations are also executed during the execution of a simulation run. In

general, software realizing dynamic adaptations is also referred to as self-adaptive

software [3]. Most adaptive approaches presented in the previous chapter perform

strong dynamic adaptations, see Table 2.1. Further, the adaptation frequency is

mostly time-dependent, e.g., perform an adaptation every n simulation steps, and

rarely event-dependent.

An important property of the mechanisms facet is the type of adaptation, i.e.,

whether it is parametric or structural. Although using different terms, this distinction

is made by various authors. For example, McKinley et al. introduce the terms

parameter adaptation and compositional adaptation to describe this property [135].

Analogously, Salehie and Tahvildari introduce the terms weak adaptation and strong

adaptation [170]. Independent of the concrete terms, they refer to similar concepts.

Basically, a program that applies parameter or weak adaptation is able to modify and

tune program variables. Moreover, simple forms of strategy selection are also assigned

to this category, even if they exchange components of the software and hence change

the structure of the software. It is only important that the strategies are contained in

a fixed set of options that have been defined during the development of the software.

37

CHAPTER 3. ADAPTIVE SOFTWARE

Thus, this kind of adaptation does not allow new options, algorithms or strategies

to be added to the software after finishing its development. In this sense, the terms

compositional adaptation and structural adaptation might be confusing, as the structure

of a software can also be changed by strategy selection with parameter adaptation. In

contrast, structural or compositional or strong adaptation refers to changing, adding,

removing or substituting algorithmic or structural system components from a dynamic

set of options, i.e., it allows adding new algorithms and options during runtime.

Consequently, this type of adaptation is more flexible, however, it is also more difficult

to implement, as a dynamic set of options must be considered. Further, it is more

difficult to ensure the correctness of the software and possibly malicious components

have to be identified. To illustrate the difference of both adaptation types, Salehie

and Tahvildari give several examples in [170]. Other properties of the mechanisms

facet deal for example with the autonomy of adaptations, i.e., whether humans are

involved and the duration of adaptations. Most adaptive approaches presented in

Chapter 2 clearly refer to parameter adaptation as they only change primitive or

complex parameters. Further, the selection approaches LSODA [158], ODExpert [102],

ModSimPack [21], and the methods developed in [33, 32] also only perform parameter

adaptations, as they deal with a fixed set of options that cannot be changed. In

contrast, the SASF [49] performs compositional adaptations, as it is able to select

simulators from a arbitrary set of options that can change during runtime. Further,

machine learning is used to regularly evaluate the available options. Referring to

autonomy, ODExpert interacts with the user in case it cannot automatically calculate

a property of a system, e.g., its stiffness. All the other approaches do not require

user-intervention.

Finally, properties of the effects facet describe the risk of adaptations (What

happens in case an adaptation fails?), whether adaptations are deterministic or

non-deterministic or the benefits of adaptations. None of the presented adaptive

approaches for simulators deal explicitly with failing adaptations, e.g., what to do if

the decision-making process crashes. However, the SASF has a mechanism to deal

with failing simulators, i.e., if a chosen simulator crashes, it is added to a blacklist

and the simulation run is repeated with another simulator.

Besides the discussed low-level categorization concepts of adaptive software, a

more high-level approach is to consider the self − ∗ properties [105, 140]. The four

most prominent properties are a) self-configuration, i.e., the software must be able

to configure itself depending on a high-level policy, b) self-optimization, i.e., the

software continually tries to improve its performance, c) self-healing, i.e., the software

is able to automatically detect and solve software and hardware problems, and d) self-

protection, i.e., the software is able to identify and protect itself against malicious

38

CHAPTER 3. ADAPTIVE SOFTWARE

attacks. All adaptive means presented for simulators refer to self-configuration and

self-optimization.

Altogether, no adaptive simulator presented in Chapter 2 executes strong dynamic

adaptations and is also generic like the methods of the SASF, i.e., performs composi-

tional adaptations. Based on the explained facets of adaptive software, we can classify

such a generic adaptive simulator as follows. The goal of this simulator would be to

improve the runtime performance of a simulation run. Further, adaptations have to

be executed during the execution of a simulation run, i.e., strong dynamic adaptations

have to be executed. However, the trigger of adaptations is not obvious, e.g., whether

to use a time-based or an event-based trigger. To be generic like the SASF, the adap-

tive algorithm must be able to deal with an arbitrary set of adaptation options and

therefore must perform compositional adaptations and it must use machine learning

to automatically evaluate the available options. Therefore, in the next Section 3.1 we

firstly deal with main technological characteristics needed to realize compositional

adaptations. Afterward, in Section 3.2, we discuss concrete techniques to implement

adaptive software realizing compositional adaptations.

3.1 Concepts for Compositional Adaptations

McKinley et al. define three key technologies that must be supported by a software

to enable compositional adaptations: a) separation of concerns, b) component-

based design, and c) computational reflection. Separation of concerns is an old

concept in software engineering that emerged around 20 years ago [95]. This paradigm

enhances the even older concept of modularization in software engineering [150]. The

idea of modularization is to develop a separated program module for each task of a

software to improve its flexibility and comprehensibility and additionally to reduce

its development time. Parnas already determined in 1972 that each module of a

software should refer to a specific feature and not to a specific step of a software [150].

Basically, this is the idea of separation of concerns: each concern of a software should

be separated from all the other concerns. Concerns refer to a variety of software

properties like its business logic, concurrency, real-time constraints, logging, security

issues or failure recovery. The motivation is similar to the motivation to modularize a

software, i.e., it should be easier to write, understand, reuse and modify. However, a

problem with separation of concerns is that there is usually no exact idea of what a

concern is or what separation eventually means [46].

Referring to separation, Hürsch and Lopes distinguish the conceptual level and the

implementation level of a software and that software must separate concerns on both

levels [95]. At the conceptual level, clear definitions and conceptual identifications

39

CHAPTER 3. ADAPTIVE SOFTWARE

of concerns are needed. However, it is not enough to identify the concerns and

separate them conceptually, they must also be separated at the implementation level,

i.e., each identified concern must be adequately isolated so that the code of several

concerns is not intertwined. A separation of concerns that takes not place at the

implementation level would result in code that is hard to understand, to maintain

and to modify. In object-oriented languages, concerns can be separated by using

class architectures. Nevertheless, it is not possible to clearly separate crosscutting

concerns [106], e.g., logging and security capabilities. To separate such crosscutting

concerns suitably, aspect-oriented programming can be used that allows implementing

aspects (i.e., concerns) of a software separately (see Section 3.2). Besides, architectural

approaches exist to apply separation of concerns, e.g., design pattern like the Model-

View-Controller [111] or service-oriented architectures [45].

Following the separation of concerns paradigm, a software design typically also

follows a component-based architecture in which each concern is encapsulated by a

loosely coupled component. Referring to adaptive software, this architecture is well

suited as it allows composing a software from a set of components and supports the

implementation of recomposition features to change the composition during runtime.

To implement a component-based architecture, standardized specifications exist, e.g.,

for Java the module framework OSGi (Open Service Gate Initiative) [2]. In OSGi,

components are called bundles and a runtime infrastructure is specified to add, replace

and remove bundles. A key aspect of OSGi is a service registry that manages all

registered bundles and provides means for the bundles to publish their services and

to retrieve published services from other bundles [187]. A similar concept is realized

within the modeling and simulation framework JAMES II [87]. Here, a component is

called a plugin and a central registry is used to maintain the set of active plugins that

can be changed during runtime.

Besides separation of concerns and a component-based design, McKinley et al.

propose the implementation of computational reflection. Computational reflection is

defined by Maes as “the activity performed by a computational system when doing

computation about (and by that possibly affecting) its own computation” [125]. To

be reflective, a software must be able to monitor itself to collect various information

like performance statistics or function calls. This feature is often referred to as moni-

toring [177] or introspection [135]. Moreover, a reflective software needs capabilities

to change its behavior, e.g., by reconfiguration or recomposition. This feature is often

referred to as reconfiguration [177] or intercession [135]. Typically, a reflective software

consists a) of a base level that contains objects and their connections and b) of a

meta level containing meta objects that encapsulate information about objects of the

base level. Every base level object is connected with exactly one corresponding meta

40

CHAPTER 3. ADAPTIVE SOFTWARE

Managed component

Autonomic manager

Monitor

Analyze Plan

Execute
Knowledge

Figure 3.3: The MAPE-K control loop based on [105].

object. Both levels are causally connected so that a change in one level affects a change

in the other level, e.g., removing an object also removes its meta object. Available

modifications and changes are specified and executed via metaobject protocols. These

protocols guarantee consistent states of the base level and meta level. Reflective

software can either be realized by explicitly implementing a reflective architecture [22,

pp.193-219], or by using native reflection functions of programming languages. For

example, the reflection API in Java allows to perform introspection by accessing meta

information about objects like their class name and available methods during runtime.

Besides the discussed three characteristics, da Silva also mentions decision mak-

ing as a major requirement for adaptive software [177], i.e., the ability to use observed

information to decide which adaptations to execute. For decision making, static

conditional expressions can be used. In this case, the developer of the adaptive

software must be aware of a complete mapping of all possible observations to available

actions. Thus, the set of actions as well as the set of possible observations must

be known during development time and they cannot change during runtime. More

flexibility can be achieved by using machine learning techniques for the decision

making [34, 15, 178].Typically, these techniques are able to learn a suitable mapping

themselves and can therefore deal with a changing set of actions and a changing set of

observations.

Moreover, sophisticated adaptive methods should be implemented separately from

the business logic of the software by using a control loop design [30]. A well-known

control loop usually referred to as the MAPE-K control loop has been developed

by Kephart et al. in 2003 [105], see Figure 3.3. Here, four basic activities are

distinguished: monitor (observing the environment and itself), analyze (analyze

observed information), plan (construct an action plan based on the analysis), and

41

CHAPTER 3. ADAPTIVE SOFTWARE

execute (execute the constructed plan). Further, a common knowledge component

shall be used by all activities. A similar control loop has been developed by Dobson et

al. in 2006 that describes the same activities but with different terms: collect (instead

of monitor), analyze, decide (instead of plan), and act (instead of execute) [38].

The SASF, as the only adaptive approach presented in Chapter 2 that performs

compositional adaptations, follows these technological characteristics. It separates

all important concerns like the decision-making process, the performance monitoring,

or the data handling into components realized as JAMES II plugins. Further, by

exploiting the plugin system of JAMES II, it is able to reflect on the structure of

simulators. Further, it observes the performance of the selected simulators and applies

reinforcement learning to use gained data to evaluate the available options.

The presented characteristics refer to conceptual strategies to realize sophisticated

adaptive software. The following section presents various concrete techniques to

implement these concepts.

3.2 Techniques to Implement Adaptive Software

An adaptation ability can be added to software by using various software engineering

techniques that usually base on some kind of indirection [135], e.g., applying inheritance

as done by the AdaptiveSimulationRunner (see Section 2.5.3) or using the wrapper 1

pattern [60]. The wrapper pattern can be used to extend the functionality of an object

dynamically by encapsulating it with other objects, see Figure 3.4. Using this pattern,

a wrapper realizing the adaptivity control loop can control its wrapped object and

modify or replace it if necessary. An advantage of the wrapper pattern is that the

wrapper implements the same interface as the component, i.e., an object that is using

a component does not have to be changed to use the wrapper. Another approach

especially in distributed systems to implement the adaptivity control loop is to use

adaptive middleware concepts, e.g., the mobility- and adaptation-enabling middleware

MADAM [57]. Here, the middleware observes the performance of existing components

and modifies, replaces or deletes them as necessary. A comprehensive survey of various

adaptive middleware architectures and frameworks is given by Sadjada [168].

A prominent programming paradigm that is suitable to add adaptivity to a software

is aspect-oriented programming (AOP) [106]. The motivation of AOP is to enable the

separated implementation of crosscutting concerns that cannot be encapsulated neither

with procedural nor with object-oriented programming techniques, i.e., crosscutting

concerns do not fit the modularization of the software [89]. By separately implementing

crosscutting concerns in aspects, the comprehensibility and maintainability of software

1Also known as the decorator pattern.

42

CHAPTER 3. ADAPTIVE SOFTWARE

+operation()

ConcreteComponent

+operation()

«interface»
Component

+operation()
-component : Component

Wrapper

+operation()

ConcreteWrapper

Figure 3.4: UML class diagram of the wrapper pattern [60].

can be improved. For example, Lippert and Lopes achieved a significant reduction of

complexity by using aspect-oriented programming [122]. Mainly, redundant condition

checks and exception handling code have been aggregated. During the compilation

process of an aspect-oriented program, an aspect weaver intertwines all aspects with

the base code to a working software. For this, join points must be specified that

are used to add aspect code into the program. Basically, a join point can be any

point in the program flow, e.g., when an arbitrary method of a specific class is called.

Referring to adaptive software, approaches have been developed that allow weaving

aspect code during runtime with the base code, e.g., CaesarJ [5]. Although a promising

programming paradigm, AOP can complicate the software development. For example,

not all aspects of a software are typically identified at the beginning of the development

phase and subsequent structural changes are tedious to apply [139]. Further, case

studies have shown that AOP is only beneficial if aspects are updated frequently [43].

Another programming paradigm that can be used for the developing of adaptive

software is context-oriented programming (COP) [89]. The purpose of COP is to

enable software entities to adapt their behavior during runtime based on the current

execution context. Adaptation to the current context is often an aspect that crosscuts

the application logic (orthogonal to the modularization) [172]. For this, contexts that

can contain any information that is computationally accessible are treated explicitly.

The context can either be defined globally for the whole software of locally for each

software component. Based on the current context, functions can for example be

modified, extended, activated or deactivated. However, existing approaches typically

require a static context handling, i.e., for each context state, the implications must be

implemented explicitly, e.g., [4].

43

CHAPTER 3. ADAPTIVE SOFTWARE

3.3 Summary

Several approaches exist to categorize adaptive software. Unfortunately, the term

“adaptive software” is often used ambiguously and no unique and accepted definition

exists. The designed facets developed by Anderson (goals, changes, mechanisms,

effects) suitably aggregate many ideas [3] and should be considered when adaptive

software is developed, analyzed, and evaluated. However, the developer of the adaptive

methods used for simulators presented in Chapter 2 hardly consider such facets

explicitly to analyze their methods. The goal of these methods is to improve the

runtime performance of simulation runs, whereby approximate methods must also

deal with the conflicting goal to achieve a suitable accuracy. Most presented methods

perform strong dynamic adaptations, i.e., they apply adaptations during the execution

of a simulation run. Further, time-triggered as well as event-triggered adaptations are

common. All methods but the Supervised Simulator Selection and the Unsupervised

Simulator Selection perform parameter adaptations. Nevertheless, these two methods

only perform weak dynamic adaptations, i.e., they select a simulator during the

initialization of a simulation run. As written in Section 2.6, combining strong dynamic

adaptations and compositional adaptations is a promising approach we pursue in

Chapter 4.

To realize compositional adaptations — from a technological viewpoint — sep-

aration of concerns, component-based design, and computational reflection are key

characteristics of adaptive software realizing compositional adaptation [135]. Further,

the decision-making process plays an essential role and should not be intertwined

with the business logic of a program. Various concrete techniques exist to implement

adaptive software, e.g., software pattern, aspect-oriented programming and middleware

architectures.

Based on the conceptual requirements for compositional adaptations, the modeling

and simulation framework JAMES II is a suitable simulation software to be used

as a basis for an adaptive simulator combining strong dynamic adaptations with

compositional adaptations. Separation of concerns has always played a central role in

the development of JAMES II [87], e.g., it follows a strict separation of model and

simulator and it has an explicit experimentation layer [48]. The plugin system ensures

a component-based design and allows reflecting about the structure of algorithms,

simulators and data structures.

Based on the analysis of various adaptive means for simulators in Chapter 2 and

the discussed properties, concepts and techniques for adaptive software in this chapter,

a generic and dynamic adaptive scheme can now be designed and implemented, see

Chapter 4.

44

Chapter 4

The Adaptive Simulator —

Compositional Simulator

Adaptation at Runtime

The key to solving computationally challenging problems lies in a

combination of design choices, with effects on performance often

interacting in complex, unexpected ways.

Holger H. Hoos [91]

Adaptivity is broadly used in modeling and simulation, especially to improve

the runtime of a simulation run, see Chapter 2. Its usage is motivated by changing

computational demands during a simulation run. These changes can be imposed by

the model: for example, a changing number of model entities, a different kind of event

to be processed, or structural changes within the model. Further, similar effects can

be caused by changes in the execution environment, such as a change in the number

of available processors, CPU load from other jobs, or changes in network latency.

However, as shown in Table 2.1 (p. 31), many adaptation mechanisms in modeling

and simulation that perform strong dynamic adaptations are tailored to an application

scenario and merely perform parameter adaptations, see Chapter 3. Developing generic

mechanisms realizing compositional adaptations is challenging. This is emphasized

by the work of Ewald et al. that focuses on the selection of a simulator during the

initialization of simulation runs, see Section 2.5. The effectiveness of the approach using

supervised learning (Section 2.5.2) essentially depends on collected past performance

data and suitably selected problem features. While the first problem can be solved

partly by using benchmark models, the second problem is domain-dependent and

cannot automatically be solved completely. In contrast, the unsupervised selection

45

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

approach (Section 2.5.3) does not depend on past performance data and problem

features: it learns which algorithm to choose on demand by using multi-armed bandit

policies. Nevertheless, this approach requires many replications only useful in case of

stochastic simulation runs. Although both approaches are rather generic and have

shown the potential to be effective, they do not perform strong dynamic adaptations.

This chapter introduces a generic adaptive method realizing strong dynamic adap-

tations and compositional adaptations applicable to any simulator. This method

is neither restricted to a specific simulator, nor is it restricted to adjusting algo-

rithm parameters. Due to this generality, we call this method simply the Adaptive

Simulator.

4.1 Requirements

The purpose of the Adaptive Simulator is to improve the performance of a simulation

run execution by adaptations during this execution. Obviously, it must be therefore

possible to apply adaptations during the execution of a simulation run. However, it

should be sufficient to allow adaptations between the execution of two simulation

events, as the state of the model and simulator may not be well-defined during the

execution of an event. Also, none of the adaptive approaches considered in Chapter 2

apply adaptations during a step execution.

Further, the Adaptive Simulator must be able to estimate its current performance.

Consequently, a well-defined performance metric must be provided. The metric must

consider all performance aspects that can be changed by adaptations and that are

of importance for the user. For example, if the runtime of the simulation run and

the accuracy of the results are important for the user and both can be influenced by

adaptations, then both properties must be considered for the performance calculation.

If only the runtime would be considered, selected adaptations would probably result

in inaccurate simulators that are fast but not sufficiently accurate. Besides, the

performance calculation itself must be simple. For example, evaluating the runtime

performance could be done by calculating the event throughput. However, measuring

the accuracy of simulation results is typically not done directly based on simulation

results, but a specific level of accuracy is implicitly guaranteed due to simulator

configurations, e.g., see τ -leaping [25]. Explicitly estimating the accuracy of simulation

results is complex and thus might not be suitable to be used as a performance metric.

To be applicable generically and with little user intervention, a) the Adaptive

Simulator must be able to compute the set of its adaptation options automatically

with the help of the simulation system, b) it should use a learning algorithm to

automatically learn when to apply which adaptation, c) it should identify suitable

46

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

adaptation trigger automatically, and d) it should not require past performance data

or previous analysis. Using learning techniques for the Adaptive Simulator makes

it reusable, however, these techniques come with own challenges that must be solved.

Referring to the Adaptive Simulator, it is especially difficult to solve these challenges

due to the wide variety of modeling languages and models that they shall be used for.

Consequently, solutions have to be robust for most scenarios and default configurations

must usually provide sufficiently good results.

In general, besides the possible performance benefits of runtime adaptation, the

Adaptive Simulator should also reduce the user’s configuration effort. Selecting

suitable configurations for concrete simulators is often difficult, however, it is probably

even more difficult to configure a generic adaptive simulator that has too many “cryptic”

meta-level parameters. Thus, the number of such parameters should be as low as

possible and the effect of all existing parameters should be understandable.

Adaptations will probably change concrete simulation results especially in case of

stochastic simulations. This can easily happen and is no problem, e.g., if a new random

number generator is initialized during an adaptation. Statistically, simulation results

would be still correct after such changes. Nevertheless, the Adaptive Simulator

must not be allowed to actively take control over the model evolution, e.g., avoid the

occurrence of rare events that are complex to be calculated. Further, the adaptation

process must guarantee the integrity of the simulator, e.g., all data structures have to

be updated properly — a key challenge for adaptive software [135].

Finally, it must be possible for several Adaptive Simulator instances to use

the same knowledge base. By using multicore machines, several simulation runs

are typically executed in parallel, e.g., replications or simulation runs with different

configurations of the same model. However, even when simulation runs are executed

sequentially, the Adaptive Simulator should not be initialized with an empty knowl-

edge base and learn from scratch but it should use an existing knowledge base when

there is a suitable one available.

4.2 The Structure of the Adaptive Simulator

In JAMES II, every simulator inherits from the class Processor1 that has the im-

portant method nextStep(). This method is used to execute an atomic step of a

simulation run, e.g., execute the next event. Consequently, all simulators in JAMES II

1Initially, the Processor class has been named Simulator, but the developer of JAMES II
thought that this name is too restrictive, as not only simulators, but all types of entities that process
some data can be implemented by using this class. However, here, it will be used only in the context
of simulators.

47

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

+nextStep()

ConcreteSimulator

+nextStep()
-internalSimulator : Processor

AdaptiveSimulator

+nextStep()

Processor

...
internalSimulator.nextStep();
...

Figure 4.1: The wrapper pattern used by the Adaptive Simulator. During the
nextStep() method, the Adaptive Simulator performs analysis tasks and reconfig-
ure or exchange its internalSimulator.

inherit from the same class and use the same method nextStep() to proceed with the

simulation. For the Adaptive Simulator that should not depend on a concrete simu-

lator, nor on a specific modeling language, it is in this case reasonable to exploit this

architecture and to apply the wrapper pattern (see Section 3.2, page 42) as illustrated

in Figure 4.1. As every simulator, the Adaptive Simulator inherits from the class

Processor. However, it is not able to execute any simulation step directly, but it uses

an internal simulator to execute the actual simulation run. Further, by overriding

the nextStep() method, the Adaptive Simulator can perform analysis before and

after the step execution with its internal simulator and moreover it can reconfigure or

exchange this internal simulator. Generally speaking, the control loop (see Section 3.2)

realizing the adaptive behavior can be realized there. Thus, adaptations can be

executed during the execution of a simulation run between the execution of individual

simulation events. Following this idea means that the Adaptive Simulator can be

used as every other simulator, i.e., the adaptation process is integrated transparently.

Nevertheless, it also means that adaptations cannot be performed during the exe-

cution of a simulation step — a consequence that on the other hand also simplifies

the adaptation process, e.g., because the state of the model is well-defined before

and after the execution of a simulation step, but not necessarily during its execution.

Integrating the Adaptive Simulator into JAMES II also allows calculating all valid

simulators and simulator configurations, i.e., the action set A, automatically like done

by the SASF, see Section 2.5.

For the decision-making process, i.e., how to adapt the internal simulator during a

simulation run, the machine learning technique reinforcement learning [185] is suit-

48

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

Agent

Environment

action atreward rtstate st

st+1

rt+1

Figure 4.2: The basic model of interaction in reinforcement learning based on Sut-
ton [185].

able [178]. Reinforcement learning works incrementally and does not require training

data. First, an agent observes a state s ∈ S of a (non-deterministic) environment and

receives a numerical reward for its previous action, see Figure 4.2. Next, it decides

which action a ∈ A to execute for achieving some goal, e.g., to reach a specific state

of the environment. Formally, this is a Markov decision process [13]. Typically, the

goal is encoded in the received numerical rewards. The whole procedure (observe,

analyze, select, execute) is repeated afterward, i.e., the new state of the environment is

perceived and the agent has to decide upon its next action. Eventually, the agent’s task

is to maximize the overall received reward. It has typically neither prior knowledge

on the actions’ effects, nor on the desirability of certain environment states (in terms

of rewards), nor on the transition probabilities between states. Thus, the agent has

to explore the actions and the states of its environment, but it also has to exploit

its (incrementally growing) knowledge to increase its reward, so that eventually the

best action is chosen in any given situation. Moreover, delayed rewards have to be

considered, i.e., in the long run actions with low reward might result to situations with

potentially high rewards. Altogether, reinforcement learning is nicely compatible with

a control loop design for adaptive software like MAPE-K (see Section 3.1), i.e., the

available actions of the agent correspond to the available adaptations and the states

of the environment correspond to the data the adaptive component can monitor.

A popular reinforcement learning algorithm is Q-Learning [196]. Q-learning is a

temporal-difference learning method, i.e., it estimates the utility of a state s by also

considering the estimated utility of the successor state s′ and it does not require any

prior knowledge on the environment’s state transitions. Q-learning learns how valuable

it is to take an action a ∈ A after observing a state s ∈ S in form of q-values: the

higher the q-value for a state and an action, the better it is to take this action after

observing this state. All q-values can be represented by an |S| × |A| matrix (Q(s, a)).

In this simple case, neither an infinite number of states nor an infinite number of

49

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

actions is allowed. The learning rule of Q-learning is defined as follows:

Q(st, at) = Q(st, at) + α · [rt+1 + γ · max
a∈A

Q(st+1, a) −Q(st, at)]. (4.1)

The q-value Q(st, at) is updated by using the current q-value, the received reward

rt+1 and the best possible q-value of the successor state st+1, i.e., maxa∈AQ(st+1, a).

The best possible q-value of the successor state is multiplied by a discount factor

γ ∈ [0, 1]. The discount factor can be used to configure the influence of future rewards

on the current q-value. Further, a learning rate α ∈ [0, 1] is used to configure the

learning speed. It usually decreases for at and st the more often at has been chosen

after observing st. The action selection in Q-learning can be done by multi-armed

bandit policies [7].

Abstracting from the concrete realization within the experimentation layer in

JAMES II, the basic algorithm as realized by the Adaptive Simulator is described

in Algorithm 4.1. The algorithm’s outer loop (l. 6–33) covers the adaptive execution

of a single simulation run, while the algorithm’s inner loop (l. 11–15) covers the

simulation between two adaptations. After the execution of a simulation event (l.

12), data from the model (e.g., the values of variables, the number of components,

or the coupling structure), data from the internal simulator (e.g., the number of

triggered events, the event queue length, or the usage of auxiliary data structures),

and data from the environment (e.g., the number of cores available or the memory

load) are collected (l. 13). One tuple of all collected data is referred to as a base

state σ ∈ Σ. Base states represent the current phase of the simulation run [142],

i.e., the features that determine the computational characteristics of the simulation

execution. Consequently, the feature selection problem is not solved by the Adaptive

Simulator directly, but by the developers of every component that is used.

Figure 4.3 illustrates the components of the Adaptive Simulator. Basically, the

knowledge base saves the q-value matrix updated by Q-learning. The action selection

uses the knowledge base to decide which action to choose during an adaptation.

The selected action influences the internal simulator and this action must also be

forwarded to Q-learning for the next learning iteration. The state handling deals with

the observed data to calculate states for the reward function, Q-learning, and the

adaptation conditions. The following paragraphs discuss these components in more

detail.

Adaptation Condition. It is not reasonable to execute adaptations between every

event execution per default, since a) probably the computational characteristics will

not change that frequently and b) the decision-making process as well as the adaptation

50

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

Algorithm 4.1 Pseudo-code for the Adaptive Simulator.
Q: q-value matrix indexed by aggregated state s ∈ S and action a ∈ A.
N : matrix of counters for visited (s, a) tuples.
s, s′ ∈ S: previous and current aggregated state.
a ∈ A: action.
r ∈ R: reward.
σ ∈ Σ: current base state.
τ ∈ Σ∗: current base state trajectory (seq. of base states).
internalSimulator: current internal simulator.

1 s := s0
2 a := a0
3 internalSimulator = initialize (a)
4

5 // Adaptation loop
6 r epeat {
7 N [s, a] := N [s, a] + 1
8 τ := []
9

10 // Simulat ion loop
11 r epeat {
12 internalSimulator . nextStep ()
13 σ := observe ()
14 τ := τ + σ
15 } u n t i l adaptationCondition (τ)
16

17 // Ca l cu la t e reward
18 r := R(τ)
19

20 // Process base s t a t e t r a j e c t o r y to s t a t e
21 s′ := p(τ)
22

23 // Update knowledge base with Q−Learning
24 Q[s, a] := Q[s, a] + α(N [s, a]) · (r + γ · max

a′∈A
Q(s′, a′) −Q[s, a])

25

26 s := s′

27

28 // S e l e c t next ac t i on based on s,Q,N
29 a := f(s,Q,N)
30

31 // Adapt i n t e r n a l s imu la to r
32 internalSimulator := adapt (internalSimulator , a)
33 } u n t i l isTerminal ()

51

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

Adaptive Simulator

State Handling

Knowledge Base

Reward Function

Q-learning

Internal
Simulator

Adaptation
Condition

Action Selection

Figure 4.3: Overview and influences of the main components of the Adaptive

Simulator.

execution cause additional computational costs. Further, algorithms with warm-up

phases would not be considered suitably as they would not get the chance to exploit

their full potential. An adaptationCondition(τ) method is used to decide whether

to perform an adaptation (l.15) and therefore a sequence of base states is available to

represent the current phase of the simulation2. A sequence of base states defines a

base state trajectory τ ∈ Σ∗:

τ = σ1σ2 . . . σn.

Various possibilities exist to realize the adaptationCondition(τ) method, e.g., it

could be static, so that an adaptation is executed after a fixed number of simulation

events, or it could be more flexible, so that an adaptation is executed depending on

properties of τ . Section 4.4 presents several possibilities in more detail.

State Handling. Base states can be high-dimensional and a base state trajectory

can include many base states. Using a base state trajectory directly for a learning

algorithm will therefore probably result in the curse of dimensionality [14], i.e., the

number of states is too high for a suitable learning effectiveness. Consequently, after

the reward for the current base state trajectory τ has been calculated, it is processed

into an aggregated state s′ ∈ S by using a function p : Σ∗ → S (l. 21). Aggregated

states represent condensed base state trajectories. They have fewer dimensions and

should therefore be more suitable for the learning algorithm.

A useful approach to realize the function p is to divide it into two processes,

2In contrast to our initial approach in [75] and [76], the adaptation conditions are not integrated
into the actions.

52

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

Base State σ ΣBase State σ Σ

Model
(#model entities, entity properties, ...)

Simulator
(load, events, ...)

Environment
(#cores, processes, ...)

Base State σ ΣBase State Σ

Aggregated State s S

Macro State m M

Base State Trajectory τ

p1: Σ* S
p2: S M

ob
se

rv
e(

)

Figure 4.4: Overview of the state observation, aggregation of base state trajectories
and generalization of states of the Adaptive Simulator.

p1 : Σ∗ → S and p2 : S → M,M ⊆ S, see Figure 4.4. The function p1 is responsible

to aggregate a sequence of base states to an aggregated state, e.g., by calculating the

average values of all dimensions resulting in an “averaged” base state. Further, this

function has to be able to deal with base states with different quantities of data. This

is the case, for example, if an agent-based model is simulated, the number of agents

changes during runtime and the age of each agent is used as one element of the base

state tuple. Clearly, in such a case, a generic version of the function p1 cannot be

used, but a domain-specific variant has to be implemented that can exploit specific

features of possible base states. For example, referring to the agent-based model by

calculating the average age of all agents.

The function p2 can realize a generalization of the calculated aggregated state.

It partitions the space S of the aggregated states into disjunct regions and maps all

aggregated states of a region to the same macro statem ∈ M that is used to represent

the region, i.e., ∀s ∈ S ∃!m ∈ M : m = p2(s). Since M ⊆ S, a macro state m ∈ M is

always also an aggregated state, i.e., m ∈ S. Thus, Algorithm 4.1 does not deal with

macro states explicitly. The advantage of the distinction between p1 and p2 is that only

p1 has to deal with a dynamic number of base states considering application-dependent

knowledge. Further, p2 can apply generic generalization methods for reinforcement

learning and can be implemented application-independently. Section 4.3 discusses in

more detail the opportunities and challenges of generalization within the Adaptive

Simulator.

Reward. When an adaptation shall be executed, i.e., adaptationCondition(τ)

returns true, at first a reward r ∈ R is calculated by using the function R : Σ∗ → R

(l. 18). The reward represents the performance of the current internalSimulator

to execute the last n simulation events resulted in τ = σ1σ2 . . . σn. The overall goal

53

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

of the Adaptive Simulator is to maximize the received rewards. As the runtime is

often an important performance characteristic, the reward could simply represent the

event throughput, i.e., the number of calculated events per second. In contrast to

the AdaptiveSimulationRunner (see Section 2.5.3), using the runtime itself is not

a suitable performance metric, as it does not consider the length of the simulation

loop — a problem that is ignored in the context of the AdaptiveSimulationRunner:

Only the runtime of a replication execution is measured without considering the

executed number of simulation events. Besides, it can be advantageous to use a

logarithmic event throughput as reward since it pronounces the differences between

small event rates over those between high rates [74]. In principle, other metrics are also

possible for the reward like the energy consumption or the accuracy of the simulation

results. As written in Section 4.1, the used performance metric must at least reflect

all characteristics that are of importance for the user and that can be changed by

adaptations. Moreover, the impact on the reward of factors not considered in the base

states should be small. This is often difficult to ensure even for runtime performance,

since the concrete runtime can be influenced significantly for example by concurrently

executed processes.

Actions. Besides the reward function R : Σ∗ → R and the state space S, the action

set A is central in the description of the Adaptive Simulator. Analogously to the

AdaptiveSimulationRunner, selection trees can be used as actions (see Section 2.5.1),

i.e., an action represents a complete hierarchical configuration of a simulation algorithm.

Executing an action a ∈ A, i.e., executing the method adapt(), means that

the current internalSimulator of the Adaptive Simulator is changed so that the

updated internalSimulator has the configuration represented by a (l. 29). This

procedure can be realized in different ways. Firstly, it could determine the differences

between the old and the new action, and adapt only those points of the simulator (i.e.,

parameters, sub-plugins) that have to be changed. This procedure is useful in case

only few elements like primitive parameter values have to be changed. Nevertheless,

the updated internalSimulator must be valid, i.e., new plugins must be initialized

properly. Further, the integrity and the validity of changed plugins have to be checked

and guaranteed. To avoid these challenges, another approach for the adapt() method

is to exchange the internalSimulator completely. The newly selected simulator is

simply initialized with the current state of the model. The developers have therefore

not to deal with complex initializations and integrity checks of plugins. Therefore, we

implemented this generic adapt() method for the Adaptive Simulator. Nevertheless,

the simulation system must provide model state objects that can be used to initialize

the simulators — a requirement fulfilled in JAMES II due to the strict separation

54

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

between model and simulator.

Learning Function. After computing the aggregated state s′ based on the current

state space trajectory τ , the Q-Learning rule is applied to update the q-value of action

a and the previous aggregated state s (l. 24). The learning rate α : N → [0, 1] depends

on the number of selections already made for action a after observing the aggregated

state s. In the most simple case, α(N [s, a]) = 1
N [s,a]

, i.e., the learning rate for action

a and the aggregated state s converges to 0 with an increasing number of selections

of this state-action pair. As usual, delayed rewards are considered discounted by the

factor γ ∈ [0, 1] by using the maximum q-value achievable for the current aggregated

state s′. The purpose of delayed rewards is to consider long-term achievements, e.g.,

to justify low rewards that are necessary to reach a specific area within the state

space that promises high rewards. Referring to the Adaptive Simulator, considering

delayed rewards can be useful if simulators, data structures or sub algorithms have

warm-up phases and are worth to be reused after an adaptation. For example, it

might be worth to reuse a grid file [143] that is filled completely instead of creating

a new empty grid file. To exploit this fact, the adapt() method would have to be

realized in the way so that it is only changing the simulator as necessary and it is not

exchanging the simulator completely.

The function f : S × R
|S|×|A| × N

|S|×|A| → A (l. 29) represents the policy respon-

sible for action selection, i.e., a multi-armed bandit policy. Generally speaking, it

determines the trade-off between exploration and exploitation. Analogously to the

AdaptiveSimulationRunner, many policies can be used like ε-greedy, ε-decreasing,

UCB1 [6], etc.

4.3 State Space Generalization

Due to high-dimensional and real-valued state spaces, it might be not feasible to learn

selection policies for each state individually. Therefore, an agent typically generalizes

the environment’s states it perceives [185]. On the one hand, generalization reduces

the learning effort due to a smaller number of distinguishable states; on the other

hand, too much generalization may remove important distinctions in the state space,

and thus reduces the potential for choosing the right action in the right state. To

account for this trade-off, the degree of generalization must be chosen carefully. Basic

reinforcement learning approaches use a predefined regular grid to partition the state

space, so that the same degree of generalization is used for the whole space. This

procedure is neither easy to use nor optimal. Firstly, the user has to configure the

degree of generalization manually, which requires environment knowledge. Secondly, a

55

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

high degree of generalization might be suitable for specific areas of the state space, but

unnecessary for other areas. Suppose an agent that tries to find the exit in a maze and

its only information about the environment is its absolute position with millimeter

accuracy inside the maze. Shall it generalize its position by rounding it to centimeters,

decimeters, or meters? In a big, empty room, meters might be suitable. In front of a

pit, centimeters might be a better choice. Dynamic aggregation algorithms partition

the state space dynamically into disjunct macro states. This is necessary because it is

not reasonable to manually determine a suitable partitioning.

Referring to the Adaptive Simulator, the size of the space S of aggregated states

depends on two parts:

1. The selected features of the model, simulator and environment to be observed.

2. The aggregation method p1 that transforms a base state trajectory τ ∈ Σ∗ to an

aggregated state s ∈ S.

The first part depends on the developers of the modeling language, the simulation

system and the plugins used by the simulators. Only information provided by the

observe() method can be used by the Adaptive Simulator to distinguish simulation

phases. Here, developer should already reasonably select information that could be

of interest for the Adaptive Simulator. Nevertheless, deciding what information

could be useful or not is challenging and in case of doubt, the information should be

rather added. Thus, a base state σ ∈ Σ will probably be high dimensional including

continuous dimensions.

The aggregation of a base state trajectory τ ∈ Σ∗ to an aggregated state s ∈ S

done by p1 can be realized in various ways. For example, it can calculate averages of

dimensions. It could also calculate minimum or maximum values of specific dimensions.

Moreover, outlier base states could be emphasized or neglected. Further, one could

analyze the performance of the applied simulator for each base state individually and

decide, dependent on the performance, which base states are important and which

are not. So far, we have not developed concepts for such sophisticated p1 methods

and only followed the idea of p1 calculating the average of all base states — a simple

approach assuming that the base states of one trajectory do not differ significantly

and that the performance of a base state trajectory is determined averagely by all of

its base states.

The function p2 generalizes aggregated states to macro states. Consequently, p1 is

not allowed to be changed during runtime as the generalization would not be consistent

in this case. The generalization creates a partitioning of disjunct regions within the

state space by mapping all aggregated states of a region to the same macro state. In

the most simple case, one static region can be used for the whole state space S, i.e.,

56

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

Number of Simulation Event

E
xe

cu
tio

n
Ti

m
e

in
 s

●

●

●

●

●

●

●

●
●

0 10000 20000 30000

0.00.0

0.1

0.2

0.3

0.4

● Simulator A

Simulator B

Figure 4.5: From [76]. Execution times for the two ML-Rules simulator configurations
for the ML-Rules benchmark model. Each data point shows the execution time
summed over 100 simulation events.

∀s ∈ S : p2(s) = m so that M = {m}. Consequently, all observed features would

be ignored and no simulation phases with different computational demands could be

distinguished. However, this approach could also be useful, as it reduces the learning

problem to a multi-armed bandit setting [6]. More interesting generalization methods

can be implemented statically, i.e., by simply rounding continuous values or by using

a regular grid over the state space. However, dynamic generalization algorithms

can also be applied in case of metric dimensions. In Section 4.3.1, the decision

boundary partitioning algorithm [165] is applied to the Adaptive Simulator.

In Section 4.3.2, the adaptive vector quantization algorithm [114] is applied

to the Adaptive Simulator. To illustrate the generalization concepts, a running

example is given at the end of each section.

Running Example Part 1

Suppose the Adaptive Simulator shall be applied to ML-Rules (a modeling language

to simulate biochemical reaction networks, see Section 5.1). Further, suppose that two

simulators for ML-Rules are available: Simulator A and Simulator B. In ML-Rules,

the reaction network can be dynamic and might change during runtime. Similarly,

the number of species can change during runtime. Therefore, one might conclude that

the number of reactions and the number of species are important for the runtime

performance of the simulator. In this example, we assume that these features are used

to describe a base state. Consequently, the base state space Σ is two-dimensional,

i.e., Σ = N
2, and a base state σ is a tuple: (s, r) (s represents the current number of

species, r represents the current number of reactions in the reaction network). A base

state trajectory therefore is a sequence of these tuples, e.g., τ = ((s1, r1), (s2, r2), . . .).

57

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

●

●

●
●●

●●●

●

●
●
●●

●

●●

●

●

●

●●●●●●

●

●
●

1 10 100 500

35
40

45
50

55
60

65

Grid Size

Av
er

ag
e

E
xe

cu
tio

n
Ti

m
es

 p
er

 R
ep

lic
at

io
n

in
 s

Best Case
Simulator A
Simulator B

Figure 4.6: Distribution of average runtime per replication of the Adaptive Simulator

with different state space grid sizes.

Further, the function p1 : Σ∗ → S shall aggregate a base state trajectory by averaging

its tuples, i.e.,

p1(τ) = (
s1 + s2 + . . .

|τ | �,
r1 + r2 + . . .

|τ | �).

Using these methods, we executed 100 simulation runs (40, 000 events per run)

with the Adaptive Simulator of an ML-Rules benchmark model (see Section 5.7,

page 110). Further, the Adaptive Simulator is executing these simulation runs

sequentially and it is reusing gained knowledge of already simulated replications. To

get suitable statistics about the efficiency of the Adaptive Simulator, the whole

experiment has been repeated 100 times. The Adaptive Simulator uses ε-decreasing,

Q-learning with α(N [s, a]) = 1
N [s,a]

, γ = 0, a log2n reward of the event throughput and

adapts each 1000 simulation events. All experiments of the running examples have

been executed with the same machine (Intel Xeon CPU X5690, 48GB RAM, Windows

7 64bit, Java 8). Detailed runtime results of Simulator A and Simulator B are

shown in Figure 4.5. Thus, Simulator B is more efficient for the first and third part

of the simulation run and Simulator A is more efficient for the second and fourth part.

For a whole simulation run, both simulators perform similarly on average for a whole

simulation run (Simulator A: ≈ 58s, Simulator B: ≈ 62s). Figure 4.7 (top) shows

all occurring states based on the aggregation of the observed base states trajectories

(left) and the better simulator for each observed state (right). Altogether, more than

400 states can be observed. For each state, Q-learning must learn which simulator

58

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

0 100 200 300 400 500

0
50

10
0

15
0

Number of Species

N
um

be
r o

f R
ea

ct
io

ns

20

40

60

80

100

120

Number of Occurrences of Observed States

0 100 200 300 400 500

0
50

10
0

15
0

Number of Species

N
um

be
r o

f R
ea

ct
io

ns

Dominant Simulator for each State

0 100 200 300 400 500

0
50

10
0

15
0

Number of Species

N
um

be
r o

f R
ea

ct
io

ns

100

200

300

400

500

Number of Occurrences of Observed States

0 100 200 300 400 500

0
50

10
0

15
0

Number of Species

N
um

be
r o

f R
ea

ct
io

ns

Dominant Simulator for each State

0 100 200 300 400 500 600

0
50

10
0

15
0

20
0

Number of Species

N
um

be
r o

f R
ea

ct
io

ns

500

1000

1500

2000

Number of Occurrences of Observed States

0 100 200 300 400 500 600

0
50

10
0

15
0

20
0

Number of Species

N
um

be
r o

f R
ea

ct
io

ns

Dominant Simulator for each State

0 200 400 600 800 1000

0
10

0
30

0
50

0

Number of Species

N
um

be
r o

f R
ea

ct
io

ns

1000

1500

2000

2500

3000

3500

4000

Number of Occurrences of Observed States

0 200 400 600 800 1000

0
10

0
30

0
50

0

Number of Species

N
um

be
r o

f R
ea

ct
io

ns

Dominant Simulator for each State

Grid Size: 10

Grid Size: 100

Grid Size: 500

Figure 4.7: Illustration of observed states without generalization (top) and with a
grid-based generalization and three different grid sizes. Left: All occurred states
for the ML-Rules benchmark model. The color denotes how often a state has been
observed. The color black is used for states that have not been observed. Right: For
each observed state, the better simulator is shown (yellow = Simulator A, blue =
Simulator B).

59

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

0.0 1.0 2.0 3.0
0.

0
0.

5
1.

0
1.

5
2.

0
x

y
0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

Figure 4.8: Illustration of state splitting (from left to right) by the DBPA. Gray
marked states are split at the blue lines, i.e., the midpoint of their longest dimension.

performs better. Therefore, using a generalization method for this example might

be effective, since for some areas of the state space, Simulator A (yellow) dominates

and for other areas Simulator B (blue) dominates. Firstly, we applied a regular grid

to generalize states with different sizes for each grid cell. Figure 4.7 also shows the

observed states and dominant simulators when using a fixed grid for the generalization

of states with three different grid sizes (10, 100 and 500). Referring to the results of the

Adaptive Simulator, the more coarse grained the generalization of the state space,

the fewer states are observed and the learning efficiency is increased, see Figure 4.6. In

case of a too coarse grained generalization, however, the performance becomes worse

as the simulation phases cannot be distinguished suitably anymore. Clearly, using

a generalization based on a fixed grid can be beneficial, however, it is not trivial to

determine a suitable grid size and different sizes might be suitable for different areas

of the state space.

4.3.1 Decision Boundary Partitioning

A well-known dynamic partitioning algorithm is the decision boundary partition-

ing algorithm (DBPA) [165]. This algorithm starts with two macro states. At the

beginning of each trial or every n ∈ N steps the algorithm analyzes all adjacent macro

states. The areas of two adjacent macro states msi and msj are split at the midpoint

of their longest dimension if the following three conditions hold. First, based on the

current knowledge, the best action in both macro states differ, i.e.,

argmax
a∈A

Q[msi, a]
= argmax
a∈A

Q[msj, a]. (4.2)

60

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

Second, one absolute difference between the q-values of the best actions ai and aj is

higher than Δmin ∈ R:

|Q[msi, ai] −Q[msi, aj]| > Δmin ∨ |Q[msj, ai] −Q[msj, aj]| > Δmin. (4.3)

Third, all actions of both states have been visited at least vmin times:

∀a ∈ A : N [msi, a] ≥ vmin ∧N [msj, a] ≥ vmin. (4.4)

The first condition guarantees that areas are only split if there is a change with respect

to the best action. The second condition avoids unnecessary splits because probably

no benefit can be expected. The third condition is important to avoid splits based

on fragile knowledge. Figure 4.8 illustrates how areas of a two dimensional space

[0, 3] × [0, 2] could be split by the DBPA.

However, these conditions do not guarantee a suitable partitioning. For example,

if many states occur inside the same area but not inside its neighbors, this algorithm

will not split this area although it could be useful. In the worst case, no splits are

executed at all because the initial areas have been set poorly.

In principle, the algorithm can be applied to the Adaptive Simulator [90]. Each

n ∈ N
+ adaptations, directly after updating the knowledge base (Algorithm 4.1, l.24)

a partitionCheck() method is called that splits all adjacent regions fulfilling the

three splitting conditions. When a region represented by the macro state m is split,

two new regions with the macro states m1 and m2 are created that initially use the

q-values of m, i.e., ∀a ∈ A : Q(m1, a) = Q(m2, a) = Q(m, a). However, the counter

matrix N is reset for the new regions, i.e., ∀a ∈ A : N(m1, a) = N(m2, a) = 0. Thus,

the new regions consider the knowledge of their “parent” region, but they are also

willing to explore again.

Regions are split at the midpoint of their longest dimension. Thus, it is necessary

to define a range of each dimension. Unfortunately, no minimum and maximum

values for each dimension are known by the Adaptive Simulator during runtime,

i.e., fixed ranges would have to be set manually by the user. Instead, we use the

current minimum and maximum values of all occurred states, see Figure 4.9. When a

state occurs outside of the current state space area, the area is extended to this state

accordingly.

Although the algorithm seems to be promising in general to dynamically partition

a state space for reinforcement learning, it turned out that it is difficult to be

applied to the Adaptive Simulator. Firstly, there are too many parameters that are

difficult to configure: the splitting frequency n, the minimum reward difference of

neighbored states δmin, the minimum number of action selections vmin, and the initial

61

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

y

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x
y

Figure 4.9: Left: A new state (top right) occurs outside the current state space area
(grey area) determined by the outermost states for each area. Right: The blue area
has been extended to the new state.

partitioning. Especially a suitable initial partitioning is essential for the effectiveness

of the algorithm, i.e., if most states occur within the same region and not within its

neighbor regions, no splits would be executed at all. In general, the restriction that

only two adjacent regions can be split simultaneously by fulfilling the requirements

hampers the effectiveness of the algorithm. Additional requirements for individual

regions to be split should be added. For example, split a region if a specific number of

states occurred inside it.

Running Example Part 2

Continuing the running example, we executed simulation runs with the Adaptive

Simulator using the DBPA (n = 5, δmin = 0.01, vmin = 2). Figure 4.10 shows

three calculated state space representations chosen from the 100 repetitions of the

whole simulation experiment: the generalization resulting in the best performance,

the generalization resulting in the worst performance and a generalization resulting

in an average performance are shown. Figure 4.11 shows the distribution of the

average runtime per replication of the repetitions. All in all, in most cases, the

Adaptive Simulator performs better with the DBPA compared to the fixed grids,

i.e., it learns more efficiently. Nevertheless, in some cases, the DBPA fails (see the

worst case generalization in Figure 4.10) and only the performance of Simulator A

is achieved. Generally, we spent much effort to find at least one configuration of

62

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

0 100 200 300 400 500 600

0
50

10
0

15
0

20
0

Number of Species

N
um

be
r o

f R
ea

ct
io

ns
Best Case

0 100 200 300 400 500 600

0
50

10
0

15
0

20
0

Number of Species

N
um

be
r o

f R
ea

ct
io

ns

Worst Case

0 100 200 300 400 500 600

0
50

10
0

15
0

20
0

Number of Species

N
um

be
r o

f R
ea

ct
io

ns

Average Case

Figure 4.10: Illustration of the created state space representation with the DBPA used
by the Adaptive Simulator with the ML-Rules benchmark. For each observed state,
the better simulator is shown (yellow = Simulator A, blue = Simulator B).

63

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

●

●●
●●●●
●●●
●
●

●

●●●

●

●

●
●●

●●●

●

●●
●●

●

●●

●

●

●

●●●●●●

●

●
●

DBPA Grid (size=1) Grid (size=10) Grid (size=100) Grid (size=500)

35
40

45
50

55
60

65

Av
er

ag
e

E
xe

cu
tio

n
Ti

m
es

 p
er

 R
ep

lic
at

io
n

in
 s

Best Case
Simulator A
Simulator B

Figure 4.11: Distribution of average runtime per replication of the Adaptive

Simulator using the DBPA compared to grid-based results.

the DBPA which produced some suitable results — the DBPA has been sensitive to

small parameter changes. For most configurations, either too few splits had been

executed (important decision boundaries have not been considered) or too many splits

had been executed (the learning rate of the algorithm decreased significantly). This

configuration challenge contradicts the requirement of the Adaptive Simulator to

reduce the configuration effort of the user as well as the failure rate of the DBPA

motivate the exploration of alternative generalization methods.

4.3.2 Adaptive Vector Quantization

Another group of aggregation algorithms uses the idea of the nearest neighbor vector

quantization to identify macro states, e.g., the adaptive vector quantization

algorithm (AVQ) [114]. These algorithms maintain a codebook CB ⊆ S containing

specific states that are called codewords. A nearest vector quantizer is used to map a

state s ∈ S onto the nearest codeword c ∈ CB available in the current codebook, i.e.,

the nearest neighbor problem must be solved [186]. Basically, this mapping creates

a partitioning of the state space into disjoint regions. Figure 4.12 shows how such a

partitioning can evolve in form of Voronoi diagrams. In contrast to the DBPA, the

areas of the state space created by a codebook can form more complex shapes than

hyperrectangles. Algorithm 4.2 outlines the AVQ. To decide whether new codewords

shall be added to the codebook, the algorithm uses a concept based on the accumulated

reward (accReward), that “with respect to a particular action is the sum of the total

64

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

Algorithm 4.2 Outline of the pseudo-code for the AVQ [114].
Q: q-value matrix indexed by state s ∈ S and action a ∈ A.
N : matrix of counters for visited (s, a) tuples.
CB ⊆ S: codebook. c, c′ ∈ S: codeword.
s, s′ ∈ S: state. a, a′ ∈ A: action. r ∈ R: reward.

1 s := i n i t i a l (S) // Get i n i t i a l s t a t e
2 c := nearest codeword (s ,CB) // Get codeword f o r i n i t i a l s t a t e
3 a := n e x t a c t i o n (Q, s) // Use MABP to s e l e c t ac t i on
4 accReward := 0
5

6 r epeat { // T r i a l loop
7 execute (a) // Apply ac t i on
8 s′ := observe () // Observe next s t a t e
9 r := reward (s′)

10 c′ := nearest codeword (s′ ,CB)
11 a′ := n e x t a c t i o n (Q, c′)
12

13 i f (c == c′) { // Check i f codeword has not changed
14 accReward := accReward + r
15 i f (accReward > χ && d i s t (c′, s′) > Δ) {
16 CB := CB ∪ {s′}
17 c′ := s′

18 update A (Q,N, c′, a, r) // Update knowledge base
19 accReward := 0
20 } e l s e {
21 a′ := a // Reuse prev ious ac t i on
22 }
23 } e l s e {
24 Q(c, a) := Q(c, a) + α · [r + γ · max

a
Q(c′, a) −Q(c, a)] // Q−l e a r n i n g

25 accReward := 0
26 }
27 c := c′ , a := a′

28 } u n t i l end o f t r i a l
29

30 // Merging proce s s
31 f o r (c ∈ CB) {
32 c′ := ne a r e s t n e i g h b o r (c ,CB)
33 i f ((

∑
a∈A(Q[c, a] −Q[c′, a])2) ÷ |A| < ρ) {

34 CB := (CB\{c, c′}) ∪ {(c + c′)/2}
35 update B (Q,N, c, c′) // Update knowledge base
36 }
37 }

65

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

●

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

0.0 1.0 2.0 3.0
0.

0
0.

5
1.

0
1.

5
2.

0
x

y

●

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

●

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y ●

Figure 4.12: Illustration of codebook extension by the AVQ. Codewords (blue circles)
are added from left to right and the state space partitioning is adapted accordingly.

rewards received by continuously taking the same action within a particular cell” [114].

The accumulated reward increases if the observed states map to the same codeword

(l.13-14). Further, if the accumulated reward exceeds a threshold χ ∈ R, the current

state is added to the codebook and the matrix of q-values and selection counters is

updated (l.18). Otherwise, the previously executed action is selected again (l.21).

Thus, as long as the observed states map to the same codeword and the accumulated

reward is not large enough, the same action is used repetitively. The q-values are not

updated in this case; they are only updated if two successive observed states map to

different codewords (l.24).

After finishing a trial, in contrast to the DBPA, a merging process is executed

(l.31-37), see Figure 4.13. Here, for every nearest neighbor pair of codewords (c, c′),
it is checked whether the mean squared difference of their q-values is smaller than a

threshold ρ ∈ R. In this case, the codewords c and c′ are removed from the codebook,

a new codeword [(c + c′)/2] ∈ S is added to the codebook (l.34), and the knowledge

base is updated properly (l.35).

We integrated the AVQ to the Adaptive Simulator [79]. The codebook CB of

the algorithm can directly be used as the set of macro states, i.e., M = CB. However,

the concept of the accumulated reward is not applied directly to the Adaptive

Simulator. First, the codebook is only extended if successive states often map to

the same codewords (otherwise, it is unlikely that accReward > χ). This assumption

might be useful in various scenarios, e.g., in the maze scenario in which the agent

cannot “beam” itself trough the state space. However, successive observed states

of the Adaptive Simulator can be completely different, so that it is possible that

they will not frequently map to the same codeword. In this case, the codebook would

quickly stop to grow as the accumulated reward is always set to 0 after a codeword

change. Second, using the same action repetitively if no codeword change has been

observed can directly reduce the efficiency of the adaptive simulator since it performs

66

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

Figure 4.13: Illustration how two codewords are merged by the AVQ. Left: The
codewords of the gray marked areas shall be merged. Right: A new codeword lying
between both old codewords has been added to the codebook.

the learning online and has no separated learning phase. Third, the knowledge base

is only updated when a new codeword is added, so that all rewards received during

a phase of accReward increases are ignored for the q-values. Especially when the

performance varies a lot, this can reduce the learning effectiveness.

Consequently, based on these arguments, we replaced the concept of the accu-

mulated reward with a condition inspired by the DBPA: a state s mapped to the

codeword c is added to the codebook if the absolute difference of the current reward

and the last reward achieved by the same action for any other state s′ mapped to c is

higher than a threshold α ∈ R. Generally speaking, a state is added to the codebook

if the rewards of an action differ significantly within its region. In our first approach

of the algorithm [136], see Algorithm 4.3, we also use a minimum distance condition,

i.e., dist(s, c) > Δ, and the merging routine is executed each md ∈ N adaptations.

Altogether, the algorithm uses five parameters:

• α ∈ R
+: Minimum difference of two rewards for the same action and region to

add a state of this region to the codebook.

• Δ ∈ R
+: Minimum distance of two codewords.

• vmin ∈ N
+: Another trigger to add a state to the codebook, i.e., if a region has

been visited vmin times, the current observed state of this region is added to the

codebook.

• md ∈ N
+: Frequency of merging routine as defined in Algorithm 4.5.

• ρ ∈ R
+: Maximum mean squared reward difference of nearest neighbor codewords

to be merged, see Algorithm 4.5, l. 3.

67

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

Algorithm 4.3 Pseudo-code of our initial version of the AVQ within the Adaptive

Simulator.
Q: q-value matrix indexed by aggregated state s ∈ S and action a ∈ A.
N : matrix of counters for visited (s, a) tuples.
s ∈ S: current aggregated state. m ∈ M : macro state of s.
a ∈ A: current action. r ∈ R: current reward.
L : M × A → R: matrix containing the last rewards indexed by macro states and
actions.
vmin: minimum number of selections of an action a for a state s to add s to the
codebook.
counter: global counter of partitionCheck() calls.

1 counter := counter + 1
2 m := nearestNeighbor (M, s)
3

4 // check to add s to codebook
5 i f ((|L[m, a] − r| > α | | ∑ai∈A N [s, ai] > vmin) && d i s t (m ,s) > Δ) {
6 M := M ∪ {s}
7 f o r (ai ∈ A) {
8 Q[s, ai] := Q[m, ai]
9 N [s, ai] := 0

10 }
11 m := s
12 }
13 L [m, a] := r
14

15 // s t a r t merge rou t i n e
16 i f (counter > md) {
17 merge () // see Algorithm 4.5
18 counter = 0
19 }
20

21 r e turn m

To avoid an additional configuration effort, we used ParamILS [94] to find one

configuration of this AVQ variant that works well for a set of benchmark scenarios [136].

ParamILS is an automatic configuration search framework available in JAMES II [44]

used to systematically search a configuration space. Basically, ParamILS starts with a

manually chosen configuration c0 and r ∈ N randomly chosen configurations (c1, . . . , cr)

and determines the best performing configuration ci of these configurations. Next,

a local search is started from ci, i.e., the best performing configuration cj of ci and

68

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

Algorithm 4.4 Pseudo-code for p2 based on our variant of the AVQ algorithm,
see [79]. The merging routine is executed separately at the end of each simulation run
(see Algorithm 4.5).
Q: q-value matrix indexed by aggregated state s ∈ S and action a ∈ A.
N : matrix of counters for visited (s, a) tuples.
s ∈ S: current aggregated state. m ∈ M : macro state of s.
a ∈ A: current action. r ∈ R: current reward.
L : M × A → R: matrix containing the last rewards indexed by macro states and
actions.

1 m := nearestNeighbor (M, s)
2 i f (|M | < cmax && |L [m, a] − r | > α) {
3 M := M ∪ {s}
4 f o r (ai ∈ A) {
5 Q[s, ai] := Q[m, ai]
6 N [s, ai] := 0
7 }
8 m := s
9 }

10 L [m, a] := r
11 r e turn m

its neighbor configurations is determined and the process is repeated with ci = cj
until no improvement can be observed anymore. Additionally, during the local search

ParamILS restarts with a random configuration with probability prestart. Referring

to the AVQ and the benchmark scenarios, we have not been able to determine one

configuration with satisfying results for all scenarios.

Based on these results, we changed the algorithm [79], see Algorithm 4.4 and

Algorithm 4.5. The minimum distance δ has been removed. This parameter is used

to avoid arbitrary small regions. It is challenging to configure this parameter for a

concrete problem because the scales of the state space dimensions are typically not

known initially. Also, a tiny distance might be useful for some regions, whereas for

other regions it might be unnecessary. We replaced the minimum distance restriction

with an approach limiting the size of the codebook with a parameter cmax ∈ N
+.

Basically, the smaller cmax is chosen, the fewer simulation phases can be distinguished,

but also the exploration effort is reduced. This effect can be advantageous if there is not

much time available for exploration, e.g., in case a user is developing a model and often

starts only one simulation run with the current model, then changes it, then starts

one simulation run again, etc. Further, we removed the parameter vmin. Originally,

the purpose of vmin was to avoid a situation in which a region is not split although it

69

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

Algorithm 4.5 Pseudo-code for our AVQ merging method, see [79].
Q: q-value matrix indexed by aggregated state s ∈ S and action a ∈ A.
N : matrix of counters for visited (s, a) tuples.
m1,m2 ∈ M : macro states to be merged. mnew ∈ M : new macro state.

1 f o r (m1 ∈ M) { // newly merged macro s t a t e s are not cons ide r ed
2 m2 := nearestNeighbor (M,m1)
3 i f ((

∑
ai∈A(Q[m1, ai] −Q[m2, ai])

2) ÷ |A| < ρ) {
4 mnew := (m1 + m2)/2
5 M := (M\{m1,m2}) ∪ {mnew]}
6 f o r (ai ∈ A) {
7 Q[mnew, ai] := (Q[m1,ai]·N [m1,ai]+Q[m2,ai]·N [m2,ai])

(N [m1,ai]+N [m2,ai])

8 N [mnew, ai] := N [m1, ai] + N [m2, ai]
9 }

10 }
11 }

is probably interesting because many states occur in this region. It was motivated

by the worst case scenarios observed with the DBPA, where sometimes no splits are

executed at all since all observed states lie in one region, see Section 4.3.1. However,

the motivation of this parameter is misleading for our AVQ variant as a region that

is visited frequently is likely to be refined if there are reward variances. Further, in

case that there are no reward differences in a region, no unnecessary refinement takes

place. Moreover, the merging frequency md has been removed and replaced by the

heuristic to execute the merging process after each replication execution. Further, to

couple the threshold to add a codeword to the codebook with the threshold to merge

two codewords, we set ρ = α × α. Altogether, the revised variant of the algorithm

only has left two parameters: α and cmax.

Running Example Part 3

Figure 4.14 illustrates three created state space generalizations for the benchmark

ML-Rules model with the Adaptive Simulator and the AVQ algorithm (cmax = 100,

α = ln21.5). The best performing generalization, the worst created generalization,

and a generalization resulting in average results are shown. By α = ln21.5 and a log2
reward function of the event throughput, a throughput difference of at least 50% must

occur so that a codeword is added to the codebook. Further, the average replication

runtimes are shown in Figure 4.15. Compared to the DBPA, the AVQ performs

worse for most cases, but it does never fail like the DBPA. Further, determining the

70

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

0 100 200 300 400 500 600

0
50

10
0

15
0

20
0

Number of Species

N
um

be
r o

f R
ea

ct
io

ns

●

●

●

● ●●

●
●●

Best Case

0 100 200 300 400 500 600

0
50

10
0

15
0

20
0

Number of Species

N
um

be
r o

f R
ea

ct
io

ns

●
●

●
●

●●●●

● ●●

Worst Case

0 100 200 300 400 500 600

0
50

10
0

15
0

20
0

Number of Species

N
um

be
r o

f R
ea

ct
io

ns

●

●

●●
●●●

● ●●

Average Case

Figure 4.14: Illustration of the created state space representation with the AVQ used
by the Adaptive Simulator with the ML-Rules benchmark. For each observed state,
the better simulator is shown (yellow = Simulator A, blue = Simulator B).

71

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

●

●●
●●●●
●●●
●
●

●

●●●

●

●

●
●●

●●●

●

●●
●●

●

●●

●

●

●

●●●●●●

●

●
●

AVQ DBPA Grid (size=1) Grid (size=10) Grid (size=100) Grid (size=500)

35
40

45
50

55
60

65

Av
er

ag
e

E
xe

cu
tio

n
Ti

m
es

 p
er

 R
ep

lic
at

io
n

in
 s

Best Case
Simulator A
Simulator B

Figure 4.15: Distribution of average runtime per replication of the Adaptive

Simulator using the AVQ compared to the results usng the DBPA and the grid-based
generalization (grid size = 10).

used configuration of the AVQ has been easier compared to the determination of the

used DBPA configuration and the AVQ also has achieved good results with various

configurations. Therefore, we conclude it to be more robust compared to the DBPA.

4.4 Adaptation Conditions

The challenge to define suitable adaptation conditions and frequencies is well-known

in the domain of adaptive software and refers to its basic facets, e.g., see the changes

facet defined by Andersson [3], see Section 3. Basically, developers of adaptive software

should always analyze causes and conditions for adaptations and they should consider

whether causes for adaptations can be foreseen. The overall aim of suitable adaptation

conditions is that adaptations are only executed if they are somehow beneficial, e.g.,

if they exchange faulty components, improve the performance, or enable the software

to gain useful knowledge like performance data.

Referring to the Adaptive Simulator, various opportunities exist to define adap-

tation conditions. For example, specific model events (e.g., the start of a fire or

the start of an epidemic) or specific changes in model dynamics could be used to

trigger adaptations. On the one hand, this approach enables a tailored definition of

adaptation conditions that might be useful if, e.g., rare events dramatically change

the model dynamics and this is known beforehand. On the other hand, this approach

72

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

is strongly application-dependent: the user must identify events and properties of the

model that might be suitable to be used as adaptation conditions.

A more generic but still simple idea is to execute adaptations regularly with fixed

intervals based either on the wall-clock time, simulation time, or the number of events

that has been processed. These variants are also difficult to be applied to the Adaptive

Simulator as they require the user to configure a suitable interval length that will

likely be application-dependent. Further, it might be beneficial to adapt frequently

during some parts of the simulation run and rarely during other parts.

In any case, adaptations should not be triggered too often. Besides the overhead

of executing the adaptation process itself, this may also bias learning: simulators can

have warm-up phases, so that advantages of these algorithms are only noticeable after

having processed many simulation events in a row. If adaptations are executed too

often, the actual performance of such algorithms would never be noticed, although

they might improve the overall performance significantly.

In our first approach to solve the adaptation condition problem, we considered

these thoughts by integrating adaptation conditions into the actions, i.e., an action

is represented by a tuple consisting of a simulator configuration and an adaptation

condition [75]. Thus, choosing an action determines which configuration shall be used

until the next adaptation, and also under which conditions the next adaptation is

triggered. Consequently, with a set of suitable adaptation conditions, the Adaptive

Simulator automatically learns a good trade-off between minimizing the number of

adaptations and using the best simulator for each simulation phase. This approach of

learning two things is similar to the notion of subroutines that are used in hierarchical

reinforcement learning [10]. Nevertheless, by using this approach, the number of avail-

able actions is determined by the cross product of all available simulator configurations

and all adaptation conditions, so that each adaptation condition reduces the learning

efficiency as more actions have to be explored [75]. Further, either many adaptation

conditions have to be considered to ensure that suitable conditions are always available,

or application-dependent knowledge is applied to restrict the number of adaptation

conditions to a feasible small set. The first approach would increase the action set

unacceptably. The second approach requires application-dependent knowledge. Thus,

both options are not suitable to be applied to the Adaptive Simulator. Besides

the described possibilities to trigger adaptations for the Adaptive Simulator, we

also followed a more generic and sophisticated approach by using Bayesian online

changepoint detection that is described in the next section.

73

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

4.4.1 Changepoint Detection for Adaptive Simulation Algo-

rithms

Bayesian online changepoint detection as defined by Adams and MacKay identifies

abrupt variations in a data sequence by only considering previously observed data

points [1]. Online approaches do not segment data retrospectively, but make predictions

to decide whether a changepoint occurred or not. The algorithm assumes that a

sequence of observations can be divided into disjunct partitions p1, p2, . . . that generate

data points x1, x2, . . . from the same probability distribution P (ηpi) with different

parameters. The idea of the algorithm is to estimate the probability distribution of

the time since the last changepoint: the “run length” of the current partition, see

Figure 4.16. For each time point t, every possible run length is associated with a

probability p(runt|x1:t), where x1:t denotes the data points x1, . . . , xt. The probability

distribution p(runt|x1:t) is computed by

p(runt|x1:t) =
p(runt, x1:t)

p(x1:t)
, (4.5)

where

p(x1:t) =
∑
runt

p(runt, x1:t), (4.6)

and

p(runt, x1:t) =
∑

runt−1

p(runt|runt−1) · p(xt|x(runt−1)
t−1) · p(runt−1, x1:t−1). (4.7)

For all runt = n > 0, the sum of Equation 4.7 reduces to exactly one summand with

runt−1 = n− 1, because no other previous run lengths are possible with runt = n > 0,

see the bottom plot of Figure 4.16. Only if runt = 0, several summands have to be

considered. The probability p(runt|runt−1) is the general probability for a changepoint

that is independent from the observed data points and that can be described by a

hazard rate:

p(runt|runt−1) =

{
1 − h, if runt = runt−1 + 1

h, if runt = 0.
(4.8)

In the most simple case, the hazard rate is a constant probability. The term

p(xt|x(runt−1)
t−1) denotes the predictive distribution of the current data point xt based on

the last runt−1 data points: x
(runt−1)
t−1 = xt−runt−1:t. This distribution can be recursively

74

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

x
ru

n
le

ng
th

0

2

1

3
ru

n
le

ng
th

0

2

1

3

time
0 1 2 3 4 6 75

Figure 4.16: Illustration of the run length concept of the Bayesian online changepoint
detection algorithm as described by Adams and MayKay [1]. Top: Generated data
points with one changepoint between the fourth and fifth value. Middle: The run
length of the current partition for each time point. Bottom: Possible run lengths runt

at each time point t.

calculated by marginalization:

p(xt|x1:t−1) =
∑

runt−1

p(xt|xrunt−1

t−1) · p(runt−1|x1:t−1). (4.9)

The changepoint detection approach can be used by the Adaptive Simulator to

determine useful adaptation points [164, 80]. The basic idea is to calculate the

performance of the current internal simulator regularly, i.e., the reward r ∈ R is not

only calculated when an adaptation shall be executed, but also regularly during the

simulation loop of Algorithm 4.1. These reward values are interpreted as data points

for the changepoint detection algorithm and the Adaptive Simulator executes an

adaptation after it identifies a changepoint within the reward values. The assumption

of this approach is that the performance of simulators changes when different phases

of a simulation run are executed.

Algorithm 4.6 shows the concept of our approach. Before applying the changepoint

detection algorithm, two conditions are checked. First, the length |τ | of the current

75

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

base state trajectory τ is checked (l. 2). For this, we introduce a parameter amin ∈ N
+.

By using this parameter, it is guaranteed that an adaptation can only be executed

at most each amin simulation events. Assigning amin > 1 becomes important if the

execution time of a simulation event is small, e.g., a few nano seconds, because

firstly the noise of the computation time would make it impracticable to infer useful

adaptation points and secondly the effort to compute the changepoints would be more

costly than calculating the simulation events.

Next, the exploration rate of the used policy is used to enforce adaptations (l. 5-6).

Therefore, the used policy must provide the possibility to calculate the exploration

rate. This is trivial for simple policies like ε-greedy or ε-decreasing, however, for

other policies like Interval Estimation [101], this might not be possible. Using

the exploration rate is done to balance the speed-up induced by adaptation and

the opportunities of learning against the effort required by the learning algorithm.

Generally speaking, if f explores with a specific probability, it is suitable to enforce

an adaptation with the same probability to update the utility of a simulator, because

this simulator is probably chosen only to explore its utility and not due to its actual

utility. Without such enforced adaptations, it can happen that too few adaptations are

executed to gain sufficient performance data. For example, in case that a simulation

run has always the same computational demands, so that the performance is fairly

constant, no adaptations would be executed at all. Therefore, it would be possible

that a bad-performing simulator is used to execute the complete simulation run.3

If both conditions do not result in a method exit, the current reward rt for the last

amin base states is calculated (l. 10). Afterward, the probability P (runt = 0, r1:t) is

computed by summing the probabilities of a changepoint for all run lengths 0, . . . , t−1

(l. 13). For each run length run ∈ {0, . . . , t− 1}, this probability is the product of the

probability to observe this run length (P (run, r1:t−1)), the hazard rate h ∈ [0, 1], and

the probability to observe the current reward rt based on the generative probability

distribution Pg approximated by the last run rewards (Pg(rt|rt−run:(t−1))).

The hazard rate represents the probability of a changepoint that is typically

independent from the observed data points. Either, it is assumed that the hazard rate

is fixed for all phases of the generative process or it is assumed that different phases

of the process with individual constant hazard rates exist. A fixed hazard rate is

either set initially once or learned incrementally e.g., by counting the number of steps

and changepoints. Sophisticated hazard rate algorithms exist to deal with changing

hazard rates [200]. The Adaptive Simulator probably has to deal with changing

hazard rates, i.e., the probability of a phase change during a simulation run will not

be constant. Nevertheless, applying such algorithms itself is a complex task as they

3This behavior corresponds to the behavior of the AdaptiveSimulationRunner.

76

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

Algorithm 4.6 Pseudo-code for the adaptationCondition(τ) method (see Algo-
rithm 4.1, l. 11). The changepoint detection bases on the algorithm described in [1].
τ ∈ Σ∗: current base state trajectory (seq. of base states).
f : S × R

|S|×|A| × N
|S|×|A| → A (action selection policy).

R: reward function.
amin: minimum adaptation interval.
Pg: generative probability distribution.
rt: current reward. r1:t−1: previous rewards.
h: constant hazard probability.
Pmin:minimum probability threshold of no changepoint

1 // Check minimal i n t e r v a l l ength
2 i f (|τ | = 0 | | |τ | mod amin
= 0)
3 r e turn f a l s e
4 // Check f o r en fo r ced adaptat ion
5 i f (e x p l o r a t i o n r a t e (f) > x ∈ U(0, 1))
6 r e turn t rue
7 // Compute rt based on l a s t amin base s t a t e s
8 rt := R(σ|τ |−amin+1 . . . σ|τ |)
9 // Compute p r o b a b i l i t y o f runt = 0

10 P (runt = 0, r1:t) :=
∑

runt−1∈{0...t−1} h · Pg(rt|rt−runt−1:(t−1)) · P (runt−1, r1:t−1)

11 // Compute p r o b a b i l i t i e s o f runt ∈ {1 . . . t}
12 f o r (runt ∈ {1 . . . t})
13 P (runt, r1:t) := (1 − h) · Pg(rt|rt−(runt−1):(t−1)) · P (runt − 1, r1:(t−1))
14 // Marg ina l i z a t i on
15 P (r1:t) :=

∑
runt−1∈{0...t} P (runt−1, r1:t)

16 // P r o b a b i l i t y o f no changepoint so f a r
17 P (runt = t|r1:t) := P (runt, r1:t)/P (r1:t)
18 // Update g e n e r a t i v e d i s t r i b u t i o n (see Equation 4.10)
19 Pg := update (Pg, rt)
20

21 i f (P (runt = t, r1:t) < Pmin)
22 r e turn t rue
23 e l s e
24 r e turn f a l s e

add another layer of adaptivity which must be learned, configured, computed, and

evaluated. Thus, so far, we only consider constant hazard rates.

For the generative probability distribution Pg, we choose a normal distribution,

because we assume that the performance of a simulation algorithm is normal distributed

due to several independent influences within a phase of the simulation with similar

77

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

computational demands. As described by Adams and MacKay, the changepoint

detection algorithm assumes that only the parameters of the generative probability

distribution Pg change at a changepoint, but not the type of the distribution itself.

As we assume the generative probability distribution Pg to be a normal distribution,

it is reasonable to use the Normal-Inverse-Gamma distribution NIG(μ, ν, α, β) that

is the conjugate prior of the normal distribution to estimate the unknown mean and

unknown variance [9, p. 185-189]. For a Normal-Inverse-Gamma prior NIG(μ, ν, α, β),

the posterior after observing rt is also a Normal-Inverse-Gamma NIG(μ′, ν ′, α′, β′)
distribution with

μ′ =
ν · μ + rt
ν + 1

, ν ′ = ν + 1, α′ = α +
1

2
, β′ = β +

ν · (rt − μ)2

2 · (ν + 1)
. (4.10)

Thus, only these simple calculations have to be computed to update the distribution

after observing a new data point — represented by the method update() (l. 19).

Initially, we use μ = r0, ν = 1, α = 1, and β = 1. While observing more and more

data, these distributions become more accurate and the normal distribution of the

generative probability distribution is approximated better and better. For a normal

distribution with unknown mean and variance, the posterior predictive distribution to

calculate the probability of a new data point p(rt|r1:t−1) is a Student’s t-distribution

t2α

(
rt|μ, β · (ν + 1)

α · ν
)

(4.11)

that is calculated by

tn(rt|μ, σ2) =
Γ(n+1

2
)√

n · π · σ2 · Γ(n
2
)
·
(

1 +
1

n
· (rt − μ)2

σ2

)−(n+1
2

)

, (4.12)

where Γ(rt) =
∫∞
0

trt−1e−tdt is the gamma function (Γ(rt) = (rt − 1)! if rt is a positive

integer). Since Γ(rt) is complex to compute for large n, the Student-t-distribution

should be approximated by the Normal-distribution with more than 30 observations.

Next, the probabilities P (runt, r1:t) for each runt ∈ {1 . . . t} are computed (l. 12-13),

i.e., the probabilities that no changepoint happened. Since it is only possible to reach

a run length runt ∈ {1 . . . t} from the run length runt − 1, no sum is needed here

to compute the probability P (runt, r1:t). Using the computed probabilities for all

run lengths runt ∈ {0 . . . t}, the probability P (r1:t) to observe the given data points

can be computed by marginalization (l. 15). After calculating the probabilities for

all possible run lengths and the probability of the given data points, this data can

be used to compute the probability of no changepoint since the first data point, i.e.,

78

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

P (runt = t|r1:t) (l. 17). This probability can be used by the Adaptive Simulator to

decide whether to execute an adaptation or not (l. 21-24), i.e., if it is smaller than

Pmin ∈ [0, 1], an adaptation is executed. This approach is suitable for the Adaptive

Simulator as it is not interested in the concrete moment of the last changepoint, but

it is only interested whether a changepoint happened at all in the past.

If an adaptation is executed, it can be assumed that a changepoint occurred by the

changes of the simulator, so that P (runt = 0|r1:t) = 1. Consequently, the changepoint

detection algorithm can be reinitialized after an adaptation, which significantly sim-

plifies its computational complexity as no data points before the adaptation have to

be considered any longer. A further idea to improve the performance of the algorithm

suggested by Adams and MayKay is to ignore all run lengths runt for which the

probability P (runt, r1:t) becomes small, e.g., smaller than 10−5 [1]. In [80], we propose

a similar idea that restricts the number of considered run lengths to δ ∈ N
+, i.e.,

when a new run length shall be considered, the run length with the lowest probability

is removed from the list of considered run lengths. Analog to sophisticated hazard

rates, sophisticated algorithms exist also here to deal with this problem, e.g., the

pruning algorithm developed by Wilson et al. merges similar run lengths with similar

probability distributions [200].

4.5 Implementation & Integration in JAMES II

The Adaptive Simulator is integrated into the modeling and simulation framework

JAMES II [87] and therefore implemented in Java. Following the plugin concept

of JAMES II (see Section 2.5.1), we developed a plugin-based architecture for the

Adaptive Simulator that delegates the most important tasks to plugins, see Fig-

ure 4.17. The class AdaptiveSimulator itself is realized as a plugin of the plugin

type Processor that defines the interface for all simulators in JAMES II. As shown

in Figure 4.1, the Adaptive Simulator follows the wrapper pattern — it uses an

internalSimulator to compute the actual simulation and adapts or exchanges the

internalSimulator as needed. Consequently, with respect to JAMES II, it fulfills the

same contract as all other simulators (e.g., regarding stopping criteria or observation

components), and thus can be used transparently.

A base state τ ∈ Σ∗ is simply represented by a list of State objects that contain

a map of key-value pairs. Values of these pairs are of type Object, so that in

principle arbitrary data can be stored in these pairs. An action a ∈ A is defined by a

ParameterBlock and the action set is simply represented by a list of ParameterBlock

objects. This list is created automatically by the AdaptiveSimulatorFactory while

creating an AdaptiveSimulator object. Here, the class SelectionTreeSet of the

79

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

SASF framework is reused, which contains methods to traverse all available plugins

and to create all possible plugin hierarchy combinations for the simulators. In the

SASF framework, for each primitive parameter of the plugins, the default value is

used to create all the plugin combinations. We extended the XML scheme for the

description of plugins in JAMES II to also support a set of configurations for the

primitive parameters. Before, it was only possible to define one default value for each

plugin parameter that is used to create the action set as follows:

<parameter name="flag" type="java.lang.Boolean"

default="false">

<description >very important flag</description >

</parameter >

We added a new tag configuration that allows to specify configurations for all

primitive parameter values:

<configuration >

<parameterValue name="flag" value="false">

</parameterValue >

</configuration >

<configuration >

<parameterValue name="flag" value="true">

</parameterValue >

</configuration >

This approach allows the developer of a plugin to define a set of valid configurations

that can be considered by the creation of all possible simulator configurations. We

explicitly do not support the option to define several default values for each primitive

plugin parameter individually as invalid combinations of default parameter values

would have to be considered as well. In our opinion, this is more error-prone than

defining all parameter value configurations individually. Besides, to prevent the

Adaptive Simulator adapting primitive parameters that would change the results of

a simulation run, e.g., the error parameter ε in τ -leaping, a blacklist can be defined.

Similarly, also for plugins a blacklist can be defined, e.g., in case it is known that some

plugins might not be effective for a specific simulation experiment.

When executing an adaptation, the Adaptive Simulator exchanges its internal-

Simulator completely, i.e., a new Processor is created based on the ParameterBlock

of the chosen action. In JAMES II, this approach is easy to implement due to the

strict separation of model and simulator. Thus, the newly created simulator can

be initialized using the existing model object. Exchanging the internal simulator

completely also relieves the Adaptive Simulator to be able to partly change the

80

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

current internalSimulator and no integrity checks have to be performed.

For the reward calculation, we developed a plugin type represented by the interface

IReward. We have implemented two plugins for this type so far, one for computing

the rate of simulated events per second and one for computing the logarithm of this

rate:

R(τ) = ln(
eτ

wctτ
) (4.13)

where wctτ is the duration to compute the trajectory τ in wall-clock time in seconds

and eτ is the number of simulation events that have been computed in this time span.

For this, all base states must provide runtime information, e.g., easily calculated by

the Adaptive Simulator in the nextStep() method:

//...

long before = System.currentTimeMillis ();

internalSimulator.nextStep ();

long after = System.currentTimeMillis () - before;

//...

The adaptation overhead is not considered by using this approach. Both metrics

are simple to be calculated and they can also be used to calculate the reward of a

subtrajectory of τ . Measuring the runtime with System.currentTimeMillis() gives

only a rough estimate of the real CPU time needed to compute the simulation step as

it does not exclude the influence of other processes, threads, etc. For more precise

estimates, the built-in class java.lang.management.ThreadMXBean could be used that

provides more sophisticated methods to measure the CPU time of individual threads.

However, for our purposes the more simple variant System.currentTimeMillis()

provided sufficiently accurate results.

The next subsections illustrate in more detail the remaining implementation

concepts of the Adaptive Simulator. First, we describe the context concept of

JAMES II and how we use it to collect data for the base states (see Section 4.5.1). Next,

the adaptation condition implementation (see Section 4.5.2) and the implementation

of the learning and selection functionality (see Section 4.5.3) are explained.

4.5.1 Information Retrieval

There are three sources for data put into base states (see Figure 4.4): the model,

the simulator, and the environment. Much environment information can be directly

accessed by the Adaptive Simulator using built-in functions of Java, e.g., provided

by System, Runtime, or ThreadMXBean. By using the class System, various system

81

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

-adapt()
+nextStep()

-internalSimulator : Processor
-baseStateTrajectory : List<State>
-valueFunction : IValueFunction
-adaptationCondition : IAdaptationCondition
-reward : IReward
-actions : List<ParameterBlock>

AdaptiveSimulator

+nextStep()

Processor

+createdEvent()

«interface»
IContextListener

-data : Map<String,Object>

State

+calcReward() : double

«interface»
IReward

+addEntry()
+nextAction()

«interface»
IValueFunction -value : Object

-subBlocks : Map<String,ParameterBlock>

ParameterBlock

+applyAdaptation() : boolean

«interface»
IAdaptationCondition

Figure 4.17: Overview of the Adaptive Simulator architecture. Interfaces with
dashed borders define new JAMES II plugin types.

properties can be retrieved by the getProperties(key) method like the Java version

("java.version"), the Java vendor ("java.vendor"), the operating system name

("os.name"), and many more. The Runtime class can be used to retrieve information

about the available memory in the JVM (freeMemory()), the number of available pro-

cessors (availableProcessors()) etc. The ThreadMXBean class allows more specific

queries, e.g., return the number of currently running threads (getThreadCount()),

the total CPU time for a specific thread (getThreadCPUTime(id)), and much more

information about the threads in the JVM.

Retrieving information from the model and the simulator is more difficult to be

realized. In JAMES II, a model and a simulator can consist of a complex plugin

hierarchy. A developer of a plugin must decide what information of this plugin could

be worth to be considered for the Adaptive Simulator. If a plugin shall provide

information, it has to implement the interface IAdaptiveSource with one method

getAdaptiveData():Map<String,Object> returning this information. To get a list

of all currently used plugins implementing this interface by an instance of the Adaptive

Simulator, one could simply traverse all plugins by using Java reflection methods.

Although this approach seems to be simple, it would be costly as the traverse would

have to be done for every base state computation. Alternatively, one could create

a list of the plugins implementing IAdaptiveSource once after an adaptation and

reuse it for every base state computation. However, this approach would ignore all

82

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

a: AdaptiveSimulator

is: Processor

b: EventQueue c: EventQueue rng: Random

m: Map

Contexta

Contextis

Contextb ContextrngContextc

Contextm

Figure 4.18: Illustration of a plugin hierarchy and its mirrored context hierarchy
created automatically in JAMES II.

plugins created between two adaptations. Using the context concept of JAMES II

allows realizing an elegant solution for these challenges. While creating a plugin and

all of its sub plugins, i.e., a plugin hierarchy, JAMES II automatically also creates a

mirrored context hierarchy, see Figure 4.18. This hierarchy explicitly represents the

creation relation of all plugins, i.e., a context is related to the context it has been

created in (its parent context) and to all contexts that have been created in it (its

child contexts). Further, the IContextListener interface can be used to append

listener to a context. Whenever a plugin is created, all listeners of its context and

its ancestor contexts are notified about its creation. For example, if the plugin c in

Figure 4.18 is creating a new plugin, all listeners of the contexts Contextc, Contextis,

and Contexta would be notified. Altogether, the context tree is suitable to enhance

the computational reflection capabilities of JAMES II.

The AdaptiveSimulator class implements the IContextListener interface, see

Figure 4.17 and it registers at its own context. Further, it registers at the context

of the model plugin (the model context itself is not a child context of the simulator

context as the model in JAMES II is not created by the simulator). In that way, it

will always be notified whenever a new plugin is created within the model and within

the internal simulator. When a notification is obtained, it is checked whether the

created plugin implements the interface IAdaptiveSource. If so, it is added to the

list of plugins that provide information for the base states. In the same way, the

Adaptive Simulator is notified whenever a plugin is removed; it is then removed

from the list of plugins providing information.

83

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

+applyAdaptation() : boolean

«interface»
IAdaptationCondition

AndCondition

-left : IAdaptationCondition
-right : IAdaptationCondition

OrCondition

-left : IAdaptationCondition
-right : IAdaptationCondition

WallClockTime

-interval : double

EventNumber

-interval : int

SimTime

-interval : double

ChangepointDetection

«interface»
IPredicitveModel

«interface»
IHazardRate

GaussianModelConstantHazardRate AdaptiveHazardRate

Figure 4.19: Class diagram of basic adaptation condition structure.

4.5.2 Adaptation Condition

For the adaptation conditions, we implemented simple conditions and the Bayesian

changepoint detection algorithm presented in Section 4.4.1, see Figure 4.19. The

simple conditions allow triggering an adaptation for a specific simulation time interval

(SimTime), wall-clock time interval (WallClockTime), or executed event number inter-

val (EventNumber). These conditions can be connected arbitrarily with the conjunction

conditions OrCondition and AndCondition, e.g., to trigger an adaptation after 10

seconds wall-clock time and at least 100 executed events. The Bayesian changepoint de-

tection algorithm is implemented in the class ChangepointDetection, mainly realizing

the Algorithm 4.6. The computation of the hazard rate h is done by separated plugins,

i.e., ConstantHazardRate and AdaptiveHazardRate. The ConstantHazardRate uses

a fixed value for h ∈ [0, 1]. The AdaptiveHazardRate considers the total number of

executed events etotal and the number of executed events since the last adaptation

elast to refine the hazard rate h:

h′ = h · etotal − elast
etotal

+
1

elast
· elast
etotal

=
h · (etotal − elast) + 1

etotal
. (4.14)

Besides these two simple hazard rates, more sophisticated methods, e.g., [200], could

be added.

Finally, predictive probability distributions have to implement the interface IPredictive-

Model. So far, we implemented one class GaussianModel that assumes the generative

probability distribution to be a Normal distribution, as discussed in Section 4.4.1.

However, since we separated the distribution from the rest of the changepoint detection

84

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

algorithm, it is straightforward to add further distributions to the model.

4.5.3 Value Function

Classes implementing the IValueFunction interface are organizing the state space

for the Adaptive Simulator and realize the action selection mechanism, see Fig-

ure 4.20. The state space IStateSpace is defined by a set of states represent-

ing the macro state set M . So far, we implemented one state space that real-

izes a static regular grid (Fixed), one state space implementing the AVQ algo-

rithm (AdaptiveVectorQuantization) and one state space implementing the DBPA

(DecisionBoundaryPartitioning). These classes are responsible to map a state to

its according cell. Further, they can split cells and merge cells if necessary. The same

implementation of ICellValue is used for all cells in the state space, i.e., either all

cells are of type QValue or all cells are of type AValue.

Basically, a QValue representing a macro state m ∈ M contains for all actions

a ∈ A the q-values (Q(m, a)) and the selection counter (N(m, a)). The QValue

class is used by QLearning that applies the basic Q-Learning rule, see Equation 4.1.

Further, the QLearning class uses an implementation of the ISelectionPolicy like

EpsilonGreedy to select an action for observed states. Thus, the selection policy is sep-

arated from the learning algorithm. We also implemented a policy StaticSelection

that applies a predefined set of decisions. Such a policy is useful to reproduce simulation

runs with the same adaptation sequence.

For the SASF, Ewald et al. already implemented various sophisticated multi-armed

bandit policies using the IMinBanditPolicy interface. However, this interface cannot

be combined with the QLearning class directly, because the implemented policies do

not only select actions, but they also save and maintain the q-values their decisions

are based on. To approximate the value of an action, they compute the mean of all

received rewards for this action. The learning rule by using these policies can be

interpreted as:

Q(st, at) = Q(st, at) +
1

N(st, at)
· [rt+1 −Q(st, at)]. (4.15)

This simplified version of the Q-Learning rule should still be useful for the Adaptive

Simulator, because we also use α = 1
N [st,at]

for Q-Learning in QLearning as suggested

by Sutton and Barto in [185] and we observed little impact of delayed rewards. The

AdaptiveSimulationRunner that uses an IMinBanditPolicy for the decision making

does not distinguish between different states of a simulation run, so that such a

feature has not been considered during the development of this interface. Since we

85

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

+addEntry()
+nextAction()

«interface»
IValueFunction

«interface»
ICellValue

«interface»
IStateSpace

Fixed

DecisionBoundaryPartitioning

AdaptiveVectorQuantization

QLearning SASF
«interface»

ISelectionPolicy

EpsilonGreedy QValue AValue

«interface»
IMinBanditPolicy

1

1

1

1

...

Figure 4.20: Class diagram of value function.

still wanted to use the existing policies, we created the class SASF implementing

the IValueFunction interface and the corresponding cell value AValue. The name

SASF emphasizes its purpose to delegate the learning and selection process to existing

classes of the SASF. Each AValue contains one instance of an IMinBanditPolicy

that manages these tasks. In the long term, Q-Learning and the multi-armed bandit

policies of the SASF should be combined.

Besides the described properties, both IValueFunction implementations are imple-

mented in a thread-safe manner, i.e., many Adaptive Simulators computing many

simulation runs can use the same value function concurrently. If replications have

to be executed, the same value function can thus be reused to improve the learning

efficiency of the Adaptive Simulator for all replications. Furthermore, when used

concurrently, updating the knowledge base becomes more complex, because states and

rewards are observed concurrently. When a new state and reward is observed, the

reward must be related to the previous state of the same simulation run. We solved

this problem by using the context architecture of JAMES II again: when observing a

state, not only the state itself, but also the context it was created in is saved that is

used to associate the next reward with the correct state.

86

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

4.6 Measuring Adaptation Performance

We extend the concept of the relative overhead used to evaluate the Adaptive-

SimulationRunner (see Section 2.5.3) to measure the effectiveness of the Adaptive

Simulator. When applied to the Adaptive Simulator, we refer to this overhead

as the static regret (following the term regret for MABPs). The performance of

the Adaptive Simulator essentially depends on the quality of the q-values, i.e., how

many explorations have been done to compute these values. To consider this issue,

we sequentially execute several replications with the Adaptive Simulator using the

same knowledge base, so that the q-values learned at the end of one replication are

reused at the start of the next one, i.e., the Adaptive Simulator learns across all

replications by successively improving its estimates of the true q-values. The static

regret is the relative performance overhead of the Adaptive Simulator compared to

a static selection of the best simulator after n replications, see Equation 2.6 page 29.

However, since the performance overhead is compared with the best simulator,

the static regret does not give any insights regarding the effectiveness of the adap-

tation mechanism of the Adaptive Simulator. To get this information, one has to

estimate the performance of the best-performing Adaptive Simulator setting with

an omniscient knowledge base. This can be done in two ways. First, one could use a

promising configuration of the Adaptive Simulator and execute lots of replications to

get a nearly “perfect” knowledge base. Afterward, a few additional replications could

be executed by using this knowledge base. The performance while executing these

additional replications could be used as a reference value for an “optimal” performing

Adaptive Simulator. We followed this approach in [75]. The disadvantage of it is

that the reference value essentially depends on the configuration of the Adaptive

Simulator. Thus, it is not clear whether the reference value is really one of the

best possible values or only an average estimate. In contrast to this approach, one

could use performance values of all simulators to estimate the performance of an

optimal Adaptive Simulator. For this, lots of replications have to be executed with

every available simulator and configuration and the performance has to be measured

frequently during the simulation, e.g., for each 100 executed simulation events. Next,

the minimum observed performance value for each part of the replications is used

to calculate the reference performance value for the optimal Adaptive Simulator.

We applied this metric in [76]. The advantage of this approach is that the overhead

of the Adaptive Simulator to access the knowledge base, to apply adaptations etc.

is not considered in this reference value. Consequently, the reference value really

represents the best possible result of an Adaptive Simulator. Nevertheless, the effort

to calculate this value is higher compared to the first approach when the number of

available simulators is large.

87

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

The performance estimate rewardoptadaptive of the best Adaptive Simulator can

then be used to calculate the dynamic regret after n replications

drn =

∑n
i=1 reward

i

n · rewardoptadaptive

, (4.16)

i.e., the overhead induced by exploration and applying adaptations compared to

a “perfect” Adaptive Simulator always adapting to the best-performing simulator

without any overhead.

4.7 Limitations and Open Challenges

Although the presented approach of the Adaptive Simulator is sophisticated and

works in many scenarios, it has limitations. Most challenging are simulation runs

that are executed in parallel using parallel discrete event simulation techniques. In

principle, the Adaptive Simulator could be used as a central decision maker that

changes the global algorithm to execute the simulation in parallel, e.g., change from

a conservative to an optimistic simulation algorithm. Several complex challenges

have to be solved in this case. For example, how to measure the performance of the

total simulation? Further, the overhead to stop the simulation, to stop and adapt

all logical processes might be higher than the benefit. Is it still worth to apply the

Adaptive Simulator? Alternatively, the Adaptive Simulator could be applied to

every logical process individually to reconfigure its parameters, e.g., to adapt the size

of a time window. This approach sounds simple, but it must be guaranteed that the

causality constraint is never violated, e.g., it should not be allowed to change from a

conservative logical process to an optimistic logical process.

Moreover, the configuration of the Adaptive Simulator itself is another issue.

The presented approaches and solutions emphasize that there are various possibilities

to use the Adaptive Simulator, e.g., by using different state space generalization

algorithms or adaptation conditions. Although we tried to use as few parameters as

possible, this configuration problem has not been solved yet. One approach to solve it

automatically would be to allow the AdaptiveSimulationRunner to select between

several configurations of the Adaptive Simulator. It would eventually find the best

performing setting automatically. However, this approach seems not to be suitable as

the learning effort would be increased significantly. Meta-learning techniques [194]

should be explored referring to the Adaptive Simulator to deal with this challenge.

Analogously to huge state spaces, huge action spaces cause various challenges.

In adaptive software, huge action spaces typically occur if actions correspond to

88

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

configurations of components or algorithms, e.g., due to numerical or continuous

parameters or due to the combinatorial opportunities of components. In this case,

algorithm portfolios should be used to deal with this issue [93].

In general, no relationships between the performance values of simulators and

different macro states are currently exploited. For example, if a simulator performs

bad for almost all macro states, it seems not likely that it will perform better for the

remaining macro states. It would also be interesting to use sensitivity analysis to

identify similar performing simulators that can be summarized somehow.

Eventually, these ideas could be used to apply algorithm portfolios to the Adaptive

Simulator. For example, a portfolio P ⊆ A for the action set A could be created

incrementally in the following manner:

1. Initially, select n ∈ N actions randomly and add them to the portfolio, i.e.,

|P | = n.

2. After each m ∈ N simulation run executions, execute the following steps:

(a) Remove all dominated actions from the portfolio P . An action ai is

dominated by another action aj if aj performed almost always better than

ai.

(b) Calculate a similarity graph G = (P,E) for the actions, where an edge

e ∈ E means that both actions connected by e have similar performance

results.

(c) Find a minimum vertex cover MV C ⊆ P of this graph, i.e., a minimum

number of actions so that each edge of E is connected to at least one action

in MV C.

(d) Set P := MV C.

(e) Finally, add randomly new actions to the portfolio so that |P | = n.

It has not been explored yet whether such an incremental creation of a portfolio would

be effective for the Adaptive Simulator.

Besides, no mechanism to identify malicious plugins has been developed for the

Adaptive Simulator yet. An approach to test simulator configurations used by the

Adaptive Simulator is presented in the next Section 4.7.1.

4.7.1 Testing Component-based Stochastic Simulators

All options of the action set A used by the Adaptive Simulator must compute valid

results. Since the number of available options can be large, checking all options

89

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

simulation time

...

x,
y,

z,
 ..

.

Model 1

observation 1 observation 2

Model 2

...

x y z ... x y z ...

Figure 4.21: Per model and observation point, several values for each model variable
are collected from the executed replications for each algorithm.

individually is challenging. For example, fractional factorial designs could be used to

cover a certain level of interactions of plugins [104, p. 656ff.], e.g., two level interaction.

Generally speaking, a two level interaction fractional factorial design can find errors

that are caused either by individual plugins, or by the interaction of two plugins, i.e., if

plugin A and B are selected together. Moreover, especially in discrete event simulation,

simulation runs are often non-deterministic, so that an absolute decision whether an

algorithm works well cannot be made. Further, whole trajectories have to be checked

to validate the algorithms. The combination of both problems, i.e., a possibly huge

number of options to test and non-deterministic simulation run trajectories, further

complicates the testing task.

To deal with this problem, we developed a prototypical strategy [204]. The

approach selects a subset of options Asub to be tested based on a simple heuristic:

every plugin has to be used at least once within the subset of options. This heuristic

reduces the set of options to be tested significantly, i.e., the plugin type with the largest

number of plugins determines the number of options to be selected. Nevertheless, this

method also makes it impossible to determine interaction errors of plugins.

For each selection tree in Asub, simulation runs with several models are executed

and several observations are made during each run, see Figure 4.21. Consequently, for

each model, each observation point, and each model variable, an empirical distribution

of values is collected for each selection tree. These empirical distributions are compared

to results produced by a reference algorithm that we assume to be valid, i.e., without

90

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

t1 t2 t1 t2

x x

t3 t3

Figure 4.22: Although the left and the right trajectories have the same empirical
distribution at the same time points, they are clearly different.

such a reference algorithm, the method cannot be applied. For the comparison, we

use three statistical tests with a certain significance level α ∈ [0, 1]: the Wilxocon

rank-sum test [176, p. 513ff.], the Kolmogorov-Smirnov test [176, p. 577ff.], and

the G-Test [180]. The null hypothesis is that a distribution of a model variable of

the reference results and the according distribution of a selection tree from Asub are

sampled from the same population. Depending on α, for each test one has to expect

a number of type 1-errors, i.e., rejecting a true null hypothesis. Thus, our approach

uses a binomial distribution with p = α to calculate the probability of the observed

failures. If this probability is below a certain failure tolerance, the test fails. At least

two tests must fail so that our approach concludes that the results are erroneous.

Although our approach has been often able to detect bugs in plugins, extending

and improving the method is still an open research topic. First, the significance level

α of the statistical tests and the statistical tests themselves have to be chosen carefully.

If α is too high, too many tests will fail and a developer often has to unnecessarily

check correct results manually. If α is too low, only obvious bugs are detected.

Moreover, the approach currently does not distinguish between slight wrong results

and dramatic wrong results, i.e., clear wrong results are not considered particularly.

Further, due to the usage of the binomial distribution, a constant dramatic individual

failure for a specific model and a specific observation point and a specific model

variable would not make the approach to give alarm. The quality of the method

also essentially depends on the chosen models and selected observation times. The

approach does not consider properties of complete trajectories either, i.e., although

the empirical distributions at the observation points might statistically represent the

same population, the whole trajectories could still differ, see Figure 4.22. To address

this issue, distance measurements for trajectories could be used, e.g., the Fréchet

distance [41]. Alternatively, derivative trajectories could be calculated and compared.

The approach currently does not exploit plugin information of algorithms to improve

91

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

the failure analysis. Also, a reference algorithm is needed to produce reference results,

a strong assumption that will not always be fulfilled. Finally, it has not been adapted

to test the Adaptive Simulator comprehensively. To test the results of the Adaptive

Simulator, so far it has simply been added to Asub. All these issues emphasize that

the approach can and should be extended and improved in the future.

4.8 Summary

In this chapter, we developed the Adaptive Simulator— a generic simulator which

supports strong dynamic adaptations and compositional adaptations. Thus, it can

perform adaptations during the execution of a simulation run, adaptations can change

the structure of the simulator, and it does not use a fixed set of adaptation options

and a predefined adaptation strategy, but it uses reinforcement learning to learn

autonomously which adaptations to perform. Consequently, it is not restricted to a

particular modeling language or scenario.

The structure of the Adaptive Simulator considers the requirements identified in

Section 4.1. We integrated the Adaptive Simulator in the modeling and simulation

framework JAMES II, which is a suitable base for adaptive means as it supports key

characteristics required by adaptive software (separation of concerns, component-based

design, computational reflection), see Section 3. Thereby, we exploit the plugin system

of JAMES II, i.e., the Adaptive Simulator itself is implemented in a component-

based manner (see Section 4.5) and it uses selection trees (see Section 2.5.1) to

represent all adaptation options, i.e., the simulator configurations, explicitly. By

using the plugin system of JAMES II, the set of adaptation options can be calculated

automatically. The Adaptive Simulator is realized as a wrapper by implementing

the Processor interface all simulators in JAMES II must implement and can therefore

be used transparently by the user. To execute the actual simulation run, the Adaptive

Simulator uses an internal simulator that is exchanged completely when executing

an adaptation. The adaptation process including observation, planning and executing

an adaptation is executed separately from the simulation logic following the concept

of a separated control loop, see Section 3.1. After an adaptation, the newly created

internal simulator can simply use the current state of the model to initialize itself

properly. There is no need to determine differences between the old and the new

internal simulator and no data structures must be checked and updated to guarantee

the integrity of the new internal simulator.

The Adaptive Simulator can collect information about the model, the simulator

and the environment after each event execution to create base states (σ ∈ Σ) and

base state trajectories (τ ∈ Σ∗) that are aggregated to aggregated states (s ∈ S) at

92

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

the beginning of an adaptation process used by reinforcement learning. To deal with

high-dimensional or infinite state spaces, we integrated three generalization methods

into the Adaptive Simulator, see Section 4.3. The basic idea is to generalize an

aggregated state s ∈ S to a macro state m ∈ M , whereby M ⊆ S ∧ |M | � |S|.
Each macro state represents an area of the state space — in the ideal case with a

homogeneous performance behavior of all states represented by one macro state.

First, we developed a grid-based generalization method that applies a regular

grid with a predefined grid size to generalize a concrete state. This method can

be beneficial, but it is difficult to determine a suitable grid size and for different

areas of the state space, different sizes might be effective. Second, we integrated

the Decision Boundary Partitioning Algorithm (DBPA) [165] to the Adaptive

Simulator, see Section 4.3.1, which is a dynamic generalization method adapting

the generalization during runtime. This method uses hyperrectangular areas for the

generalization and splits two adjacent areas, if the best action differ in both areas,

the q-value of both best actions differ sufficiently, and both areas have been observed

frequently. In the running example, we show that this method can be more efficient

than a fixed grid, but its performance is not reliable and furthermore, also finding a

suitable configuration producing at least some suitable results has been challenging.

By integrating the Adaptive Vector Quantization (AVQ) [114] to the Adaptive

Simulator, see Section 4.3.2, we found a more robust generalization algorithm for

our application. This method uses a codebook consisting of a set of states called

codewords and a nearest vector quantizer to map a state to its nearest codeword. The

codewords therefore represent the macro states. The generalization of the state space

is adapted during runtime by adding new codewords to the codebook or merging two

codewords. Codewords are added to the codebook if the difference of two successive

rewards within the same area is sufficiently high. Codewords are merged if the average

pairwise difference of all rewards of two adjacent areas is sufficiently small. The

running example shows that our version of the AVQ seems to be more robust than the

DBPA, but the average results are worse compared to the best results of the DBPA.

To trigger adaptations, we pursued three concepts, see Section 4.4. First, a fixed

adaptation condition based on the wallclock time, simulation time and number of

processed events can be set. Fixed adaptation conditions can be useful, but it is

challenging to define suitable conditions and different conditions might be effective for

different phases of a simulation run. Second, we use a set of adaptation conditions

and integrate them into the adaptation actions, i.e., an action does not only contain a

simulator to be used, but also an adaptation condition to trigger the next adaptation.

The Adaptive Simulator is therefore not only learning for which state to use which

simulator, but also which adaptation trigger is most suitable. In some sense, this

93

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

approach refers to hierarchical reinforcement learning [10]. Although this approach

enables the user to define a set of adaptation triggers, the action set increases with each

trigger and therefore, the learning efficiency might be reduced. Third, we exploit the

possibility to observe the performance of the Adaptive Simulator during runtime to

apply changepoint detection algorithms to trigger adaptations. The assumption is that

the computational requirements do not change in one simulation phase and therefore

the event throughput of the simulator should be normally distributed. To apply this

method, we couple the changepoint detection trigger with the exploration probability

of the action selection policy to consider the need to gain performance knowledge. In

general, we did not focus on model specific adaptation trigger, e.g., trigger adaptation

after the execution of a rare event, since this would be application and model dependent

and it would contradict the generality of the Adaptive Simulator.

In Section 4.5, we present important implementation aspects of the Adaptive

Simulator and how the component-based architecture of JAMES II is exploited

to realize the Adaptive Simulator. The Adaptive Simulator uses the context

hierarchy reflecting the structure of a component to get all components providing

information for it. Further, it is automatically notified if components of a simulator

are removed or added to update its information listeners. Moreover, the available

simulators including their configurations can be created automatically using the

Registry of JAMES II. Finally, the Adaptive Simulator itself is realized as a

component-based simulator — all important concerns (e.g., adaptation trigger and the

reward function) of the Adaptive Simulator are separated into individual components

making it flexible to integrate new methods and algorithms.

In Section 4.7, we also refer to open challenges and limitations of the Adaptive

Simulator. For example, how to apply the Adaptive Simulator for parallel discrete

event simulation or how to apply algorithm portfolios to deal with large action sets

suitably. Further, it is not clear how to automatically test the validity of the Adaptive

Simulator comprehensively — already testing the simulators applicable to a specific

problem in case of stochastic simulation runs is challenging and not solved satisfactory

yet, see Section 4.7.1.

Altogether, the four basic facets for adaptive software (see Section 3) related to

the Adaptive Simulator can be described as follows:

• Goals: The runtime performance of simulation runs shall be improved. Thus,

other measurements like memory consumption, accuracy of results, energy

consumption etc. are not considered explicitly by the Adaptive Simulator.

• Changes: No model dependent and application dependent information is used

to trigger an adaptation. Instead, conditions considering the wallclock time,

94

CHAPTER 4. THE ADAPTIVE SIMULATOR — COMPOSITIONAL
SIMULATOR ADAPTATION AT RUNTIME

simulation time, or number of processed simulation events can be applied.

Further, changepoint detection can be used considering the observed event

throughput assuming a normally distributed throughput in one simulation

phase.

• Mechanisms: The Adaptive Simulator realizes compositional adaptations.

By using reinforcement learning, it learns autonomously how to adapt the

internal simulator. It is not restricted to any specific simulator or modeling

language.

• Effects: The internal simulator is exchanged completely by an adaptation.

Since JAMES II requires developing well-defined model state objects, continuing

the simulation run with a new simulator is simple to realize, i.e., no maintenance

or integrity checks are needed after an adaptation.

After developing the concept of the Adaptive Simulator, we will evaluate its effec-

tiveness and efficiency in the next Chapter 5 by conducting experiments with different

modeling languages and simulators.

95

Chapter 5

Performance Experiments with the

Adaptive Simulator

A well-known problem in software engineering is that no matter what you

do, user requirements will change.

Raoul-Gabriel Urma et al. in Java 8 in Action

In Chapter 4, we designed the Adaptive Simulator, a generic adaptive simulator

performing strong dynamic adaptations and compositional adaptations. It uses rein-

forcement learning to autonomously learn how to adapt during runtime and it is not

restricted to a specific model or modeling language. In particular, we focused on differ-

ent techniques for the Adaptive Simulator to deal with large and high-dimensional

state spaces and different techniques for adaptation triggers. In this chapter, we eval-

uate the Adaptive Simulator referring to its components using simple benchmark

models and complex models used in simulation studies. Most of the experiments are

done using the modeling language ML-Rules— a modeling language for dynamically

nested biochemical reaction networks [130], see Section 5.1. Due to its expressiveness,

various computational challenges arise and therefore, it is a suitable language to

develop component-based simulators and to apply the Adaptive Simulator to deal

with the available options. To demonstrate the generality of the Adaptive Simulator,

we apply it also to the modeling language SR (see Section 5.2.1) and to PDEVS (see

Section 5.2.2).

Some parameters of the Adaptive Simulator are equal for all experiments. First,

the reward is represented by the logarithmized (base = 2) executed events per

second. Second, delayed rewards are not considered, i.e., δ = 0, and the learning rate

α : N → [0, 1]is always set to α(N [s, a]) = 1
N [s,a]

, see Equation 4.1 page 50.

Following the motivation of the performance metric dynamic regret, see Section 4.6,

96

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

to evaluate the effectiveness and efficiency of the Adaptive Simulator, we execute

replications with the Adaptive Simulator using the same knowledge base, i.e., it

reuses learned q-values at the start of a replication. However, to get reliable results,

we also execute repetitions of whole simulation experiments.

In the following, we use the term outer replication to refer to one repetition of a

simulation experiment. We use the term inner replication to refer to a replication of a

simulation run within one simulation experiment. Analogously, we use the term inner

threads to refer to the number of threads used to calculate the internal replications,

and the term outer threads to refer to the number of threads to calculate the external

replications. For example, setting the inner threads to 1 and the outer threads

to 10 means that for each outer replication, the internal replications are executed

sequentially, but 10 outer replications are executed in parallel.

To conduct the experiments, we exploit the experimental layer of JAMES II [87].

Originally, every experiment in JAMES II is executed by a central BaseExperiment

object. For each BaseExperiment, various data can be set, e.g., a model to be

simulated, model parameter configurations, replication criteria, a simulator to execute

the replications etc. To realize the approach of inner and outer replications, we added

a layer on top of the experimental layer. One BaseExperiment refers to one outer

replication and the replications executed within a BaseExperiment object refer to the

inner replications.

We used two computers to execute the experiments. All experiments except

some experiments in Section 5.1.2.4 have been executed on a machine with the

following configuration: Intel(R) Core(TM) i7 CPU X990 @ 3.46 GHz with activated

Hyperthreading and deactivated TurboBoost, 24GB RAM, Windows 7, and Java 7.

Due to the activated Hyperthreading, 12 threads can be executed in parallel. We

always used 10 threads on this machine. Some experiments in Section 5.1.2.4 have

been executed on another machine with the following configuration: Intel(R) Xeon

CPU X5690 @ 3.46 GHz with actived Hyperthreading and deactivated TurboBoost,

48GB RAM, Windows 7 64bit, Java 8. On this machine, 24 threads can be executed

in parallel. We always used 20 threads on this machine.

5.1 Experiments with ML-Rules

ML-Rules is a rule-based multi-level modeling language used to build dynamically

nested cell-biological models [130, 129, 72]. The model entity types in ML-Rules are

called species that can be attributed and dynamically nested. A multiset of species

entities is called a solution. The dynamics of an ML-Rules model are described by rule

schemes that define reactant patterns, products and a kinetic reaction rate. A reactant

97

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

pattern describes a species by its name (e.g., A, Cell, Protein), its attributes (e.g.,

size, volume, age), and further sub-species and their attributes etc. Since multiple

levels can be considered by reactant patterns and products, ML-Rules explicitly

supports downward and upward causation — an essential concept for many cell-

biological systems [144]. ML-Rules is a complex and expressive modeling language,

resulting in various computational challenges for a simulator of ML-Rules. Initially,

in the following section 5.1.1, we present the basic features of ML-Rules and the

consequences for the simulator. Afterward, we discuss experiment results achieved

with ML-Rules and the Adaptive Simulator in Section 5.1.2.

5.1.1 Introduction

ML-Rules is a powerful modeling language supporting many complex features. The

following examples extracted from [82] introduce the most important features step-

by-step to illustrate ML-Rules’ expressiveness. Besides, we have defined a formal

semantics for ML-Rules [195, 81]. This formal semantics allows us to have a clear

understanding of what is meant by a model and how it should be simulated. Further,

a documentation describing the concrete syntax of ML-Rules as well as the concrete

syntax formally defined in ANTLR4 syntax [151] is available in the ML-Rules source

code repository (https://git.informatik.uni-rostock.de/mosi/mlrules2).

5.1.1.1 Enzyme-Substrate-Product Model

Figure 5.1 shows an ML-Rules implementation of an enzyme-substrate-product network.

Firstly, constants are defined (ll.2-3). For example, these constants can be used to

calculate the initial amount of species or reaction rates. Afterward, species are defined

(ll.6-10). Attributed species are not needed in this model. Attributes could have been

defined within the parentheses, see Section 5.1.1.2. Next, the initial solution is defined

(l.13), containing 1000 E entities and 1000 S entities.

Finally, the rule schemes of the model are defined (ll.16-22). Every rule scheme

consists of three parts:

reactants -> products @ rate

For example, the first rule (l.16) describes the transformation of an enzyme (E) and a

substrate (S) to a complex (ES). All rule schemes apply the law of mass action and

therefore use reactant variables (e and s in the first rule) to access the amount of

species via the # operator.

ML-Rules models are interpreted as continuous-time Markov chains and can be

98

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

1 // constants

2 k1: 1e-3; k2: 2; k3: 1; k4: 10; k5: 0.1;

3 n: 1000;

4
5 // species definitions

6 E(); // enzyme

7 S(); // substrat

8 ES(); // enzyme -substrat complex

9 P(); // product

10 EP(); // enzyme -product complex

11
12 // initial solution

13 >>INIT[n E + n S];

14
15 // rule schemes

16 E:e + S:s -> ES @ k1 * #e * #s;

17 ES:es -> E + S @ k2 * #es;

18
19 ES:es -> EP @ k3 * #es;

20
21 EP:ep -> E + P @ k4 * #ep;

22 E:e + P:p -> EP @ k5 * #e * #p;

Figure 5.1: From [82]. An enzyme-substrat-product model.

simulated by using the stochastic simulation algorithm [63], see Section 2.4. Following

this interpretation, one state of an ML-Rules model corresponds to a well mixed

solution encoded as a multiset of chemical species. Further, reaction rates are used

firstly to calculate the probability to select a reaction to be fired and secondly to

calculate the time advancement. Intuitively, the higher the rate of a reaction, the

more likely it is to be executed. Referring to the enzyme-substrate-product model,

the reaction set is constant with five reactions, i.e., every rule scheme can directly be

mapped to one reaction.

5.1.1.2 Attributed Species

Species can be equipped with attributes, e.g., to represent the age or the volume of

an entity. Attributed species enable ML-Rules to support the concept of variables in

reactant pattern. Figure 5.2 illustrates this concept with a simple cell cycle model.

The only species Cell in this model has three attributes (l.5). The first attribute

is a number, the second attribute is a string, and the third attribute is a boolean.

Attributes do not have names in ML-Rules, but they are identified by their position

99

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

within the attribute tuple. The numbers of attributes of a species is fixed and cannot

change. Consequently, all entities of one species have the same number of attributes.

The meaning of an attribute is not an integral part of the ML-Rules model description,

but can only be described informally in the documentation of the model, e.g., in form

of comments in the model file. The attributes of the Cell shall be interpreted as

follows:

• The first attribute represents the volume of a Cell.

• The second attribute represents the current state (G1, SG2, M) of a Cell.

• The third attribute represents a flag that shows whether the growth activity of

a Cell is activated (true) or not (false).

The first rule scheme (ll.11-12) increases the volume of a Cell entity with activated

growth activity. Two reactant variables vol and state are used. Therefore, the

reactant Cell(vol,state,true) matches all Cell entities with an activated growth

activity, independent of the concrete volume and state of the Cell. Given the initial

solution, the simulator can therefore create one reaction based on this rule scheme with

vol = 1.0 and state = ’G1’. The reactant variables are reused in the product. The

volume is increased by a random number calculated by calling unif(0,1), i.e., the

random number is sampled from a uniform distribution U(0, 1). Generally, expressions

and functions can directly be used to calculate attribute values of products. The

second rule scheme (ll.13-14) illustrates conditional rates, i.e., the rate of a concrete

reaction is only greater than 0, if the volume of the considered Cell entity is greater

than 2.0.

Simulating this model is more challenging compared to the introductory enzyme-

substrate-product model. Initially, two reactions can be instantiated from the rule

schemes:

Cell(1.0,’G1’,true) -> Cell(1.0+unif(0,1),’G1’,true) @ 0.1 * 10;

Cell(1.0,’G1’,true) -> Cell(1.0+unif(0,1),’G1’,false) @ 0.2 * 10;

The basic stochastic simulation algorithm can be applied using these two reactions,

see Section 2.4. After firing one of the reactions, not only the propensities of both

reactions have to be updated, but also new reactions have to be added to the reaction

set. For example, when firing the second reaction, the resulting solution would be

9 Cell(1.0,’G1’,true) + 1 Cell(1.0,’G1’,false) and the updated reaction set

100

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

1 // constants

2 k1: 0.1; k2: 0.5; k3: 0.4; k4: 0.3; k5: 0.2;

3
4 // species definitions

5 Cell(num ,string ,bool);

6
7 // initial solution

8 >>INIT [10 Cell (1.0,’G1’,true)];

9
10 // rules

11 Cell(vol ,state ,true):c -> Cell(vol+unif (0,1),state ,true)

12 @ k1 * #c;

13 Cell(vol ,’G1’,active):c -> Cell(vol ,’SG2’,active)

14 @ if (vol > 2.0) then k2 * #c else 0;

15 Cell(vol ,’SG2’,active):c -> Cell(vol ,’M’,active)

16 @ k3 * #c;

17 Cell(vol ,’M’,active):c -> 2 Cell(vol/2,’G1’,active)

18 @ k4 * #c;

19 Cell(vol ,state ,active):c -> Cell(vol ,state ,! active)

20 @ k5 * #c;

Figure 5.2: From [82]. A simple cell cycle model.

would contain the following reactions:

Cell(1.0,’G1’,true) -> Cell(1.0+unif(0,1),’G1’,true) @ 0.1 * 9;

Cell(1.0,’G1’,false) -> Cell(1.0+unif(0,1),’G1’,false) @ 0.1 * 1;

Cell(1.0,’G1’,true) -> Cell(1.0+unif(0,1),’G1’,false) @ 0.2 * 9;

Cell(1.0,’G1’,false) -> Cell(1.0+unif(0,1),’G1’,true) @ 0.2 * 1;

In general, the reaction set of ML-Rules models is not fixed, but it can change

frequently. Moreover, the complete reaction set of all possible species instantiations

is usually infinite, e.g., due to an infinite number of different species entities, and

therefore it cannot be calculated completely initially. Thus, it is often mandatory to

regularly update the reaction set.

Altogether, two computational challenges can be identified. First, matching species

must be found during runtime for reactants to calculate new reactions. To improve

the efficiency of the matching process, filtering potential species efficiently by using

sophisticated data structures might be suitable. Therefore, we implemented a plugin

type for the ML-Rules simulator responsible for the species handling. Plugins of this

type are mainly responsible for an efficient retrieval of species entities, e.g., to get all

101

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

entities with specific properties efficiently. We developed three plugins of this type:

1. ListSpeciesHandling saves all species entities in a list, i.e., the overhead of

the maintenance is low, but the retrieval is not efficient. However, if the number

of entities is small, this simple plugin might be the most efficient solution.

2. MapSpeciesHandling saves all species entities in a map indexed by species types.

The overhead of this plugin is still low, but species can be retrieved efficiently

by their type.

3. GridSpeciesHandling saves all species entities in a grid-file [143] that is a

multi-key index data structure. By using this data structure, species can be

efficiently retrieved by their attribute values, but the overhead of this data

structure is relatively high.

A second computational challenge is the reaction set update. Analog to the idea

of a dependency graph for the Next Reaction Method [62], in the ideal case, only

invalid reactions are removed from the reaction set after a reaction execution and only

new reactions are added to the reaction set. We added a flag useDependencyGraph

to the ML-Rules simulator that activates or deactivates the usage of a dependency

graph to update the rule instantiations, i.e., either the set of instantiations is cleared

and calculated again completely after a reaction firing or only those instantiations

are updated that are influenced by the fired reaction. Using a dependency graph

can be advantageous if only few reactions are removed and added after each reaction

execution, but it might be disadvantageous in case the reaction set changes significantly

after each reaction execution.

5.1.1.3 Compartments

ML-Rules explicitly supports dynamically nested entities, i.e., entities are able to

contain other entities. If an entity contains other entities, it is called a compartment.

All entities directly contained by an entity are called its sub entities. The entity that

contains the sub entities is referred to as their context. The top-level context, which

cannot changed by any reactions, is referred to as the root context. Further, in the first

version of ML-Rules, see [130], all entities are treated in a population-based manner,

i.e., all entities have an amount value representing the copy number of this concrete

entity. Two entities are identical if they have a) the same context, b) the same species

type, c) the same attributes and d) identical sub entities. For example, the solution

10 Organism[10 Cell[5 A + 5 B] + 5 Cell[4 A + 6 B]] (5.1)

102

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

10 Organism

10 Cell 5 Cell

5 A 5 B 4 A 6 B

1 Organism

9 Cell 5 Cell

5 A 5 B 4 A 6 B

1 Cell

5 A 5 B

1 Root

1 Root

9 Organism

10 Cell 5 Cell

5 A 5 B 4 A 6 B

1 Organism

9 Cell 5 Cell

5 A 5 B 4 A 6 B

1 Cell

5 A 5 B

1 Root

9 Organism

10 Cell 5 Cell

5 A 5 B 4 A 6 B

1 Organism

9 Cell 6 Cell

5 A 5 B 4 A 6 B

Figure 5.3: Top: Tree representation of the exemplary ML-Rules solution, see Equa-
tion 5.1. Middle: An individual branch has been extracted from the solution to execute
rule R1 in the marked context. Bottom: Result after executing A -> B in the marked
context.

is one entity representing 10 identical Organisms, each containing 15 Cells, whereby

10 Cells containing 5 A and 5 B and 5 Cells containing 5 A and 3 B. Figure 5.3

(top) shows a tree representation of this solution.

A population-based representation of compartments implies that the propensities

of reactions must be multiplied with the copy numbers of their context hierarchy up

to the root context. Considering the contexts is needed since an entity with a copy

number > 1 represents a set of compartments, whereby the reactions inside this entity

103

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

can occur in each of these compartments. For example, suppose the rule scheme

A:a -> B @ #a;

is applied to the given exemplary solution, see Equation 5.1. The simulator can

create two reactions based on this rule scheme, one within the context 10 Cell[5 A

+ 5 B] (R1) and one within the context 5 Cell[4 A + 6 B] (R2). To calculate the

propensities of the reactions, the copy numbers of the contexts must be considered,

i.e., the propensity of R1 is 10 · 10 · 5 = 500 and the propensity of R2 is 10 · 5 · 4 = 200.

If R1 shall be executed next, an individual branch of the context hierarchy up to

the root context must be extracted initially, see Figure 5.3 (middle). The extraction

is necessary to restrict the reaction firing to an individual compartment hierarchy.

If it would not be done and the amounts of A and B would be directly changed, all

compartments represented by the context entity would be changed. After executing

the reaction in the extracted context, changed compartments might be identical to

other compartments and therefore, a merging procedure is processed successively from

the context of the reaction to the root context. Figure 5.3 (bottom) shows the result

of this process after the reaction execution.

Altogether, the extraction and the merging processes are expensive operations.

However, population-based compartments can be beneficial since the rule scheme

instantiation process does not have to be done for each individual compartment.

Referring to the example, only two reactions are instantiated instead of one reaction

per Cell, i.e., 150 reactions. Nevertheless, the solution shown in 5.1 is only typical

for an initial solution of a model. With an increasing number of reaction firings, fewer

and fewer compartments are usually identical, eventually resulting in an individual

representation of compartments. In this case, the extraction and merging processes

are additional costs for the simulator without any benefit.

Based on these observations, we changed the treatment of compartments in the

current version of ML-Rules: compartments are always treated individually. Thus, the

extraction and merging processes are avoided completely. Further, species types whose

entities shall be used as compartments must be explicitly marked in the type definition.

This enables the simulator to clearly distinguish between compartments treated indi-

vidually and non-compartments treated in a population-based manner. Additionally,

the integration of τ -leaping is more simple with individual-based compartments, see

Section 6.2.

Also compartments arise further challenges for the ML-Rules simulator. To improve

the efficiency of the reaction instantiation and reaction execution, it might be beneficial

to save sub species indexed by their type in a map. Therefore, we developed two

plugins (SpeciesWithList and SpeciesWithMap) that use either a list to save the

104

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

1 Root

9 Organism

10 Cell 5 Cell

5 A 5 B 4 A 6 B

1 Organism

9 Cell 6 Cell

5 A 5 B 4 A 6 B

Figure 5.4: After executing A -> B, see Figure 5.3, a mapping of old entities to new
entities with the same sub species can be created, i.e., reactions of the old contexts
can be copied for the new contexts; only propensities must be updated.

sub species of a species or a map indexed by species type. Similarly, we developed two

plugins (SetReactionHandling and MapReactionHandling) for the handling of the

reactions. The plugin MapReactionHandling is indexing reactions by their context.

Consequently, reactions can be removed efficiently. The plugin SetReactionHandling

is either using a HashSet or an ArrayList to maintain the reactions.

Besides, to deal with population-based compartments more efficiently, we have

developed two plugins for the reaction execution: EqualsReactionExecution and

IDReactionExecution. These plugins do not influence the reaction execution itself,

but they differ in how they deal with the extraction process of population-based

compartments. The problem is that an extracted branch internally consists of newly

created software objects, but all reactants of the selected reaction still refer to the

software objects of the original branch. Therefore, a mapping has to be calculated for

all reactants from the old branch to the new branch. Further, this mapping can be

used to copy reactions from the old branch to the new branch for parts that have not

been changed, i.e., not all rule scheme instantiations have to be calculated from scratch

for the newly created contexts. For example, Figure 5.4 shows the result solution of

the reaction execution illustrated in Figure 5.3 including a suitable mapping which

can be used to copy reactions. All reactions that have the left red 10 Cell entity

as context can be copied accordingly for the right red 9 Cell entity, since the sub

species of both entities is identical. Only propensities of copied reactions have to

be updated. Analog, all reactions that have the left blue 5 Cell entity as context

can be copied accordingly for the right blue 6 Cell entity. Note that no mapping

exists between the 9 Organism context and the 1 Organism context. Such a mapping

would be invalid, since the sub species of both contexts are not identical and therefore,

reactions might be invalid or new reactions might be possible in the new 1 Organism

105

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

1 // constants

2 k1: 0.02;

3 k2: 0.15;

4 nBCatCell: 10000;

5 nBCatNuc: 4000;

6
7 // species definitions

8 Cell()[]; // compartment

9 Nucleus ()[]; // compartment

10 BCat();

11
12 // initial solution

13 >>INIT[3 Cell[1 Nucleus[nBCatNuc BCat] + nBCatCell BCat]];

14
15 // rules

16 Nucleus[s?] + BCat:b -> Nucleus[BCat + s?] @ k1 * #b;

17 Nucleus[BCat:b + s?] -> Nucleus[s?] + BCat @ k2 * #b;

Figure 5.5: From [82]. A model of β-catenin proteins (BCat) shuttling into and out of
the nucleus of a cell.

context. The plugin EqualsReactionExecution is determining the mapping by using

the equals() method of the species software objects. This approach is simple to

implement and does not need any additional auxiliary data structures. Nevertheless,

the comparison of species entities can be complex in case of nested entities. The

plugin IDReactionExecution is avoiding the direct comparison of entities by using an

auxiliary HashMap maintaining the mapping between all original entities and copied

entities.

5.1.1.4 Multi-Level Rules

An essential feature of ML-Rules are dynamically nested entities and multi-level rules.

For example, nested entities and multi-level rules can be used to describe diffusion

proceses, as illustrated by the model in Figure 5.5. Compartments must be marked

explicitly in the species definition by brackets after the attribute tuple, see lines 8-9.

The initial solution of this model is a nested: three Cell compartments are created,

each containing 10000 Bcat entities and one Nucleus compartment containing 4000

Bcat entities. Both rules of the model (ll.16-17) describe the shuttling of Bcat entities

into and out of a Nucleus compartment. These rules use so-called rest solution

variables (<name>?). These variables represent the whole content of the compartment

matched to the reactant except entities that are already bound to other reactants.

106

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

1 // constants

2 k1: 0.001;

3 k2: 0.002;

4
5 // species definitions

6 Cell()[]; // compartment

7 Endo()[]; // compartment

8 Lyso()[]; // compartment

9 Particle ();

10
11 // initial solution

12 >>INIT [100 Particle + 3 Cell[5 Lyso]];

13
14 // rules

15 Cell[s?] + Particle:p -> Cell[Endo[Particle] + s?] @ k1 * #p;

16 Endo[s1?] + Endo[s2?] -> Endo[s1? + s2?] @ k2;

17 Endo[s1?] + Lyso[s2?] -> Lyso[s1? + s2?] @ k2;

Figure 5.6: An abstract endocytosis model illustrating the creation and fusion of
compartments.

Reactant variables are not used for compartments, as they are treated individually in

ML-Rules.

Another model using compartments and multi-level rules is shown in Figure 5.6

representing an abstract endocytosis process. A particle (Particle) can enter a cell

(Cell) engulfed by an endosome compartment (Endo) (l.15). Further, two endosomes

can fuse (l.16) and an endosome can fuse with a lysosome (Lyso) (l.17). In contrast to

the previous model, here the model structure is dynamic as endosome compartments

are added and removed frequently.

In general, multi-level complicate the reaction instantiation process in ML-Rules, as

the reactant matching must be extended to a recursive method. Further, in particular

multi-level rules can be used to describe dynamic structures and consequently a

dynamic reaction network. Thus, these rules also motivate an efficient update of the

reaction network in ML-Rules. However, we have not developed specific plugins to

deal explicitly with multi-level rules differently.

5.1.1.5 Functions on Solutions

Besides the presented features, functions on solutions are an essential feature of the

current version of ML-Rules. They had not been part of the initial ML-Rules version

presented in [130]. These functions are able to deal with species and compartments

107

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

as input parameters. Based on the inputs, they can compute result species and

compartments. For example, it is possible with functions on solutions to filter a

solution, e.g., to remove all species of a specific type. Further, it is possible to

compute statistics of a solution, e.g., calculate the average volume of all cells within

this solution. Splitting a compartment is another typical application of functions on

solutions. Altogether, ML-Rules provides various built-in functions, e.g., to count or

filter solutions. The set of built-in functions is regularly extended. However, ML-Rules

not only allows the modeler to use built-in functions, but we also added means to

define own functions inspired by functional programming — in particular by the

programming language Haskell [99].

Functions on solutions add another computational challenge to the ML-Rules

simulator, e.g., complex functions must be interpreted frequently during runtime.

Future work includes a transformation of functions on solutions to native Java code.

This Java code then can be compiled at the beginning of simulation run to be executed

more efficiently.

5.1.2 Experiments

To deal with different computational challenges of ML-Rules, we developed a plugin-

based ML-Rules simulator [74]. Based on the features and components presented in

the previous section, this ML-Rules simulator consists of the following components

and parameters:

• Species Handling: ListSpeciesHandling, MapSpeciesHandling, and

GridSpeciesHandling

• Reaction Handling: SetReactionHandling (with HashSet or ArrayList,

MapReactionHandling

• Species Types: SpeciesWithList and SpeciesWithMap

• Reaction Execution: EqualsReactionExecution and IDReactionExecution

• useDependencyGraph: true or false

Consequently, for the experiments with the Adaptive Simulator and ML-Rules we

can use 3·3·2·2·2 = 72 simulator configurations. Note that none of these configurations

change the semantics of the ML-Rules simulator.

The base state collected by the Adaptive Simulator for ML-Rules consists of four

values: the number of different species σs, the number of removed and added species

(σs
+ and σs

−) after each reaction execution, and the number of possible reactions σr.

108

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

Species in ML-Rules differ only when their types differ, they are nested in different

species, their attributes differ, or their sub-species differ. Altogether, a base state

σ ∈ Σ comprises four attributes related to ML-Rules1:

σ = (σs, σr, σs
+, σ

s
−).

The function p1 that aggregates a base state trajectory τ ∈ Σ∗ to an aggregated state

s ∈ S is defined as follows:

p1(τ) = s =

(
1

|τ |
∑
σ∈τ

σs,
1

|τ |
∑
σ∈τ

σr,
1

|τ |
∑
σ∈τ

σs
+

σs
,

1

|τ |
∑
σ∈τ

σs
−
σs

)
, (5.2)

i.e., the average species number, the average reactions number and the average ratio

of added and removed species with respect to σs are computed.

5.1.2.1 Experiments with a Benchmark Model

For various experiments, we have developed a cyclic benchmark ML-Rules model

with two alternating phases [75]. Figure 5.7 shows this model written in the current

ML-Rules syntax.

Both phases describe degradation processes and need exactly 10,000 simulation

events to be completed. The first phase degrades species that share an attribute value:

A(x,0) + A(x,1) + A(x,2) -> A(x-1,0) + A(x-1,1) + A(x-1,2) @ ...;

To compute all reactions based on this rule scheme, the simulator must determine all A

species that have the same first attribute value. This can be done efficiently by using

a multi-key data structure like the grid-file. The second phase of the model degrades

species independently from all the others, i.e., no species that share attribute values

have to be determined and a grid-file should not have benefits compared to a simple

list. In contrast, the grid-file should perform worse due to its maintenance overhead.

For the first experiment we executed with the benchmark model, we only use two

configurations of the ML-Rules simulator: one is using the plugin ListSpeciesHandler

(Simulator A), and one is using the GridSpeciesHandler (Simulator B). The remain-

ing plugins have been set as follows: SpeciesWithMap, SetReactionHandling, and

IDReactionExecution. Further, the flag useDependencyGraph has been set to true.

The average runtimes for each part of a simulation run with both simulators for the

first 40, 000 simulation events is shown in Figure 5.8. Both phases of the model occur

1A base state also contains one meta-information, i.e., the wallclock time t when the base state
has been observed.

109

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

1 max : 100 ;
2
3 A(num , num) ;
4 B(num , num) ;
5 Switch (num) ;
6 System () [] ;
7
8 >>INIT [
9 1 System [

10 1 Switch (1) +
11 100 A(max , 0) +
12 100 A(max , 1) +
13 100 A(max , 2)
14]
15] ;
16
17 Switch (1) + A(x , 0) : t1 + A(x , 1) : t2 + A(x , 2)
18 −> Switch (1) + A(x−1 ,0) + A(x−1 ,1) + A(x−1 ,2)
19 @ if (x>0) then #t1∗#t2 else 0 ;
20 Switch (1) + 100 A(0 , 0) + 100 A(0 , 1) + 100 A(0 , 2)
21 −> Switch (2) + 50 A(max , 0) + 50 A(max , 1) + 50 A(max , 2) + 50 A(max , 3)
22 @ 1 ;
23
24 Switch (2) + A(x , i) : t1
25 −> Switch (2) + A(x−2, i) + B(x , i) + B(x−1, i)
26 @ if (x>0) then #t1 ˆ(4) else 0 ;
27 System [Switch (2) + 50 A(0 , 0) + 50 A(0 , 1) + 50 A(0 , 2) + 50 A(0 , 3) + s o l ?]
28 −> System [Switch (1) + 100 A(max , 0) + 100 A(max , 1) + 100 A(max , 2)]
29 @ 1 ;

Figure 5.7: The benchmark model from [75] written in the current ML-Rules syntax.

Number of Simulation Event

E
xe

cu
tio

n
Ti

m
e

in
 s

●

●

●

●

●

●

●

●
●

0 10000 20000 30000

0.00.0

0.1

0.2

0.3

0.4

● Simulator A

Simulator B

Figure 5.8: From [76]. Execution times for the two ML-Rules simulator configurations
for the ML-Rules benchmark model. Each data point shows the execution time
summed over 100 simulation events.

110

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

E
xe

cu
tio

n
Ti

m
e

in
 s

0.000.00

0.06

0.12

0.18

0.24

0.30
Replication 1

E
xe

cu
tio

n
Ti

m
e

in
 s

0.000.00

0.06

0.12

0.18

0.24

0.30
Replication 10

E
xe

cu
tio

n
Ti

m
e

in
 s

0.000.00

0.06

0.12

0.18

0.24

0.30
Replication 50

Number of Simulation Events

E
xe

cu
tio

n
Ti

m
e

in
 s

10000 20000 30000

0.000.00

0.06

0.12

0.18

0.24

0.30
Replication 100

c1 c2 c3 Optimal

Figure 5.9: From [76]. In-detail view on averaged execution times during specific repli-
cations of the ML-Rules synthetic benchmark model, using the Adaptive Simulator

with two actions and three different state space generalization configurations: c1, c2,
and c3. Each data point shows the execution time summed over 100 simulation events.
The dotted lines denote the average execution times of the approximately optimal
Adaptive Simulator.

111

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

Number of Replications

D
yn

am
ic

 R
eg

re
t

0 10 20 30 40 50 60 70 80 90

0.0

0.3

0.6

0.9

1.2

1.5

●

●
● ●

● c1
c2
c3

Simulator B
Average Case
Simulator A

Figure 5.10: From [76]. The dynamic regret of the Adaptive Simulator on the ML-
Rules synthetic benchmark model with three different static state space generalizations
and two actions.

Rep. 1 Rep. 10 Rep. 50 Rep. 100

c1 46.6 s (105%) 29.2 s (66%) 26.7 s (61%) 26.8 s (61%)

c2 46.9 s (106%) 36 s (82%) 27.5 s (63%) 26.1 s (59%)

c3 47.3 s (107%) 45.7 s (104%) 34.2 s (78%) 29.6 s (67%)

Table 5.1: From [76]. The average execution times of the Adaptive Simulator with
the two-actions setup and the three used different static state space generalization
configurations: c1 (lowest granularity), c2 (medium granularity), and c3 (highest
granularity). The relation to the average runtime of both simulator configurations
(≈ 44 s) for each value is given in brackets.

twice within the first 40, 000 simulation events. As expected, Simulator B that is

using the grid-file to retrieve species is more efficient to simulate the first and third

phase of the model (the third phase is a repetition of the first phase). Further, it

performs worse than Simulator A for the second and fourth phase. On average, both

simulators need ≈ 44 s to compute one simulation run of the benchmark model, i.e.,

they perform similarly. With optimal adaptations during runtime (use Simulator A

during the second and fourth phase and use Simulator B during the first and third

phase), it would be possible to achieve a runtime of ≈ 21 s.

All in all, the model is suitable to demonstrate the effectiveness of the Adaptive

Simulator and to analyze some of its properties. In [76], no dynamic state space

mechanisms and no Bayesian changepoint detection have been available, so that we

initially explored the impact of the static grid-based state space generalization with

three granularities ci = (a, b, c, d): c1 = (50, 50, 0.5, 0.5), c2 = (10, 10, 0.1, 0.1), and

c3 = (2, 2, 0.02, 0.02). An aggregated state s = (w, x, y, z) is generalized by computing

112

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

the smallest multiple for each value of the used granularity that is smaller than the

corresponding value of the aggregated state:

s = (a ·
w
a
�, b ·
x

b
�, c ·
y

c
�, d ·
z

d
�). (5.3)

For example, the aggregated state s = (7, 14, 0.43, 0.62) would be generalized to

(0, 0, 0, 0.5) with c1, to (0, 10, 0.4, 0.6) with c2, and to (6, 14, 0.42, 0.62) with c3. Re-

ferring to the adaptation frequency, the Adaptive Simulator is regularly executing

an adaptation every 1000 simulation events. Further, the Adaptive Simulator is

using ε-decreasing with ε = 5 for the action selection. As motivated in Section 4.6, we

executed 100 inner replications sequentially with the Adaptive Simulator and the

same knowledge base, i.e., the number of inner threads is 1. The whole experiment

has been repeated 50 times, i.e., the number of outer replications is 50. Figure 5.9

illustrates detailed runtime results of the Adaptive Simulator. Figure 5.10 shows

the computed dynamic regret values and Table 5.1 gives an overview of the average

runtimes per simulation run with the Adaptive Simulator and the three state space

granularities. Clearly, in the long run the Adaptive Simulator performs better than

both simulators. Further, the more fine-grained the state space, the more time is

needed to learn efficient selection policies, i.e., the dynamic regret decreases slower

the more fine-grained the generalization is chosen. However, a coarse-grained general-

ization can lead to permanent wrong decisions as can be seen in Figure 5.9, because

aggregated states belonging to different phases of the simulation are mapped to the

same macro state. Thus, the dynamic regret by using the granularities c1 and c2
converges to a value around 0.3.

In a second experiment with the benchmark model, we explored the effect of various

selection policies. We use ε-greedy (ε = 0.15), ε-decreasing (ε = 5), Upper Confidence

Bound (UCB1) [6], Interval Estimation (α = 0.05) [101], and SoftMax [193]. These

policies work as follows. The ε-greedy policy chooses — based on its current knowledge

— the best action a with the constant probability p(s, a) = 1 − ε and otherwise a

random action. The ε-decreasing policy couples the probability p(a) to select the

best action a on the number n of selections: p(a) = 1 − min(1, ε
n
). The policy UCB1

initially chooses each action once. Afterward, for each following decision, the action

which maximizes

μ̂i +

√
2 lnn

ni

(5.4)

is chosen, where μ̂i represents the current estimate of the performance of action ai, n

the number of occurrences of the according state s, and ni the number of selections

of ai after observing s. The second summand converges to zero over time so that

the exploration rate converges to zero. Consequently, UCB1 is a zero-regret policy.

113

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

Number of Replications

D
yn

am
ic

 R
eg

re
t

0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

●
●

● ●

● ε−greedy
ε−decreasing
Interval Estimation
UCB1
SoftMax
Best Case
Average Case
Worst Case

Figure 5.11: From [76]. The dynamic regret of the Adaptive Simulator setups on
the ML-Rules synthetic benchmark model with five different action selection policies
and 36 actions.

Similar to UCB1, the Interval Estimation policy initially chooses each action once.

Afterward, confidence intervals of the performance for each action are computed. For

each decision, the action with the highest upper bound of its confidence interval is

chosen. Finally, the policy SoftMax computes the probability pi to choose action ai
with

pi =
eμ̂i/τ∑|A|
j=1 e

μ̂j/τ
, (5.5)

where τ ∈ R
+ is the temperature parameter chosen by the user and μ̂i is again the

current estimate of the performance of the action ai. The higher τ is chosen, the more

exploration takes place. This strategy does not select each action once initially, but it

is not a zero-regret policy.

For this experiment, we allow the Adaptive Simulator to choose between 36 sim-

ulator configurations (all plugins are used and always useDependencyGraph = true)

of the plugin-based ML-Rules simulator. Again, we executed 100 inner replications

and 50 outer replications and we used 1 inner thread and 10 outer threads. For the

state generalization, we use the granularity c2. Figure 5.11 illustrates the dynamic

regret trajectories of the policies. As expected, the dynamic regrets of ε-greedy and

ε-decreasing decrease quickly as they use their knowledge rather directly. The results

match the results by Ewald et al. observed in [47], i.e., ε-greedy and ε-decreasing

perform better compared to the other policies and although ε-greedy performs better

than ε-decreasing initially, ε-decreasing outperforms it after a few replications.

114

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

A B C D E

15
20

25
30

35

Cell Cycle Model

E
xe

cu
tio

n
Ti

m
e

in
 s

●

●

●

●
●

●

●

●

●

A B C D E

50
60

70
80

90
10

0

Endocytosis Model

E
xe

cu
tio

n
Ti

m
e

in
 s

●●●
●

●

●

●

●

●
●

●

●●●

A B C D E
30

40
50

60
70

Wnt Pathway Model

E
xe

cu
tio

n
Ti

m
e

in
 s

Figure 5.12: From [76]. Boxplots of the average execution times
to compute one replication with the 36 ML-Rules simulator configura-
tions (A), the AdaptiveSimulationRunner executing ten replications (B), the
AdaptiveSimulationRunner executing 100 replications (C), the Adaptive Simulator

executing ten replications (D), and the Adaptive Simulator executing 100 replica-
tions (E). The horizontal dotted lines represent the execution time per replication for
the corresponding model, averaged over all 36 simulator configurations.

5.1.2.2 Experiments with Complex Models

Besides the experiments done with the ML-Rules benchmark model, we have executed

further experiments with more complex models used for simulation studies: a Cell

Cycle model [130], an Endocytosis model [74], and a Wnt/β-catenin pathway model

[131, 132, 69], see Appendix A.1, A.2, and A.3 for the ML-Rules implementations

of these models. For initial experiments, we use again 36 simulator configurations

(all plugins are used and always useDependencyGraph = true), the static grid-based

state space generalization c4 = (5, 5, 0.1, 0.1), the ε-decreasing (ε = 5) policy, and an

adaptation execution every 1000 simulation events. Additionally, we executed exper-

iments with the AdaptiveSimulationRunner (see Section 2.5.3) using ε-decreasing

(ε = 5). Here, we executed 100 inner replications with 10 inner threads — the Cell

Cycle and the Endocytosis model for 100, 000 simulation events per replication, the

115

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

Cell Cycle Endocytosis Wnt Pathway

36 SA configurations 24.5 s (σ = 4.4 s) 60.9 s (σ = 13 s) 44 s (σ = 12 s)

Adaptive Simulator executing
ten replications

22.2 s (σ = 0.9 s) 62.1 s (σ = 3.4 s) 32.3 s (σ = 1.2 s)

Adaptive Simulator executing
100 replications

21.3 s (σ = 0.7 s) 55.9 s (σ = 2.2 s) 31 s (σ = 1.15 s)

AdaptiveSimulationRunner ex-
ecuting ten replications

26.9 s (σ = 1.8 s) 63.3 s (σ = 5.8 s) 43.7 s (σ = 4.5 s)

AdaptiveSimulationRunner ex-
ecuting 100 replications

21.8 s (σ = 0.8 s) 56.9 s (σ = 1.5 s) 33 s (σ = 0.9 s)

Table 5.2: From [76]. Average execution times for one replication of the corre-
sponding model, for the 36 SA configurations, the Adaptive Simulator, and the
AdaptiveSimulationRunner.

Wnt/β-catenin pathway model for 500, 000 simulation events per replication. Further,

we executed 50 outer replications per model with 1 outer thread. Figure 5.12 illustrates

the averaged runtime boxplots of the different simulators. Both adaptation techniques,

the AdaptiveSimulationRunner and the Adaptive Simulator, outperform the av-

erage performance of the simulator configurations when executing 100 replications.

For the Cell Cycle model and the Wnt/β-catenin pathway model, the Adaptive

Simulator already outperforms the average performance after ten replications. Fur-

thermore, the results of the Adaptive Simulator are rather robust, especially the

worst-case performance is much better than that of the worst simulator configuration.

Compared to the AdaptiveSimulationRunner, the Adaptive Simulator performs

similarly when executing 100 replications, but much better when executing ten replica-

tions. It works better because it directly uses its learned knowledge for the initial ten

replications, whereas the AdaptiveSimulationRunner has to choose the simulator

configurations for the first ten replications randomly. Interestingly, the Adaptive

Simulator never performs better than the best simulator configurations.

5.1.2.3 Changepoint Detection Experiment

In ML-Rules, we analyzed the effectiveness of our Bayesian changepoint detection

algorithm for the adaptation condition, see Section 4.4.1, by executing simulation

runs with the Wnt/β-catenin pathway model [80]. We executed 100 inner replications

sequentially, i.e., with 1 inner thread and we executed 50 outer replications with 10

outer threads. Each replication has been executed for 100, 000 simulation events. We

set amin = 100, because the needed execution time for one simulation event is typically

smaller than 1 ms. For the action selection, we set ε-decreasing with ε = 5. For

116

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

Number of Replications

N
um

be
r o

f A
da

pt
at

io
ns

0 10 20 30 40 50 60 70 80 90

0

40

80

120

160

Figure 5.13: From [80]. Due to many unknown states and high exploration rates of
the ε-decreasing strategy at the beginning of the experiment, many adaptations are
executed per replication due to enforced adaptations. As the experiment continues,
the number of adaptations constantly decreases to approximately ten adaptations per
replication.

Number of Replications

R
un

tim
e

in
 s

0 10 20 30 40 50 60 70 80 90

15

18

21

24

27

30

● ● ● ●

● Interval 100

Interval 1000

Interval 10000

CP Detection

Best Case

Average Case

Worst Case

Figure 5.14: From [80]. Performance results of the Wnt/β-catenin pathway model
experiment with different adaptation intervals and the changepoint detection algorithm.

the state space generalization, we use the static grid-based generalization with the

granularity c4 = (5, 5, 0.1, 0.1). For the action set, we have not used all 36 simulator

configurations for the experiment, but only 12 options constructed with the plu-

gin sets {MapSpeciesHandler, GridSpeciesHandler}, {EqualsReactionExecution,

IDReactionExecution}, and {SetReactionHandling with HashSet and ArrayList,

MapReactionHandling} and useDependencyGraph = true.

We executed the experiment with three static adaptation intervals (100, 1000,

10000) and with four different configurations of the changepoint detection algorithm

with δ ∈ {10, 100} and h ∈ {0.01, 0.0001}. Averaged performance results are illustrated

in Figure 5.14. Only one result with the changepoint detection algorithm is shown,

because the results have been very similar with all four configurations, i.e., the impact

of δ and h have been low. This emphasizes that the algorithm seems to be robust

117

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

and default parameter values might be suitable for most cases. Independent from

the concrete adaptation condition, the Adaptive Simulator outperforms the average

performance of the twelve simulator configurations. When executing adaptations

rarely, i.e., every 10000 simulation events, the learning efficiency reduces. In ML-

Rules, the costs of an adaptation are low, so that it seems to be suitable to compute

many adaptations: the performance with adaptations every 100 simulation events

only worsen slightly due to the adaptation overhead. The changepoint detection

algorithm as well as a static adaptation interval 1000 produce the best results of the

Adaptive Simulator. However, the changepoint detection algorithm needs much

fewer adaptations to achieve this result, see Figure 5.13. Although this observation is

not important for ML-Rules, it becomes important when adaptations are costly, see

Section 5.13.

5.1.2.4 Dynamic State Space Generalization Experiment

Continuing the running example from Section 4.3, Figure 5.15 shows the dynamic

regret of the used state space generalizations for the ML-Rules benchmark model. The

results show that a static grid generalization with a suitable grid size can be efficient

initially, but it will be outperformed by good dynamic generalization methods in the

long run. Further, since a good grid size is typically not obvious, one cannot expect to

achieve good results with a static grid generalization without spending effort to analyze

the concrete application scenario. Finally, although the DBPA performs best after 100

replications, the dynamic regret is misleading here. For all used generalizations except

the DBPA, the variance of the performance results is small, so that the dynamic

regret nicely reflects their performance behavior one can expect when executing one

simulation experiment with the Adaptive Simulator, see Figure 4.15 page 72. For

the DBPA, however, the variance is much higher and therefore, when executing one

simulation experiment with the Adaptive Simulator and the DBPA, the results

could be much better compared to the dynamic regret of the DBPA, but also much

worse.

Besides, based on the experiment described in the previous Section 5.1.2.3, we

repeated the experiment with the AVQ-based dynamic state space representation, see

Section 4.3.2. Thus, we simulated the Wnt/β-catenin pathway model for 100, 000

simulation events. We executed again 100 inner replications sequentially and repeated

the overall experiment 50 times, i.e., we executed 50 outer replications. For the

adaptation condition, we use the changepoint detection algorithm developed in [76]

with default parameters (δ = 10, h = 0.01). Moreover, again we use ε-decreasing

with ε = 5 for the action selection policy. The minimum reward difference to add

new codewords to the codebook α has been set to α = log2(1.5) ≈ 0.585. Since

118

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

Number of Replications

D
yn

am
ic

 R
eg

re
t

0 10 20 30 40 50 60 70 80 90

0.0

0.5

1.0

1.5

2.0

●

●
●

●

● Grid (size=1)
Grid (size=10)
Grid (size=100)
Grid (size=500)
DBPA
AVQ
Simulator A
Simulator B

Figure 5.15: Dynamic regret for the ML-Rules benchmark model and different state
space generalizations.

●
●

●

20
30

40
50

60

E
xe

cu
tio

n
Ti

m
e

in
 s

10 50 100 500 ∅

Figure 5.16: From [79]. Average execution time distributions of the Wnt/β-
catenin pathway model with the Adaptive Simulator using the changed AVQ with
m ∈ {10, 50, 100, 500}. The right distribution illustrates the average execution time
distribution of the available 24 simulator configurations.

the logarithmic event throughput is used as reward, a throughput difference of at

least 50% must be observed to add a new codeword to the codebook. Accordingly,

we set ρ = α2 ≈ 0.343. Here, we use 24 simulator configurations for the action

set, constructed with the plugin sets {ListSpeciesHandler, MapSpeciesHandler,

119

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

GridSpeciesHandler}, {EqualsReactionExecution, IDReactionExecution}, and

{SetReactionHandling with HashSet, MapReactionHandling} and the flag use-

DependencyGraph ∈ {true, false}. Figure 5.16 illustrates the runtime results of the

Adaptive Simulator with different values of macro states sizes m ∈ {10, 50, 100, 500}
compared to the runtime distribution of the used 24 simulator configurations. Since the

merging process of our variant of the AVQ based state space algorithm is executed after

each replication execution, 99 merging processes were executed during the execution of

100 replications (no merging before the first replication and after the last replication).

The Adaptive Simulator achieves almost the performance of the best simulator

configuration with all values of m and the performance distribution is clearly better

compared to the performance distribution of the 24 simulator configurations that

basically represents the distribution of a “random choice”. A few macro states is

sufficient to achieve good results. Further, the algorithm seems to be robust since the

performance only worsen slightly with a higher number of macro states owing to a

higher exploration effort.

5.2 Other Modeling Formalisms

Besides experiments with ML-Rules, we tested the Adaptive Simulator with two

other modeling formalisms available in JAMES II: SR and DEVS. The following

sections give a short overview about the results the Adaptive Simulator has achieved

referring to these formalisms.

5.2.1 Species-Reactions (SR)

An important data structure in discrete event simulation are event queues that maintain

the queue of all events to be processed [84, p. 142ff.]. This maintenance is challenging

in many ways, e.g., new events are stored frequently into the event queue, events

are regularly removed from the queue, and the event with the minimum time stamp

shall always be accessed efficiently. Since the importance of these facets and thus the

performance of an event queue depend on the concrete model to be executed [88],

several event queue implementations exist to suit specific characteristics. For example,

bucket-based queues like the calendar queue [19] partition all events based on time

stamps or based on time periods. An alternative is the MList [65]. This queue uses

three data structures to organize events. Events with a time stamp near the current

simulation time (t + ε) are stored in a sorted list. Events with a time stamp larger

than t + ε but smaller than t + δ (δ > ε) are stored in a bucket-based queue. All

remaining events are stored in a third unsorted list. A performance evaluation of

120

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

Smoke
Detector

Battery Speaker Sensor

CSmoke Detector

SBattery SSpeaker SSensor

Root
Coordinator

Figure 5.17: Model tree (left) and processor tree (right) of a simple smoke detector
model.

various event queues is shown in [88, 97].

Like ML-Rules, Species-Reactions (SR) is a rule-based modeling formalism to

describe biochemical reaction networks. It is also available within the modeling and

simulation framework JAMES II. However, it does not support as many features

as ML-Rules, i.e., species cannot be attributed or nested and rate expressions are

restricted to simple arithmetic calculations. SR networks also define continuous-time

Markov chains (CTMCs), so that their trajectories can be computed with the stochastic

simulation algorithm, see Section 2.4. Generally speaking, SR models refer more to the

simple classical biochemical reaction networks [63] and therefore, many SSA variants

have been implemented in JAMES II for SR: the Direct Reaction Method, the First

Reaction Method, the Next Reaction Method, the Logarithmic Direct Method, and

the Optimized Direct Method [97, 119]. For the Next Reaction Method [62], five

event queues have been available for the experiments, SimpleQueue, CalendarQueue,

SimpleReBucketsQueue, MList, and PriorityQueue (see [88]). Altogether, nine

simulator configurations have been therefore available for the Adaptive Simulator

to choose from.

To briefly summarize the experimental results, the Adaptive Simulator has also

been able for SR to adapt the simulator configuration effectively and performed better

compared to the random choice of the available simulator configurations. More details

about the experiments done with SR are available in [75].

5.2.2 PDEVS

The parallel discrete event system specification (PDEVS) is a well-known modeling

formalism for discrete event simulation that strictly separates between the model

and the simulation algorithm called the abstract simulator [205, p. 75-77]. PDEVS

is a hierarchical and modular modeling formalism, i.e., it provides formal means to

compose atomic models to coupled models and to compose coupled models with

121

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

other atomic or coupled models. Eventually, the structure of a coupled PDEVS

model can be described by a model tree, see Figure 5.17 (left). Based on a model

tree, a processor tree can be generated that executes the simulation, see Figure 5.17

(right). The processor tree reflects the structure of the model tree and consists of

coordinators (C) for each coupled model and simulators (S) for each atomic model.

Coordinators forward messages of other coordinators and simulators. Simulators

compute the behavior of atomic models. Only atomic models have explicit states. A

root coordinator on top of the tree starts and ends the execution of a simulation step.

The communication of coordinators and simulators is well-defined by a protocol and

can be briefly explained as follows. Initially, the root coordinator sends a message that

is forwarded to the simulator Si with the smallest next event time. The simulator Si is

calculating an output forwarded to all simulators that are influenced by Si. Afterward,

Si and all influenced simulators are updating their states and they send the time of

their next internal event to the root coordinator for the next simulation step.

For example, referring to the smoke detector model shown in Figure 5.17, a

simulation step could be executed as follows. Suppose the current simulation time

is 5, the battery wants to reduce its energy at time 10, and the speaker wants

to give alarm at time 7. Firstly, the root coordinator sends a notification to the

coordinator CSmokeDetector which is sending it to the simulator SSpeaker. After receiving

the notification, the simulator SSpeaker calculates an output which is sent to all

influenced simulators through the coordinators. Suppose that an event of SSpeaker

influences the simulator SBattery, because giving an alarm needs extra energy. Therefore,

not only SSpeaker is giving an alarm, but SBattery is also updating its state (reducing

its energy level). Finally, both simulators send the time of the next internal event

to the root coordinator and the simulation time is set to 7. For more details of this

protocol and the execution of a simulation step, see [205].

Here, we focus on principle strategies to implement the processor tree [191]. For

example, the abstract threaded simulator uses one thread for each coordinator and each

simulator. On the one hand, this approach allows a full parallel execution. On the

other hand, the number of threads on one machine is limited and the synchronization

effort increases with an increasing number of threads. The thread limit problem

could be solved by using a grid of computers, but this significantly increases the

synchronization effort. The abstract sequential simulator avoids this problem by

using one thread for the whole processor tree — the coordinators and simulators are

processed sequentially [86]. However, the processor tree structure is still explicitly

represented, i.e., one object per coordinator and one object per simulator. Another

idea is to flatten the processor tree and consequently avoid individual objects for each

coordinator and each simulator — the flat sequential simulator applies this concept.

122

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

Finally, the parallel sequential simulator partitions the model tree and applies a

flat sequential simulator for each partition [85]. The flat sequential simulators can

be executed in parallel. The number of partitions can be chosen to depend on the

available hardware so that a suitable balance between parallelism and synchronization

is achieved. Nevertheless, determining a suitable partitioning of the model tree is

a complex task in itself and can decrease the benefits of the parallel execution. As

usual, all these variants have their pros and cons: Which of these algorithms is the

most suitable for a simulation run depends on the concrete model and on the available

hardware and infrastructure.

For the experiment with PDEVS, we used a forest fire benchmark model [88]. This

model represents a grid-based 100 × 100 forest and can be used do simulate how a

fire spreads in this forest. Each grid area is defined as an atomic PDEVS model. The

fire spreads until all areas of the forest are burned down. Each area passes trough

three burning modes until it is burned down completely, i.e., four state transitions are

executed for every area until it is burned down. All simulation runs were executed

until all areas were burned down, i.e., 40, 000 simulation events have been executed

per replication. We extended the original JAMES II model implementation described

in [88] by adding stochasticity, i.e., the time that an area is inflamed by burning

neighbors is stochastic.

We selected two simulators implemented in JAMES II for PDEVS for the Adaptive

Simulator: an abstract threaded simulator and a flat sequential simulator [191].

Further, we selected five event queues that can be used by the simulators: SimpleQueue,

CalendarQueue, SimpleReBucketsQueue, MList, and PriorityQueue [84]. Besides,

the flat sequential simulator uses an event forwarding mechanism, for which two plugins

have been available: DirectExternalEventForwardingHandler and Hierarchical-

ExternalEventForwardingHandler. Thus, 15 simulator configurations have been

available for the Adaptive Simulator. Moreover, only the number of burned down

areas is considered for a base state σ ∈ Σ. For the state space representation, we

used the static grid-based generalization with the grid size (1000), e.g., the aggregated

state (1234) would be generalized to (1000) and the aggregated state (9876) would be

generalized to (9000). Further, we again use ε-decreasing with ε = 5. We executed

100 inner replications with one inner thread and 50 outer replications with 10 outer

threads.

Compared to the previous experiments with ML-Rules and SR, the initialization

costs of both simulators are much higher compared to the initialization costs of the

ML-Rules or SR simulators, i.e., the costs of an adaptation are much higher. Simulator

objects for all atomic models have to be created and connections have to be established.

Further, the event queue must be filled properly, i.e., all events of the simulator used

123

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

Number of Replications

R
un

tim
e

in
 s

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

● ● ● ●

● Interval 100

Interval 1000

Interval 10000

CP Detection

Best Case

Average Case

Figure 5.18: From [80]. Performance results of the forest fire model experiment. Due
to high adaptation costs, too many adaptations are disadvantageous (blue line). Less
adaptations can result in better performance values, but either a constant overhead
remains (green line) or the learning rate slows down significantly (red line). The
changepoint detection strategy (orange line) eliminates these issues and outperforms
the other strategies.

before an adaptation have to be enqueued in the new queue.

The runtime results of the experiment are illustrated in Figure 5.18. We used three

different static adaptation conditions, i.e., trigger an adaptation each 100, 1000, 10000

simulation events. In contrast to ML-Rules and SR, executing many adaptations with

the forest fire model results in a significant overhead so that the Adaptive Simulator

even performs worse than the average performance of all simulator configurations when

executing an adaptation every 100 simulation events. The overhead is still noticeable

with adaptations executed every 1000 simulation events (≈ 2 s). Adapting every

10000 simulation events results again in a slower learning efficiency, but after 100

replications the performance is better compared to the higher adaptation frequencies.

Besides the static adaptation conditions, we also used the changepoint detection

algorithm again with the four configurations constructed with δ ∈ {10, 100} and

h ∈ {0.01, 0.0001}, see Section 5.1.2.3. Again, the results of the Adaptive Simulator

with the four changepoint detection algorithm configurations have been similar, so that

only one result is shown in Figure 5.18. By using the changepoint detection algorithm,

the Adaptive Simulator performs better compared to the three static adaptation

intervals. It learns faster and reduces the adaptation overhead in the long run because

only few adaptations are executed (≈ 10 adaptations per replication). The number of

changepoints evolves similar as in Figure 5.13. All in all, the experiment shows that

124

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

wrongly chosen static adaptation intervals can cause a disadvantageous performance

and that our changepoint detection algorithm seems to be robust and effective.

5.3 Summary

In this chapter, the effectiveness and efficiency of the Adaptive Simulator has been

analyzed by applying it to three modeling approaches: ML-Rules, SR, and PDEVS.

Most experiments have been executed with the modeling language ML-Rules, which

poses different computational challenges for the simulator, see Section 5.1.1. Based on

these computational challenges, we developed a component-based ML-Rules simulator

resulting in manifold configuration possibilities.

Using an ML-Rules benchmark model, we show that the Adaptive Simulator can

effectively exchange its internal simulator during runtime eventually outperforming

each simulator, see Section 5.1.2.1. Further, we explore the efficiency of different

action selection policies and state space generalization methods with the benchmark

model. Referring to the selection policies, ε-decreasing performed best — it seems to

be a simple but efficient policy, as the same observation has also been made in [50].

Referring to the state space generalization methods, fixed grids, the Decision Boundary

Partitioning Algorithm (DBPA) and the Adaptive Vector Quantization (AVQ) have

been applied. Fixed grids can perform well, but application dependent knowledge

is necessary to configure the grid size suitably. The DBPA could outperform fixed

grids, but it also sometimes failed completely resulting in a much worse performance.

Finally, the AVQ has been more robust, but never performed as good as the DBPA.

Besides the ML-Rules benchmark model, we also used complex models applied

in simulation studies to evaluate the Adaptive Simulator with ML-Rules: a Cell

Cycle model [130], an Endocytosis model [74], and a Wnt/β-catenin pathway model

[131, 132, 69]. Here, the Adaptive Simulator has been able to detect the best

simulator at runtime, but it could not outperform it by executing adaptations. The

models might not have different phases with different computational demands, so that

one simulator is dominating the whole simulation run. Alternatively, although there

might be different phases, one simulator can still dominate all the others resulting in

the same observation. In both cases, the Adaptive Simulator cannot perform better

than the best simulator, but it can detect this simulator and perform much better

compared to the random choice of a simulator.

The Wnt/β-catenin pathway model has also been used to analyze the impact

of different fixed adaptation intervals and the changepoint detection method, see

Section 5.1.2.3. Whereas the changepoint detection method proved to be robust

and efficient, the performance of the fixed intervals depends on the chosen interval

125

CHAPTER 5. PERFORMANCE EXPERIMENTS WITH THE ADAPTIVE
SIMULATOR

length. However, since an adaptation with ML-Rules is not computationally expensive,

small intervals might be suitable to be used at all. In contrast, an adaptation of the

PDEVS simulator is computationally expensive, and consequently, small intervals can

significantly reduce the performance of the Adaptive Simulator, see Section 5.2.2.

Altogether, the Adaptive Simulator proved its ability to outperform simulators

by executing adaptations during runtime. However, even in case one simulator

dominates a simulation run, the Adaptive Simulator can detect this simulator and

perform better than a random choice of a simulator. Eventually, the efficiency of the

Adaptive Simulator depends on the available set of simulators. To extend this set

for ML-Rules and consequently improve the potential of the Adaptive Simulator, we

develop tailored and approximate simulators for ML-Rules and explore their efficiency

in the next chapter.

126

Chapter 6

Tailored and Approximate

Simulators - A Case Study with

ML-Rules

...deducing general rules on the use of solvers, based only on the

characteristics of the solvers themselves is not possible. The most

appropriate solver also depends on the model (experiment) under

consideration.

Petra Claeys et al. [33]

Chapter 4 presents the concept of the Adaptive Simulator that uses an internal

simulator to compute the actual model transitions and that adapts or exchanges this

internal simulator as required. As it is integrated into the modeling and simulation

framework JAMES II, it uses its registry to compute all possible simulators and

configurations available to execute the current simulation run. Consequently, it can

only exploit the options that are provided by the simulation system. As it cannot

create new plugins on its own, the developers of plugins eventually have to implement

tailored plugins for specific problems that are more efficient than more general plugins.

Generally speaking, tailored algorithms are typically more efficient to solve a subset

of problems of their problem domain Psub ⊂ P, but they typically perform poorly or

averagely for all other problems P\Psub. It might even be possible that a tailored

algorithm is not able to solve all problems in P, e.g., by aborting the calculation

(throwing exceptions), or worse by calculating wrong results. In contrast, generic

algorithms try to perform well for most problems of their problem domain P. Referring

to complexity, to put it in a nutshell, tailored algorithms have fantastic best-case

complexities but disastrous average-case and worst-case complexities, whereas generic

127

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

algorithms have an average best-case and worst-case complexity.

Clearly, these thoughts can be applied in modeling and simulation for the de-

velopment of tailored simulators, especially when models of a well-defined modeling

language have to be executed. A tailored algorithm could require the model to be

executed to fulfill specific properties, e.g., that it does not use all features provided

by the language. In this case, it may be possible to avoid computationally complex

calculations that are not needed, e.g., because some results are constant and have

to be computed only once. Furthermore, the developer might be able to simplify

the basic structure of the simulator. Nevertheless, such tailored simulators are not

applicable for all models of the modeling language anymore. As written above, they

might crash during the simulation by throwing exceptions or they produce wrong

results.

Basically, there are two approaches to deal with this situation. First, one could

analyze the model before executing it and check whether a given tailored simulator

can be applied to execute this model correctly. To realize this idea, it is helpful to

use a modeling language that allows comprehensive static analysis. For example,

Petri Nets are not Turing complete and consequently allow complex analysis before

executing them [157], e.g., it can be checked whether a transition is dead without

any simulation. However, although Turing complete languages do not allow arbitrary

complex analysis, it might still be possible to calculate important properties that are of

interest for the simulators. Altogether, following the idea of tailored simulators requires

the developers of the modeling languages and simulators to find ways to calculate

properties of a concrete model before executing it. Further, for each simulator, it must

be determined which properties are required to be applicable for this model. Fulfilling

both requirements can be challenging, as a) some properties might be not computable,

e.g., due to the Turing completeness of the used modeling language, and b) not all

features required by a simulator might be identified by the developer, i.e., tailored

simulators might be applied to models they are not applicable to and wrong results

are calculated.

To circumvent these challenges, one could apply a more generic approach and let

the simulation system automatically determine whether a simulator is valid for a given

model. This can be done by executing pre-simulation runs, see Figure 6.1, e.g., as

done for numerical integration solver by Claeys et al. [33]. The key idea is similar to

the development of dynamic portfolios described by Gagliolo and Schmidhuber [59].

When a model shall be executed, all available simulators are run with this model in

parallel or interleaved. Most simulators that are not applicable for the given model will

quickly throw exceptions. Simulators that do not abort the calculation are executed

until a specific condition is fulfilled, e.g., a specific simulation time is reached. The

128

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

A

B

C

D

E

F

G
Simulation Time

Si
m

ul
at

io
n

Al
go

rit
hm

s
Pre-Simulation Runs Results Analysis

Figure 6.1: Illustration of an automatic validity check for simulators.

computed trajectories of all finished simulators are then compared and clustered. Since

the correct trajectory is not known, a straightforward assumption is that the most

frequent result is correct. All simulators producing this result are then concluded

to produce correct results for the given model. Alternatively, one could require the

results to fulfill specific conditions, e.g., described by temporal logics. This generic

approach comes with its own particular challenges. The main problem is that all

available simulators with all available plugin combinations and configurations have to

be tested. It can simply be unfeasible to test all of them. Moreover, a simulator might

produce correct results for the given pre-simulation run until a specific simulation

time, but that does not guarantee that this simulator is valid for the given model.

Consequently, applying this approach can lead to wrong simulation results. Further,

in case of stochastic simulation runs, many replications would be needed to analyze

the deviation of the produced results. Finally, it is difficult to compare results of

approximate simulators, see Section 4.7.1.

In Section 5.1.1, the core features of ML-Rules and the induced computational

challenges are presented. To tackle these challenges, we developed a component-based

ML-Rules simulator and various components. The Adaptive Simulator has shown to

be able to adapt the component-based ML-Rules simulator at runtime to improve the

overall performance of simulation runs, see Section 5.1.2.1. For complex models used

in simulation studies, we observed that one simulator dominates and therefore, the

Adaptive Simulator cannot perform better than this simulator. To further improve

the performance of ML-Rules simulation runs and the effectiveness of the Adaptive

Simulator, in this chapter more ML-Rules simulators are developed and analyzed.

First, in Section 6.1, we focus on simulators applicable to subsets of ML-Rules models,

129

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

which follow the semantics of the component-based ML-Rules simulator, i.e., producing

the same results. Second, in Section 6.2 and Section 6.3, we focus on approximate

simulators trading accuracy for speed.

6.1 Tailored Simulators for ML-Rules

The ML-Rules simulator must deal with various computational challenges, see Sec-

tion 5.1.1. For example, the reaction set in ML-Rules is typically not fixed, i.e.,

reactions must be removed from and added to this set during runtime after each event

execution, inducing a significant computational effort. However, not all ML-Rules

models exploit the available features, e.g., models might have a fixed reaction set and

therefore, the update operations can be avoided. In Section 6.1.1, we present a simula-

tor for ML-Rules tailored to models with a fixed reaction set. Besides, bonds between

entities play an important role for biochemical reaction networks. In Section 6.1.2, we

present a tailored simulator for ML-Rules explicitly dealing with those bonds between

entities.

Although achieving promising results, both tailored simulators are merely a first

step towards the development of further tailored simulators inspired by simulators of

other rule-based modeling languages for biochemical reaction networks. For example,

NFSim is a network-free simulator developed for the modeling language BioNetGen [17]

that avoids calculating the reaction network explicitly [179]. NFSim treats every species

entity individually — the state of the system is a set of individuals — and links every

individual to every reactant that it matches to. For each rule, the product of the link

numbers for each reactant represents the number of potential reactions of this rule. For

example, if 10 individuals match to the first reactant of a rule and 20 individuals match

to the second reactant of the rule, 10 · 20 = 200 reactions are possible between these

individuals. The reaction number of a rule is multiplied with the rate constant of this

rule to calculate its propensity. Using the propensities of all rules, the SSA is applied

for selecting a rule to be executed, see Algorithm 2.1 page 19. When selecting a rule,

for each reactant one linked individual is chosen randomly to instantiate a concrete

reaction to be fired. Finally, after firing a reaction, links are updated properly. All in

all, network-free approaches perform particularly well if the number of rules is much

smaller than the number of reactions. As these approaches avoid the calculation of the

reaction set, they are interesting to be used for ML-Rules, as the maintenance of the

reaction set causes most of the computational load. However, various challenges must

be addressed, e.g., how to deal with reaction rates depending on reactant attributes.

Another example for an interesting simulator for ML-Rules is the simulator devel-

oped for the modeling language Kappa [37]. In Kappa, the rigidity property holds,

130

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

which implies that after matching one pattern of a connected pattern, the remaining

matching process becomes clearly determined, i.e., only one valid mapping of patterns

to species containing the specified matching exists [36]. Exploiting this property can

speed-up the rule instantiation process, however, it does not hold for all ML-Rules

models due to compartment connection of species entities representing hyperedges

between entities [98].

6.1.1 Static Species and Reaction Sets

In contrast to the basic version of the stochastic simulation algorithm, the ML-Rules

simulator has to deal with a changing reaction network. This part of the simulator

induces most of the runtime of an ML-Rules simulation. However, we observed

that some models developed in ML-Rules do not use all of its features and could be

simulated more simply. For example, these models do not need the possibility to

create, change, move and remove compartments during the simulation, so that the

structure of model entities is fixed. Further, these models often do not use continuous

attributes or complex attribute value calculations so that all possible attribute values

for all species can be calculated before executing the simulation. Eventually, such

models have a fixed reaction network and can be simulated more simply by calculating

this reaction network once at the beginning of the simulation like it is done, e.g., in

BioNetGen [17].

We developed a simulator for ML-Rules (StaticSimulator) that works in this

manner and only supports models with a fixed reaction network [81]. This fixed

reaction network has only to be calculated once at the beginning of a simulation

run; only propensities of reactions must be updated during the simulation. Generally

speaking, the simulator reduces to the basic SSA, see Algorithm 2.1 page 19. To

guarantee a fixed reaction set, expressions and function calls are not allowed to be used

neither within the reactants nor within the products of rules. Further, compartments

are neither allowed to be created, nor to be removed, nor to be changed. Finally,

the simulator can only be applied when compartments are treated individually, i.e.,

a population-based treatment of compartments is not supported. Otherwise, due to

splitting and merging processes, the reaction set would have to be updated frequently,

i.e., the reaction set would not be fixed. Altogether, these requirements guarantee a

reaction network to be closed under reaction execution. In the following, we refer to

reactions fulfilling these requirements as static reactions.

Although compartments are not allowed to be created or removed, structure-

preserving multi-level rule schemes are supported by the StaticSimulator. For

example, the rule scheme

131

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

Nucleus[s?] + BetaCatenin -> Nucleus[BetaCatenin + s?] @ ...;

describes the shuttling of a (non-compartmental) BetaCatenin into a Nucleus without

changing the structure of the model state. However, when executing a reaction based

on this rule scheme, the standard simulator of ML-Rules would remove an existing

Nucleus (and its content s?) and one BetaCatenin from their context and it would

create a new Nucleus including the solution s? and one BetaCatenin. Therefore, the

reaction network is updated afterwards, i.e., all reactions using the old Nucleus or

its content have to be removed and new reactions for the created Nucleus and its

content must be determined.

The StaticSimulator does not follow this behavior: it considers only non-

compartmental entities when executing such structure-preserving reactions. Conse-

quently, when executing a reaction based on the shuttling rule scheme, the StaticSimulator

would simply decrease the amount of BetaCatenin in the context of the Nucleus and

it would increase the amount of BetaCatenin in the Nucleus. Thus, the Nucleus is

not changed directly and only propensities of reactions must be updated; the reaction

network itself does not change. Such associations between reactant and product

compartments, i.e., to identify that the reactant Nucleus is the product Nucleus, can

be determined automatically via a static model analysis before a simulation run.

6.1.1.1 Results with the Wnt/β-catenin Pathway Model

Figure 6.2 (top) shows the runtime results for simulations of a Wnt/β-catenin pathway

model [132] implemented in ML-Rules with different number of simulated cells until

simulation time 3001. Figure 6.2 (bottom) shows averaged simulation results of the

simulators when simulating eight cells. To simulate one cell, the StandardSimulator

without a dependency graph performs worst (1 cell ≈ 43 s, 10 cells ≈ 2870 s). The

runtime increases polynomially with an increasing number of cells to be simulated.

This polynomial runtime growth is reduced to an almost linear growth by using the

dependency graph (see Section 5.1.1.2 page 102), because the cells of the model do

not interact directly with each other, but only via the Wnt protein. The runtime

behavior of the simplified simulator (StaticSimulator) is similar, i.e., it is polynomial

without a dependency graph and linear with a dependency graph. Consequently, the

StaticSimulator without a dependency graph will eventually perform worse with

an increasing number of cells than the StandardSimulator with a dependency graph.

This result shows that it is still worth to research and develop general optimizations

applicable to all ML-Rules models. Finally, the StaticSimulator with a dependency

1Experiment computer: Intel(R) Core(TM) i7 CPU X990 @ 3.46 Ghz with activated Hyper-
threading and deactivated TurboBoost, 24GB RAM, Windows 7 and Java 8

132

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

0
20

0
40

0
60

0
80

0
10

00

Number of cells

E
xe

cu
tio

n
tim

e
in

 s

1 2 3 4 5 6 7 8 9 10

●

●

●

●

●

●

●

● Standard Simulator (A)
Standard Simulator (B)
Static Simulator (A)
Static Simulator (B)

15
00

00
20

00
00

25
00

00
30

00
00

Simulation Time

A
m

ou
nt

 o
f β
−c

at
en

in

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

●

●

●

●
● ● ● ● ●

● Standard Simulator (A)
Standard Simulator (B)
Static Simulator (A)
Static Simulator (B)

Figure 6.2: From [79]. Top: Average runtime of the different ML-Rules simulators for
the Wnt/β-catenin pathway model until simulation time 300 based on 20 replications.
Simulators without a dependency graph are denoted by A, simulators employing a
dependency graph by B. Bottom: Simulation results when simulating eight cells.

graph performs best (1 cell ≈ 5 s, 10 cells ≈ 65 s), i.e., for 10 cells, it is more than 40

times faster than the StandardSimulator without a dependency graph and still 10

times faster than the StandardSimulator with a dependency graph.

6.1.2 Species Bindings

Besides the StaticSimulator that is tailored to ML-Rules models with a static

reaction set, we developed a LinkSimulator that is tailored to ML-Rules models

focusing on bindings between species. Bindings often play an essential role in many

biochemical systems like mitochondrial networks [203]. In ML-Rules, bindings have

to be represented by attribute values, i.e., no explicit binding construct exists in

ML-Rules. The following rule schemes illustrate how species of type MitoA and MitoB

133

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

1 // species definitions

2 MitoA(link)[];

3 MitoB(link)[];

4
5 // initial solution

6 >>INIT [100 MitoA(free) + 100 MitoB(free)];

7
8 // rules

9 MitoA(free) + MitoB(free) -> MitoA(x) + MitoB(x)

10 @ 1 where x = nu();

11 MitoA(x) + MitoB(x) -> MitoA(free) + MitoB(free) @ 1;

Figure 6.3: A simple model in which species can bind and unbind.

could be bound and unbound:

(1) MitoA(free) + MitoB(free) -> MitoA(x) + MitoB(x) @ ... where x = nu();

(2) MitoA(x) + MitoB(x) -> MitoA(free) + MitoB(free) @ ...;

In the first rule pattern, the function nu() returns a unique value so that after a

reaction firing the two selected MitoA and MitoB entities share a unique attribute value

that represents their binding. For these unique binding values, we added the attribute

type link to the set of available attribute types. Thus, only bound entities match both

reactants of the second rule pattern and can therefore be unbound. Especially the

second rule pattern is interesting because after selecting a concrete MitoA entity for the

first reactant, the second entity is clearly determined, i.e., the rigidity property holds

see Section 6.1 page 131. Therefore, the simulator can directly determine all reactants

after matching one concrete reactant of this rule. The LinkSimulator exploits this

property by saving all bound pairs of entities explicitly in an additional data structure

to directly access bound partner. Nevertheless, this procedure can be improved by

applying a further technique we refer to as Reactant Swapping. Besides, the simulator

does not support to change bonds in functions on solutions, as the additional data

structure would not be maintained. Further, a unique bond does only connect exactly

two entities — in principle a unique bond can connect more entities in ML-Rules.

6.1.2.1 Reactant Swapping

Reactant Swapping is a technique used by the LinkSimulator to improve the reaction

creation process. We illustrate this technique with a simple mitochondria model, see

Figure 6.3. The model uses the compartment species types MitoA and MitoB (both

134

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

with one link attribute) and two rule schemes to bind and unbind entities. Since

the species types refer to compartments, all entities are treated individually. Further,

suppose that an instantiation of the binding rule scheme (ll.9-10) has been fired lastly,

i.e., one MitoA and one MitoB are bound. When updating the reaction set R after

firing this reaction, firstly invalid reactions are removed from the reaction set. All

reactions containing a species entity changed by the fired reaction are invalid. Referring

to the example, all reactions of the binding rule scheme that uses one of the meanwhile

bound MitoA or MitoB have to be removed. Next, new reactions are calculated. Every

new reaction must at least contain one species entity that has either been modified

or been created by the fired reaction (in the following the term changed is used to

refer to modified or created entities). Otherwise, old reactions would be recalculated.

For the first rule scheme, no new reactions will be found, since no unbound entity

has been changed (and is still unbound) or created. However, new reactions can be

created based on the second rule scheme (l.11). In general, the reaction creation

for a rule scheme processes successively from the leftmost reactant to the rightmost

reactant. Thus, all entities that match the first reactant are initially identified, i.e.,

all bound MitoA entities match this reactant. For the second reactant, two cases must

be distinguished. First, if the changed MitoA is selected for the first reactant, a valid

entity for the second reactant only has to match this reactant, no matter whether it

is changed or not. Since link values are unique, only one matching MitoB is found

and one reaction can be instantiated. Second, if one of the 99 available non-changed

MitoA entity is selected for the first reactant, the MitoB entity matched to the second

reactant must be changed; otherwise only an already calculated reaction would be

calculated again. For this case, no reactions are found, since the only changed MitoB

only fits to the changed MitoA.

This approach is not optimal since all the 99 checks of the second case are not

necessary. By applying Reactant Swapping the simulator avoids this case. Algorithm 6.1

illustrates the approach of Reactant Swapping. The basic idea is to consider only

changed entities for the first reactant of the current reactants list (l.4). In this case,

the condition that at least one matched entity is changed for new reactions is already

fulfilled. Next, the remaining reactants are checked using the found matched entities

for the first reactant (l.6). The first reactant is then moved to the last position of

the reactants list (l.8). To avoid calculating the same reactions several times, e.g.,

if a reaction contains two changed entities, the function findAllReactions() uses

the counter i as a parameter and restricts the last i reactants to be non-changed.

Referring to the example and the second rule scheme, initially the changed MitoA

would be selected for the first reactant and the changed MitoB would be directly

selected for the second reactant (due to the additional data structure maintaining

135

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

Algorithm 6.1 Sketch of the reactant swapping principle written in Java.

1 List <Reaction > reactions = new ArrayList <>();

2 for (int i = 0; i < reactants.size (); ++i) {

3 // find all matching changed species for the first reactant

4 List <Matching > m = findMatchings(changedSpecies , reactant.get (0));

5 // calculate all reactions based on the found matched species

6 reactions.addAll(findAllReactions(m, i, reactants));

7 // remove the first reactant from the reactant list

8 Reactant tmp = reactants.remove (0);

9 // add the removed reactant to the end of the list

10 reactants.add(tmp);

11 }

all bound pairs used by the LinkSimulator). Next, the MitoA(x) reactant would be

moved to the end and the matching would start again with the new first reactant, i.e.,

MitoB(x). Here, only the changed MitoB is found as a changed matching entity and

for the second reactant, only the changed MitoA is found. Therefore, no additional

reaction would be created, since no non-changed matching MitoA can be found. All in

all, due to Reactant Swapping, the number of matching processes is decreased from

100 to 2 checks.

However, Reactant Swapping does not dominate the default version in all cases.

For example, ML-Rules allows using expressions to restrict attribute values of matched

species entities for reactants, e.g.,

A(x) + B(f(x)) -> C(x) @1.

Reactant Swapping cannot be applied directly in this case, since the second reactant

B(f(x)) cannot be considered before matching the reactant A(x). However, every

rule scheme of this form can be rewritten to avoid this issue, i.e., the restriction of the

attribute value can be moved to the rate expression:

A(x) + B(y) -> C(x) @if (y == f(x)) then 1 else 0.

Nevertheless, the disadvantage of this rewritten rule scheme is that the time to reject

an invalid reactant combination is now postponed to the rate calculation. Further,

although reactant swapping can also be applied for the standard simulator of ML-Rules,

model rewriting would also be necessary.

6.1.2.2 Results with a Mitochondria Model

Figure 6.4 shows runtime results for simulations of a simple mitochondria model [16]

implemented in ML-Rules with different number of mitochondria until simulation

136

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

0
50

10
0

15
0

20
0

25
0

30
0

Number of mitochondria

E
xe

cu
tio

n
tim

e
in

 s

20 40 60 80 100 120 140 160 180 200

●
●

●

●

●● Standard Simulator (A)
Standard Simulator (B)
Link Simulator (A)
Link Simulator (B)

0
20

40
60

80

Simulation Time

A
m

ou
nt

 o
f b

ou
nd

 m
ito

ch
on

dr
ia

0 10 20 30 40 50 60 70 80 90 100

●
● ● ● ● ● ● ●

●

● Standard Simulator (A)
Standard Simulator (B)
Link Simulator (A)
Link Simulator (B)

Figure 6.4: From [79]. Top: Average runtime of the standard ML-Rules simulator and
the tailored simulator for the ML-Rules subclass Mbind simulating the mitochondria
model until simulation time 100 based on 20 replications. Simulators without a
dependency graph are denoted by A, simulators employing a dependency graph by B.
Bottom: Simulation results of the simulators when simulating 200 mitochondria.

time 1002. In this model, bindings of mitochondria are represented as explained above

by unique attribute values of type link. Several rule schemes change two bound

mitochondria, i.e., they fulfill the rigidity property. Again, results of the standard

simulator with and without a dependency graph are shown. The LinkSimulator

has also been used with and without a dependency graph. Analog to the results of

the Wnt/β-catenin pathway model, the dependency graph is a useful optimization

that significantly reduces the runtime of the simulation runs. Further, the tailored

LinkSimulator is significantly more efficient than the standard simulator.

2Experiment computer: Intel(R) Core(TM) i7 CPU X990 @ 3.46 Ghz with activated Hyper-
threading and deactivated TurboBoost, 24GB RAM, Windows 7 and Java 8

137

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

6.2 τ-leaping for ML-Rules

The StaticSimulator and the LinkSimulator are still exact in the sense of the SSA

(for the models the specialized simulators are applicable to). Besides implementation

improvements of the ML-Rules simulator not changing simulation results, another

approach is to use approximate simulators trading accuracy for efficiency. A well-known

approximate algorithm is τ -leaping [64], see Section 2.4 page 20ff. This algorithm

performs “leaps” along the time line and approximates the number of reaction firings

during these leaps. The basic assumption is that the propensities of all reactions

do not change significantly during a leap. This allows approximating the number of

reaction firings during the leap with a Poisson distribution. The length of a leap is

limited by the leaping condition (see Definition 8, page 21) bounding the induced

error by approximating the change of the reaction propensities.

In [78], we present a τ -leaping simulator for ML-Rules supporting population-based

compartments based on the τ -leaping variant presented by Cao et al. in [25], which

works as follows. Initially, the current reaction set R is determined. Afterward,

the reactions are separated to critical reactions Rcr and non critical reactions Rncr.

Referring to ML-Rules, a reaction is a non critical reaction if it can be fired more

often than nc ∈ N times and if it does not change the reaction set, i.e., it fulfills

the requirements for reactions defined for the StaticSimulator, see Section 6.1.1.

Further, structure-preserving rule schemes are treated in the same way as done by

the StaticSimulator, i.e., compartments are not removed and added when executing

reactions based on these rule schemes.

After the reaction separation, the τ ′ candidate for the non-critical reactions is

calculated. Hierarchical multiplicities of the propensity calculation have to be ignored,

since the calculated mean and variance (see Equation 2.4) refer to the change of

a reactant species in an individual context. This change is therefore independent

from the copy number of the contexts up to the root. If τ ′ is too small, i.e., smaller

than α · a0(X(tj)), no leap but NSSA ∈ N SSA steps are executed. In case τ ′ is

sufficiently large, a second candidate τ ′′ is calculated using the set of critical reactions,

see Equation 2.5. Finally, τ = min(τ ′, τ ′′) and if τ ′′ < τ ′, one critical reaction is

selected to be executed during the next τ -leap.

Firing numbers for reactions are sampled from a Poisson distribution, see Equa-

tion 2.1. For each reaction Ri, the rate of the used Poisson distribution is ai(X(tj)) · τ .

However, when dealing with population-based compartments, one sampled firing num-

ber would be applied to all individual compartments represented by the context entity

of the reaction, see Figure 6.5 (A). This can reduce the accuracy of the simulation

results. On the other hand, treating each compartment individually would make

the population-based approach more or less useless, see Figure 6.5 (B). To set the

138

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

A

3 Organism

3 Cell

8 A 2 B

1 Root

3 Organism

3 Cell

6 A 4 B

1 Root

B

3 Organism

3 Cell

8 A 2 B

1 Root 1 Root

1 Organism

2 Cell

6 A 4 B

1 Cell

7 A 3 B

1 Organism

1 Cell

8 A 2 B

1 Cell

5 A 5 B

1 Cell

6 A 4 B

1 Organism

1 Cell

7 A 3 B

1 Cell

8 A 2 B

1 Cell

5 A 5 B

Figure 6.5: A: Suppose the reaction A -> B is fired in the solution on the left during
a τ -leap. All identical compartments are treated equally, i.e., only one firing number
for the reaction A -> B is sampled (in the shown case the sampled firing number is 2)
and applied. B: Again the reaction A -> B is fired in the solution on the left during
a τ -leap. Every compartment is treated individually, i.e., for each compartment a
firing number for the reaction A -> B is sampled and applied. Note that since firing
numbers can be identical, a merging process is also applied to merge identical result
compartments.

degree of “individuality” for compartments, we introduce a parameter μ ∈ N ∪∞.

A compartment c with copy number |c| is divided into μ groups of size |c|
μ

treated

individually. Therefore, if μ = 1, all compartments of the current solution evolve

equally, like shown in Figure 6.5 (A). In contrast, if μ is greater than the copy number

(guaranteed by μ = ∞), all compartments are treated individually. When using μ,

the following procedure to calculate a τ -leap must be processed top-down beginning

from the root context:

1. For each reaction Ri in the current context, sample a firing number fni from a

Poisson distribution with rate ai(X(tj)) · τ and execute Ri fni times.

2. For each compartment c in the current context, create min(|c|, μ) groups.

139

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Reaction Firings

P
ro

ba
bi

lit
y

0
0.

04
0.

12
0.

2

7

34

84

140

176 176

146

105

65

36
18

8 3 1 1 0

Figure 6.6: Probabilities of firing numbers for one reaction Ri : A -> B with rate ai = 2
and τ = 2.5 and the corresponding number of Cell compartments (red numbers)
assigned to the firing numbers.

3. For each group of each compartment, repeat this procedure.

Afterward, a merging process has to be processed bottom-up in each compartment to

merge identical compartments resulting in a valid population-based solution.

Alternatively to μ, one could also directly apply the probabilities of each firing

number to calculate the “individuality” of compartments. For example, Figure 6.6

shows the probability distribution of firing numbers for the solution 1000 Cell[10 A

+ 10 B], the reaction Ri : A -> B with rate ai = 2, and τ = 2.5. The number of Cell

compartments for each firing number is shown on top of each bar, i.e., 15 groups of

Cell compartments would be created. In case more than one reaction is possible in

a compartment, assuming that the reaction numbers of each reaction are independent,

independent Poisson distributions have to be combined to calculate the probabilities

of the firing number tuples.

Figure 6.7 illustrates the number of Cell compartments for each firing number

tuple when adding a second reaction Rk : B -> A with rate ak = 2 to the example.

For instance, the tuple (4, 5) (reaction Ri is fired 4 times and reaction Rj is fired 5

times) would be applied to 31 Cell compartments. Altogether, following this approach

quickly results in an individual-based treatment of compartments with in increasing

number of reactions. This is already indicated in the example by the numbers of

distinguished groups of Cell compartments with one reaction (resulting in 15 groups)

and two reactions (resulting in 131 groups). However, when using the probabilities of

the Poisson distribution to group the compartments, the simulator does not necessarily

140

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

Firing Number for R i

Fi
rin

g
N

um
be

r f
or

 R
 k

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1

2
3

4
5

6
7

8
9

10
11

12
13

Figure 6.7: By combining two independent Poisson distributions for the reactions Ri

and Rk, the number of Cell compartments (identified by the color key) for each firing
number tuple can be calculated. For example, 31 Cell compartments would have the
firing number tuple (4, 5).

have to process a τ -leap top-down. It is probably even more efficient to process

bottom-up, because the change of a compartment is identical for all individuals of its

context and therefore should only be computed once.

Note that independent from the concrete mechanism, when a critical reaction shall

be executed, an individual branch of its context must be extracted to ensure that the

reaction is only executed once. Finally, if the model state is invalid after a τ -leap, i.e.,

the amount of at least one species is negative, the changes are discarded, τ ′ is halved,

and the algorithm is repeated.

In general, the error approximation for the calculation of τ ′ and τ ′′ bases on the

assumption that all reactions refer to mass action kinetics, i.e., the propensity of a

reaction is the result of a multiplication of the reactant amounts and the rule constant.

In ML-Rules, however, arbitrary rate equations can be formulated, so that small

changes of species amounts might result in significant and unpredictable changes

of propensities. For example, by using if . . . then . . . else . . . blocks, the rate

equation might return significant different values depending on whether the condition

of the such a block is true or false. Therefore, when using complex rate equations,

the error estimation of τ -leaping for ML-Rules can fail — a problem that makes it

impossible for the Adaptive Simulator to rely on the error approximation.

Analog to the SSA execution of ML-Rules models, compartments typically diverge

141

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

Figure 6.8: Screenshot of the visual analytics tool for accuracy analysis presented
in [123]. Top: Concrete simulation results of a τ -leaping configuration (average of n
replications) compared to the reference results computed by the SSA. Left: Bars to
select a concrete τ -leaping configuration. Right: Histograms for different accuracy
measurements (the standard deviation, the p-value of the paired Wilcoxon rank
sum test [176, p. 513], and the Jensen-Shannon distance [121]) for all τ -leaping
configurations. Middle: results of one selected measurement for each time point and a
set of τ -leaping configuration (one line represents one τ -leaping configuration). The
order of the configurations can be changed (by accuracy values or parameter values).

during a simulation and therefore, the τ -leaping simulator will probably quickly

treat all compartments individually (whether μ is used or not). Therefore, we also

developed a simplified τ -leaping variant for ML-Rules only supporting individual-based

compartments. This variant does not need a grouping mechanism for compartments

with a parameter like μ or the multivariate Poisson distribution. Further, no splitting

and merging procedures are necessary.

6.2.1 Results and Accuracy Analysis with Visual Analytics

To evaluate τ -leaping for ML-Rules, we used the Wnt/β-catenin pathway model [131,

132, 69] and the cell cycle model [130] we already used for the Adaptive Simulator

(see Appendix A.3 and A.1) and a simplified version of a lipid raft model describing

the synthesis, degradation and diffusion of lipid rafts in cell membranes [68], see

Appendix A.4 for the ML-Rules implementation of this model.

We used 480 configurations to analyze the performance of τ -leaping built from the

cross product of the following parameter values:

• ε ∈ {0.01, 0.02, . . . , 0.2} (error acceptance parameter)

142

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

ε μ

ε
=

0.
01

ε

=
0.

2

...

t = 0 t = 200t = 100

ε μ

μ
=

1
μ

=
10

t = 0 t = 200t = 100

...

Figure 6.9: From [78]. Accuracy illustrations of parameter settings sorted by the value
of the parameter ε (left) and by the value of the parameter μ (right) on the example
of the dephosphorylized Axin proteins of the Wnt/β-catenin pathway model with
ten cells. Accuracy values represented by p-values of the paired Wilcoxon rank sum
test [176, p.513] are mapped from white (low values) to saturated cyan (high values).
Whereas ε clearly influence the accuracy (left), μ seems not to have an impact (right).

• α ∈ {5, 10, 15, 20} (threshold factor for τ to be accepted)

• μ ∈ {1, 4, 6, 8, 10} (group parameter for population-based compartments)

• nc = 10 (minimum firing number of reaction to be non critical)

• NSSA = 100. (number of SSA steps in case of small τ values)

For each configuration and each model, we executed 100 replications for both the

analysis of the simulation trajectories and the runtime performance3. Each replication

has been executed until the simulation time 200.

The best results have been achieved with the Wnt/β-catenin pathway model. Due

to the fixed structure of this model (the compartments of the model are not changed)

and mainly shuttling events, τ -leaping can execute large leaps and critical reactions

are rare. When simulating one cell, the ML-Rules SSA needed ≈ 39s on average,

the fastest τ -leaping configuration (ε = 0.2, α = 5, μ = 1) only needed ≈ 0.5s on

average, and the slowest τ -leaping configuration (ε = 0.01, α = 5, μ = 10) needed

3Experiment computer: Intel(R) Core(TM) i7 CPU X990 @ 3.46 Ghz with activated Hyper-
threading and deactivated TurboBoost, 24GB RAM, Windows 7 and Java 7

143

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

≈ 1.8s on average, i.e., even with the slowest τ -leaping configuration, the runtime

has been reduced by more than 95%. When simulating ten cells, the ML-Rules SSA

needed ≈ 1125s (ca. thirty times more runtime compared to the simulation of one

cell), however, τ -leaping still needs less than 15s for all configurations. Therefore, in

this case τ -leaping even reduced the runtime by more than 98%. Since the cells in

this model do not interact directly with each other, but only indirectly with the Wnt

species, the leap sizes are similar compared to the one cell case, whereby the SSA has

to execute ten times more reactions. All parameters but ε had little impact on the

performance. The parameter μ almost had no impact since all cells diverse quickly,

i.e., the model quickly evolves to states with individual-based compartments.

For the analysis of the accuracy of the simulation results, we used a visual analytics

tool [123], see Figure 6.8. This tool enabled us to visually validate the accuracy of

simulation results of the τ -leaping configurations with respect to simulation results

computed by the SSA. As expected, the error parameter ε mostly influenced the

accuracy of the simulation results, whereas the parameter μ had little impact, see

Figure 6.9. The vertical white lines in the diagrams are caused by inaccurate reference

results, i.e., the reference values are also only approximations calculated by 100 SSA

replications.

Although the results with the Wnt/β-catenin pathway model are promising, τ -

leaping did not achieve similar results neither with the lipid raft model nor with the

cell cycle model. For the lipid raft model, the accuracy of the results was poor for

most configurations, only configurations with a small ε achieved a suitable accuracy.

These configurations could reduce the runtime by ≈ 15% (the SSA needed ≈ 72s).

Referring to the cell cycle model, τ -leaping did not even achieve any improvement.

Most reactions of this model refer to changes of cells, which are represented by

compartments. Therefore, most reactions are critical reactions and τ -leaping mostly

executed only one critical reaction and no non-critical reactions during a leap.

6.3 Hybrid Simulator for ML-Rules

Besides τ -leaping, hybrid simulators combining deterministic and stochastic methods

are a common approach to approximately simulate biochemical reaction networks,

see Section 2.4.2. Therefore, we also developed a hybrid simulator for ML-Rules.

Two components of a hybrid simulator for biochemical reaction networks have to

be distinguished: 1) A component partitioning the reactions and 2) a component

approximating the deterministic reactions.

144

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

Algorithm 6.2 Calculate the threshold α for the separation of slow and fast reactions.
The reaction and propensity indices are assumed to be sorted by propensities, i.e.,
a1(X(tj)) is the lowest propensity and a|R|(X(tj)) is the highest propensity.
K ∈ [0, 1]: minimum relative distance of fastest stochastic reaction and slowest
deterministic reaction,
isStatic(Rk): returns true, if Rk is static; otherwise false,
tj: simulation time of the j-th step.

1 for ((ai(X(tj)), ai+1(X(tj))) ∈ ((a1(X(tj)), a2(X(tj))), . . . , (a|R−1|(X(tj)), a|R|(X(tj))))) {

2 if (ai(X(tj))/ai+1(X(tj))) > K) {

3 if ({Rk|Rk ∈ (Ri, . . . , R|R|) ∧ !isStatic(Rk)} = ∅) {

4 return ai(X(tj));
5 }

6 }

7 }

8 return ∞;

6.3.1 Reaction Partitioning

Inspired by [35], we apply the requirements defined for reactions of the StaticSimulator

(see Section 6.1.1) to partition reactions for the hybrid simulator of ML-Rules. Con-

cretely, all static reactions are calculated deterministically; all other reactions are

treated stochastically. Using this property to determine deterministic reactions is

useful since the set of deterministic reactions is in this case closed under reaction

execution. The set of deterministic reactions is referred to as Rd = {Rd
1, . . . , R

d
|Rd|}.

The set of stochastic reactions is referred to as Rs = {Rs
1, . . . , R

s
|Rs|}. Accordingly, the

propensity functions are named ad1, a
s
1, etc.

In addition to this separation strategy, as commonly done by many hybrid sim-

ulators, we also integrated an adaptive scheme to consider propensities of reactions

to partition them. First, a threshold α ∈ R is calculated based on all propensities,

see Algorithm 6.2. Basically, α is the lower element of the first pair of consecutive

propensities (ai(X(tj)), ai+1(X(tj))) with a relative distance that is larger than a

user-defined parameter K. Since all reactions with a propensity greater than α shall

be deterministic, they must also be static. The presented approach does not explicitly

consider models with more than two time scales, but only separates the slowest group

of reactions from the others. If α = ∞, no clear separation between fast and slow

reactions is possible. In this case, the group of fast reactions is empty and the simulator

degrades to the SSA. Altogether, considering the propensities makes the partitioning

more restrictive, but it should be less error-prone since it avoids fast reactions that

are calculated stochastically and slow reactions that are calculated deterministically.

Nevertheless, it induces a regular overhead that might not be necessary.

145

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

6.3.2 Calculation of Deterministic Reactions

For the approximation of deterministic reactions, we developed two methods. The

first method is inspired by the hybrid simulator presented by E et al. in [40], see

Section 2.4.2. This method assumes that for every species involved in deterministic

reactions, a stationary distribution exists when only considering deterministic reactions.

In the following, we refer to these species changed by deterministic reactions as

deterministic species. Further, these stationary distributions must be reached much

faster compared to the next firing time of a stochastic reaction. The hybrid simulator

presented by E et al. in [40] uses pre-simulation runs considering the deterministic

reactions to approximate the stationary distributions. We avoid such pre-simulation

runs by applying the following approach. All deterministic reactions are executed

until steady states are observed for all deterministic species, see Figure 6.10 (left).

We use a crossing mean steady state estimator to decide whether a steady state

has been reached [199]. If at least for one deterministic species, no steady state is

detected after n1 ∈ N simulation steps, the hybrid simulation step is aborted and the

simulation proceeds instead with n2 ∈ N SSA steps. Otherwise, m ∈ N SSA steps

are executed only considering the deterministic reactions. The distribution of each

deterministic species is recorded and used to approximate the stationary distributions,

see Figure 6.10 (right). Clearly, the larger m is selected, the more accurate get the

approximations. After approximating the stationary distributions, the propensities

of the stochastic reactions are updated accordingly, see [25] (Equation 9). Next, a

usual SSA step is executed considering only the stochastic reactions, the reaction set

is updated and the next hybrid simulation step is executed.

The approximation of deterministic reactions by using stationary distributions can

only be applied when these distributions exist. Further, the stationary distributions

must be reached much faster compared to the next firing time of a stochastic reaction.

These are strong restrictions for a hybrid simulator. Besides, calculating the stationary

distributions empirically can be a computationally expensive process including many

SSA steps of the deterministic reactions. Therefore, we also developed an alternative

method for the hybrid ML-Rules simulator dealing with the deterministic reactions by

integrating them directly, see Algorithm 6.3. In this case, the simulator does not require

stationary distributions to exist. Since deterministic reactions are static, they only

change the amounts of population-based species and therefore, it is straightforward to

convert them into ODEs and applying a numerical integration method to calculate them.

Similar to the “probability of no reaction” presented by Haseltine and Rawlings [71],

we restrict the leap size by the first r-quantile Q(r) depending on the propensity sum

of the deterministic reactions. This restriction can be beneficial, because propensities

of stochastic reactions are not updated during the integration of the deterministic

146

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

0 2000 4000 6000 8000 10000

Step

S
pe

ci
es

 A
m

ou
nt

11
00

13
00

15
00

1400 1450 1500 1550 1600

Species Amount

P
ro

ba
bi

lit
y

0.
00

5
0.

01
5

Figure 6.10: The shown results refer to a simple diffusion model with two rule schemes
describing the movement of a species into and out of a cell. Left: A steady state
estimator estimates the start of a steady state of the diffusing species at step 7000.
Right: The approximated stationary distribution of the diffusing species after 10000
steps (green) and 100000 steps (blue) compared to the analytical result (black).

reactions and therefore, an error is induced. However, due to arbitrary complex rate

equations and functions on solutions in ML-Rules, predicting this error is not possible

in general and therefore we use a generic leap restriction not depending on error

approximations. By default, we set r = 0.01. As shown in Algorithm 6.3 (ll.26-30), r

is increased or decreased depending on the relative change of the propensity sum of

the stochastic reactions compared to a user-defined parameter ε ∈ [0, 1].

6.3.3 Results with a Benchmark Model

We tested the presented hybrid simulator for ML-Rules with a simple multi-level

benchmark model, see Figure 6.11 and achieved a significant speed-up. We used three

configurations of the hybrid simulator:

(1) Reaction partitioning without considering propensities and direct integration of

deterministic reactions.

(2) Reaction partitioning considering propensities and direct integration of deter-

ministic reactions.

(3) Reaction partitioning considering propensities and approximation of determinis-

tic reactions with empirical stationary distributions.

We do not use the reaction partitioning without considering propensities and the

approximation of deterministic reactions with empirical stationary distributions, be-

cause the species C does not achieve stationary distributions fast enough, so that this

147

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

Algorithm 6.3 Sketch of the hybrid simulator for ML-Rules that integrates deter-
ministic reactions.
tj: current simulation time after j simulation steps,
Rd = {Rd

1, . . . , R
d
|Rd|}: deterministic reaction set,

Rs = {Rs
1, . . . , R

s
|Rs|}: stochastic reaction set,

as1, . . . , a
s
|Rs|: propensities of stochastic reactions,

X̃(tj): intermediate state of the system after integrating the deterministic reactions
and before executing a stochastic reaction.

1 // Update reaction sets , calculate propensities

2 initialize ();

3 // Calculate the propensity sum of all stochastic reactions

4 as0(X(tj)) :=
∑|Rs|

i=1 asi (X(tj))
5 // Select a dynamic reaction to be executed analog to the reaction

6 // selection of the SSA (see Algorithm 4.1)

7 i := select(Rs)

8 // Sample the execution time τ of the next dynamic reaction

9 τ := Exp(as0(X(tj)))
10 // Compute the r-quantile Q(r) (r ∈ [0, 1]) of this

11 // exponential distribution.

12 Q(r) :=
−ln(1−r)
as
0(X(tj))

13 if (Q(r) < τ) {

14 // Integrate all static reactions until tj +Q(r)
15 // No dynamic reaction is fired

16 X̃(tj) := integrate(X(tj), Rs, Q(r))
17 tj+1 := tj +Q(r)
18 } else {

19 // Integrate the static reactions until tj + τ

20 X̃(tj) := integrate(X(tj), Rs, τ)
21 tj+1 := tj + τ
22 }

23 // Propensity sum of dynamic reactions with X̃(tj)

24 ad0(X̃(tj)) :=
∑|Rd|

i=1 adi (X̃(tj))
25 // Depending on the relative propensity change , adapt r

26 if (|1− ad0(X(tj))/a
d
0(X̃(tj))| < ε) {

27 r := min (0.0001 ,r/2)
28 } else {

29 r := max(1,r · 2)
30 }

31 // Execute the selected dynamic reaction

32 execute(X̃(tj), Rd
i)

configuration of the hybrid simulator would degrade to the SSA. However, simulation

results with the other three configurations are shown in Figure 6.12. The exact

stochastic ML-Rules simulator needed ≈ 3 hours to simulate one simulation run until

148

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

1 // parameter
2 r1 : 1 0 0 . 0 ; r2 : 0 . 0 0 1 ;
3
4 // e n t i t y d e f i n i t i o n s
5 A() ; B() ; C() ; Context (bool) [] ;
6
7 // i n i t i a l s o l u t i o n
8 >>INIT [1 Context (true) [2000 A + 500 B + 10 C] + 1000 A] ;
9

10 // ’ f a s t ’ r u l e s
11 Context (x) [A: a + s ?] −> Context (x) [s ?] + A @#a∗ r1 ;
12 Context (x) [s ?] + A: a −> Context (x) [A + s ?] @#a∗ r1 ;
13 Context (x) [A: a + s ?] −> Context (x) [B + s ?] @#a∗ r1 ;
14 B: b −> A @#b∗ r1 ;
15 // ’ s low ’ r u l e s
16 Context (x) [B: b + s ?] −> Context (x) [C + s ?] @#b∗ r2 ;
17 C: c −> @#c∗ r2 ;
18 Context (false) [s ?] −> Context (true) [s ?] @ r2 ;
19 Context (true) [s ?] −> Context (false) [s ?] @ r2 ;

Figure 6.11: A simple benchmark model to test the hybrid ML-Rules simulator.

simulation time 1000. The hybrid simulator is much faster with all configurations

((1) ≈ 1s, (2) ≈ 1s, (3) ≈ 20s) without a noticeable loss of accuracy. Configuration

(3) is slower because it must calculate the stationary distribution for the species A

and B after each execution of a stochastic reaction. Since the stationary distributions

are only approximated, the noise of the species A and B is higher compared to the

other configurations of the hybrid simulator (configuration (1) has no noise since all

reactions changing A, B, and C are deterministic in this case).

6.3.4 Results with a Dictyostelium Discoideum Model

Besides experiments with the simple benchmark model, we executed experiments

with a complex model representing the Dictyostelium discoideum amoeba aggregation

process [12, p.95ff], see Appendix A.5. These amoebas are unicellular eukaryotic cells,

which build multicellular slugs during their life cycles [23]. Since ML-Rules does not

support spatial models explicitly, a grid-based space representation is applied. With

the stochastic ML-Rules simulator, it was not possible to execute a useful simulation

study for this model, since it needed more than 60 hours to simulate one amoeba cell

until simulation time 5000. Although τ -leaping performed better and only needs ≈ 1

minute to simulate one amoeba cell until simulation time 5000, it has been still to

slow for more cells. However, to observe an aggregation process, many cells have to

be simulated.

149

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

SSA

Simulation Time

S
pe

ci
es

 A
m

ou
nt

0

25
0

50
0

75
0

10
00

0

500

1000

1500

2000

2500

(1)

Simulation Time

S
pe

ci
es

 A
m

ou
nt

0

25
0

50
0

75
0

10
00

0

500

1000

1500

2000

2500

(2)

Simulation Time

S
pe

ci
es

 A
m

ou
nt

0

25
0

50
0

75
0

10
00

0

500

1000

1500

2000

2500

(3)

Simulation Time

S
pe

ci
es

 A
m

ou
nt

0

25
0

50
0

75
0

10
00

0

500

1000

1500

2000

2500

Figure 6.12: Comparison of simulation results (green: species A, yellow: species B, red:
species C) of the exact stochastic ML-Rules simulator (left) and the hybrid simulator
for ML-Rules with the configurations (1), (2), and (3) for the benchmark model
described in Figure 6.11.

For experiments with more cells, we applied the hybrid ML-Rules simulator

with a reaction partitioning not considering propensities and a direct integration

of deterministic reactions. Referring to this model, considering propensities for the

partitioning would result in the same partitions, since the stochastic reactions of this

model are also the slow reactions. Further, we did not use the stationary distribution

approximation, since the deterministic reactions do not induce stationary distributions.

However, the hybrid simulator with the suitable configuration achieved much better

results than the stochastic simulator, see Figure 6.13 (top); it took ≈ 6 hours to

simulate 400 cells. Mainly, the benefit comes from a deterministic calculation of cell

internal reactions, see Figure 6.13 (middle). The oscillatory behavior fits to the data

computed in [107]. Further, the aggregation process of 400 Dictyostelium discoideum

amoebas in a 20 × 20 grid is illustrated in Figure 6.13 (bottom). At the beginning

of the simulation, all amoebas are equally distributed. The multicellular aggregates

become larger over time, i.e., at t = 5000, most of the 400 amoebas are gathered at

few points of the grid.

The results with the hybrid simulator are promising, nevertheless, much more

amoebas would have to be simulated to study the aggregation process more compre-

hensively. The performance of the hybrid simulator is slowed down by many stochastic

events representing moves of cells. In the next Section 6.3.5, we present a recent

extension of the hybrid simulator to tackle this issue. However, besides runtime issues,

for the first time with ML-Rules we also faced memory issues when simulating more

than 1000 cells — the simulation aborted with an OutOfMemory exception. Memory

improvements are therefore also in the focus of further improvements.

150

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

Number of cells

E
xe

cu
tio

n
tim

e
in

 h

50 100 150 200 250 300 350 400

0
1

2
3

4
5

6

●
●

●

●

●

●

●

●

0e
+0

0
2e

+0
7

4e
+0

7

Simulation Time

S
pe

ci
es

 A
m

ou
nt

0 20 40 60 80 100

ACA CAMPi CAMPe CAR1 ERK2 PKA RegA

t = 1000

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

t = 2000

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

t = 3000

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●

●
●

●

●●

t = 4000

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●
●

●●

●

t = 5000

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
Number of Cells

0
4
8
12
16
20
24
28
32
36

Figure 6.13: Top: Runtime to simulate dictyostelium discoideum amoebas (based on
20 replications). Middle: Oscillating amounts of cell internal species of an individual
amoeba (calculated continuously). Bottom: The aggregation process of 400 amoebas
in a 20 × 20 grid.

151

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

6.3.5 Parallel Execution of Stochastic Reactions

When executing the experiments with the Dictyostelium discoideum amoebas model,

many stochastic reactions slow down the execution of a simulation run. As these

stochastic reactions refer to movements of amoebas, they are often independent from

each other, i.e., one amoeba can move without invalidating possible moves of many

other amoebas. This observation motivates the extension of the hybrid ML-Rules

simulator to not only perform leaps on deterministic reactions, but also on stochastic

reactions, see [171, 198]4.

Algorithm 6.4 illustrates the hybrid simulator with multiple stochastic reaction

firings per leap. Every stochastic reaction is at most fired once during one leap. This

restriction is necessary since stochastic reactions usually cannot be fired multiple times.

For example, stochastic reactions often change, remove or create compartments, i.e.,

after firing such a reaction, the reactant compartments are not available anymore

and no reactions referring to the product compartments exist. The set of stochastic

reactions to be fired is determined by repeating the usual SSA reaction selection

process |Rs| times (ll.6-13). Using this mechanism account for the propensities of each

stochastic reaction. Further, a selected reaction Rs
i is only added to the set of selected

reactions S if it can still be fired assuming all reactions in S are fired, i.e., it does not

share compartment reactants with any reaction in S. Thus, assuming independent

stochastic reactions, in principle it is possible that all stochastic reactions are executed

during a leap. On the other hand, at least one stochastic reaction is definitely selected.

The time advance τ is sampled from an Erlang distribution with rate as0(X(tj)) and

shape |S|. The Erlang distribution (Erlang(λ,n)) is a continuous distribution that

can be used to sample the time of n independent exponentially distributed events

with rate λ. So far, this extension of the hybrid simulator has been tested with some

simple benchmarks and will be part of future research.

6.4 Summary

The efficiency of the Adaptive Simulator depends on the available pool of simulators.

Therefore, in this chapter, we have developed different tailored and approximate

simulators for the modeling language ML-Rules to explore their efficiency and applica-

bility to the Adaptive Simulator. We have chosen ML-Rules since it provides many

computational challenges and it has potential for various tailored and approximate

simulators.

Tailored simulators can exploit specific properties of models they are applicable to,

4In principle, this approach can also be applied to τ -leaping.

152

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

Algorithm 6.4 Sketch of a hybrid simulator for ML-Rules with multiple dynamic
reaction firings per leap.
tj: current simulation time after j simulation steps,
Rs = {Rd

1, . . . , R
d
|Rd|}: deterministic reaction set,

Rs = {Rs
1, . . . , R

s
|Rs|}: stochastic reaction set,

S: set of selected stochastic reactions to be executed,
as1 . . . a

s
ms

: propensities of stochastic reactions,

X̃(tj): intermediate state of the system after integrating the deterministic reactions
and before executing stochastic reactions.

1 // Update reaction sets , calculate propensities

2 initialize ();

3 // Calculate the propensity sum of all stochastic reactions

4 as0(X(tj)) :=
∑|Rs|

i=1 asi (X(tj))
5 // Select stochastic reactions to be executed

6 repeat |Rs| times {

7 // Select a stochastic reaction analog to the reaction

8 // selection of the SSA (see Algorithm 4.1)

9 i := select(Rs)

10 if (Rs
i /∈ S && isPossible(Rs

i ,S)) {

11 S := S ∪ {Rs
i }

12 }

13 }

14 // Sample the execution time τ for |S| stochastic reaction from an

15 // Erlang distribtion with rate as0(X(tj)) and shape |S|
16 τ := Erlang(as0(X(tj)), |S|)
17 // Integrate deterministic reactions until tj + τ

18 X̃(tj) := integrate(X(tj), Rd, τ);
19 // Execute the selected stochastic reaction (order does not

20 // matter as they must be independent from each other)

21 for (Rs
i ∈ S) {

22 execute(X̃(tj), R
s
i)

23 }

24 tj+1 := tj + τ

e.g., applying additional auxiliary data structures or avoiding unnecessary calculations.

To decide whether a tailored simulator is applicable to a model, either explicit

conditions are needed or automatic validity checks have to be applied, see Figure 6.1.

For example, an automatic validity check could simulate a model until a specific

simulation time with all available simulators and compare their results to decide which

simulators are valid for the given model. Although this approach is generic, it requires

different simulators to be available and it cannot guarantee the validity of a simulator,

but it only increases the confidence that a simulator is probably applicable to a model.

For ML-Rules, we have developed two tailored simulators. In Section 6.1.1, we

153

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

present the StaticSimulator tailored to ML-Rules models with a fixed reaction set.

For these models, the rule instantiation process has only to be done once at the

beginning of a simulation run and afterward the simulator can behave like a usual

SSA. For this simulator, we present explicit conditions, e.g., functions on solutions

are not supported, that can be checked automatically via a static model analysis. In

Section 6.1.2, we present the LinkSimulator tailored to ML-Rules models focusing

on species bonds. This simulator improves the rule instantiation process for reactions

between bound entities as follows. Typically, such rules consist of two reactants

which share a unique link variable, see Figure 6.3 page 134 (l.11) . After matching a

bound entity to the first reactant of such a rule, the matching of the second reactant

is clearly determined, i.e., these rules fulfill the rigidity property, see Section 6.1

page 131. Consequently, instead of testing a set of entities for the second reactant to

find the unique match, the only valid match can be selected directly. The conditions

for applying this simulator are less restrictive compared to the conditions for the

StaticSimulator, e.g., functions on solutions not changing any link attributes are

still allowed, and the conditions can still be checked automatically via static model

analysis. Altogether, both simulators make it possible to simulate models applicable

to them more efficiently compared to the basic ML-Rules simulator. Further, for each

model, it can automatically be checked whether these simulators can be applied and

finally, they also produce the same results as the exact basic ML-Rules simulator.

Consequently, they can be applied to the Adaptive Simulator straightforwardly to

improve its efficiency.

In contrast to tailored simulators, approximate simulators trade accuracy for speed

and therefore change the quality of simulation results. However, typically they achieve

a significant speed-up with an acceptable loss of accuracy and are therefore a valuable

approach to improve the efficiency of simulation runs. By developing approximate

simulators for ML-Rules, i.e., τ -leaping (see Section 6.2) and a hybrid simulator

(see Section 6.3), we demonstrate that also for ML-Rules approximate simulators

can speed-up simulation runs significantly. Basically, both approximate simulators

partition reactions based on structural changes, i.e., static reactions are approximated

and other reactions are still calculated exactly. Such a separation of reactions is not

unusual, e.g., the modeling formalism dynDEVS is explicitly separating transitions

changing the structure to an additional model transition function [190]. Nevertheless,

the developed approximate simulators are not exact anymore. Thus, accuracy analysis

is necessary to evaluate the quality of simulation results. However, analyzing the

accuracy of a simulator during runtime without an explicit error estimation method

is challenging. All in all, when applying an approximate simulator together with

the Adaptive Simulator, the action set must be restricted so that it only contains

154

CHAPTER 6. TAILORED AND APPROXIMATE SIMULATORS - A CASE
STUDY WITH ML-RULES

different configurations of this simulator and further, no parameters and components

of the simulator influencing the accuracy of the simulation results are allowed to be

adapted. Otherwise, the Adaptive Simulator can influence the simulation results by

performing adaptations violating one of its fundamental requirements, see Section 3.1.

So far, to analyze the accuracy of simulation results, we applied visual analytics to

analyze the results of τ -leaping for ML-Rules, however, this process has two drawbacks.

First, it is applied after executing all simulation runs. Therefore, it is not helpful

to analyze the accuracy of simulators during runtime. Second, it is by definition a

technique processed manually by users; it cannot be automated.

155

Chapter 7

Conclusions and Outlook

It’s time to design and build computing systems capable of running

themselves, adjusting to varying circumstances, and preparing their

resources to handle most efficiently the workloads we put upon them.

These autonomic systems must anticipate needs and allow users to

concentrate on what they want to accomplish rather than figuring how to

rig the computing systems to get them there.

Paul Horn [92]

7.1 Summary

The complexity challenge pronounced by IBM in 2001 [92] has also reached the modeling

and simulation community: Solutions are needed and developed to deal with complex

models, complex simulation experiments and complex simulation software. Referring

to simulation software, essential concepts of software engineering like abstraction,

separation of concerns, reuse, and design patterns should be applied. An established

approach following these concepts is a component-based software design, which has

been also the basis of the modeling and simulation framework JAMES II [87]. Although

this design helps to deal with complex software systems, it induces a configuration

challenge due to compositional opportunities. This challenge should be tackled with

adaptive methods inspired by concepts like self-adaptive software [105] or programming

by optimization [91], resulting in methods that automatically select and change

compositions and configurations.

In Chapter 2, we give an overview about various methods used in the area of

modeling and simulation to adapt simulators. We determine and analyze these methods

based on four properties, see Table 2.1 page 31:

156

CHAPTER 7. CONCLUSIONS AND OUTLOOK

1. Considered Features / Measurements: What features and measurements are used

for the adaptation decisions (model properties, simulator properties, environment

properties, performance).

2. Adapted Property: primitive parameters (e.g., thresholds), complex parameters

(e.g., partitioning of LPs), simulator.

3. Trigger & Frequency: initialization (i.e., one adaptation during the initialization

of a simulation run), interval, conditional.

4. Quality Change: Whether adaptations change the quality of simulation results.

Various kinds of features are used to control the adaptation process. Some methods rely

on model properties, e.g., τ -leaping is only using the model state to determine a suitable

leap size [25]. Other methods rely on simulator properties, e.g., the number of rollbacks

is considered by Penalty-Based Throttling to adapt the optimism of the LPs [163].

Environment properties like the CPU load are also sometimes considered [18]. The

Supervised Simulator Selection and the Unsupervised Simulator Selection consider the

runtime performance of the simulator [47].

Besides, an adaptation itself is often simple to be executed, i.e., mostly primitive

parameters like thresholds, delays, or the step size are adapted. The adaptation

frequency is often fixed and user-defined, i.e., a fixed adaptation interval depending

on the number of executed simulation events is applied. Some approaches apply only

one adaptation that is executed during the initialization of a simulation run. In case

the quality of results can be changed by adaptations, the calculated error is always

considered in some way, e.g., by comparing results of two simulator configurations with

different accuracy, see Section 2.2. Considering the accuracy of results is necessary,

because otherwise the simulator could trade too much accuracy to achieve a better

runtime performance eventually making the results useless.

Altogether, the methods analyzed in Chapter 2 emphasize that adapting simulators

can be beneficial. Nevertheless, most of the presented methods are tailored to a

specific application scenario and cannot be reused straightforwardly for other scenarios.

Further, existing generic methods like the Unsupervised Simulator Selection [47] do not

adapt simulators during the execution of a simulation run, but they select a simulator

once during the initialization of a simulation run.

Motivated by our conclusions about methods adapting simulators, in Chapter 3

we present established approaches to categorize and analyze adaptive software and

map these to the presented methods adapting simulators. Thereby, we refer to the

facets presented by Anderson et al. to analyze and evaluate adaptive software: goals,

changes, mechanisms, and effects [3].

157

CHAPTER 7. CONCLUSIONS AND OUTLOOK

Besides, we refine the notion of dynamic adaptations [135], i.e., adaptations cal-

culated at runtime, to weak dynamic adaptations and strong dynamic adaptations,

see Figure 3.2 page 37. Whereas weak dynamic adaptations are calculated during

runtime of the simulation software, but not within the runtime of a simulation run,

strong dynamic adaptations also allow adapting a simulator during the execution of

a simulation run. Further, we emphasize the distinction between parameter adapta-

tion and compositional adaptation. Parameter adaptations refer to methods mainly

using fixed and specific adaptation trigger, adaptation options and decision making

processes. In contrast, compositional adaptations are more flexible typically using

machine learning, e.g., to deal with a dynamic set of adaptation options. Altogether,

most presented methods adapting simulators perform strong dynamic adaptations

with parameter adaptations. Only the Supervised Simulator Selection and the Unsu-

pervised Simulator Selection perform compositional adaptations [47]. Nevertheless,

these two methods perform weak dynamic adaptations, i.e., they select a simulator

during the initialization of a simulation run. To realize compositional adaptations —

from a technological viewpoint — separation of concerns, component-based design,

and computational reflection are key characteristics that should be considered [135].

Further, an explicit decision making process should be separated from the business

logic [30].

Following the given discussion, we motivate a generic adaptation method performing

strong dynamic adaptations as well as compositional adaptations, which is developed

in Chapter 4: the Adaptive Simulator. It performs adaptations during the execution

of a simulation run, adaptations can change the structure of the simulator, and it does

not use a fixed set of adaptation options and a predefined adaptation strategy, but it

uses reinforcement learning to learn autonomously which adaptations to perform.

Based on the identified essential requirements for the Adaptive Simulator in

Section 4.1, we developed the structure of the Adaptive Simulator as follows. Firstly,

we integrate the Adaptive Simulator into the component-based modeling and sim-

ulation framework JAMES II and let it implement the same interface IProcessor

that has to be implemented by all simulators in JAMES II. However, the Adaptive

Simulator does not calculate simulation events directly, but it uses the wrapper

pattern [60] to encapsulate available simulators applicable to a specific problem,

adapts the currently used “internal simulator” as needed and it employs reinforcement

learning [185] to explore and exploit the performance of these simulators. Specifically,

Q-learning [14] is applied saving the utility based on the event throughput of each

state-action pair in a q-value matrix. The encapsulated simulators are used to calculate

the state transitions of a model. Thus, the Adaptive Simulator is not restricted to

any modeling language, but it can be applied to all modeling approaches available

158

CHAPTER 7. CONCLUSIONS AND OUTLOOK

in JAMES II. Thereby, a clear separation between the business logic, i.e., the execu-

tion of the state transitions, and the decision making process is achieved. Further,

by using the Registry of JAMES II, the Adaptive Simulator computes the set of

available simulators to proceed with the simulation run automatically. The Adaptive

Simulator itself is realized as a component-based simulator — all important concerns

(e.g., adaptation trigger and the reward function) of the Adaptive Simulator are

separated into individual components making it flexible to integrate new methods and

algorithms.

When executing an adaptation, the Adaptive Simulator selects a new internal

simulator to proceed with the model execution that is exchanged completely with

the previous internal simulator. The new internal simulator simply uses the current

state of the model to initialize itself properly. Thus, there is no need to determine

differences between the old and the new internal simulator and no data structures

must be checked and updated to guarantee the integrity of the new internal simulator.

We introduce base states (σ ∈ Σ) to represent all available information about the

model, the simulator and the environment that can be collected by the Adaptive

Simulator after each event execution. Since adaptations shall not be executed per

default after each event execution, all base states between two adaptations are combined

to a base state trajectory (τ ∈ Σ∗). Finally, a base state trajectory is transformed to a

state s ∈ S used by the reinforcement learning method.

High-dimensional or infinite state spaces can be challenging as they reduce the

learning efficiency. We integrated three different generalization methods into the

Adaptive Simulator to deal with this issue, see Section 4.3: 1) a grid-based general-

ization method, 2) the Decision Boundary Partitioning Algorithm (DBPA) [165],

and 3) the Adaptive Vector Quantization (AVQ) [114]. These methods generalize

a state s ∈ S to a macro state m ∈ M representing an area of the state space, whereby

M ⊆ S ∧ |M | � |S|. In the ideal case, each area represented by a macro state has a

homogeneous performance behavior of all states within this area.

Referring to adaptation trigger, we present three approaches, see Section 4.4: 1)

using a fixed adaptation condition based on the wallclock time, simulation time and

number of processed events, 2) using a set of conditions integrated into the adaptation

actions, and 3) using the event throughput to apply a changepoint detection method [1].

We did not focus on model specific adaptation trigger, e.g., to trigger an adaptation

after the execution of a rare event, since this would contradict the generality of the

Adaptive Simulator.

We evaluate various aspects of the Adaptive Simulator in Chapter 5. Firstly, we

motivate a component-based simulator for the modeling language ML-Rules [130] by

discussing its computational challenges mainly induced by dynamic reaction networks,

159

CHAPTER 7. CONCLUSIONS AND OUTLOOK

attributed species, and functions on solutions. This component-based simulator results

in manifold configuration possibilities making it a suitable candidate to evaluate the

Adaptive Simulator. We illustrate the effectiveness of the Adaptive Simulator

by using an ML-Rules benchmark model with two different phases. Specifically, we

analyze the impact of different multi-armed bandit policies for the action selection.

Although being simple, the ε-decreasing policy has outperformed the other policies.

Further, we apply the three developed state space generalizations together with the

Adaptive Simulator and the ML-Rules benchmark model. Fixed grids can perform

well, however, as expected their effectiveness essentially depends on the chosen grid

size. The DBPA usually outperformed fixed grids, but it sometimes failed resulting in

a worse performance compared to fixed grids. Further, it has already been challenging

to determine a suitable configuration of the DBPA. The AVQ has been more robust,

but never performed as good as the DBPA. Referring to the changepoint detection

method, it proved to be robust and effective. In contrast, the performance of fixed

adaptation conditions depends on the chosen conditions, which are not obvious to

choose.

Besides the ML-Rules benchmark model, we executed experiments also with

more complex models used in simulations studies: a Cell Cycle model [130], an

Endocytosis model [74], and a Wnt/β-catenin pathway model [131, 132, 69]. For

these, the Adaptive Simulator has been able to detect the best performing con-

figuration of the component-based ML-Rules simulator, but it could not outper-

form it. The computational demands might not differ sufficiently to make runtime

adaptations beneficial. However, detecting the best-performing simulator is also a

challenging task the Adaptive Simulator has successfully solved making it bene-

ficial compared to the random choice of a simulator. Further, since the Adaptive

Simulator already exploits its knowledge within one replication, it also outperforms

the AdaptiveSimulationRunner [47] in case few replications are executed. Besides,

by successfully applying the Adaptive Simulator to the modeling languages SR [97]

and PDEVS [205], we emphasize its flexibility and that it is not restricted to any

modeling language available in JAMES II.

In Chapter 6, we present tailored and approximate simulators for ML-Rules to sup-

port the effectiveness of the Adaptive Simulator. Due to its various computational

challenges, ML-Rules is a suitable candidate to develop such simulators. Tailored sim-

ulators only allow simulating a subset of ML-Rules models, thereby exploiting specific

properties of these models. We present a specific simulator (StaticSimulator) only

supporting ML-Rules models with fixed reaction networks and achieved a significant

speed-up with this simulator. Further, we present a specific simulator (LinkSimulator)

focusing on ML-Rules models with species bonds and also achieved a significant speed-

160

CHAPTER 7. CONCLUSIONS AND OUTLOOK

up with this simulator. If applicable, both simulators still produce exact results

referring to the basic ML-Rules simulator. Further, since we define exact conditions to

check whether they are applicable to a model or not, in principle they could directly

be applied to the Adaptive Simulator.

In contrast to tailored simulators, approximate simulators trade accuracy for speed

and therefore change the quality of simulation results. However, typically they achieve

a significant speed-up with an acceptable loss of accuracy and are therefore a valuable

approach to improve the efficiency of simulation runs. We demonstrate the potential

of approximate simulators by developing a τ -leaping simulator [25] and a hybrid

simulator [42] for ML-Rules. Both simulators partition the reaction set based on

reaction network changes — a common approach to separate reactions [190]. Since

the approximate simulators do not calculate exact results anymore, accuracy analysis

is necessary to evaluate their quality. However, due to the expressiveness of ML-Rules,

an explicit error estimation method cannot be defined for the developed approximate

simulators. As a starting point, we successfully applied a visual analytics tool [123]

to evaluate the accuracy of results calculated by different τ -leaping configurations.

Nevertheless, this analysis is done after executing all simulation runs. Therefore,

since we do not have developed an alternative method to measure the accuracy of the

approximate simulators during runtime yet, these simulators cannot simply be applied

to the Adaptive Simulator. Instead, the action set must be restricted so that it only

contains simulators calculating results with the same accuracy and the accuracy is not

allowed to be influenced by adaptations. Otherwise, the Adaptive Simulator could

tend to trade more and more accuracy making the simulation results useless.

7.2 Outlook

The Adaptive Simulator shows that strong dynamic adaptations and compositional

adaptations can be successfully combined for component-based simulation systems.

However, there is room for improvements and extensions. So far, the Adaptive

Simulator has not been applied to parallel and distributed discrete event simulation.

It could be used locally for each logical process to adapt its behavior or as a central

decision maker changing the global simulator type. Further, to deal with large action

sets, methods to create simulator portfolios at runtime should be developed and

applied, e.g., see [202]. Since the Adaptive Simulator consists of various components

with parameters, configuring it is an important issue that should be tackled, e.g., by

using Meta-learning techniques [194].

A complex challenge still lies in the feature selection for the creation of base

states. Currently, we delegate this challenge to the developer of the components used

161

CHAPTER 7. CONCLUSIONS AND OUTLOOK

by the Adaptive Simulator. However, these developers might not be aware of the

existence of the Adaptive Simulator or of important features of their components,

i.e., important features might not be forwarded to the Adaptive Simulator. Further,

we have not considered environment properties explicitly so far. Here, generic methods

should be explored solving the feature selection problem more autonomously.

The specialized ML-Rules simulators achieved significant speed-ups compared

to the standard ML-Rules simulator. Since they still compute exact results and we

defined clear conditions to apply these simulators, they can be applied by the Adaptive

Simulator straightforwardly. However, the conditions have been set restrictively, i.e.,

models might be rejected although they are applicable to these simulators. More

sophisticated static model analysis methods for ML-Rules are needed to improve the

validity checks. Moreover, it should be explored whether further specialized simulators

can be developed for ML-Rules, e.g., based on existing simulators for similar modeling

languages like NFSim for BioNetGen [179].

Referring to the approximate simulators developed for ML-Rules, future work

should focus on methods to measure the accuracy of these approximate simulators at

runtime. Only with explicit accuracy measurements, the approximate simulators can

be compared automatically and the Adaptive Simulator can exploit the methods

by considering their accuracy to control adaptations.

162

Bibliography

[1] R. P. Adams and David. J. C. MacKay. Bayesian Online Changepoint Detection.

Technical report, University of Cambridge, 2007.

[2] OSGi Alliance. OSGi Service Platform: Core Specification. aQute Publishing,

2009.

[3] Jesper Andersson, Rogério de Lemos, Sam Malek, and Danny Weyns. Modeling

Dimensions of Self-Adaptive Software Systems. In Software Engineering for

Self-Adaptive Systems, volume 5525, pages 27–47. 2009.

[4] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko Masuhara.

ContextJ: Context-oriented Programming with Java. Information and Media

Technologies, 6(2):399–419, 2011.

[5] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An Overview

of CaesarJ. In Transactions on Aspect-Oriented Software Development I, pages

135–173. Springer Berlin Heidelberg, 2006.

[6] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the

Multiarmed Bandit Problem. Machine Learning, 47(2–3):235–256, May 2002.

[7] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling

in a rigged casino: The adversarial multi-armed bandit problem. In Proceedings

of the 36th Annual Symposium on Foundations of Computer Science, pages

322–331, October 1995.

[8] Diana M Ball and Stephen M Hoyt. The adaptive Time-Warp concurrency

control algorithm. In Proceedings of the SCS Multiconference on Distributed

Simulation, pages 174–177, January 1990.

[9] David Barber. Bayesian Reasoning and Machine Learning. Cambridge University

Press, 2012.

163

BIBLIOGRAPHY

[10] Andrew G Barto and Sridhar Mahadevan. Recent Advances in Hierarchical

Reinforcement Learning. Discrete Event Dynamic Systems, 13(4):341–379,

October 2003.

[11] Pavol Bauer, Jonatan Lindén, Stefan Engblom, and Bengt Jonsson. Efficient

Inter-Process Synchronization for Parallel Discrete Event Simulation on Mul-

ticores. In Proceedings of the 3rd ACM SIGSIM Conference on Principles of

Advanced Discrete Simulation (PADS), pages 183–194, 2015.

[12] Marco Beccuti, Mary Ann Blätke, Martin Falk, Simon Hardy, Monika Heiner,

Carsten Maus, Sebastian Nähring, and Christian Rohr. Dictyostelium discoideum:

Aggregation and Synchronisation of Amoebas in Time and Space. Dagstuhl

Reports: Multiscale Spatial Computational Systems Biology (Dagstuhl Seminar

14481), 4(11):195–214, 2015.

[13] R Bellman. A Markovian Decision Process. Journal of Mathematics and

Mechanics, 6:679–684, 1957.

[14] R. Bellman and Rand Corporation. Dynamic Programming. Princeton University

Press, 1957.

[15] Nelly Bencomo and Amel Belaggoun. Supporting decision-making for self-

adaptive systems: from goal models to dynamic decision networks. In Require-

ments Engineering: Foundation for Software Quality, pages 221–236. Springer,

2013.

[16] Arne T. Bittig, Florian Reinhardt, Simone Baltrusch, and Adelinde M. Uhrma-

cher. Predictive Modelling of Mitochondrial Spatial Structure and Health. In

Proceedings of the 12th International Conference on Computational Methods in

Systems Biology, CMSB 2014, pages 252–255, 2014.

[17] Michael L. Blinov, James R. Faeder, Byron Goldstein, and William S. Hlavacek.

BioNetGen: Software for Rule-based Modeling of Signal Transduction Based on

the Interactions of Molecular Domains. Bioinformatics, 20(17):3289–3291, 2004.

[18] Azzedine Boukerche and Sajal K Das. Dynamic load balancing strategies for

conservative parallel simulations. In Proceedings of the 11th Workshop on

Parallel and Distributed Simulation (PADS’97), pages 20–28, July 1997.

[19] R. Brown. Calendar Queues: A Fast 0(1) Priority Queue Implementation for the

Simulation Event Set Problem. Communications of the ACM, 31(10):1220–1227,

1988.

164

BIBLIOGRAPHY

[20] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch Lafuente, and

Andrea Vandin. A Conceptual Framework for Adaptation. In Fundamental

Approaches to Software Engineering, volume 7212, pages 240–254. 2012.

[21] Peter Bunus. A Simulation and Decision Framework for Selection of Numerical

Solvers in Scientific Computing. In Proceedings of the 39th Annual Simulation

Symposium (ANSS), pages 178–187, 2006.

[22] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael

Stal, and Michael Stal. Pattern-Oriented Software Architecture Volume 1: A

System of Patterns. Wiley, volume 1 edition, 1996.

[23] Daniel S. Calovi, Leonardo G. Brunnet, and Rita M. C. de Almeida. cAMP

diffusion in Dictyostelium discoideum: A Green’s function method. Physical

Review E, 82:011909, 2010.

[24] Yang Cao, Daniel T Gillespie, and Linda R Petzold. The slow-scale stochastic

simulation algorithm. The Journal of Chemical Physics, 122(1), 2005.

[25] Yang Cao, Daniel T Gillespie, and Linda R Petzold. Efficient step size selection

for the tau-leaping simulation method. The Journal of Chemical Physics, 124(4),

January 2006.

[26] Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. Adaptive explicit-implicit

tau-leaping method with automatic tau selection. The Journal of Chemical

Physics, 126(22), 2007.

[27] Yang Cao, Hong Li, and Linda Petzold. Efficient formulation of the stochastic

simulation algorithm for chemically reacting systems. The Journal of Chemical

Physics, 121(9):4059–4067, September 2004.

[28] François E Cellier. Continuous System Modeling. Springer, 1991.

[29] K.M. Chandy and J. Misra. Distributed Simulation: A Case Study in Design and

Verification of Distributed Programs. Software Engineering, IEEE Transactions

on, SE-5(5):440–452, 1979.

[30] Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff

Magee, Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan

Cukic, Giovanna Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein,

Cristina Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle,

Jeff Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi A. Müller,

165

BIBLIOGRAPHY

Sooyong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns,

and Jon Whittle. Software Engineering for Self-Adaptive Systems: A Research

Roadmap. In Software Engineering for Self-Adaptive Systems, volume 5525,

pages 1–26. 2009.

[31] Ryan Child and Philip Wilsey. Dynamically Adjusting Core Frequencies to

Accelerate Time Warp Simulations in Many-Core Processors. In Proceedings

of the 26th Workshop on Principles of Advanced and Distributed Simulation

(PADS), pages 35–43, 2012.

[32] Petra Claeys, Filip Claeys, Bernard De Baets, and Peter A Vanrolleghem.

Intelligent configuration of numerical solvers of environmental ODE/DAE models

using machine learning techniques. In Proceedings of the International Congress

on Environmental Modelling and Software (iEMSs), 2006.

[33] Petra Claeys, Peter A Vanrolleghem, and Bernard De Baets. Automatic nu-

merical solver selection from a repository of pre-run simulations. Water science

and technology : a journal of the International Association on Water Pollution

Research, 59(5):893–—906, 2009.

[34] Zack Coker, David Garlan, and Claire Le Goues. SASS: Self-adaptation using

stochastic search. In Proceedings 10th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS 2015), 2015.

[35] Alina Crudu, Arnaud Debussche, and Ovidiu Radulescu. Hybrid stochastic

simplifications for multiscale gene networks. BMC Systems Biology, 3(89), 2009.

[36] Vincent Danos, Jérôme Feret, Walter Fontana, and Jean Krivine. Scalable

Simulation of Cellular Signaling Networks. In Proceedings of the 5th Asian

Symposium on Programming Languages and Systems, APLAS 2007, pages 139–

157, Berlin, Heidelberg, 2007. Springer-Verlag.

[37] Vincent Danos and Cosimo Laneve. Formal molecular biology. Theoretical

Computer Science, 325(1):69–110, 2004.

[38] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gäıti, Erol

Gelenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and

Franco Zambonelli. A Survey of Autonomic Communications. ACM Transactions

on Autonomous and Adaptive Systems (TAAS), 1(2):223–259, 2006.

[39] J.R. Dormand and P.J. Prince. A family of embedded Runge-Kutta formulae.

Journal of Computational and Applied Mathematics, 6(1):19–26, 1980.

166

BIBLIOGRAPHY

[40] Weinan E, Di Liu, and Eric Vanden-Eijnden. Nested stochastic simulation

algorithm for chemical kinetic systems with disparate rates. The Journal of

Chemical Physics, 123(19), 2005.

[41] Thomas Eiter and Heikki Mannila. Computing Discrete Fréchet Distance.

Technical Report CD-TR 94/64, Christian Doppler Laboratory for Expert

Systems, TU Vienna, Austria, 1994.

[42] J. Elf and M. Ehrenberg. Spontaneous separation of bi-stable biochemical

systems into spatial domains of opposite phases. Systems Biology, 1(2):230–236,

2004.

[43] S. Endrikat and S. Hanenberg. Is Aspect-Oriented Programming a Rewarding

Investment into Future Code Changes? A Socio-technical Study on Development

and Maintenance Time. In Proceedings of the 19th International Conference on

Program Comprehension (ICPC), pages 51–60, 2011.

[44] Robert Engelke and Roland Ewald. Configuring Simulation Algorithms with

ParamILS. In Proceedings of the Winter Simulation Conference, pages 391:1–

391:2, 2012.

[45] Thomas Erl. Service-oriented architecture: concepts, technology, and design.

Pearson Education India, 2005.

[46] Erik Ernst. Separation of concerns. In Proceedings of the AOSD 2003 Work-

shop on Software-Engineering Properties of Languages for Aspect Technologies

(SPLAT), 2003.

[47] Roland Ewald. Automatic Algorithm Selection for Complex Simulation Problems.

PhD thesis, University of Rostock, Germany, 2010.

[48] Roland Ewald, J Himmelspach, M Jeschke, S Leye, and A M Uhrmacher.

Flexible experimentation in the modeling and simulation framework JAMES

II—implications for computational systems biology. Briefings in Bioinformatics,

11(3):290–300, 2010.

[49] Roland Ewald, Jan Himmelspach, and Adelinde M Uhrmacher. An Algorithm

Selection Approach for Simulation Systems. In Proceedings of the 22nd Workshop

on Principles of Advanced and Distributed Simulation (PADS’08), pages 91–98,

2008.

167

BIBLIOGRAPHY

[50] Roland Ewald, Stefan Leye, and Adelinde M Uhrmacher. An Efficient and

Adaptive Mechanism for Parallel Simulation Replication. In Proceedings of the

23rd Workshop on Principles of Advanced and DistributedSimulation (PADS’09),

pages 104–113, 2009.

[51] Roland Ewald, R Schulz, and A M Uhrmacher. Selecting simulation algorithm

portfolios by genetic algorithms. In Proceedings of the 24th Workshop on

Principles of Advanced and Distributed Simulation (PADS’10), pages 1–9, 2010.

[52] Roland Ewald and A M Uhrmacher. Automating the runtime performance

evaluation of simulation algorithms. In Proceedings of the 41st Winder Simulation

Conference (WSC’09), pages 1079–1091, 2009.

[53] Roland Ewald and Adelinde M. Uhrmacher. SESSL: A Domain-specific Language

for Simulation Experiments. ACM Transactions on Modeling and Computer

Simulation (TOMACS), 24(2):11:1–11:25, 2014.

[54] A. Falcon, P. Faraboschi, and D. Ortega. An Adaptive Synchronization Technique

for Parallel Simulation of Networked Clusters. In International Symposium on

Performance Analysis of Systems and software, pages 22–31, 2008.

[55] Lars Ferm, Andreas Hellander, and Per Lötstedt. An adaptive algorithm for

simulation of stochastic reaction–diffusion processes. Journal of Computational

Physics, 229(2):343–360, 2010.

[56] Mark B. Flegg, S. Jonathan Chapman, and Radek Erban. The two-regime

method for optimizing stochastic reaction–diffusion simulations. Journal of The

Royal Society Interface, 9(70):859–868, 2012.

[57] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjorven. Using

Architecture Models for Runtime Adaptability. Software, IEEE, 23(2):62–70,

2006.

[58] Richard M Fujimoto. Parallel and distributed simulation systems, volume 300.

Wiley New York, 2000.

[59] Matteo Gagliolo and Jürgen Schmidhuber. Learning Dynamic Algorithm Port-

folios. Annals of Mathematics and Artificial Intelligence, 47:295–328, 2006.

[60] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Software Components. Addison-Wesley Professional,

1994.

168

BIBLIOGRAPHY

[61] Samik Ghosh, Yukiko Matsuoka, Yoshiyuki Asai, Kun-Yi Hsin, and Hiroaki

Kitano. Software for systems biology: from tools to integrated platforms. Nature

Reviews Genetics, 12:821–832, 2011.

[62] Michael A Gibson and Jehoshua Bruck. Efficient Exact Stochastic Simulation

of Chemical Systems with Many Species and Many Channels. The Journal of

Chemical Physics, 104(9):1876–1889, February 2000.

[63] Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions.

The Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[64] Daniel T Gillespie. Approximate accelerated stochastic simulation of chemically

reacting system. The Journal of Chemical Physics, 115(4):1716–1733, July 2001.

[65] Rick Siow Mong Goh and Ian Li-Jin Thng. Mlist: An efficient pending event

set structure for discrete event simulation. International Journal of Simulation-

Systems, Science & Technology, 4(5-6):66–77, 2003.

[66] M.G. Gouda and T. Herman. Adaptive Programming. IEEE Transactions on

Software Engineering, 17(9):911–921, 1991.

[67] Isabelle Guyon and André Elisseeff. An Introduction to Variable and Feature

Selection. The Journal of Machine Learning Research, 3:1157–1182, 2003.

[68] Fiete Haack, Kevin Burrage, Ronald Redmer, and Adelinde M Uhrmacher.

Studying the role of lipid rafts on protein receptor bindings with Cellular Au-

tomata. IEEE/ACM Transactions on Computational Biology and Bioinformatics,

10(3):760–770, 2013.

[69] Fiete Haack, Heiko Lemcke, Roland Ewald, Tareck Rharass, and Adelinde M.

Uhrmacher. Spatio-temporal Model of Endogenous ROS and Raft-Dependent

WNT/Beta-Catenin Signaling Driving Cell Fate Commitment in Human Neural

Progenitor Cells. PLoS Computational Biology, 11(3):e1004106, 2015.

[70] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,

and Ian H. Witten. The WEKA Data Mining Software: An Update. ACM

SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

[71] Eric L. Haseltine and James B. Rawlings. Approximate simulation of coupled

fast and slow reactions for stochastic chemical kinetics. The Journal of Chemical

Physics, 117(15):6959–6969, 2002.

169

BIBLIOGRAPHY

[72] T. Helms, C. Maus, F. Haack, and A. M. Uhrmacher. Multi-level modeling and

simulation of cell biological systems with ML-Rules - A tutorial. In Proceedings

of the Winter Simulation Conference, pages 177–191, 2014.

[73] Tobias Helms. Inkrementelle Konstruktion von Algorithmenportfolios zur Simu-

lation. Bachelor’s thesis, University of Rostock, 2011.

[74] Tobias Helms. Adaptive Laufzeit-Konfiguration von ML-Rules Simulationen.

Master’s thesis, University of Rostock, 2012.

[75] Tobias Helms, Roland Ewald, Stefan Rybacki, and Adelinde M Uhrmacher.

A Generic Adaptive Simulation Algorithm for Component-based Simulation

Systems. In Proceedings of the 27th Workshop on Principles of Advanced and

Distributed Simulation (PADS’13), pages 11–22, 2013.

[76] Tobias Helms, Roland Ewald, Stefan Rybacki, and Adelinde M. Uhrmacher.

Automatic Runtime Adaptation for Component-Based Simulation Algorithms.

ACM Transactions on Modeling and Computer Simulation (TOMACS), 26(1):7:1–

7:24, 2015.

[77] Tobias Helms, Jan Himmelspach, Carsten Maus, Oliver Röwer, Johannes

Schützel, and Adelinde M. Uhrmacher. Toward a Language for the Flexible

Observation of Simulations. In Proceedings of the Winter Simulation Conference,

pages 418:1–418:12, 2012.

[78] Tobias Helms, Martin Luboschik, Heidrun Schumann, and Adelinde M Uhrma-

cher. An Approximate Execution of Rule-Based Multi-level Models. In Proceed-

ings of the 11th International Conference on Computational Methods in Systems

Biology (CMSB’13), pages 19–32, 2013.

[79] Tobias Helms, Steffen Mentel, and Adelinde M. Uhrmacher. Dynamic State

Space Partitioning for Adaptive Simulation Algorithms. In Proceedings of the

9th EAI International Conference on Performance Evaluation Methodologies

and Tools, VALUETOOLS’15, pages 149–152, 2016.

[80] Tobias Helms, Oliver Reinhardt, and Adelinde M. Uhrmacher. Bayesian Change-

point Detection for Generic Adaptive Simulation Algorithms. In Proceedings of

the 48th Annual Simulation Symposium, ANSS ’15, pages 62–69, 2015.

[81] Tobias Helms, Tom Warnke, Carsten Maus, and Adelinde M. Uhrmacher. Se-

mantics and efficient simulation algorithms of an expressive multi-level modeling

language. ACM Transactions on Modeling and Computer Simulation (TOMACS).

accepted.

170

BIBLIOGRAPHY

[82] Tobias Helms, Tom Warnke, and Adelinde M. Uhrmacher. Multi-level Modeling

and Simulating of Cell Biological Systems - ML-Rules at Work. In Methods in

Molecular Biology, 2016. submitted.

[83] Mostafa Herajy and Monika Heiner. Hybrid representation and simulation of

stiff biochemical networks. Nonlinear Analysis: Hybrid Systems, 6(4):942–959,

2012.

[84] Jan Himmelspach. Konzeption, Realisierung und Verwendung eines allgemeinen

Modellierungs-, Simulations und Experimentiersystems. PhD thesis, University

of Rostock, Germany, 2007.

[85] Jan Himmelspach, Roland Ewald, Stefan Leye, and Adelinde M. Uhrmacher.

Parallel and Distributed Simulation of Parallel DEVS Models. In Proceedings of

the 2007 Spring Simulation Multiconference - Volume 2, pages 249–256, 2007.

[86] Jan Himmelspach and Adelinde M Uhrmacher. Sequential processing of PDEVS

models. In Proceedings of the 3rd EMSS, pages 239–244, 2006.

[87] Jan Himmelspach and Adelinde M. Uhrmacher. Plug’n simulate. In Proceedings

of the 40th Annual Simulation Symposium (ANSS’07), pages 137–143, 2007.

[88] Jan Himmelspach and Adelinde M. Uhrmacher. The Event Queue Problem and

PDevs. In Proceedings Spring Simulation Multiconference - Volume 1, pages

257–264, 2007.

[89] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented

programming. Journal of Object Technology, 7(3), 2008.

[90] Marcel Holle. Dynamic State Space Representation for Adaptive Simulation

Algorithms. Bachelor’s thesis, University of Rostock, 2013.

[91] Holger H. Hoos. Programming by Optimization. Communications of the ACM,

55(2):70–80, 2012.

[92] Paul Horn. Autonomic computing: IBM’s Perspective on the State of Information

Technology, 2001.

[93] Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg. An Economics

Approach to Hard Computational Problems. Science, 275:51–54, 1997.

[94] Frank Hutter, Thomas Stützle, Kevin Leyton-Brown, and Holger H. Hoos.

ParamILS: An Automatic Algorithm Configuration Framework. Journal of

Artificial Intelligence Research, 36:267–306, 2009.

171

BIBLIOGRAPHY

[95] Walter L. Hürsch and Cristina Videira Lopes. Separation of Concerns. Technical

report, Northeastern University, 1995.

[96] David R. Jefferson. Virtual time. ACM Transactions on Programming Languages

and Systems (TOPLAS), 7(3):404–425, 1985.

[97] Matthias Jeschke and Roland Ewald. Large-Scale Design Space Exploration

of SSA. In Proeecdings of the 6th International Conference on Computational

Methods in Systems Biology, pages 211–230, 2008.

[98] Mathias John, Cédric Lhoussaine, Joachim Niehren, and Cristian Versari. Bio-

chemical Reaction Rules with Constraints. In Proceedings of the 20th European

Symposium on Programming, ESOP, pages 338–357, 2011.

[99] Simon L Peyton Jones. Haskell 98 language and libraries: the revised report.

Cambridge University Press, 2003.

[100] Lucas N. Joppa, Greg McInerny, Richard Harper, Lara Salido, Kenji Takeda,

Kenton O’Hara, David Gavaghan, and Stephen Emmott. Troubling Trends in

Scientific Software Use. Science, 340(6134):814–815, 2013.

[101] Leslie P Kaelbling. Learning in Embedded Systems. MIT Press, 1993.

[102] M. S. Kamel, W. H. Enright, and K. S. Ma. ODEXPERT: An Expert System

to Select Numerical Solvers for Initial Value ODE Systems. ACM Transactions

on Mathematical Software, 19(1):44–62, 1993.

[103] Jonathan R. Karr, Jayodita C. Sanghvi, Derek N. Macklin, Miriam V. Gutschow,

Jared M. Jacobs, Benjamin Bolival Jr., Nacyra Assad-Garcia, John I. Glass, and

Markus W. Covert. A Whole-Cell Computational Model Predicts Phenotype

from Genotype. Cell, 150(2):389–401, 2012.

[104] W David Kelton and Averill M Law. Simulation modeling and analysis. McGraw

Hill Boston, 2nd edition, 1991.

[105] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,

36(1):41–50, 2003.

[106] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming.

In ECOOP’97 — Object-Oriented Programming, volume 1241, pages 220–242.

1997.

172

BIBLIOGRAPHY

[107] Jongrae Kim, Pat Heslop-Harrison, Ian Postlethwaite, and Declan G Bates.

Stochastic Noise and Synchronisation during Dictyostelium Aggregation Make

cAMP Oscillations Robust. PLoS Computational Biology, 3(11):e218, 2007.

[108] Kenji Kira and Larry A. Rendell. The Feature Selection Problem: Traditional

Methods and a New Algorithm. In Proceedings of the Tenth National Conference

on Artificial Intelligence (AAAI), pages 129–134, 1992.

[109] Donald E. Knuth. Big Omicron and Big Omega and Big Theta. ACM SIGACT

News, 8(2):18–24, 1976.

[110] Granino Arthur Korn and John V Wait. Digital continuous-system simulation.

Prentice Hall, 1978.

[111] Glenn E Krasner and Stephen T Pope. A Description of the Model-View-

Controller User Interface Paradigm in the Smalltalk-80 System. Journal of

object oriented programming, 1(3):26–49, 1988.

[112] Thilo Krüger and Verena Wolf. Hybrid Stochastic Simulation of Rule-Based

Polymerization Models, pages 39–53. 2016.

[113] Tomas G Kurtz. Approximation of Population Processes. SIAM, 1981.

[114] Ivan S.K. Lee and Henry Y.K. Lau. Adaptive state space partitioning for rein-

forcement learning. Engineering Applications of Artificial Intelligence, 17(6):577–

588, 2004.

[115] M. Lees, B. Logan, Chen Dan, T. Oguara, and G. Theodoropoulos. Decision-

theoretic throttling for optimistic simulations of multi-agent systems. In 9th IEEE

International Symposium on Distributed Simulation and Real-Time Applications,

pages 171–178, 2005.

[116] Stefan Leye. Toward Guiding Simulation Experiments. PhD thesis, University

of Rostock, Germany, 2014.

[117] Stefan Leye, Roland Ewald, and Adelinde M. Uhrmacher. Composing Prob-

lem Solvers for Simulation Experimentation: A Case Study on Steady State

Estimation. PLoS ONE, 9(4):e91948, 2014.

[118] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Empirical Hardness

Models: Methodology and a Case Study on Combinatorial Auctions. Journal of

the ACM, 56(4):22:1–22:52, 2009.

173

BIBLIOGRAPHY

[119] Hong Li and Linda Petzold. Logarithmic Direct Method for Discrete Stochastic

Simulation of Chemically Reacting Systems. Technical report, Department of

Computer Science, University of California: Santa Barbara, 2006.

[120] Karl Lieberherr. Adaptive Object-Oriented Software The Demeter Method. 1996.

[121] J. Lin. Divergence measures based on the shannon entropy. IEEE Transactions

on Information Theory, 37(1):145–151, 1991.

[122] Martin Lippert and Cristina Videira Lopes. A Study on Exception Detection

and Handling Using Aspect-oriented Programming. In Proceedings of the 22Nd

International Conference on Software Engineering, pages 418–427, 2000.

[123] Martin Luboschik, Stefan Rybacki, Roland Ewald, Benjamin Schwarze, Heidrun

Schumann, and Adelinde M Uhrmacher. Interactive Visual Exploration of

Simulator Accuracy: A Case Study for Stochastic Simulation Algorithms. In

Proceedings of the 44th Winter Simulation Conference (WSC’12), pages 1–12,

2012.

[124] W. J. Conover M. D. McKay, R. J. Beckman. A Comparison of Three Methods for

Selecting Values of Input Variables in the Analysis of Output from a Computer

Code. Technometrics, 21(2):239–245, 1979.

[125] Pattie Maes. Concepts and Experiments in Computational Reflection. In

Conference Proceedings on Object-oriented Programming Systems, Languages

and Applications, pages 147–155, 1987.

[126] Paolo Marrone. JOONE: The Complete Guide, 2004.

[127] Nazzareno Marziale, Francesco Nobilia, Alessandro Pellegrini, and Francesco

Quaglia. Granular Time Warp Objects. In Proceedings of the ACM Conference

on Principles of Advanced Discrete Simulation (PADS), pages 57–68, 2016.

[128] Sean Mauch and Mark Stalzer. Efficient Formulations for Exact Stochastic

Simulation of Chemical Systems. IEEE/ACM Transactions on Computing

Biology and Bioinformatics, 8(1):27–35, 2011.

[129] Carsten Maus. Toward Accessible Multilevel Modeling in Systems Biology - A

Rule-based Language Concept. PhD thesis, University of Rostock, Germany,

2012.

[130] Carsten Maus, Stefan Rybacki, and Adelinde M Uhrmacher. Rule-based multi-

level modeling of cell biological systems. BMC Systems Biology, 5(166), 2011.

174

BIBLIOGRAPHY

[131] Orianne Mazemondet, Rayk Hubner, Jana Frahm, Dirk Koczan, Benjamin M

Bader, Dieter G Weiss, Adelinde M Uhrmacher, Moritz J Frech, Arndt Rolfs,

and Jiankai Luo. Quantitative and kinetic profile of Wnt/β-catenin signaling

components during human neural progenitor cell differentiation. Cellular &

Molecular Biology Letters, 16(4):515–538, 2011.

[132] Orianne Mazemondet, Mathias John, Stefan Leye, Arndt Rolfs, and Adelinde M.

Uhrmacher. Elucidating the Sources of β-Catenin Dynamics in Human Neural

Progenitor Cells. PLoS ONE, 7(8), 2012.

[133] James M. McCollum, Gregory D. Peterson, Chris D. Cox, Michael L. Simpson,

and Nagiza F. Samatova. The sorting direct method for stochastic simulation of

biochemical systems with varying reaction execution behavior. Computational

Biology and Chemistry, 30(1):39–49, 2006.

[134] Catherine C. McGeoch. Experimental algorithmics. Communications of the

ACM, 50(11):27–31, 2007.

[135] Philip K McKinley, Seyed M Sadjadi, Eric P Kasten, and Betty H C Cheng.

Composing Adaptive Software. Computer, 37(7):56–64, July 2004.

[136] Steffen Mentel. Konfiguration dynamischer Zustandsräume für adaptive Simula-

tionsalgorithmen. Bachelor’s thesis, University of Rostock, 2014.

[137] Sina Meraji, Carl Tropper, and Wei Zang. A Multi-State Q-learning Approach

for the Dynamic Load Balancingof Time Warp. In Proceedings of the 24th

Workshop on Principles of Advanced and Distributed Simulation (PADS’10),

pages 1–8, May 2010.

[138] Peter Meso and Radhika Jain. Agile Software Development: Adaptive Systems

Principles and Best Practices. Information Systems Management, 23(3):19–30,

2006.

[139] Gail C. Murphy, Robert J. Walker, Elisa L. A. Baniassad, Martin P. Robillard,

Albert Lai, and Mik A. Kersten. Does Aspect-oriented Programming Work?

Communications of the ACM, 44(10):75–77, 2001.

[140] Mohammad Reza Nami and Mohsen Sharifi. A Survey of Autonomic Computing

Systems. In Proceedings of the 3rd IEEE International Conference on Autonomic

and Autonomous Systems, pages 101–110, 2007.

175

BIBLIOGRAPHY

[141] Egbert H. Van Nes and Marten Scheffer. A strategy to improve the contribu-

tion of complex simulation models to ecological theory. Ecological Modelling,

185(2–4):153–164, 2005.

[142] David M Nicol and Paul F Reynolds Jr. Optimal Dynamic Remapping of

Data Parallel Computations. IEEE Transactions on Computers, 39(2):206–219,

February 1990.

[143] Jürgen Nievergelt, Hans Hinterberger, and Kenneth C Sevcik. The Grid File: An

Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database

Systems, 9(1):38–71, March 1984.

[144] Denis Noble. The Music of Life: Biology Beyond Genes. Oxford University

Press, 2006.

[145] Scott Oaks. Java Performance: The Definitive Guide. O’Reilly Media, 2014.

[146] T. Oguara, D. Chen, G. Theodoropoulos, B. Logan, and M. Lees. An Adaptive

Load Management Mechanism for Distributed Simulation of Multi-agent Sys-

tems. In Proceedings of the 9th IEEE International Symposium on Distributed

Simulation and Real-Time Applications (DS-RT), pages 179–186, 2005.

[147] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner,

Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and

Alexander L. Wolf. An Architecture-Based Approach to Self-Adaptive Software.

IEEE Intelligent Systems, 14(3):54–62, 1999.

[148] Jürgen Pahle. Biochemical simulations: stochastic, approximate stochastic and

hybrid approaches. Briefings in Bioinformatics, 10(1):53–64, 2009.

[149] Avinash C Palaniswamy and Philip A Wilsey. Adaptive bounded time windows

in an optimistically synchronized simulator. In Proceedings of the 3rd Great

Lakes Symposium on Design Automation of High Performance VLSI Systems

(VLSI’93), pages 114–118, March 1993.

[150] D. L. Parnas. On the Criteria to Be Used in Decomposing Systems into Modules.

Communications of the ACM, 15(12):1053–1058, 1972.

[151] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd

edition, 2013.

[152] Ricardo Paxson and Kristen Zannella. Studying the World’s Most Complex

Dynamic Systems. The MathWorks News&Notes, 2007.

176

BIBLIOGRAPHY

[153] Danhua Peng, Tom Warnke, Fiete Haack, and Adelinde M. Uhrmacher. Reusing

simulation experiment specifications in developing models by successive com-

position — a case study of the Wnt/β-catenin signaling pathway. 2017. In

Press.

[154] L. Felipe Perrone, Cristopher S. Main, and Brian. C. Ward. SAFE: Simula-

tion Automation Framework for Experiments. In Proceedings of the Winter

Simulation Conference (WSC), pages 1–12, 2012.

[155] Kalyan S. Perumalla. Parallel and Distributed Simulation: Traditional Tech-

niques and Recent Advances. In Proceedings of the 38th Winter Simulation

Conference, pages 84–95, 2006.

[156] Patrick Peschlow, Tobias Honecker, and Peter Martini. A Flexible Dynamic

Partitioning Algorithm for Optimistic Distributed Simulation. In Proceedings

of the 21st International Workshop on Principles of Advanced and Distributed

Simulation, pages 219–228, 2007.

[157] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Universität

Bonn, 1962.

[158] Linda Petzold. Automatic Selection of Methods for Solving Stiff and Nonstiff

Systems of Ordinary Differential Equations. SIAM Journal on Scientific and

Statistical Computing, 4(1):136–148, 1983.

[159] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.

Flannery. Numerical Recipes 3rd Edition: The Art of Scientific Computing.

Cambridge University Press, 3 edition, 2007.

[160] Jacek Pucha�lka and Andrzej M. Kierzek. Bridging the gap between stochastic

and deterministic regimes in the kinetic simulations of the biochemical reaction

networks. Biophysical Journal, 86(3):1357–1372, 2004.

[161] Francesco Quaglia. A scaled version of the elastic time algorithm. In Proceedings

of the 15th Workshop on Parallel and Distributed Simulation (PADS), pages

157–164, 2001.

[162] Muruhan Rathinam, Linda R. Petzold, Yang Cao, and Daniel T. Gillespie.

Stiffness in stochastic chemically reacting systems: The implicit tau-leaping

method. The Journal of Chemical Physics, 119(24):12784–12794, 2003.

177

BIBLIOGRAPHY

[163] P. L. Reiher, F. Wieland, and D. Jefferson. Limitation of Optimism in the

Time Warp Operating System. In Proceedings of the 21st Winter Simulation

Conference, pages 765–770, 1989.

[164] Oliver Reinhardt. Bayessche Changepoint-Detection zur Unterstützung adaptiver

Simulationsalgorithmen. Bachelor’s thesis, University of Rostock, 2014.

[165] Stuart I. Reynolds. Decision boundary partitioning: Variable resolution model-

free reinforcement learning. In Proceedings of the 17th International Conference

on Machine Learning (ICML’00), pages 783–790, 2000.

[166] John R Rice. The Algorithm Selection Problem. Advances in Computers,

15:65–118, 1976.

[167] Stefan Rybacki, Fiete Haack, Karsten Wolf, and Adelinde M. Uhrmacher. De-

veloping Simulation Models - from Conceptual to Executable Model and Back -

an Artifact-based Workflow Approach. In Proceedings of the 7th International

ICST Conference on Simulation Tools and Techniques, pages 21–30, 2014.

[168] S. M. Sadjadi. A Survey of Adaptive Middleware. Technical report, Software

Engineering and Network Systems Laboratory, Department of Computer Science

and EngineeringMichigan State University.

[169] S. Masoud Sadjadi and Fernando Trigoso. TRAP.NET: A REALIZATION

OF TRANSPARENT SHAPING IN .NET. International Journal of Software

Engineering and Knowledge Engineering, 19(04):507–528, 2009.

[170] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and

research challenges. ACM Transactions on Autonomous and Adaptive Systems

(TAAS), 4(2):14:1–14:42, 2009.

[171] Howard Salis and Yiannis Kaznessis. Accurate hybrid stochastic simulation of a

system of coupled chemical or biochemical reactions. The Journal of Chemical

Physics, 122(5), 2005.

[172] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. Context-oriented pro-

gramming: A software engineering perspective. Journal of Systems and Software,

85(8):1801–1817, 2012.

[173] Werner Sandmann. Streamlined formulation of adaptive explicit-implicit tau-

leaping with automatic tau selection. In Proceedings of the 41st Winter Simula-

tion Conference (WSC), pages 1104–1112, 2009.

178

BIBLIOGRAPHY

[174] Johannes Schützel, Holger Meyer, and Adelinde M. Uhrmacher. A Stream-based

Architecture for the Management and On-line Analysis of Unbounded Amounts

of Simulation Data. In Proceedings of the 2nd ACM SIGSIM Conference on

Principles of Advanced Discrete Simulation, pages 83–94, 2014.

[175] R. Sherer, A. Gupta, and M. Hybinette. Adaptive message clustering for

distributed agent-based systems. In IEEE Workshop on Principles of Advanced

and Distributed Simulation (PADS), pages 1–6, 2011.

[176] David J Sheskin. Handbook of parametric and nonparametric statistical proce-

dures. Chapman & Hall/CRC, 4th edition, 2007.

[177] Dilma M. da Silva and Fabio Kon. Adaptive software systems. Journal of the

Brazilian Computer Society, 10:3–4, 2004.

[178] Christopher Simpkins, Sooraj Bhat, Charles Isbell, Jr., and Michael Mateas.

Towards Adaptive Programming: Integrating Reinforcement Learning into a

Programming Language. In Proceedings of the 23rd ACM SIGPLAN Conference

on Object-oriented Programming Systems Languages and Applications, pages

603–614, 2008.

[179] Michael W Sneddon, James R Faeder, and Thierry Emonet. Efficient modeling,

simulation and coarse-graining of biological complexity with NFsim. Nature

Methods, 8(2):177–183, 2011.

[180] Robert R Sokal and F James Rohlf. Biometry: the principals and practice of

statistics in biological research. W.H. Freeman and Company, New York, 1995.

[181] Lisa M. Sokol, Jon B. Weissman, and Paula A. Mutchler. MTW: An Empirical

Performance Study. In Proceedings of the 23rd Winter Simulation Conference,

pages 557–563, 1991.

[182] H. M. Soliman and A. S. Elmaghraby. An Efficient Clustered Adaptive-Risk

Technique for Distributed Simulation. In Proceedings of the 5th IEEE Interna-

tional Symposium on High Performance Distributed Computing, pages 383–391,

1996.

[183] Sudhir Srinivasan and Paul F. Reynolds, Jr. Elastic Time. ACM Transactions

of Modeling and Computer Simulation, 8(2):103–139, 1998.

[184] Remo Suppi, Fernando Cores, and Emilio Luque. Improving Optimistic PDES

in PVM Environments. In Recent Advances in Parallel Virtual Machine and

179

BIBLIOGRAPHY

Message Passing Interface: Proceedings of the 7th European PVM/MPI Users’

Group Meeting Balatonfüred, pages 304–312, 2000.

[185] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduc-

tion. MIT Press, 1998.

[186] Yufei Tao, Dimitris Papadias, and Qiongmao Shen. Continuous Nearest Neighbor

Search. In Proceedings of the 28th International Conference on Very Large Data

Bases, pages 287–298, 2002.

[187] Andre L.C. Tavares and Marco Tulio Valente. A Gentle Introduction to OSGi.

ACM SIGSOFT Software Engineering Notes, 33(5):8:1–8:5, 2008.

[188] V.E. Taylor, B.K. Holmer, E.J. Schwabe, and M.R. Hribar. Balancing load

versus decreasing communication: exploring the tradeoffs. In Proceedings of

the 29th Hawaii International Conference on System Sciences, volume 1, pages

585–593, 1996.

[189] Thanh, Vo Hong and Priami, Corrado and Zunino, Roberto. Efficient rejection-

based simulation of biochemical reactions with stochastic noise and delays. The

Journal of Chemical Physics, 141(13), 2014.

[190] Adelinde M. Uhrmacher. Dynamic Structures in Modeling and Simulation: A

Reflective Approach. ACM Transactions on Modeling and Computer Simulation

(TOMACS), 11(2):206–232, 2001.

[191] Adelinde M. Uhrmacher, Jan Himmelspach, and Roland Ewald. Effective and

Efficient Modeling and Simulation with DEVS Variants. Discrete-Event Modeling

and Simulation: Theory and Applications, 2011.

[192] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific Languages: An

Annotated Bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

[193] Joannès Vermorel and Mehryar Mohri. Multi-armed Bandit Algorithms and

Empirical Evaluation. In Proceedings of the 16th European conference on Machine

Learning (ECML’05), pages 437–448, 2005.

[194] Ricardo Vilalta and Youssef Drissi. A Perspective View and Survey of Meta-

learning. Artificial Intelligence Review, 18(2):77–95, 2002.

[195] Tom Warnke, Tobias Helms, and Adelinde M. Uhrmacher. Syntax and Semantics

of a Multi-Level Modeling Language. In Proceedings of the 3rd ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation, pages 133–144, 2015.

180

BIBLIOGRAPHY

[196] Christopher Watkins. Learning from delayed rewards. PhD thesis, University of

Cambridge, England, 1989.

[197] Andreas Weidemann, Stefan Richter, Matthias Stein, Sven Sahle, Ralph Gauges,

Razif Gabdoulline, Irina Surovtsova, Nils Semmelrock, Bruno Besson, Isabel

Rojas, Rebecca Wade, and Ursula Kummer. SYCAMORE – a systems biology

computational analysis and modeling research environment. Bioinformatics,

24(12):1463–1464, 2008.

[198] Pia Wilsdorf. Approximation diskreter Ereignisse bei hybrid ausgeführten ML-

Rules Simulationen. Bachelor’s thesis, University of Rostock, 2016.

[199] James R. Wilson and A. Alan B. Pritsker. A survey of research on the simulation

startup problem. SIMULATION, 31(2):55–58, 1978.

[200] Robert C Wilson, Matthew R Nassar, and Joshua I Gold. Bayesian Online

Learning of the Hazard Rate in Change-Point Problems. Neural computation,

22(9):2452–2476, 2010.

[201] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann, 3 edition, 1 2011.

[202] Lin Xu, Holger Hoos, and Kevin Leyton-Brown. Hydra: Automatically Config-

uring Algorithms for Portfolio-Based Selection. 2010.

[203] Richard J. Youle and Alexander M. van der Bliek. Mitochondrial Fission, Fusion,

and Stress. Science, 337(6098):1062–1065, 2012.

[204] Jakob Zabel. Statistical Testing of Component-based Stochastic Simulation

Algorithms. Master’s thesis, University of Rostock, 2014.

[205] Bernard P Zeigler, Tag Gon Kim, and Herbert Praehofer. Theory of Modeling

and Simulation. Academic Press, Inc., 2nd edition, 2000.

181

Appendix A

ML-Rules Models

All models are given in the current syntax of ML-Rules. For more information,

see the ML-Rules repository at https://git.informatik.uni-rostock.de/mosi/

mlrules2.

A.1 Cell Cycle Model

1

2 // PARAMETERS

3 c to t : 1 0 ; dtot : 1 0 0 0 ; k1 : 0 . 0 15∗ dtot ; k2 : 2 0 0 ; k3 : 1 8 0 ; k3prime : 0 . 0 1 8 ;

4 k4 : 4 . 5 ; k5 : 0 . 6 ; k6 : 1 . 0 ; k7 : 1 e6 ; k8 : k7 ; k9 : k7 ; t7 : 2 5 0 ; t8 : 7 0 ; t9 : 2 0 ;

5 td : 1 1 6 ;

6

7 // ENTITY DEFINITIONS

8 C(num , string) [] ; Y() ; Yp() ; D() ; Mi () ; Ma() ;

9

10 // INITIAL SOLUTION

11 >>INIT [

12 c to t C(1 . 0 , ’G1 ’) [(dtot−1) D() + 1 Ma()]

13] ;

14

15 // RULE SCHEMAS

16

17 // c y c l i n s yn t h e s i s

18 C(v , p) [s o l ?] : c −> C(v , p) [Y() + s o l ?]

19 @ k1∗#c ;

20

21 // formation o f i n a c t i v e MPF complex

22 C(v , p) [Y() : y + D() : d + s o l ?] : c −> C(v , p) [Mi () + s o l ?]

23 @ k2∗#y∗#d∗#c ;

24

182

APPENDIX A. ML-RULES MODELS

25 // a c t i v a t i o n o f MPF complex

26 Mi () : i + Ma() : a −> 2Ma()

27 @ (k3prime+(k3∗((#a/ dtot) ˆ(2))))∗#i ;

28

29 // breakage o f a c t i v a t e d MPF complex

30 C(v , p) [Ma() : a + s o l ?] : c −> C(v , p) [Yp() + D() + s o l ?]

31 @ if (#a>1) then (k4/v)∗#a∗#c else 0 ;

32

33 // c y c l i n degrada t ion

34 Yp() : y −>
35 @ k5∗#y ;

36

37 // c e l l growth

38 C(v , p) [s o l ?] : c −> C(v+(1/td) , p) [s o l ?]

39 @ if (p==’G1 ’) | | (p==’SG2 ’) then k6∗#c else 0 ;

40

41 // c e l l c y c l e t r a n s i t i o n from G1−>S/G2
42 C(v , ’G1 ’) [Mi () : i + s o l ?] : c −> C(v , ’SG2 ’) [Mi () + s o l ?]

43 @ if (#i>t7) then k7∗#c else 0 ;

44

45 // c e l l c y c l e t r a n s i t i o n from S/G2−>M
46 C(v , ’SG2 ’) [Ma() : a + s o l ?] : c −> C(v , ’M’) [Ma() + s o l ?]

47 @ if (#a>t8) then k8∗#c else 0 ;

48

49 // c e l l d i v i s i o n (t r a n s i t i o n from M−>G1)
50 C(v , ’M’) [Ma() : a + s o l ?] : c −> C(v/2 , ’G1 ’) [Ma() + s o l ?]

51 @ if (#a<t9) then k9∗#c else 0 ;

A.2 Endocytosis Model

1 // PARAMETERS

2 kendo : 0 . 0 0 1 ; k fu se : 0 . 0 0 2 ; krecrR7 : 0 . 0 0 1 ; krecrR5 : 0 . 0 0 1 ; tpH : 3 . 0 ;

3 kextrR7 : 0 . 0 0 1 ; kextrR5 : 0 . 0 1 ; k r e c y c l e : 1 ;

4

5 // SPECIES DEFINITIONS

6 Pa r t i c l e () ; Ce l l () [] ; V e s i c l e () [] ; Endosome (num , string , num) [] ;

7 Lysosome () [] ; Rab5 () ; Rab7 () ;

8

9 // INITIAL SOLUTION

10 >>INIT [

11 200 Pa r t i c l e () +

12 1 Ce l l [

13 1 Lysosome () + 5000 Rab5 () + 5000 Rab7 ()

14]

183

APPENDIX A. ML-RULES MODELS

15] ;

16

17 // RULE SCHEMATA

18

19 // v e s i c l e budding (proces s o f endocy to s i s)

20 Pa r t i c l e : p + Ce l l [s o l ?] −> Ce l l [Ve s i c l e [P a r t i c l e] + s o l ?]

21 @ kendo∗#p ;

22

23 // v e s i c l e / v e s i c l e f u s i on

24 Ve s i c l e [s o l 1 ?] + Ve s i c l e [s o l 2 ?]

25 −> Endosome (2 . 0 , ’ e a r l y ’ , 8 . 0) [s o l 1 ? + so l 2 ?]

26 @ k fuse ;

27

28 // v e s i c l e /endosome fu s i on (volume and pH are ad ju s t ed)

29 Ve s i c l e [s o l 1 ?] + Endosome (vol , ’ e a r l y ’ ,pH) [s o l 2 ?]

30 −> Endosome (vo l +1.0 , ’ e a r l y ’ , ((pH∗ vo l)+8)/(vo l +1.0)) [s o l 1 ? + so l 2 ?]

31 @ k fuse ;

32

33 // endosome/endosome fu s i on (volume and pH are ad ju s t ed)

34 Endosome (vol1 , s ta te , pH1) [s o l 1 ?] + Endosome (vol2 , s ta te , pH2) [s o l 2 ?]

35 −> Endosome (vo l1+vol2 , s ta te , ((pH1∗ vo l1)+(pH2∗ vo l2)) /(vo l1+vol2)) [

36 s o l 1 ? + so l 2 ?

37]

38 @ k fuse ;

39

40 // s t a t e change o f endosomes from ea r l y to l a t e

41 Endosome (volume , ’ e a r l y ’ ,pH) [Rab5 : r5 + Rab7 : r7 + s o l ?]

42 −> Endosome (volume , ’ l a t e ’ ,pH) [Rab5 + Rab7 + s o l ?]

43 @ if (#r7>(2∗#r5)) then 1 else 0 ;

44

45 // endosome/ lysosome fu s i on

46 Endosome (volume , ’ l a t e ’ ,pH) [s o l 1 ?] + Lysosome () [s o l 2 ?]

47 −> Lysosome () [s o l 1 ? + so l 2 ?]

48 @ k fuse ;

49

50 // pH decrease w i th in endosomes

51 Endosome (volume , s ta te ,pH) [s o l ?]

52 −> Endosome (volume , s ta te ,pH−(l og (pH) /1000)) [s o l ?]

53 @ 10 ;

54

55 // Rab7 recru i tment

56 Endosome (volume , s ta te ,pH) [s o l ?] + Rab7 : r7

57 −> Endosome (volume , s ta te ,pH) [Rab7 + s o l ?]

58 @ #r7 ∗krecrR7 ;

59

60 // Rab5 recru i tment (ba sa l and wi th p o s i t i v e f eedback)

184

APPENDIX A. ML-RULES MODELS

61 Endosome (volume , s ta te ,pH) [s o l ?] + Rab5 : r5

62 −> Endosome (volume , s ta te ,pH) [Rab5 + s o l ?]

63 @ #r5 ∗krecrR5 ;

64 Endosome (volume , s ta te ,pH) [Rab5 : r5 + s o l ?] + Rab5 : r52

65 −> Endosome (volume , s ta te ,pH) [2 Rab5 + s o l ?]

66 @ if (pH>tpH) then #r52∗(#r5 /100) ∗krecrR5 else 0 ;

67

68 // Rab5 e x t r a c t i o n

69 Endosome (volume , s ta te ,pH) [Rab5 : r5 + s o l ?]

70 −> Endosome (volume , s ta te ,pH) [s o l ?] + Rab5

71 @ #r5 ∗kextrR5 ;

72

73 // Rab7 e x t r a c t i o n

74 Endosome (volume , s ta te ,pH) [Rab7 : r7 + s o l ?]

75 −> Endosome (volume , s ta te ,pH) [s o l ?] + Rab7

76 @ #r7 ∗kextrR7 ;

77

78 // Rab5 and Rab7 r e c y c l i n g from lysosome

79 Lysosome () [Rab5 : r5 + s o l ?] −> Lysosome () [s o l ?] + Rab5 @ #r5 ∗ k r e cy c l e ;
80 Lysosome () [Rab7 : r7 + s o l ?] −> Lysosome () [s o l ?] + Rab7 @ #r7 ∗ k r e cy c l e ;
81

82 // Pa r t i c l e degrada t ion

83 Lysosome () [P a r t i c l e : p + s o l ?] −> Lysosome () [s o l ?] @ #p ∗0 . 0 1 ;

A.3 Wnt/β-catenin Model

1 // i n i t i a l s p e c i e s counts

2 nbetacyt : 12989 ; nbetanuc : 5282 ; nAxin : 252 ; nAxinP : 219 ; nWnt : 1000 ;

3 nCe l l s : 1 ;

4

5 // reac t i on ra t e c o e f f i c i e n t s

6 kbetasyn : 600 ; kWdeg : 0 . 2 7 ; kApA act : 20 ; kApA: 0 . 0 3 ; kAAp: 0 . 0 3 ;

7 kApdeg : 4 .48E−3; kAdeg : 4 .48E−3; kbetadeg act : 2 . 1E−4;

8 kbetadeg : 1 .13E−4; kbeta in : 0 . 0 5 49 ; kbetaout : 0 . 1 3 5 ; kAsyn : 4E−4;

9

10 // s p e c i e s d e f i n i t i o n s (number o f a t t r i b u t e s)

11 Ce l l (string , num) [] ; // c e l l c y c l e phase / c y t o s o l i c compartment volume

12 Nuc(num) [] ; // compartment volume

13 Wnt() ;

14 Axin (string) ; // phosphory l a t i on s t a t e

15 Bcat () ;

16

17 // i n i t i a l s o l u t i o n

18 >>INIT [

185

APPENDIX A. ML-RULES MODELS

19 (nWnt) Wnt +

20 nCe l l s Ce l l (’G1 ’ , 1) [

21 (nbetacyt) Bcat +

22 nAxin Axin (’u ’) +

23 nAxinP Axin (’p ’) +

24 Nuc (1) [(nbetanuc) Bcat]

25]

26] ;

27

28

29 // (1) Wnt degrada t ion

30 Wnt:w −> @ kWdeg∗#w;

31

32 // (2) a c t i v a t e d AxinP dephosphory l a t i on

33 // (prepared f o r dynamic compartment volume)

34 Wnt:w + Ce l l (phase , vo l) [Axin (’p ’) : a + s ?]

35 −> Wnt + Ce l l (phase , vo l) [Axin (’u ’) + s ?]

36 @ ((kApA act∗#w∗#a) / vo l) ;

37

38 // (3) ba sa l AxinP dephosphory l a t i on

39 Axin (’p ’) : a −> Axin (’u ’) @ kApA∗#a ;

40

41 // (4) Axin phosphory l a t i on

42 Axin (’u ’) : a −> Axin (’p ’) @ kAAp∗#a ;

43

44 // (5) AxinP degradat ion

45 Axin (’p ’) : a −> @ kApdeg∗#a ;

46

47 // (6) Axin degrada t ion

48 Axin (’u ’) : a −> @ kAdeg∗#a ;

49

50 // (7) a c t i v a t e d beta−ca ten in degrada t ion

51 // (prepared f o r dynamic compartment volume)

52 Ce l l (phase , vo l) [Axin (’p ’) : a + Bcat : b + s ?]

53 −> Ce l l (phase , vo l) [Axin (’p ’) + s ?]

54 @ ((kbetadeg act∗#a∗#b)/ vo l) ;

55

56 // (8) beta−ca ten in s yn t h e s i s

57 Ce l l (phase , vo l) [s ?] −> Ce l l (phase , vo l) [Bcat + s ?] @ kbetasyn ;

58

59 // (9) ba sa l beta−ca ten in degrada t ion

60 Bcat : b −> @ kbetadeg∗#b ;

61

62 // (10) beta−ca ten in s h u t t l i n g in t o the nuc leus

63 Bcat : b + Nuc(vo l) [s ?] −> Nuc(vo l) [Bcat + s ?] @ kbeta in∗#b ;

64

186

APPENDIX A. ML-RULES MODELS

65 // (11) beta−ca ten in s h u t t l i n g out o f the nuc leus

66 Nuc(vo l) [Bcat : b + s ?] −> Bcat + Nuc(vo l) [s ?] @ kbetaout∗#b ;

67

68 // (12) Axin s yn t h e s i s

69 Nuc(vo l) [Bcat : b + s ?] −> Nuc(vo l) [Bcat + s ?] + Axin (’u ’) @ kAsyn∗#b ;

A.4 Simplified Lipid Raft Model

1 // i n i t i a l s p e c i e s counts

2 nR: 1000 ; // per sub

3 nLR: 10 ; // per volume

4

5 // reac t i on ra t e c o e f f i c i e n t s

6 kLRsyn : 1 . 0 ; kLRdeg : 0 . 1 ; kRsyn : 50 ; kRin : 1 ; kRout : 1 ;

7 volume : 2000 ; // volume per sub volume

8 dd : 1 ; // d i f f u s i o n c o e f f i c i e n t

9 rho : 0 . 3 ; // r a f t f l u i d i t y

10

11 R(num , num) ; //Di f fu s ion , i s InRa f t

12 LR(num , num) [] ; // radius , f l u i d i t y

13 SubVol (num , num , num) [] ; // x and y coord ina t e s and volume

14

15 // i n i t i a l s o l u t i o n

16 >>INIT [

17 SubVol (1 , 1 , volume) [nLR LR(4 , rho) + nR R(dd , 0)]

18] ;

19

20 // (1) Raft degrada t ion

21 LR(vol , p) : l −> @ #l ∗kLRdeg ;

22

23 // (2) Raft s y n t h e s i s

24 SubVol (x , y , v) [s ?] −> SubVol (x , y , v) [LR(4 , rho) + s ?] @kLRsyn ;

25

26 // (3) Receptor s y n t h e s i s

27 SubVol (x , y , v) [s ?] −> SubVol (x , y , v) [R(dd , 0) + s ?] @kRsyn ;

28

29 // (4) Receptor d i f f u s i o n in t o LR

30 LR(vol , p) [s o l ?] + R(d , 0) : r −> LR(vol , p) [R(d∗p , 1) + s o l ?]

31 @ (kRin ∗ (4∗3 .14∗d∗ vo l)∗(#r /(volume−(3.14∗ vo l ∗ vo l)))) ;
32

33 // (5) Receptor d i f f u s i o n out o f LR

34 LR(vol , p) [R(d , 1) : r + s o l ?] −> LR(vol , p) [s o l ?] + R(d/p , 0)

35 @ (kRout ∗ (4∗3 .14∗d∗ vo l)∗(#r /(3 .14∗ vo l ∗ vo l))) ;

187

APPENDIX A. ML-RULES MODELS

A.5 Dictyostelium Discoideum Model

1 // Dic tyos t e l i um aggrega t i on model in d i s c r e t e space

2

3 // PARAMETERS

4 s c a l e : 1 ;

5 // d e f a u l t : one c e l l per g r i d p o s i t i o n

6 xmax : 2 ; ymax : 2 ; kd d i c ty : 2/1000 ; kd camp : 2 . 4 e6 /(1000∗1000) ;
7 nA: 6 . 0 2 3 e23 ; v : 3 . 6 720 e−14;

8 k1 : 2 . 0 ; k2 : 0 . 9 /nA/(v∗ s c a l e) /1e−6; k3 : 2 . 5 ; k4 : 1 . 5 ; k5 : 0 . 6 ;

9 k6 : 0 . 8 /nA/(v∗ s c a l e) /1e−6; k7 : 1 . 0 ∗nA∗(v∗ s c a l e) ∗1e−6;

10 k8 : 1 . 3 /nA/(v∗ s c a l e) /1e−6; k9 : 0 . 3 ; k10 : 0 . 8 /nA/(v∗ s c a l e) /1e−6;

11 k11 : 0 . 7 ; k12 : 4 . 9 ; k13 : 2 3 . 0 ; k14 : 4 . 5 ;

12 init cAMPe :1100∗ s c a l e ;

13 init cAMPi :4100∗ s c a l e ;

14 init ACA :7300∗ s c a l e ;

15 init PKA :7100∗ s c a l e ;

16 init ERK2 :2500∗ s c a l e ;

17 in it RegA :3000∗ s c a l e ;

18 init CAR1 :6000∗ s c a l e ;

19

20 f i r s t : : num −> s o l ;

21 f i r s t 0 = [] ;

22 f i r s t x = second (xmax , x) + f i r s t (x−1) ;

23

24 second : : num −> num −> s o l ;

25 second 0 y = [] ;

26 second x y = (init cAMPe) CAMPe(x , y) + 1 CELL(x , y) [

27 (init cAMPi) CAMPi

28 + (init ACA) ACA

29 + (init PKA) PKA

30 + (init ERK2) ERK2

31 + (init RegA) RegA

32 + (init CAR1) CAR1

33]

34 + second (x−1,y) ;

35

36 // SPECIES DEFINITIONS

37 System () [] ; CELL(num , num) [] ; CAMPe(num , num) ; CAMPi() ; ACA() ;

38 PKA() ; ERK2() ; RegA() ; CAR1() ;

39

40 // INITIAL SOLUTION

41 >>INIT [

42 System [f i r s t (ymax)]

43] ;

44

188

APPENDIX A. ML-RULES MODELS

45 // REACTION RULES

46

47 // in tra−c e l l u l a r dynamics

48 CAR1: c −> ACA + CAR1 @ k1∗#c ;

49 ACA: a + PKA: p −> PKA @ k2∗#a∗#p ;

50 CAMPi: a −> PKA + CAMPi @ k3∗#a ;

51 PKA: p −> @ k4∗#p ;

52 CAR1: c −> ERK2 + CAR1 @ k5∗#c ;

53 PKA: p + ERK2: e −> PKA @ k6∗#p∗#e ;

54 CELL(x , y) [s ?] : c −> CELL(x , y) [RegA + s ?] @ k7∗#c ;

55 ERK2: e + RegA : r −> ERK2 @ k8∗#e∗#r ;

56 ACA: a −> CAMPi + ACA @ k9∗#a ;

57 RegA : r + CAMPi: a −> RegA @ k10∗#r∗#a ;

58 CELL(x , y) [ACA: a + s ?] −> CAMPe(x , y) + CELL(x , y) [ACA + s ?] @ k11∗#a ;

59 CAMPe(x , y) : a −> @ k12∗#a ;

60 System [CAMPe(x , y) : a + CELL(x , y) [c ?] + r ?]

61 −> System [CELL(x , y) [CAR1 + c ?] + CAMPe(x , y) + r ?]

62 @ k13∗#a/(1 + countTwoAtts (r ? , ’ Ce l l ’ , x , y)) ;

63 CAR1: c −> @ k14∗#c ;

64

65 // movement o f c e l l to ad jacen t p o s i t i o n depending on e x t e r na l cAMP

amount

66 CELL(x1 , y1) [s ?] + CAMPe(x1 , y1) : a1 + CAMPe(x2 , y2) : a2

67 −> CELL(x2 , y2) [s ?] + CAMPe(x1 , y1) + CAMPe(x2 , y2)

68 @ if ((#a2>#a1) && (#a1 > 0) && ((x1!=x2) && (y1!=y2)) &&

((x1−x2<=1)&&(x1−x2>=−1)) && ((y1−y2<=1)&&(y1−y2>=−1))) then

kd d i c ty∗(#a2∗(1/#a1)) else 0 ;

69

70 // cAMP d i f f u s i o n

71 CAMPe(x , y) : a −> CAMPe(x , y+1)

72 @ if (y<ymax) then kd camp∗#a else 0 ;

73 CAMPe(x , y) : a −> CAMPe(x+1,y+1)

74 @ if (x<xmax) && (y<ymax) then kd camp∗#a else 0 ;

75 CAMPe(x , y) : a −> CAMPe(x+1,y)

76 @ if (x<xmax) then kd camp∗#a else 0 ;

77 CAMPe(x , y) : a −> CAMPe(x+1,y−1)

78 @ if (x<xmax) && (y>1) then kd camp∗#a else 0 ;

79 CAMPe(x , y) : a −> CAMPe(x , y−1)

80 @ if (y>1) then kd camp∗#a else 0 ;

81 CAMPe(x , y) : a −> CAMPe(x−1,y−1)

82 @ if (x>1) && (y>1) then kd camp∗#a else 0 ;

83 CAMPe(x , y) : a −> CAMPe(x−1,y)

84 @ if (x>1) then kd camp∗#a else 0 ;

85 CAMPe(x , y) : a −> CAMPe(x−1,y+1)

86 @ if (x>1) && (y<ymax) then kd camp∗#a else 0 ;

189

Thesis Statements

1. Many existing effective methods adapting simulators emphasize that simulator

adaptations at runtime is a valuable approach to improve the efficiency of

simulation runs.

2. Component-based simulation systems like JAMES II offer a great flexibility, but

they also come along with complex selection challenges that should be solved

automatically.

3. A generic adaptive simulator has been developed and integrated into JAMES II.

It encapsulates available simulators applicable to a specific problem, employs

reinforcement learning to explore and exploit the performance of these simulators,

and exchanges the currently used encapsulated simulator as needed.

4. As the developed adaptive simulator uses the encapsulated simulators to calculate

the state transitions of a model, it is not restricted to any modeling language,

but it can be applied to all modeling approaches available in JAMES II.

5. Using changepoint detection considering the event throughput to trigger adapta-

tions for the developed adaptive simulator showed to be robust and effective.

6. Dynamic state space generalization algorithms can significantly improve the

learning efficiency of the developed adaptive simulator. The decision boundary

partitioning algorithm can perform better than the adaptive vector quantization,

but it is less robust.

7. ML-Rules is an expressive modeling language inducing various computational

challenges making it a suitable language to develop component-based, tailored

and approximate simulators.

8. A subset of ML-Rules models with a fixed reaction network can be simulated

more efficiently by using a tailored simulator only applicable to such models.

190

APPENDIX A. ML-RULES MODELS

9. ML-Rules models focusing on species bonds tend to consist of rules fulfilling the

rigidity property. Exploiting this property by tailored simulators allows for a

better runtime performance.

10. Approximate ML-Rules simulators should partition reactions by their influence

on the reaction network. Only reactions not changing the reaction network

should be approximated. τ -leaping as well as a hybrid simulator showed to be

beneficial compared to the exact ML-Rules simulator.

191

Erklärung

Ich, Tobias Helms, erkläre, dass ich die vorliegende Dissertationsschrift mit dem

Thema: “Simulator Adaptation at Runtime for Component-based Simulation Soft-

ware” selbständig, ohne die (unzulässige) Hilfe Dritter und nur unter der Vorlage der

angegebenen Literatur und Hilfsmittel angefertigt habe.

