ADVANCED REMOTE ATTESTATION
PROTOCOLS FOR EMBEDDED SYSTEMS

TECHNISCHE
UNIVERSITAT
DARMSTADT

Vom Fachbereich Informatik der
Technischen Universitdt Darmstadt genehmigte

Dissertation

zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)
von

M. Sc. Florian Kohnhiduser
geboren in Grofi-Gerau, Deutschland

Referenten: Prof. Dr.-Techn. Stefan Katzenbeisser
Universitat Passau
Prof. Dr.-Ing. Matthias Hollick
Technische Universitat Darmstadt
Tag der Einreichung: 06.06.2019
Tag der miindl. Priiffung: 18.07.2019

D1y
Darmstadt, 2019

Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU
Darmstadt.

http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-89987
URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/8998

Die Veroffentlichung steht unter folgender Creative Commons Lizenz:
Attribution — NonCommercial — NoDerivatives 4.0 International (CC BY-NC-ND

4.0)
http://creativecommons.org/licenses/by-nc-nd/4.0/

9o¢co

http://tuprints.ulb.tu-darmstadt.de
mailto:tuprints@ulb.tu-darmstadt.de
https://tuprints.ulb.tu-darmstadt.de/id/eprint/8998
http://creativecommons.org/licenses/by-nc-nd/4.0/

ERKLARUNG

Hiermit versichere ich, die vorliegende Arbeit ohne Hilfe Dritter nur mit den
angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus
Quellen enthommen wurden, sind als solche kenntlich gemacht. Diese Arbeit
hat in gleicher oder dhnlicher Form noch keiner Priifungsbehorde vorgelegen.

Darmstadt, 06. Juni 2019

Florian Kohnhiuser

AKADEMISCHER WERDEGANG

Seit 02/2015 Technische Universitit Darmstadt
Wissenschaftlicher Mitarbeiter

Promotionsstudium

10/2012 - 11/2014 Technische Universitit Darmstadt
Studium der IT-Sicherheit

Abschluss: Master of Science
10/2009 - 09/2012 Karlsruher Institut fiir Technologie

Studium der Informatik

Abschluss: Bachelor of Science

iii

ABSTRACT

Small integrated computers, so-called embedded systems, have become a ubiqui-
tous and indispensable part of our lives. Every day, we interact with a multitude
of embedded systems. They are, for instance, integrated in home appliances,
cars, planes, medical devices, or industrial systems. In many of these applica-
tions, embedded systems process privacy-sensitive data or perform safety-critical
operations. Therefore, it is of high importance to ensure their secure and safe
operation. However, recent attacks and security evaluations have shown that
embedded systems frequently lack security and can often be compromised and
misused with little effort. A promising technique to face the increasing amount
of attacks on embedded systems is remote attestation. It enables a third party to
verify the integrity of a remote device. Using remote attestation, attacks can be
effectively detected, which allows to quickly respond to them and thus minimize
potential damage. Today, almost all servers, desktop PCs, and notebooks have
the required hardware and software to perform remote attestation. By contrast, a
secure and efficient attestation of embedded systems is considerably harder to
achieve, as embedded systems have to encounter several additional challenges.

In this thesis, we tackle three main challenges in the attestation of embedded
systems. First, we address the issue that low-end embedded devices typically
lack the required hardware to perform a secure remote attestation. We present an
attestation protocol that requires only minimal secure hardware, which makes our
protocol applicable to many existing low-end embedded devices while providing
high security guarantees. We demonstrate the practicality of our protocol in two
applications, namely, verifying code updates in mesh networks and ensuring
the safety and security of embedded systems in road vehicles. Second, we target
the efficient attestation of multiple embedded devices that are connected in
challenging network conditions. Previous attestation protocols are inefficient or
even inapplicable when devices are mobile or lack continuous connectivity. We
propose an attestation protocol that particularly targets the efficient attestation of
many devices in highly dynamic and disruptive networks. Third, we consider a
more powerful adversary who is able to physically tamper with the hardware of
embedded systems. Existing attestation protocols that address physical attacks
suffer from limited scalability and robustness. We present two protocols that
are capable of verifying the software integrity as well as the hardware integrity
of embedded devices in an efficient and robust way. Whereas the first protocol
is optimized towards scalability, the second protocol aims at robustness and is
additionally suited to be applied in autonomous networks.

In summary, this thesis contributes to enhancing the security, efficiency, ro-
bustness, and applicability of remote attestation for embedded systems.

KURZFASSUNG

Kleine integrierte Computer, sogenannte eingebettete Systeme, sind zu einem all-
gegenwartigen und unverzichtbaren Bestandteil unseres Lebens geworden. Jeden
Tag interagieren wir mit einer Vielzahl von eingebetteten Systemen, die z.B. in
Haushaltsgerdten, Autos, Flugzeugen, medizinischen Gerdten oder industriellen
Systemen integriert sind. In vielen dieser Anwendungen verarbeiten eingebettete
Systeme datenschutzrelevante Informationen oder steuern sicherheitskritische
Prozesse, sodass es wichtig ist, die IT-Sicherheit dieser eingebetteten Systeme zu
gewdhrleisten. Jiingste Angriffe und Sicherheitsanalysen haben jedoch gezeigt,
dass viele eingebettete Systeme ein niedriges IT-Sicherheitsniveau aufweisen und
oft mit geringem Aufwand kompromittiert und zweckentfremdet werden konnen.
Eine vielversprechende Technik, um der zunehmenden Bedrohung durch An-
griffe auf eingebettete Systeme zu begegnen, sind Attestierungsverfahren (engl.
Remote Attestation). Diese ermoglichen es einer dritten Partei, die Integritat
eines entfernten Gerites zu tiberpriifen. Mittels Attestierung konnen Angriffe
effektiv erkannt werden, wodurch schnell auf Angriffe reagiert und potenzielle
Schaden minimiert werden konnen. Die Attestierung von eingebetteten Systemen
bringt jedoch eine Reihe von Herausforderungen mit sich, die in existierenden
Arbeiten bisher nicht oder nur unzureichend behandelt wurden.

In dieser Arbeit stellen wir uns drei zentralen Herausforderungen. Zunichst
befassen wir uns mit dem Aspekt, dass kostengiinstige eingebettete Systeme
in der Regel nicht tiber die erforderliche Hardware verfiigen, um eine sichere
Attestierung durchzufithren. Wir stellen ein Attestierungsprotokoll vor, das hohe
Sicherheitsgarantien bietet und dabei nur ein Minimum an sicherer Hardware
benoétigt. Durch die niedrigen Hardwareanforderungen ist unser Protokoll auf
vielen kostengiinstigen eingebetteten Systemen einsetzbar. Wir demonstrieren
die Praktikabilitdt unseres Protokolls in zwei Anwendungen, der Verifikation
von Software Updates in Sensornetzen und der Gewihrleistung funktionaler
Sicherheit von Steuergerdten in Fahrzeugen. Als Nachstes betrachten wir die
effiziente Attestierung mehrerer eingebetteter Systeme in grofien Netzwerken.
Bisherige Attestierungsprotokolle sind ineffizient oder nicht anwendbar, wenn
keine dauerhafte Konnektivitdt zwischen allen Gerdten im Netzwerk besteht
oder Gerite ihre Position dndern. Wir préasentieren ein Attestierungsprotokoll,
das eine effiziente Attestierung vieler Gerdte ermoglicht, die in hochdynami-
schen und unterbrochenen Netzwerken miteinander verbunden sind. Als Letztes
befassen wir uns mit dem Schutz vor invasiven physikalischen Angriffen auf die
Hardware eingebetteter Systeme. Bestehende Attestierungsprotokolle, die physi-
sche Angriffe erkennen, besitzen lediglich eine eingeschrénkte Skalierbarkeit und
Robustheit. Wir stellen zwei Protokolle vor, die in der Lage sind, die Software-
und Hardware-Integritit eingebetteter Gerite auf effiziente und robuste Weise zu

vi

tiberpriifen. Wahrend unser erstes Protokoll besonders effizient und skalierbar
ist, bietet unser zweites Protokoll eine hohe Robustheit und eignet sich damit
insbesondere fiir den Einsatz in autonomen Netzwerken.

Zusammenfassend verbessert diese Arbeit die Sicherheit, Effizienz, Robustheit
und Anwendbarkeit von Attestierungsverfahren fiir eingebettete Systeme.

vii

LIST OF PUBLICATIONS

PEER-REVIEWED PUBLICATIONS USED IN THIS THESIS

[83]

[84]

[85]

[86]

[88]

[127]

Florian Kohnhduser, Niklas Biischer, and Stefan Katzenbeisser.
"SALAD: Secure and Lightweight Attestation of Highly Dynamic and
Disruptive Networks.” In: ACM ASIA Conference on Computer and Com-
munications Security (ASIACCS). 2018.

Florian Kohnhéduser, Niklas Biischer, and Stefan Katzenbeisser. ” A Prac-
tical Attestation Protocol for Autonomous Embedded Systems.” In:
IEEE European Symposium on Security and Privacy (EuroS&P). 2019.

Florian Kohnhéduser and Stefan Katzenbeisser. “Secure Code Updates
for Mesh Networked Commodity Low-End Embedded Devices.” In:
European Symposium on Research in Computer Security (ESORICS). 2016.

Florian Kohnhé&user, Dominik Piillen, and Stefan Katzenbeisser. “Ensur-
ing the Safe and Secure Operation of Electronic Control Units in Road
Vehicles.” In: IEEE Security and Privacy Workshops (SPW). 2019.

Florian Kohnhduser, Niklas Biischer, Sebastian Gabmeyer, and Stefan
Katzenbeisser. “SCAPI: A Scalable Attestation Protocol to Detect Soft-
ware and Physical Attacks.” In: ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WISEC). 2017.

Steffen Schulz, André Schaller, Florian Kohnhiuser, and Stefan Katzen-
beisser. “Boot Attestation: Secure Remote Reporting with Off-The-Shelf

IoT Sensors.” In: European Symposium on Research in Computer Security
(ESORICS). 2017.

FURTHER PEER-REVIEWED PUBLICATIONS

[47]

[87]

Arved EfSer, Florian Kohnhduser, Nadine Ostern, Kevin Engleson, and
Stephan Rinderknecht. “Enabling a Privacy-Preserving Synthesis of
Representative Driving Cycles from Fleet Data using Data Aggregation.”
In: IEEE Intelligent Transportation Systems Conference (ITSC). 2018.

Florian Kohnhauser, André Schaller, and Stefan Katzenbeisser. "PUEF-
based software protection for low-end embedded devices.” In: Interna-
tional Conference on Trust and Trustworthy Computing (TRUST). 2015.

ix

[89]

[105]

Florian Kohnhduser*, Milan Stute*, Lars Baumgdrtner, Lars Almon, Ste-
fan Katzenbeisser, Matthias Hollick, and Bernd Freisleben. “SEDCOS: A
Secure Device-to-Device Communication System for Disaster Scenarios.”
In: IEEE Local Computer Networks Conference (LCN). 2017. *Both authors
contributed equally to this work.

Christian Meurisch, Julien Gedeon, Artur Gogel, The An Binh Nguyen,
Florian Kohnhéduser, Lars Baumgéartner, Milan Schmittner, and Max
Miihlhduser. “Temporal coverage analysis of router-based cloudlets us-
ing human mobility patterns.” In: IEEE Global Communications Conference
(GLOBECOM). 2017.

ACKNOWLEDGMENTS

During my journey as a PhD student, I was fortunate to be inspired and sup-
ported by many people. Without them, this thesis would not have been possible.
First and foremost, I am deeply grateful to my supervisor Stefan Katzenbeisser.
His invaluable guidance, insightful comments, offered freedom, and confidence
in my work contributed greatly to my research and this thesis. Second, I thank
my co-supervisor Matthias Hollick for reviewing this thesis and for heading
the LOEWE research cluster NICER, which provided me with a pleasant and
stimulating research environment. Furthermore, I thank Thomas Schneider, Max
Miihlhduser, and Reiner Hahnle for joining my committee.

In addition, I am thankful to all my current and former colleagues. In partic-
ular, many thanks go to my colleagues from the Security Engineering Group,
namely, André, Christian, Dominik, Erik, Heike, Marius, Markus, Nikolaos A.,
Nikolaos K., Niklas, Nikolay, Philipp, Sebastian B., Sebastian G., Spyros, Tolga,
and Ursula. Thanks for all the help and support as well as the fun and laughter
we had at work, barbecues, lunches, coffee breaks, ice breaks, and our retreats in
Kleinwalsertal. Moreover, I thank the ENCRYPTO Group and the NICER research
team for many enjoyable hours at lunches, barcamps, conferences, workshops,
and social events.

Finally, I want to express my appreciation to my family and my friends who
have always encouraged and helped me throughout these years. Above all, I am
most thankful for my wife Viktoria and her endless support and patience.

el

CONTENTS

1

INTRODUCTION 1
1.1 Remote Attestation L Lo 2
1.2 Goal and Scope of this Thesis 3
1.3 Summary of Contributions 4
1.4 ThesisOutline L 7
PRELIMINARIES 9
2.1 Background oo o 9
2.1.1 Remote Attestation 9
2.1.2 Collective Attestation 12
2.1.3 Secure Code Updates 13
2.1.4 Secure Aggregation 14
2.1.5 Physical Attacks o o Lo 15
22 SystemModel 16
2.3 Device Requirements 18
2.4 AdversaryModel o o o o 18
ATTESTATION OF COMMODITY LOW-END EMBEDDED SYSTEMS 21
3.1 Motivation and Contribution 21
3.2 Secure Hardware Requirements 22
3.2.1 Hardware Security Properties 23
3.2.2 Implementation on Commodity Low-End Embedded Systems 23
3.3 ALE: Attestation of Low-End Embedded Systems 24
3.3.1 DeploymentPhase 25
3.3.2 AttestationPhase Lo oL 26
3.3.3 Security Analysis Lo Lo 28
3.4 Extensions for Real-World Use 29
3.5 Proofof Concept 31
3.5.1 Implementation 32
3.5.2 Performance Evaluation 33
3.6 Summary 33
ATTESTATION APPLICATIONS WITH EMBEDDED SYSTEMS 35
4.1 Use Case 1: Electronic Control Units in Road Vehicles. 35
4.1.1 Motivation and Contribution 35
4.1.2 Attestation Scheme for Road Vehicles 37
4.1.3 Evaluation 41
4.1.4 SUMMAry 43
4.2 Use Case 2: Secure Code Updates in Mesh Networks 44
4.2.1 Motivation and Contribution 44
4.2.2 Secure Code Update Scheme 45
423 Evaluation L 52
4.2.4 SUMMATYo 56

xiii

Xiv

CONTENTS

5 ATTESTATION OF HIGHLY DYNAMIC AND DISRUPTIVE NETWORKS 59

5.1 Motivation and Contribution 59
5.2 SALAD: Secure and Lightweight Attestation of Dynamic Networks 61
5.2.1 DeploymentPhase 61
5.2.2 AttestationPhase oo oo oL 63
5.3 Attestation Report Aggregation 67
53.1 BasicMACScheme 67
5.3.2 Extended MAC Aggregation Schemes 68
5.3.3 Trading Security for Performance 72
5.4 Evaluation 74
5.4.1 Implementation and Measurements 74
5.4.2 Simulation Setupand Results 76
5.5 SUMMATIY oottt et e 8o
ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS 81
6.1 Motivation and Contribution 81
6.2 SCAPI: Scalable Attestation of Software and Physical Attacks . . . 83
6.2.1 DeploymentPhase 83
6.2.2 Session Key Update Phase 84
6.2.3 AttestationPhaseo oL 86
6.3 Robustness Extension. 91
6.4 Evaluation 93
6.4.1 Implementation and Measurements 93
6.4.2 Scalability Simulation Results, 94
6.4.3 Robustness Simulation Results 96
6.5 SUMMArY i 98
ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS 99
7.1 Motivation and Contribution 99
7.2 Schnorr Multisignatures, 102
7.3 PASTA: Practical Attestation of Autonomous Embedded Systems . 103
7.3.1 Deployment Phase 104
7.3.2 Token GenerationPhase 104
7.3.3 Token ExchangePhase 109
7.3.4 Token Validation 111
7.4 Evaluation 117
7.4.1 Implementation and Measurements 117
7.4.2 Static Network Simulations 118
7.4.3 Dynamic Network Simulations 121
7.5 Summary 124
CONCLUSION 125
81 Summary 125
82 FutureWork L 126

BIBLIOGRAPHY 129

ACRONYMS

COTS

DDoS

DoS

DTN

ECU

HMAC

IETF

IoT

MAC

MANET

MPU

oS

ROM

ROP

RTC

SGX

TCB

TCG

TCPA

TEE

TPM

Commercial Off-The-Shelf
Distributed Denial of Service
Denial of Service
Delay-Tolerant Network

Electronic Control Unit

Hash-based Message Authentication Code

Internet Engineering Task Force
Internet of Things

Message Authentication Code
Mobile Ad hoc Network
Memory Protection Unit
Operating System

Read-Only Memory

Return Oriented Programming
Real-Time Clock

Software Guard Extensions
Trusted Computing Base
Trusted Computing Group
Trusted Computing Platform Alliance
Trusted Execution Environment

Trusted Platform Module

XV

INTRODUCTION

In the past years, the continuous cost reduction and miniaturization of elec-
tronic devices started a new technological era of omnipresent embedded systems.
Embedded systems are specialized computers that are typically integrated in
electrical and mechanical systems. As opposed to general-purpose computers,
embedded systems are specifically engineered to serve a dedicated function. For
this reason, they are usually optimized towards low costs, small size, low power
consumption, and harsh operating conditions. Although embedded systems are
already present in many aspects of our lives, e.g., in wearables, home appliances,
vehicles, avionics, medical devices, or industrial control, their amount and their
applications are expected to further increase, facilitated by numerous initiatives
and trends like the Internet of Things (IoT), Smarter Planet, Industry 4.0, or
Smart Cities. In fact, Gartner [54] estimates that more than 20 billion connected
embedded systems, also referred to as IoT devices, will be deployed by 2020.

In many applications, embedded systems perform safety-critical operations or
process privacy sensitive data, for instance, as they control the mechanics of road
vehicles or function as intelligent personal assistants. In these cases, embedded
systems offer a high potential for misuse, which makes establishing their security
an essential objective. However, effective security solutions are much harder to
realize on embedded systems than on general-purpose computers. This is because
embedded systems commonly possess constrained computing resources as well
as a small and simple system architecture, e.g., preventing the implementation
of secure hardware and cryptographic accelerators. Furthermore, the embedded
systems industry tends to suffer from cost pressure, short development cycles,
and lack of security standards, which provokes a poor product quality. In fact,
various studies have revealed numerous security vulnerabilities in embedded
systems [34, 36, 59, 115]. Thus, it is not surprising that embedded systems have
become appealing targets for real-world attacks. In recent years, unpatched and
misconfigured routers, cameras, and other consumer devices were increasingly
infected with malware that enables attackers to perform Distributed Denial of
Service (DDoS) attacks, mine cryptocurrencies, or exfiltrate personal data [76]. In
addition to these simple and widespread attacks, embedded systems were also
subject to highly sophisticated and targeted attacks like Stuxnet, Industroyer, or
Triton [61]. Stuxnet, for instance, exploited previously unknown vulnerabilities to
make embedded systems damage uranium enriching centrifuges. These attacks
highlight the need for effective security solutions for embedded systems.

Comprehensive security solutions typically cover three main aspects: preven-
tion, detection, and response [94]. Preventive techniques, such as encryption,
authentication, software sandboxing, or exploit mitigation, proactively harden

INTRODUCTION

systems against attacks, and thus constitute the first line of defense. However,
preventive techniques cannot defend against all attacks, meaning that they only
raise the bar for successful attacks. Therefore, detection and response techniques
also play a vital role [55]. They ensure that attacks are quickly identified and
that appropriate reactions minimize and contain potential damage. For instance,
in case of Stuxnet, detection techniques could have enabled operators to im-
mediately notice that the uranium enrichment centrifuges were compromised.
By quickly reacting and shutting down the centrifuges, the operators could
have prevented their destruction. A key technique that enables the detection of
compromised embedded devices is remote attestation.

1.1 REMOTE ATTESTATION

Remote attestation is a security service that enables a third party, the verifier,
to check whether a remote device, the prover, is in a trustworthy system state.
Traditionally, remote attestation is implemented as a challenge-response protocol
that is executed between a single verifier and a single prover. Initially, the verifier
sends a unique challenge to the prover. The prover measures its local software
integrity, e.g., by computing a hash value over its installed software, and then
authenticates the measurements and the challenge from the verifier with a
unique attestation key. Afterwards, the prover sends its attestation response,
which consists of the software measurement and the authentication value, to
the verifier. A priori, the verifier stores the attestation key and expected (known-
good) integrity measurement of the prover. By computing the expected attestation
response based on the stored key and integrity measurement, and comparing it
with the received response, the verifier finally determines whether the prover is
in a trustworthy state (or not).

Remote attestation has initially been developed for general-purpose computers.
More than a decade ago, the Trusted Computing Group (TCG), a standardization
consortium of various technology companies, introduced the Trusted Platform
Module (TPM) and the associated concept of remote attestation. The TPM is
a dedicated chip that is integrated into the motherboard of a platform and
enables a variety of trusted computing features, such as, sealing, binding, and
remote attestation [139]. To enable these features, the TPM provides a secure
storage for software measurements and cryptographic keys, and a cryptographic
processor for digital signatures, encryption, and hash functions. Nowadays, TPMs
are implemented in almost all servers, desktop PCs, and notebooks, and recent
Windows or Linux operating systems support their capabilities.

However, the embedded systems market is different. Compared with general-
purpose computers, embedded devices face various additional challenges that
hamper a secure and efficient attestation. For instance, due to size and costs re-
strictions, additional secure hardware, such as a TPM, is commonly not deployed
in embedded systems. Further obstacles include limited computing power, low
memory, low communication bandwidth, challenging network topologies, and

1.2 GOAL AND SCOPE OF THIS THESIS

device heterogeneity. Although some of these obstacles have been overcome
by the numerous attestation protocols that were recently proposed [3, 7, 11, 28,
29, 38, 44, 51, 65, 67, 68, 71, 114, 129, 132, 150], many other challenges are still
insufficiently addressed by existing works.

1.2 GOAL AND SCOPE OF THIS THESIS

The goal of this thesis is to advance the practicality of remote attestation on
embedded systems, with the aim to facilitate its deployment and use in practice.
For this purpose, we address three main questions, which constitute the scope of
this thesis.

Q1: Can attestation protocols provide strong security guarantees on commod-
ity low-end embedded systems?

Attestation protocols can be divided in two classes: software-based and hardware-
based attestation protocols. Software-based protocols are independent of secure
hardware, but on the downside rely on assumptions that have shown to be hard
to achieve in practice [10, 29]. In contrast, hardware-based attestation protocols
provide much stronger security guarantees by relying on secure hardware, such
as a TPM, ARM TrustZone, or Intel SGX. Embedded systems are commonly
optimized for minimal size and production costs. For this reason, commodity
embedded devices, especially low-end and legacy devices, typically lack the
secure hardware that is required by hardware-based protocols. Therefore, attesta-
tion protocols that are applicable to commodity low-end embedded devices are
commonly software-based, and thus provide questionable security guarantees.
In this thesis, we target the attestation of commodity low-end embedded devices
with strong security guarantees. Furthermore, we explore novel applications for
protocols that achieve a strong attestation of low-end embedded devices.

Q2: Can protocols achieve an efficient and robust attestation of many embed-
ded systems that are connected in challenging network topologies?

Wireless communication technologies like Bluetooth Smart, IEEE 802.15.4,
ZigBee, or Z-Wave enable embedded devices to form large, autonomous, and
mobile networks. Applying traditional single-device attestation protocols in these
infrastructure-less networks results in a huge overhead, as the verifier needs to
perform the protocol with each device individually. For this reason, collective
attestation protocols were proposed [7, 11, 28, 65, 67, 68]. They distribute the
attestation burden across the entire network to achieve an efficient attestation of
all network devices. Collective attestation protocols typically assume a fully con-
nected and quasi static network topology. However, in many use cases, embedded
devices are mobile and/or operate in sparsely populated networks. Existing
attestation protocols are inefficient or even inapplicable in these networks. In this
thesis, we aim at an efficient attestation of multiple devices that are connected in
highly dynamic and disruptive network topologies.

INTRODUCTION

Furthermore, embedded devices may operate autonomously, i.e., with minimal
or no supervision, for long times. Due to lack of manual intervention, attestation
protocols for autonomous embedded systems must be particularly robust and be
able to sustain their security service in case of network and device failures. This
prevents the use of a central entity that initiates the attestation and verifies its
result. Instead, multiple embedded devices must be capable of mutually attesting
and verifying the system state of each other. This is challenging given the fact that
the verifier is typically a powerful device and embedded devices have limited
resources. In this thesis, we address the specific requirements for an efficient and
robust attestation of autonomous embedded systems.

Q3: Can practical attestation protocols defend against a physical adversary
who is able to tamper with the hardware of embedded systems?

In many applications, embedded systems are publicly accessible, left unat-
tended, and deployed in large quantities. These circumstances allow an adversary
to physically approach and tamper with the hardware of embedded systems
more easily than with general-purpose computers. Originally, physical attacks
were outside the threat model of attestation protocols. Hence, by physically
tampering with some devices, an adversary is often able to corrupt the entire
attestation result. To solve this issue, collective attestation protocols have recently
been combined with absence detection to detect both software and physical at-
tacks [65, 68]. Absence detection builds on the assumption that an adversary who
physically tampers with a device must temporarily take the device offline for a
noticeable amount of time, e.g., to disassemble the device and extract secret keys.
Attestation protocols that detect physical attacks require devices to periodically
engage in the protocol execution. Devices that do not execute the protocol for
longer than a certain threshold are regarded as absent, and thus physically
compromised. However, existing protocols suffer from limited scalability and
are prone to network and device outages, whereupon healthy, but temporarily
unreachable, devices are mistakenly regarded as physically compromised. This
renders existing protocols impractical in many applications. In this thesis, we
investigate practical attestation protocols that defend against physical attacks
while being scalable and robust.

1.3 SUMMARY OF CONTRIBUTIONS

In this thesis, we extend and improve the current state of the art in the attestation
of embedded systems by addressing the aforementioned research questions
(Q1-Q3). More specifically, we provide the following contributions:

Chapter 3: Attestation of Commodity Low-End Embedded Systems (Q1). We
present an attestation protocol that is specifically tailored to low-cost and
resource-constrained embedded systems. Our protocol requires only minimal se-
cure hardware features, which are available in many existing low-end embedded
devices. This enables our protocol to combine the advantages of hardware-based

1.3 SUMMARY OF CONTRIBUTIONS

and software-based attestation protocols. In particular, our protocol provides
the same (strong) security guarantees as other hardware-based attestation pro-
tocols while being applicable to commodity low-end embedded devices, like
software-based protocols. We implement our protocol on an exemplary low-end
embedded device and demonstrate its practicality and performance. Further-
more, we provide an overview of typical commodity low-end embedded devices
and explain steps to implement our protocol on them.

This chapter is based on the following publications:

[85] Florian Kohnhduser and Stefan Katzenbeisser. “Secure Code Updates
for Mesh Networked Commodity Low-End Embedded Devices.” In:
European Symposium on Research in Computer Security (ESORICS). 2016.

[86] Florian Kohnhiuser, Dominik Piillen, and Stefan Katzenbeisser. ”Ensur-
ing the Safe and Secure Operation of Electronic Control Units in Road
Vehicles.” In: IEEE Security and Privacy Workshops (SPW). 2019.

[127] Steffen Schulz, André Schaller, Florian Kohnhé&user, and Stefan Katzen-
beisser. “Boot Attestation: Secure Remote Reporting with Off-The-Shelf

IoT Sensors.” In: European Symposium on Research in Computer Security
(ESORICS). 2017.

Chapter 4: Attestation Applications with Embedded Systems (Q1). We demon-
strate the practicality of our proposed attestation protocol for low-end embedded
systems (Chapter 3) by using it in two novel applications. In both applications,
previous attestation protocols were inapplicable due to their weak security guar-
antees or their requirements on secure hardware. In the first use case, we apply
our protocol in road vehicles to ensure the vehicles’” secure and safe operation.
Our solution verifies the software integrity of all safety-critical embedded devices
in the vehicle before the vehicle is started. In case the verification of a device fails,
the vehicle is prevented from moving. We show that many embedded systems
in vehicles conform to automotive standards that mandate the necessary secure
hardware required to apply our proposed attestation protocol. Finally, we imple-
ment our solution on an exemplary automotive network and demonstrate that it
imposes an imperceptible overhead for drivers and passengers. In the second use
case, we combine our proposed attestation protocol with existing code update
techniques to achieve a secure code update solution for mesh networks. Our
solution enforces the proper installation of code updates on all devices in the
network. Compromised devices can either refuse an appropriate execution of
the code update, whereupon they are excluded from the network, or properly
install the update, whereby any present malware is eliminated. This way, our
solution is able to recover compromised devices and reestablish trust in them.
Furthermore, its strong security guarantees allow our solution to be applicable in
scenarios where an adversary is able to compromise more than one network de-

5

6

INTRODUCTION

vice. We demonstrate the efficiency and scalability of our solution by real-world
measurements and network simulations.
This chapter is based on the following publications:

[85] Florian Kohnhduser and Stefan Katzenbeisser. ”"Secure Code Updates
for Mesh Networked Commodity Low-End Embedded Devices.” In:
European Symposium on Research in Computer Security (ESORICS). 2016.

[86] Florian Kohnhiuser, Dominik Piillen, and Stefan Katzenbeisser. "Ensur-
ing the Safe and Secure Operation of Electronic Control Units in Road
Vehicles.” In: IEEE Security and Privacy Workshops (SPW). 2019.

Chapter 5: Attestation of Highly Dynamic and Disruptive Networks (Qz). We
propose an attestation protocol for highly dynamic and disruptive networks.
Our protocol uses a novel distributed approach, where all devices incrementally
establish a common view on the integrity of all devices in the network. In
contrast to existing protocols, this approach allows our protocol to perform well
in highly dynamic and disruptive network topologies, to provide an increased
resilience against targeted Denial of Service (DoS) attacks, and to enable the
verifier the reception of the attestation result from any device. Moreover, our
protocol mitigates physical attacks by preventing a physically compromised
device from forging a valid system state for other devices in the network (than
itself). We evaluate the protocol through network simulations, which are based on
measurements of ZigBee connected low-end embedded devices. Our simulation
results demonstrate the efficiency and performance of our protocol, even in
networks where hundreds of embedded devices move with high (drone) speed
in large areas.
This chapter is based on the following publication:

[83] Florian Kohnhduser, Niklas Biischer, and Stefan Katzenbeisser.
"SALAD: Secure and Lightweight Attestation of Highly Dynamic and
Disruptive Networks.” In: ACM ASIA Conference on Computer and Com-
munications Security (ASIACCS). 2018.

Chapter 6: Scalable Attestation of Software and Physical Attacks (Q3). We
present a scalable attestation protocol that detects software and physical attacks.
Based on the assumption that physical attacks require an adversary to take a
targeted device offline for a noticeable amount of time, our protocol identifies
devices with compromised hardware. Compared to a previously proposed at-
testation protocol that detects physical attacks [68], our solution provides the
following improvements: (i) it is very efficient, as it reduces the number of trans-
mitted messages per time period from O(n?) to O(n), where n denotes the total

1.4 THESIS OUTLINE

number of devices in the network; (ii) it is robust against network delays by
relying on a unidirectional 1-to-n delay-tolerant link in each session period, in
contrast to an n-to-n continuous link; and (iii) it can precisely identify devices
whose hardware and/or software is compromised, if less than half of all devices
in the network are compromised. Network simulations show that our protocol is
applicable to low-end embedded devices, can scale to millions of devices, and
can outperform existing solutions by orders of magnitude.
This chapter is based on the following publication:

[88] Florian Kohnhéduser, Niklas Biischer, Sebastian Gabmeyer, and Stefan
Katzenbeisser. "SCAPI: A Scalable Attestation Protocol to Detect Soft-
ware and Physical Attacks.” In: ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WISEC). 2017.

Chapter 7: Practical Attestation of Autonomous Embedded Systems (Qz and
Q3). We propose an attestation protocol that is particularly suited for embedded
systems in autonomous networks. Our protocol is the first that (i) enables many
embedded prover devices to attest their integrity towards many potentially
untrustworthy embedded verifier devices, (ii) is fully decentralized, thus, able
to withstand network disruptions and arbitrary device outages, and (iii) is in
addition to software attacks capable of detecting physical attacks in a much
more robust way than any existing protocol. We implement the protocol, conduct
measurements on commodity devices, and simulate large networks based on
the measurements. Our results demonstrate that the protocol is practical on
low-end to mid-range embedded devices, scales to large networks with millions
of devices, and improves robustness by multiple orders of magnitude compared
with the best existing protocols.
This chapter is based on the following publication:

[84] Florian Kohnhduser, Niklas Biischer, and Stefan Katzenbeisser. ”A Prac-
tical Attestation Protocol for Autonomous Embedded Systems.” In:
IEEE European Symposium on Security and Privacy (EuroS&P). 2019.

1.4 THESIS OUTLINE

In Chapter 2, we introduce the necessary background for this thesis, where we
describe related work, explain our system and adversary model, and state our
security assumptions. In Chapters 3 to 7, we present our contributions, which
have been summarized in the previous section. In Chapter 8, we conclude this
thesis and outline directions for future research.

PRELIMINARIES

In this chapter, we first summarize related works and introduce basic concepts
on which this thesis is built (Section 2.1). Next, we explain our system model
(Section 2.2) and state the hardware requirements of our proposed attestation
solutions (Section 2.3). Finally, we present our adversary model, which defines the
capabilities of two adversaries, a software and a physical adversary (Section 2.4).

2.1 BACKGROUND

2.1.1 Remote Attestation

Overview. Remote attestation is a security service that enables a third party, the
verifier, to verify the software integrity of a remote device, the prover. The concept
of remote attestation was introduced almost two decades ago by the Trusted
Computing Platform Alliance (TCPA) [5], a consortium of various technology
companies with the goal to implement trusted computing concepts in personal
computers. Later on, the TCPA was succeeded by the Trusted Computing Group
(TCG), which is still the main driver of trusted computing technology today.
Remote attestation is typically implemented as an interactive protocol that is
executed between verifier and prover. Figure 2.1 illustrates a simplified attestation
protocol. As shown, the verifier initially prepares an attestation challenge, which
consists of a nonce, and sends it to the prover. The prover measures its local
software integrity by computing a cryptographic hash value over its entire
program memory. Next, the prover generates its attestation response, which
consists of a Message Authentication Code (MAC) that is computed over the
nonce from the verifier and its local software integrity measurement with a
unique attestation key. Afterwards, the prover sends its attestation response to
the verifier, who verifies its correctness. For this purpose, the verifier stores the
attestation key as well as the known-good software integrity measurement of the
prover. This enables the verifier to recompute the expected attestation response
of the prover. In case the recomputed attestation response matches the received
attestation response, the verifier considers the prover to be in a trustworthy
software state. In all other cases, the verifier regards the prover as untrustworthy.
Attestation protocols typically provide security against an adversary who is
able to perform network attacks and/or compromise the software of the prover.
Under these assumptions, attestation protocols prevent the adversary from
forging a valid attestation response for a compromised prover. To achieve this,
provers rely on a root of trust that is either implemented in software or hardware.
For instance, in our exemplary attestation protocol, the root of trust must ensure

10

PRELIMINARIES

_______________ VerifierPprover
akey': attestation key of Prover akey: secret attestation key
im': know-good measurements

nonce « {0,1}k

nonce

>
»

im < Hash(Software)
attest « MAC(akey; nonce||im)

attest

<<
<

attest' « MAC(akey'; nonce||im')
if attest' = attest:

return true
return false

Figure 2.1: Illustration of a simplified (hardware-based) attestation protocol. Operations
highlighted by the grey box are vital for security, which is why secure hard-
ware must ensure their untampered execution. In addition, secure hardware
must prevent malicious code from obtaining the secret attestation key akey.

that an adversary is unable to obtain the prover’s secret attestation key. In
addition, it must prevent the adversary from tampering with the computation of
the integrity measurement and the generation of the attestation response (see
Figure 2.1). In the following, we describe both types to ensure a secure attestation,
i.e., software-based and hardware-based attestation, in detail.

Software-based Attestation. Attestation protocols that require no secure hard-
ware are referred to as software-based attestation protocols [10, 98, 129-131]. To
achieve security, software-based protocols not only depend on cryptographic
operations or checksums, but also on time measurements. Their approach is at
first sight similar to our illustrated attestation protocol (Figure 2.1): The prover
receives a challenge from the verifier, computes a checksum over the program
memory and the challenge, and sends the result to the verifier, who eventually
verifies its correctness. However, in software-based attestation protocols, the
verifier also measures the time between sending out the challenge and receiving
the response from the prover. In case the time measurement is larger than a
specific threshold, the prover is regarded to be in a compromised software state.
The idea behind this assumption is that malicious code needs to interfere with
the checksum computation in order to evade detection. This interference delays
the checksum computation, which is eventually noticed by the verifier.

The advantage of software-based attestation is its broad applicability. Especially
low-end and legacy embedded devices may not provide secure hardware. With
software-based techniques, their integrity can still be verified. On the downside,
the security of software-based attestation protocols relies on several strong as-
sumptions. First, the prover must implement and execute the attestation protocol
in an optimal way, such that malicious code is unable to compute the attestation

2.1 BACKGROUND

response faster than the protocol code. Second, the adversary must be passive
during protocol execution, meaning that the adversary must be unable to com-
pute the attestation response with a device other than the actual prover. Third,
the protocol execution must not be subject to variable delays, e.g., introduced by
a communication over several hops. In practice, these assumptions have shown to
be hard to achieve [10, 29]. For this reason, software-based attestation is typically
considered to only be applicable in specific scenarios, e.g., the attestation of
peripheral devices.

Hardware-based Attestation. In contrast to software-based attestation protocols,
hardware-based protocols [8, 91, 124, 139] require provers to be equipped with
secure hardware. Popular secure hardware are the Trusted Platform Module
(TPM), ARM TrustZone, and Intel Software Guard Extensions (SGX), which are
nowadays (almost) built into all commercial servers, desktops, and mid-range and
high-end embedded devices. Their security features prevent malicious software
from accessing the secret attestation key and ensure the untampered execution
of security critical parts of the attestation protocol (see Figure 2.1). In this way,
hardware-based protocols are able to provide much stronger security guarantees
than software-based protocols.

For low-end embedded devices, commodity secure hardware components are
often too complex and expensive [51]. To address this issue, hybrid attestation
schemes have been proposed, e.g., SMART [45], SANCUS [109], TrustLite [82],
and TyTan [23]. They rely on a software/hardware co-design to enable a secure
attestation with minimal requirements on secure hardware. Nevertheless, these
hardware architectures have only been implemented as prototypes and their
future availability in commodity low-end embedded devices is uncertain.

Runtime Attestation. Attestation protocols build on different techniques to
measure the software integrity of provers. In general, existing protocols can be
classified in two groups: load-time and runtime attestation protocols. Load-time
protocols [124, 139], which are also referred to as static or boot-time protocols,
measure the integrity of the software before it is executed. To this end, load-
time protocols typically compute a cryptographic hash value over the software
binary that is to be executed. Most attestation protocols used today are load-time
protocols, including protocols based on the widely-deployed TPM [139].

By contrast, runtime, or dynamic, attestation protocols [3, 38, 39, 150] measure
the integrity of the software during its execution. For this purpose, they capture
the control flow of the software at runtime and report it to the verifier. This
enables the verifier to trace the prover’s execution path and to determine whether
the execution path has been compromised. Thus, runtime attestation protocols
are able to detect sophisticated attacks, in which the adversary hijacks the control
flow of a program, e.g., using Return Oriented Programming (ROP). Control flow
hijacking attacks cannot be detected with load-time attestation protocols, since
these attacks have no effect on the software binary. On the downside, runtime
attestation protocols are much more inefficient than load-time protocols and
hence suffer from scalability issues in large programs.

11

12

PRELIMINARIES

communication link P
spanning tree
---------- » attestation challenge

Figure 2.2: Illustration of a collective attestation protocol. A spanning tree is arrange in
the mesh network, which enables the efficient transmission and aggregation
of attestation responses from prover devices (Dy, ..., D11) to the verifier (V).

2.1.2 Collective Attestation

Scalable Attestation. In many applications, embedded systems are deployed
in large quantities, e.g., in industrial control or automotive systems. In these
cases, the verifier is typically interested in verifying multiple, or even all, devices
in the network. Traditional attestation protocols (Section 2.1.1) focus on the
attestation of a single device. Hence, in case they are used to verify multiple
devices, the verifier needs to run the protocol with each device individually.
This entails a high communication and runtime overhead, which renders single-
device protocols impractical to verify large networks. Especially in networks
where devices route data on behalf of other devices in the network, e.g., Mobile
Ad hoc Networks (MANETs), the overhead is particularly large.

Collective attestation protocols address this issue by providing a scalable attesta-
tion of many devices. To this end, collective protocols distribute the attestation
burden across all devices in the network, as illustrated in Figure 2.2 and de-
scribed in the following. Initially, the verifier sends an attestation challenge to
an arbitrary device, which is then propagated in the network from device to de-
vice. Propagating the challenge arranges a spanning tree overlay in the network,
where a receiving device regards the sending device as its parent in the tree.
Thus, the verifier is the root of the tree, and devices whose neighbors have all
received the challenge are the leafs of the tree. Next, each leaf device generates
its attestation response and sends it to its parent device. Parent devices collect
the attestation responses of all their child devices, aggregate them with their
own response, and send the aggregated response to their own parent device. In
this way, attestation responses are aggregated and propagated hop-by-hop along
the spanning tree to the verifier. Finally, the verifier obtains a single aggregated
response to which all devices have contributed. With the aggregated response,
the verifier can determine the software integrity of all network devices.

The described approach was first proposed in SEDA [11] and has been en-
hanced by subsequent collective attestation protocols in various ways. SANA [7]

2.1 BACKGROUND

allows multiple entities to verify attestation reports, enables devices without
secure hardware to aggregate attestation reports, and limits the strength of
physical attacks by authenticating individual attestation reports. LISA [28] pro-
vides a quality metric for collective attestation protocols and discusses protocol
design decisions to achieve different quality features. SeED [67] introduces a
non-interactive attestation approach that mitigates Denial of Service (DoS) attacks
and increases efficiency, as the attestation is initiated by a secure clock on prover
devices (instead of the verifier). DIAT [4] constitutes the first collective runtime
attestation protocol and particularly focuses on the attestation of data integrity,
i.e., the proper generation and processing of data in collaborative networks.

Physical Adversary. Although in certain scenarios, devices are physically un-
reachable or protected by a secure perimeter, in many applications, the physical
security of devices cannot be assured. However, most attestation protocols only
focus on software attacks and consider physical attacks to be out of scope. Thus,
an adversary who is able to physically approach and tamper with devices can
bypass their security goals. In fact, only two attestation protocols, DARPA [68]
and US-AID [65], also defend against physical attacks. For this purpose, they
combine collective attestation with absence detection to detect both, software and
physical attacks. Absence detection builds on the assumption that an adversary
requires to take a device offline for a continuous amount of time to successfully
tamper with it [32, 33]. Hence, devices that are offline for longer than a specific
threshold are considered to be physically compromised.

In DARPA [68], each device periodically emits an authenticated heartbeat that
is logged by all other devices in the network. Since physically attacked device
are offline for longer than the threshold time, they will miss sending a heartbeat
in at least one period, which is noticed by all other devices. During attestation,
the verifier receives the heartbeat log of all devices and considers devices that
missed sending a heartbeat in at least one period as physically compromised.
A weakness of DARPA is its limited scalability, as the amount of periodically
exchanged messages scales quadratically with the number of network devices.
US-AID [65] improves the scalability of DARPA by requiring devices to prove
their physical presence only to neighboring devices, but not to all devices in the
network. To support network dynamics, devices in US-AID periodically emit
a token that attests the presence of all their neighboring devices. Neighboring
devices record these tokens and use them to prove their presence towards newly
encountered devices upon network topology changes.

2.1.3 Secure Code Updates

Secure code update techniques specifically address the problem of verifying
that code updates are securely distributed and correctly installed on remote
devices. A device that properly executed a secure code update has proven to
be in a trustworthy, i.e., an unmodified and up-to-date, software state, clean of
any malware. SCUBA [132] verifies the proper execution of the software update

13

14

PRELIMINARIES

protocol on a remote device using software-based attestation. Executing SCUBA,
the verifier obtains a report which indicates that either (i) the code update was
correctly installed on the remote device, such that any malicious code is wiped
out, or (ii) malicious code interfered with the code update, e.g., to prevent
its erasure, in which case the remote device is in a potentially untrustworthy
software state. Nevertheless, software-based attestation, hence also SCUBA,
provides questionable security guarantees due to its strong assumptions. Other
secure code update techniques build on the concept of Proofs of Secure Erasure
(PoSE) [75, 116]. PoSE enables a device to prove to a remote party that it has
erased all its memory and thus is free of malicious code. In a second step, cleaned
devices download the software update and send a MAC of the downloaded code
to the verifier in order to prove the storage of the software update. The initial
concept of PoSE [116] was enhanced by combining PoSE with All or Nothing
Transforms to reduce the time and energy overhead [75]. Nevertheless, both
software and PoSE-based approaches rely on the strong assumption that the
prover is only able to communicate with the verifier, and with no other party.
Thus, both approaches are unsuited for updating devices that are part of a larger
network, since they can only provide security if the adversary is physically
absent and has not gained control of more than one device in the network. By
contrast, ASSURED [12] is a software update framework that provides stronger
security guarantees by relying on hybrid attestation techniques. ASSURED
extends existing update distribution schemes and is specifically designed for
large-scale Internet of Things (IoT) settings with resource-constrained embedded
devices. HEALED [66] constitutes another hardware-based secure code update
solution and focuses on networks with multiple devices. In HEALED, devices in
the network verify the software integrity of each other based on a Merkle Hash
Tree (MHT) construction. The MHT allows to determine the exact software block
that is defective on a prover. In case a compromised software block is detected, a
benign healer device uses MHT information to deliver a minimal patch to the
corrupt prover, and thereby restores its software.

2.1.4 Secure Aggregation

To reduce communication and data complexity in tree or mesh network topolo-
gies, a variety of secure in-network aggregation schemes have been proposed. In
general, these schemes are able to compute arbitrary aggregation operations
on data in a secure way. Unfortunately, in-network aggregation schemes have
several drawbacks, which prevent their use in collective attestation protocols. For
instance, they require to maintain a specific topology during aggregation [63,
117, 140, 149], are insecure upon corruption of multiple devices [63], can only es-
timate whether the aggregate has been manipulated [117, 149], or can only detect
manipulations on the aggregate retrospectively after additional communication
rounds [140, 149].

2.1 BACKGROUND

In contrast, cryptographic aggregation schemes provide rigorous security guar-
antees. They enable Message Authentication Codes (MACs) or digital signatures
from multiple parties to be combined in a compact aggregate. Using the aggre-
gate, a verifier can ensure that the data is authentic and indeed originates from
the claimed sources. MAC aggregation schemes [77] are applicable to very resource
constrained devices due to their high efficiency. However, they require each veri-
fier to hold the (secret) MAC key of all parties, which makes them inapplicable
in case verifiers are potentially untrustworthy. In comparison, aggregate signature
schemes [22, 102] are less efficient, but enable verifiers to be untrustworthy, as
they must only hold the public keys of all parties. Multisignature schemes [43,
70, 106] are a special case of aggregated signatures, where all parties are only
allowed to sign the same data. Both aggregate and multisignature schemes are
commonly based on RSA [70], discrete logarithms [16, 104, 106], pairings [22,
102], and lattices [43]. Schnorr multisignatures [16, 104, 138] are one of the
simplest, most-well understood, and efficient multisignature schemes. On the
downside, Schnorr multisignatures are generated in an interactive protocol, can
only be aggregated at the time of signing, and are larger than some pairing-based
signatures. Another drawback of both MAC and signature aggregation schemes
is that they do not allow extracting (uncompress) individual MACs or signatures
from an aggregate and also do not allow the aggregate to contain duplicates.
Thus, two aggregates that both contain the same MAC or signature cannot be
further compressed into a combined aggregate. Hence, existing schemes typically
maintain a static tree-based overlay network for an efficient aggregation [138].

2.1.5 Physical Attacks

Classification. Physical attacks can be classified in three groups: invasive, semi-
invasive, and non-invasive attacks [135]. Invasive attacks require an adversary
to get access to the internal components of a targeted chip by decapsulating
and deprocessing it. Next, the adversary can perform so-called microprobing
attacks [136], in which needles are attached to the internal wiring of the chip.
This enables the adversary to read out potential secrets or perform additional
fault attacks. In fault attacks, the chip is manipulated to provoke errors and unin-
tended states that can enable the adversary to access secrets or disable protection
mechanisms. Invasive attacks are the most powerful attacks, but require expen-
sive equipment, e.g., a microprobing station, highly skilled personnel, and much
time. Similar to invasive attacks, semi-invasive attacks [133] require depackaging
the chip in order to expose its surface. However, semi-invasive attacks rely on less
expensive equipment and are easier to perform. This is because electrical contact
to the internal lines of a chip is not required. Instead, laser scanning or thermal
imaging is used to read out internal secrets, or fault attacks are performed based
on ultraviolet radiation or optical fault injections. Nonetheless, both, invasive
and semi-invasive, attacks require an adversary to capture the target device and
analyze it for hours up to weeks in specialized laboratory environments [134].

15

16

PRELIMINARIES

Non-invasive attacks do not require physically tampering with the structure or
packaging of a chip. Common non-invasive attacks are side-channel, brute force,
fault injection, and data remanence attacks [135], which all use the chip as a black
box. Non-invasive attacks are typically more dangerous than (semi-)invasive
attacks. First, this is because non-invasive attacks leave no physical traces. There-
fore, it is often unnoticed that a chip has been attacked and its assets have been
compromised. Second, non-invasive attacks are easier to mount, as they require
inexpensive equipment or even no equipment at all, as well as less knowledge
and less time than (semi-)invasive attacks. On the other hand, non-invasive
attacks can be prevented with less effort. In the past, many countermeasures
against non-invasive attacks were proposed and applied in practice [121].

Countermeasures. The detection and mitigation of physical attacks on computer
systems is an ever-present goal, which is commonly approached using tamper-
evident and/or tamper-resistant hardware. While the former attempt to sense
physical intrusions (e.g., by employing silicon-embedded sensors or sealing
lacquer), the latter harden systems against tampering (e.g., by shielding hardware
with solid materials). Standards like FIPS 140-2 [48] and PCI-HSM [35], as well as
certain Common Criteria Protection Profiles [81] define different security levels
with requirements on tamper-evident and tamper-resistant hardware. However,
hardware that fulfills these security levels imposes significant costs in form of
weight, space, power consumption, and money. Therefore, tamper-evident and
tamper-resistant hardware is typically only applied to secure high-value assets,
e.g., certificate authorities, but is not deployed in commodity embedded devices.

Absence detection constitutes a more general and lightweight technique to
detect physical tampering. Instead of fully relying on hardware-based protection
measures, absence detection builds on the assumption that an adversary must
take a device offline for a noticeable amount of time to perform (semi-)invasive
physical attacks [14]. Initially, absence detection was proposed to detect device
failures [137]. Yet, later works applied absence detection to also defend against
node capture attacks [32, 33]. In these attacks, an adversary physically captures
a device to extract its cryptographic material or to reprogram and redeploy it.
In order to detect node capture attacks, devices in the network collaboratively
flag a device as captured if it fails to communicate with any other network
device within a fixed time interval. This approach was extended in subsequent
work [62] by statistical methods to detect absent neighbor devices in static
network topologies. Although absence detection suffers from false positives in
dynamic networks, it constitutes an effective solution to detect (semi-)invasive
physical attacks on devices that lack tamper-evident and/or tamper-resistant
hardware, e.g., commodity embedded devices.

2.2 SYSTEM MODEL

The main entity in our system model is the trustworthy network operator O,
who initializes and maintains a network with one or multiple embedded devices

2.2 SYSTEM MODEL

D1, D,,...,D,. The devices can be heterogeneous, which means that they may
run different software and have distinct computational power, storage capacity,
communication capabilities, and secure hardware. In particular, we consider
low-end embedded devices that have very limited resources and capabilities.
Based on the terminology for constrained devices from the Internet Engineering
Task Force (IETF) [79], we define all embedded devices that have less than 100
MHz of computing power, 64 kB of RAM, and 256 kB of flash memory to be
low-end devices. More powerful embedded devices are loosely referred to as
mid-range and high-end devices. In addition, we assume that all devices whose
integrity should be verifiable implement specific secure hardware features, which
are defined in Section 2.3. During the operation of the network, O repeatedly
wants to ensure the secure and safe operation of the maintained devices. To this
end, O uses one of our proposed attestation protocols.

All our attestation protocols comprise a deployment phase that is executed by O
prior to the actual attestation of devices. In the deployment phase, all devices in
the network are initialized in a trustworthy environment. After deployment, O
can repeatedly act as a verifier by executing the attestation phase of the respective
protocol. This enables O to verify the integrity of one or multiple devices in the
network, which act as provers. As a result of the attestation phase, O obtains an
attestation report that indicates all prover devices whose software is trustworthy,
i.e., unmanipulated and up-to-date. We refer to these devices as healthy or
uncompromised devices, in contrast to compromised devices. In addition, our two
protocols that defend against physical attacks (Chapters 6 and 7) further indicate
the hardware integrity of prover devices, so that O can also ensure that prover
devices are physically healthy. Moreover, our second protocol that defends
against physical attacks (Chapter 7) enables not only the network operator O,
but also arbitrary other devices, to act as a verifier.

Throughout this thesis, we consider different communication technologies and
network topologies, such as line, bus, star, tree, or mesh. In particular, we also
regard ad hoc networks, in which devices cooperate to distribute data in the
network, and thus form a decentralized and self-organized network. We consider
networks that are static, where devices remain stationary, as well as dynamic,
where devices can move freely. The latter are also referred to as MANETs or,
in case devices only rarely have a connection to each other, as Delay-Tolerant
Networks (DTNs). Nevertheless, we assume that the overall network topology
remains connected and devices are only physically absent or offline for short
times. The threshold how long devices are allowed to be unreachable depends
on the particular attestation protocol. Note that such a threshold must exist
because compromised devices can always refuse to respond to network messages,
which makes it impossible to remotely distinguish between unreachable and
compromised devices.

17

18

PRELIMINARIES

2.3 DEVICE REQUIREMENTS

Depending on the respective attestation protocol, prover devices must possess
particular hardware security features to ensure a secure attestation. In general,
all our protocols require prover devices to provide the minimal secure hardware
features for remote attestation [51], which are common for all hardware-based
attestation protocols. In Chapter 3, we present a solution to implement the
required minimal secure hardware features on commodity low-end embedded
devices, which is also employed for our use cases in Chapter 4. Nevertheless,
in our subsequently proposed attestation protocols (Chapters 5, 6, and 7), we
abstract from specific details on the implementation of the minimal secure
hardware features on prover devices.

Furthermore, our attestation protocols that defend against physical attacks
(Chapters 6 and 7) rely on additional assumptions. In specific, both protocols
require prover devices to possess a write-protected Real-Time Clock (RTC) that
is loosely synchronized between healthy devices. The RTC is needed to prevent
malware from tampering with the device clock. Note that all existing protocols
that defend against physical attacks [65, 68] rely on this assumption.

We henceforth refer to the execution space where all mentioned hardware
properties for the respective attestation protocol are fulfilled as Trusted Execution
Environment (TEE).

2.4 ADVERSARY MODEL

Software Adversary. We assume an adversary Advs,, who has full control over
the communication medium (Dolev-Yao model [40]). Hence, Advy, is able to
perform network attacks by eavesdropping, modifying, deleting, or synthesizing
messages between devices. Furthermore, Advs,, can perform software attacks, in
which Advy, is able to compromise the software of all devices at will. On devices
with a compromised software, Advs, has full control over the execution state, and
can read from, or write to, any memory. However, Adv, is unable to bypass the
hardware protection, and thus, cannot tamper with code, data, or the execution
state in the TEE. DoS attacks are considered out of scope, since it is impossible to
guarantee availability when Advg, is able to drop all messages.

Physical Adversary. We also consider a stronger adversary Advy,,, who has the
same capabilities as Advg, but can additionally physically attack devices in the
network. After successfully tampering with a device physically, Advy,, has full
control over its clock as well as code and data in its TEE. However, common for
absence detection protocols [32, 33, 68], we rely on the assumption that prover
devices provide some form of physical tamper-resistance. The tamper-resistance
requires Advy, to take a targeted device offline for a noticeable amount of time
during the physical attack, e.g., to decapsulate the device [14, 135]. In general,
physical attacks require not only much time, but also expensive equipment and

2.4 ADVERSARY MODEL

laborious handwork of highly skilled personnel. Depending on the hardware
of provers and the capabilities of Advy,,, we further assume that Advy, is only
able to successfully tamper with a confined number of provers simultaneously
and/or in total. In short, we assume that Advy,, is limited in the following ways:

(1) Mandatory: Advy,, must permanently take a prover device P; offline for at
least the attack time &, to physically compromise P;.

(2) Optional: Advy, is unable to physically compromise more than the concur-
rency factor B prover devices simultaneously.

(3) Optional: Advy,, is unable to physically compromise more than the attack
limit A prover devices in total.

The parameters ¢, B, and A must be adjusted to the physical tamper-resistance
of prover devices and the required security level. Note that the concurrency
factor B and attack limit A are optional limitations for Advy,,, which only facilitate
the detection of physical attacks. In practice, a low f increases the robustness
of our protocol (Chapter 7), whereas a high A enables a verifier to perform
the attestation at arbitrary times, as opposed to periodically within short time
intervals (Chapter 6 and 7). Both limitations can be disabled by setting 8 to co
and A to 0. By contrast, the attack time J, is a mandatory limitation for Advy,.
Thus, if 4, is 0, our attestation protocols are unable to operate.

We acknowledge that non-invasive physical attacks, e.g., cache or power
side-channels, may enable an adversary to bypass secure hardware during the
operation of a device, i.e., without disabling the device. However, our protocols
focus on the detection of invasive and semi-invasive attacks, which is why we
expect that provers implement the various proposed mechanisms to prevent
non-invasive attacks [121]. By contrast, invasive and semi-invasive attacks cannot
be fully prevented by technical measures on the device itself. Performing invasive
and semi-invasive attacks an adversary directly accesses the internal components
of the target device, which requires at least the decapsulation of the device and
potentially also the bypass of hardware tamper-resistance. Therefore, invasive
and semi-invasive attacks require an adversary to take a device offline and
analyze it with specialized laboratory equipment [14, 135].

Security Objectives. The security goals are dependent on the scope of the
particular attestation protocol:

e Attestation protocols that focus on software attacks (Chapter 3, 4, and 5) are
regarded as secure, if Advy, is unable to fake a healthy system state for a
prover that is at the time of its attestation in a compromised software state.

e Attestation protocols that focus on software and physical attacks (Chapter 6
and 7) are regarded as secure, if Advy,, is unable to fake a healthy system state
for a prover that is at the time of its attestation in a compromised software
and/or hardware state.

19

ATTESTATION OF COMMODITY LOW-END EMBEDDED
SYSTEMS

In contrast to mid-range and high-end embedded systems, low-end embedded
systems are particularly optimized towards low cost, small size, and low energy
consumption. For this reason, low-end embedded devices offer only little com-
puting power and few secure hardware features. These circumstances hamper the
realization of secure attestation protocols for low-end embedded systems. In this
chapter, we present ALE, an attestation protocol that is specifically designed for
low-end embedded systems. ALE provides the same (strong) security guarantees
as existing hardware-based attestation protocols while relying on less secure
hardware features. In contrast to existing hardware-based protocols, this enables
ALE to be applicable to a broad range of existing commodity low-end embedded
devices. Furthermore, ALE is lightweight and efficient, which we demonstrate by
evaluating our protocol on an exemplary commodity low-end embedded device.

Remarks. Parts of this chapter have been published in [85, 86, 127].

3.1 MOTIVATION AND CONTRIBUTION

Low-end embedded systems are characterized by their very constrained hard-
ware, low energy consumption, small size, and low costs. Due to these character-
istics, low-end embedded systems are widely deployed in many applications. For
instance, low-end embedded devices are frequently used as basic sensors or ac-
tuators in safety-critical systems, e.g., road vehicles or industrial control systems.
In these applications, malicious low-end embedded devices can cause significant
physical damage, which is why it vital to ensure their security. However, the
same characteristics that make low-end embedded devices so popular, prevent
the implementation of effective security measures. For reasons of cost and space,
low-end embedded devices lack cryptographic accelerators, common TEEs, e.g.,
ARM TrustZone or Intel SGX, or secure coprocessors, such as a TPM. This lack of
secure hardware impedes the realization of secure attestation protocols.
Software-based attestation protocols [27, 98, 129] are independent of secure
hardware and thus are applicable to low-end and legacy embedded systems.
However, they provide questionable security guarantees, as they rely on assump-
tions that are hard to achieve in practice [10, 29]. In contrast, hardware-based
attestation mechanisms provide much stronger security guarantees by relying on
secure hardware that is built-in prover devices. As standardized and commercial
secure hardware components like ARM TrustZone, TPM, Intel TXT, or Intel SGX
are too complex and expensive to be used in low-end embedded systems, new
security architectures, such as SMART [45], SANCUS [109], TrustLite [82], or

21

22

ATTESTATION OF COMMODITY LOW-END EMBEDDED SYSTEMS

TyTan [23] have recently been proposed. Nevertheless, these architectures have
only been implemented as prototypes and their future availability in commodity
low-end embedded devices is uncertain.

Contribution. In this chapter, we present ALE, an attestation protocol for com-
modity low-end embedded systems. ALE combines the advantages of software-
based and hardware-based attestation protocols, as it provides the same (strong)
security guarantees as hardware-based protocols while being applicable to com-
modity low-end embedded devices, like software-based protocols. To detect
compromised software, ALE measures the local software integrity during the
boot process and immediately authenticates these measurements. Thus, a co-
processor or TEE to securely store integrity measurements is no longer required.
This enables ALE to rely on fewer secure hardware properties than previous
protocols. In particular, our protocol only relies on write-protected boot code
and a simple memory protection mechanism. We show that these minimal se-
cure hardware properties are available on many existing low-end embedded
devices. This makes our protocol applicable to a broad range of popular low-end
embedded devices without requiring hardware modifications. Therefore, ALE
can be retrofitted to many currently deployed systems. ALE’s basic protocol
only involves symmetric cryptography, which makes it lightweight and efficient.
We implement our protocol on an exemplary low-end embedded device and
demonstrate its practicality and efficiency.

Outline. In Section 3.2, we describe the secure hardware requirements of our
attestation protocol and show that many existing low-end embedded devices pro-
vide these properties. Section 3.3 presents our attestation protocol. In Section 3.4,
we describe two extensions that further increase the practicality and complete-
ness of our protocol. Section 3.5 provides a proof of concept implementation and
an evaluation of our protocol.

3.2 SECURE HARDWARE REQUIREMENTS

All remote attestation protocols build on two essential operations: During attesta-
tion, prover devices (i) measure their local software integrity, and (ii) authenticate
their software integrity towards a verifier using a device-unique key. An ad-
versary who can tamper with either of both operations is able to break the
security of the respective attestation protocol. For this reason, all software and
hardware that is involved in measuring and authenticating the software integrity
constitutes the Trusted Computing Base (TCB) of attestation protocols.

As in any hardware-based attestation protocol, the TCB of our attestation pro-
tocol comprises secure hardware. In the following, we first specify our required
hardware security properties. Afterwards, we explain their implementation on
existing commodity low-end embedded devices.

3.2 SECURE HARDWARE REQUIREMENTS

3.2.1 Hardware Security Properties

Our attestation protocol demands the following hardware security properties
from each prover device:

1. Immutable Bootloader: A write-protected memory region B that contains
code and data and is immediately executed when the device starts;

2. Secure Storage: A device-dependent unique attestation key ak that is only
accessible to the code in B and does not leak outside B;

3. Uninterruptible Execution: Once code in B gets executed, execution cannot
be interrupted until the control flow intentionally leaves B.

In the next section, we discuss how these properties can be implemented on
commodity low-end embedded devices. We will see that many existing devices
provide hardware features that allow for the implementation of the properties.

3.2.2 Implementation on Commodity Low-End Embedded Systems

In the following, we demonstrate how each of the stated hardware security
properties can be implemented on existing Commercial Off-The-Shelf (COTS)
low-end embedded devices.

1st Property: Immutable Bootloader. Nowadays, it is common for commodity
low-end embedded devices to provide a customizable bootloader that is stored
protected in flash memory. On some devices, the flash memory can be separated
into multiple sections that have dedicated lock bits for read protection, write
protection, and also interrupt prevention [13]. Most commonly, the flash memory
is divided into one bootloader section (BLS) and one application section. If the
device at hand offers this feature, we propose that the BLS represents the memory
region B and lock bits are set in a way that write access to the BLS is denied.
This makes B immutable.

Other devices provide a more fine-grained flash protection, where memory re-
gions of different sizes can be marked as read-only memory (ROM) or potentially
also as execute-only memory (XOM) [141]. If the device at hand offers XOM or
ROM, we propose to protect the boot code, which is immediately executed when
the device starts, with the strongest supported memory protection available
on the device, i.e., XOM if available and ROM otherwise. This memory region
represents the bootloader B. Note that once flash protection is set, it can only
be unset by physically accessing the system. This process typically involves the
erasure of the entire flash memory [13, 141].

2nd Property: Secure Storage. If the particular device offers a dedicated boot-
loader section (BLS) for B, we suggest that the attestation key ak is stored in this
memory section. Next, we propose to configure the lock bits in a way that read

23

24

ATTESTATION OF COMMODITY LOW-END EMBEDDED SYSTEMS

access to B is denied if it is performed by code outside of the separated memory
region [13]. Thus, ak can only be read during the execution of B.

If the particular device does not support such lock bits, we suggest to store
ak in a secure key storage whose access can intentionally be denied until the
next device restart. In this way, code in B can read out ak once during device
start and afterwards deny access to ak. As B3 is immutable and immediately gets
executed when the device starts, an attacker is unable to access ak. A secure key
storage which provides this functionality is, for instance, an SRAM PUE. Previous
works have shown that the SRAM modules present in several low-end embedded
devices can be used as PUF instances, so that cryptographic keys can be derived
from the SRAM start-up values [78, 126]. Note that the start-up values can be
deleted after they have been read out, so keys are only accessible at boot time. A
further possible key storage is memory which provides the functionality to hide
blocks, e.g., EEPROM block hide [141]. Once an EEPROM block is hidden, it is
not accessible until the next restart of the device.

3rd Property: Uninterruptible Execution. If the device at hand provides a ded-
icated bootloader section (BLS) for B, we suggest setting the lock bits of the
bootloader section such that interrupts are denied during the execution of code
in that section. On other devices, we propose to store both the interrupt vector
table (IVT) and a default interrupt handler in write-protected memory (i.e., XOM
or ROM). All interrupts in the IVT are configured to refer to the default inter-
rupt handler. When an interrupt occurs and the default interrupt handler gets
executed, it checks whether the interrupt was triggered during the execution
of code in B. If this is the case, the default interrupt handler denies interrupt
processing. If this is not the case, the interrupt handler redirects execution to
a user-defined interrupt handler which processes the particular interrupt [52].
A further approach is to let the default interrupt handler clean up sensitive
data before control is handed over to the particular user-defined interrupt han-
dler [142]. Both approaches impose no restrictions, since custom interrupts can
still be deployed by modifying the user-defined interrupt handlers.

Summary. Table 3.1 provides an overview of popular low-end embedded devel-
opment devices and shows, for each device, which hardware security properties
can be achieved and how to achieve them. BLB, BOOTRST, PALL, etc. are the
names of particular fuses and lock bits that have to be set to achieve the stated
security. A checkmark or hyphen indicates the availability of a security feature.
The overview illustrates that the required security features are available in many
popular low-end embedded devices. This demonstrates the broad applicability
of our attestation protocol.

3.3 ALE: ATTESTATION OF LOW-END EMBEDDED SYSTEMS

In this section, we present ALE, an attestation protocol for low-end embedded
systems. The protocol consists of two different phases. In the deployment phase

3.3 ALE: ATTESTATION OF LOW-END EMBEDDED SYSTEMS

Immutable Code
Secure Storage

Device Approach

panStamp AVR2 B = BLS; BLBo=1; BLB1=4, BOOTRST=0
TinyDuino B = BLS; BLBo=1; BLB1=4; BOOTRST=0
Arduino UNO B = BLS; BLBo=1; BLB1=4; BOOTRST=0
RFduino Use MPU: Store B in Ro; PALL=0; PRo=0
XinoRF B = BLS; BLBo=1; BLB1=4; BOOTRST=0
Ciseco B = BLS; BLBo=1; BLB1=4; BOOTRST=0
Pinoccio B = BLS; BLBo=1; BLB1=3; BOOTRST=0
Nanode B = BLS; BLBo=1; BLB1=4; BOOTRST=0

Arduino Yun B = BLS; BLBo=1; BLB1=4;, BOOTRST=0
B = BLS; BLBo=1; BLB1=4; BOOTRST=0
B = BLS; BLBo=1; BLB1=4; BOOTRST=0
B = BLS; BLBo=1; BLB1=4; BOOTRST=0
Explained in Section 3.5
(1) B in ROM + EEPROMHIDE

(2) B in ROM + SRAM PUF

Libelium Wasmote
MICA2

Arduino M. 2560
Intel Quark D20ooo
TI Stellaris

NN NN SN NN NN SN SN N N N | Uninterruptible Execution

AN N Y YN U N N N N N N
AN NI Y N N N N N N N N N

Table 3.1: Overview of popular low-end embedded devices and their security features.

(Section 3.3.1) all devices are initialized by the network operator O. Afterwards,
O can repeatedly execute the attestation phase (Section 3.3.2) to verify the software
integrity of a particular device in the network. Finally, we demonstrate the
security of our protocol (Section 3.3.3).

3.3.1 Deployment Phase

In the deployment phase, the network operator O initializes all prover devices in
a trustworthy environment. O deploys each device D; with a unique attestation
key ak; that is stored in their secure storage, which is only accessible to the
protected bootloader B (see Section 3.2). The bootloader B is deployed with the
necessary code to measure the integrity of the installed software and authenticate
the measurements with ak, as described in the next section. In addition, O equips

25

26

ATTESTATION OF COMMODITY LOW-END EMBEDDED SYSTEMS

Network Operator O Low-End Embedded Device D;
................. Step 1: D; starts, whereupon B is executedonD;
r----"~""~"~" T~ "=~ ~" =" =" " - " === === °=-°7-°7 il

' Execute in Protected Bootloader B

| ak; < RetrieveSecret()

i im; < Hash(Firmware)
:I’kl‘ — HMAC(akl, 7’13||imi)
' HideSecret(ak;)

 Execute(Firmware)

' Execute in Mutable Code Section !
07 < HMAC((rk;; n|i) 1

ak},im! < GetRefValues(i) - r

rk; < HMAC (ak}; np||im})

o] < HMAC(rk}; n||i)

ifo; =0/ :
return true

return false

Figure 3.1: Attestation of a low-end embedded device D; by the network operator O.

each device D; with a unique identifier i and a random boot nonce ng, which are
stored in mutable (unprotected) memory, outside of B. The code to interact with
O is also stored outside of B in mutable memory, which significantly reduces the
size of 3. This minimizes our TCB, as shown in Section 3.5. For each initialized
prover device, the operator O stores its identity, attestation key, and known-good
integrity measurement of the respective software.

3.3.2 Attestation Phase

The attestation phase consists of three steps, which are illustrated in Figure 3.1.
In the first step, devices boot and measure their software integrity. In the second
step, the network operator verifies the integrity of devices. The third step can
be executed optionally and allows the operator to update the boot nonce of
devices. Updating the boot nonce enables a recovery from runtime attacks, as we

3.3 ALE: ATTESTATION OF LOW-END EMBEDDED SYSTEMS

explain in Section 3.3.3. All three steps are described in detail in the following
paragraphs.

Step 1. When a device D; starts, it immediately executes its protected bootloader
B. The first operation performed by B is retrieving the secret attestation key ak;
from the respective secure storage. Next, the installed firmware is measured,
which involves computing a hash value over the memory region where the
firmware is stored. The memory regions to be measured are either predefined
in B or are read out from a software certificate (see Section 4.2). The resulting
integrity measurement im; is stored outside of B. Next, D; generates its so-called
response key rk;. To this end, D; computes an Hash-based Message Authentication
Code (HMAC) with its attestation key ak; over the boot nonce 7np and the integrity
measurement im;. Afterwards, D; ensures that no information about ak; are
leaked. As explained in Section 3.2, this may involve erasing certain values
in memory or executing specific instructions to lock ak; against further access.
Finally, the control-flow leaves B, as the measured firmware is executed.

Step 2. In the second step, the network operator O generates an attestation
challenge, which consists of a fresh nonce 7. The attestation challenge is sent to
the device D; that O wants to verify. Receiving the challenge, D; computes its
attestation response, which contains the identifier i of D; as well as an HMAC ¢;
that is computed with rk; over n and i. Afterwards, D; sends O its attestation
response, i.e., its identity i and HMAC o;.

In order to verify the attestation response, O computes the expected (known-
good) HMAC and compares it with the received HMAC ;. To this end, O first
uses the received identifier i to retrieve the known-good attestation key ak; and
integrity measurement im; of D;. Next, O computes the expected response key
rkg and the expected HMAC 0'1-/ , as detailed in Figure 3.1. Finally, O compares the
computed HMAC ¢/ with the received HMAC o;. If both values match, O considers
D; to be in a trustworthy software state. If not, D; is regarded as compromised.
We would like to point out that the resulting HMAC ¢; of D; can also be useful
for purposes other than attestation. For instance, D; can additionally compute
the HMAC 0; over particular data to be authenticated, which is then send to O.
This enables O to verify whether received data indeed originates from D;.

Depending on the use case, O may repeat step 2 at later stages, continue with
step 3, or instruct D; to restart and execute step 1 again.

Step 3. In certain use cases, the network operator O may additionally execute
step 3 to update the boot nonce of a particular prover device D;. Performing
step 3, O sends D; an update message, which contains the nonce n generated in
step 2. Afterwards, both O and D; overwrite the boot nonce ng with n. Updating
np allows recovering from attacks in which Advs, compromised a device D; at
runtime and obtained its response key rk;. This is because a new np causes rk; to
change in the next attestation phase. Thus, Advy, is unable to use the obtained
rk; to forge a valid system state for D; in subsequent runs of the attestation (see
Section 3.3.3). Note that ng may also be updated as part of the attestation request

27

28

ATTESTATION OF COMMODITY LOW-END EMBEDDED SYSTEMS

in step 2, so that O need not send a dedicated update message. We refer to our
automotive attestation use case in Section 4.1 for details on updating np in step 2.

3.3.3 Security Analysis

In the following, we analyze the security of ALE against the software adversary
Advg, (Section 2.4). We show that our protocol is able to achieve the same
security guarantees as all hardware-based load-time attestation protocols, which
includes protocols based on the widely-deployed TPM. To this end, we analyze
the capabilities of Advy, to perform network attacks, load-time software attacks,
and runtime software attacks. Recall that we consider our attestation protocol as
secure, if Advy, is unable to pass the attestation with a compromised device.

Network Attacks. By performing network attacks, Advs, is unable to obtain the
response key rk of prover devices, as rk never leaves devices. However, without
knowledge of rk, Advy, is unable to bypass the challenge-response protocol that
is executed in step 2. To break the challenge-response protocol, Advs, would
need to generate an HMAC 04 that equals ¢ = HMAC(rk;; n||i) with a random
nonce n and an arbitrary identifier i. Under the assumption that the HMAC is
cryptographically secure, Advy, is unable to forge such a o4 without knowing
rk. Replaying recorded HMACs from previous attestation phases or other prover
devices is also unpromising for Advy,. This is because the network operator O
always chooses a fresh nonce n as a challenge, which results in a unique HMAC
o that is valid in each run of the challenge-response protocol. In addition, each
prover device D; holds a device-dependent attestation key ak;, such that given a
challenge 1, the response HMAC of different devices is never identical. Finally, by
dropping or manipulating challenge messages and response messages, Advs;, can
only perform DoS attacks, but is unable to subvert the security of our attestation
protocol. Nevertheless, in practice, it may be useful for the network operator O
to authenticate messages, in order to prevent Advy, from impersonating O. For
instance, this would prevent Advs, from performing simple DoS attacks, in which
Advg, distributes bogus boot nonces to devices in step 3.

Load-Time Software Attacks. Advy, may compromise the software of a prover
device before it is loaded and thus measured. To this end, Advs, may have physi-
cal access to the prover device, which allows Advy, to reprogram the software.
Executing a compromised software gives Advy, access to all readable and writable
memory as well as complete control over the execution environment. However,
Advg, cannot bypass the secure hardware, meaning that Advs, is unable to violate
any of the three hardware security properties (Section 3.2.1). In particular, Advs,
is unable to prevent the execution of the protected bootloader B at the start of
the prover device (1st property). Thus, Advs, cannot interfere with the execution
of step 1 of our attestation protocol.

In step 1, the installed software is measured. In addition, the response key rk
is derived from the measurements and the secret attestation key ak. On devices

3.4 EXTENSIONS FOR REAL-WORLD USE

with a compromised software, the integrity measurements im deviate from its
known-good integrity measurements im’. Consequently, the derived rk does not
match the proper rk’ that O uses in step 2 to verify the attestation response.
Advg, is unable to compute the proper rk, since Advs, lacks the attestation key
ak. This is because ak is only accessible to the bootloader code (2nd property)
whose execution is uninterruptible (3rd property). Note that ak is retrieved at
the start of B and hidden before the execution leaves B. Hence, the proper rk
is only generated if B is executed from the beginning, which prevents Advs,
from obtaining rk by generating a valid im in memory and then jumping to the
computation of rk in the middle of B. As a result, Advy, is unable to obtain ak
and compute rk, or make B leak rk. Yet, without knowledge of rk, Advs, is unable
to bypass our attestation protocol, as explained in the previous paragraph.

Runtime Software Attacks. Advs, may also compromise the software of a prover
device at runtime, e.g., by exploiting a vulnerability that allows arbitrary code
execution. Since runtime attacks are performed after step 1, where the software
is measured, they enable Advy, to access the proper response key rk in memory.
With the proper rk, Advy, is able to compute valid attestation responses when
the network operator O performs step 2 with the compromised device. In this
way, Advy, can pass the attestation with a compromised device, i.e., bypass the
security of our attestation protocol. Nevertheless, we would like to point out that
all load-time attestation protocols, including the TPM, are vulnerable to runtime
attacks. Furthermore, even dynamic attestation protocols are unable to detect
runtime attacks in case they are performed after the software is measured.

To recover from runtime attacks, O either needs to install a new software
on the prover device or execute step 3 of our attestation protocol. Afterwards,
the prover device needs to reboot. Installing a new software leads to a new
integrity measurement im and executing step 3 updates the boot nonce np. Since
the response key rk is dependent on both im and np, both measures cause rk to
change in the subsequent execution of step 1. Thus, a new rk is valid in step 2,
so that the response key which Advy, obtained in the runtime attack is of no
value. Hence, Advs, would need to perform a runtime attack again to bypass
the security of our protocol. Yet, in the meantime, a software update could have
fixed the original vulnerability that allowed Advy, to perform runtime attacks.

3.4 EXTENSIONS FOR REAL-WORLD USE

In the following, we discuss extensions to ALE that are valuable for real-world
applications. The first extension provides support for provisioning an attestation
key and requires a slight extension of our hardware requirements. The second
extension enables untrusted third parties to act as a verifier and perform the
attestation of prover devices.

Attestation Key Provisioning. In cases where the attestation key ak of a prover
device may have been potentially compromised, it is desirable to provision a

29

30 ATTESTATION OF COMMODITY LOW-END EMBEDDED SYSTEMS

3rd Party Verifier (V) Prover Device (D;)
n

n «— Random()
VerSig(rky,p,; 0; ;1)

\ 4

o; Firmware

(rkpub[> rkprv,-)« GenKey(rki)

A

VerSig(pko ; cert; ; rhyu;) | Pko 0; < GenSig(rk,, ; n)
request
verification ke .
! ub; » Cert
keys for D; 4 T im;, rk;
% Network Operator (0) --- ;V-or-z-;x-te-n-d;c; - Protected Bootloader (B)
rk; — HMAC(ak; ; np || im;) < Remote Attestation | jy;, — Hash(Firmware)
(Phyuap, - Thepr,) < GenKey(rk;) rk; — HMAC(ak; ; ng|| im;)

cert; < GenSig(sko; rkpub;)

Secure Storage

sko | ak; | ng | im;

Figure 3.2: Illustration of third-party verification. The third-party V first obtains the
public verification key rk,,;, from O and then verifies the prover device D;.

new ak to the prover device. Examples include a user who takes ownership of
a new or second-hand device, or a corrupted verifier who potentially leaked
ak. To provision a new ak, we follow the TCG concept and propose that each
prover device D; is equipped with a device-unique endorsement key ek; during
its production. The endorsement key ek; is a symmetric key that is only shared
between the device D; and the manufacturer. This allows the manufacturer to
authorize key provisioning requests for ak from the network operator O to D;.
At the same time, O can ensure the authenticity of the provisioning target D;.

Provisioning ak; based on ek; can be realized by implementing a standard key
exchange or key transport protocol in the protected bootloader B. Since a key
exchange based on a shared secret is a well-known technique in cryptography, we
omit the description of a detailed instantiation. Nevertheless, we like to explain
the slightly extended hardware requirement for supporting the key provisioning
of ak;. In particular, the provisioning requires the secure storage for ak; to be
writable by the protected bootloader B, but protected against read and write
access by any other code outside B. In addition, ek; must be protected against
read access by code outside B, which resembles the previously defined exclusive
access for ak; (see Section 3.2.1).

Third-Party Verification. In many use cases, low-end embedded devices operate
not only with a single trusted entity, but establish a variety of interactions with
user platforms, infrastructure components, and cloud backends. However, as
the attestation key ak is a critical asset during attestation, sharing ak with all
possible verifiers would impose a security risk. To address this issue, we extend
our protocol to enable potentially untrusted entities to act as verifiers.

For this purpose, we turn the original network operator O into a Certification
Authority (C.A). The idea is that a prover device D; no longer uses its response

3.5 PROOF OF CONCEPT

key rk; to compute attestation responses. Instead, D; derives a signature key
pair based on the pseudo-random input of rk;, whose private part is then used
to compute the attestation response. In order that a third-party verifier V can
perform the attestation with D;, only the public signature key computed from rk;
must be shared with V. This public signature key is also certified by O, which
facilitates its secure distribution, e.g., in case of key updates. Thus, only ak; needs
to be stored in a secure environment at O, whereas the key to verify attestation
response is public. The detailed protocol is illustrated in Figure 3.2 and described
in the following.

To enable a third-party verification, we propose to modify step 2 of our
attestation protocol. After a prover device D; executed step 1, as described
in Section 3.3.2, it uses its response key rk; to generate a signature key pair
(tkpuv,, Tkpro,) <— GenKey(rk;). The signature key pair is generated deterministi-
cally, for example, using ECC key generation with rk; as a seed value. As the
network operator O knows D;’s attestation key ak;, integrity measurement im;,
and boot nonce np, O is able to reproduce rk; and thus also rkpubl_ and rkpyy,. This
enables O to issue a certificate cert; that contains a signature from O over rkpubl_
and thus certifies the authenticity of rkpyp .

A third party verifier V initially queries the network operator for D;’s public
response key 7k, and the corresponding certificate cert;. Using the certificate, V
then verifies the authenticity of rk;,; . Upon a successful verification, V is ready
to verify the software integrity of D;. To this end, V challenges D; with a fresh
nonce 1. Subsequently, D; generates a signature 0; of n with rky,, by computing
0; < GenSig(rkpro; 1). After D; sends 0; to V, V uses rky,y, to verify o;. If the
verification succeeds, i.e., VerSig(rkpubi; 0;; n) = true, V assumes that D; is in
a trustworthy software state, otherwise not. Since only public information are
required to verify the software integrity of D;, V can be potentially untrusted.
Note that each time the response key rk; of D; changes, e.g., as D; is supplied
with a new software or a new boot nonce, the public response key rk,,; also
changes, so that V needs to obtain and verify the new rk,,; from O.

3.5 PROOF OF CONCEPT

As a target platform for the implementation of ALE, we selected the Intel
Quark D20oo. Our implementation comprises measuring the installed firmware,
deriving the response key rk, and managing the hardware protection for ak and
ek. We show that the implementation of our protocol is very efficient, with a
code and data footprint in the range of 4 kB, and a boot delay of less than 200 ms.
We refer to our attestation applications (Chapter 4) for an evaluation of ALE
on ARM-based platforms as well as an evaluation that also involves network
communication and regards the verifier’s side.

31

32 ATTESTATION OF COMMODITY LOW-END EMBEDDED SYSTEMS

Size (Bytes) | Runtime (ms)

Component -0s -01 -0s -01

Base ROM ‘1955 2115 6.11 5.93

Protected Bootloader B
Base Logic 168 193 | <0.01 <0.01
HMAC-SHA-256 (32B) | 1819 2061 1.54 1.44
HMAC-SHA-256 (32kB) | 1819 2061 | 148.23 145.37
ak Protection 295 337 0.02 0.02
ek Protection 378 448 | <0.01 <0.01

Table 3.2: Implementation overhead for the Intel D20oo (x86). The memory footprint in
bytes is shown left and the runtime overhead in milliseconds is shown right,
both with compiler optimizations for size (-0s) and runtime (-01).

3.5.1 Implementation

The Intel Quark microcontroller D2ooo employs an x86 Quark CPU that operates
at 32MHz, 8 kB SRAM, 32kB main flash memory, as well as two regions of
One-Time-Programmable (OTP) flash memory (4 kB and 4 kB). The Intel D20ooo
is tailored towards scenarios where low energy consumption is required. We
use the Intel Quark Microcontroller Software Interface (QMSI) [100] and Zephyr
RTOS [101] as a firmware stack. In the following, we describe the implementation
of our required hardware security properties (Section 3.2.1) on the D20ooo.

Immutable and Uninterruptible Bootloader (1st and 3rd property). The D20oo
boots directly from an 8 kB OTP flash partition. A hardware-enforced OTP lock
permanently disables write accesses to the OTP partition of the flash memory.
It further deactivates the mass erase capability of the OPT partition and at the
same time disables JTAG debug access. Locking the OTP partition is done by
setting bit ‘0" at offset 0x0 of the flash memory region to ‘0’.

Secure Storage (2nd property). We store ak in main flash to support updates via
key provisioning. One of the D20oo Flash Protection Regions (FPR) is set up and
locked by the bootloader B to prevent read access by later firmware stages. In
order to store the long-term key ek, we use the OTP flash region of the D2ooo.
The 8 kB OTP supports read-locking of the upper and lower 4 kB regions of OTP
flash. As this read protection also inhibits execute access, we store ek at the upper
end of the OTP memory and set the read-lock just at the very end of bootloader
execution. The read-lock for the lower and upper OTP region is activated by
programming the bits ROM_RD_DIS_L and ROM_RD_DIS_U of the CTRL register.

3.6 SUMMARY

3.5.2 Performance Evaluation

In the following, we evaluate the memory and runtime overhead of our attes-
tation protocol. We present measurements for the standard software stack and
the protected bootloader 5. Numbers for B are further separated with respect
to the base logic (data structures, memory management), cryptographic opera-
tions, and key protection logic. For memory footprint and runtime, we provide
measurements for code that was optimized for size (-0s) and code that was
optimized for runtime (-01) by the compiler.

Memory. To measure the memory footprint, we counted all static code segments
(.text) and read-only data segments (. rodata) of the firmware. Table 3.2 lists
results for code that is optimized towards size (-0s) or runtime (-01). On the
Intel D20ooo, the protected bootloader B consumes 2.6 kB on top of the QMSI
stock ROM of 2kB. This fits well within the total 8 kB available for bootloader
code. The application flash is left for potential application code, except for a
small part that is reserved for ak storage.

Runtime. The main runtime overhead of our attestation protocol is incurred
by the cryptographic operations, as shown on the right side of Table 3.2. More
specifically, the main overhead is caused by the computation of the HMAC, whose
precise runtime is dependent on its input size. Runtime measurements of the
HMAC are given for a small memory block of 32 B to compute the response key,
and a large memory region of 32kB to reflect the software integrity measure-
ment. The D20ooo is fast in computing authenticated measurements over various
memory regions due to its quick flash access. In particular, the D2ooo requires
only 145 ms for hashing 32 kB. By contrast, the key protection entails a negligible
runtime, as it takes only 0.03ms in the worst-case. As a reference, booting the
unmodified base ROM, without our attestation protocol, takes on average 6 ms.

3.6 SUMMARY

In this chapter, we presented ALE, an attestation protocol that is particularly
suited for low-end embedded systems. Existing hardware-based attestation pro-
tocols typically rely on a full-featured TEE to measure the software integrity and
securely store the measurements. ALE relaxes these requirements by (i) enforcing
that integrity measurements are performed at device start before malicious code
can be executed, and (ii) immediately authenticating all measurements. This way,
our attestation protocol is able to provide the same (high) security guarantees as
other hardware-based protocols while relying on less secure hardware. In partic-
ular, this makes ALE applicable to a broad range of existing low-end embedded
devices. Additionally, our basic protocol only relies on symmetric cryptography,
which enables a low memory footprint and a low runtime overhead. In detail,
measurements on an Intel Quark D2ooo with 32 MHz showed that our protocol
entails a runtime overhead of 200 ms and a memory footprint of 4 kB.

33

34 ATTESTATION OF COMMODITY LOW-END EMBEDDED SYSTEMS

ALE’s underlying mechanism for a secure attestation of low-end embedded
devices can be used in other attestation protocols proposed in this thesis. In the
next chapter, ALE is applied in two particular use cases (Chapter 4).

ATTESTATION APPLICATIONS WITH EMBEDDED SYSTEMS

Remote attestation is a versatile security service, which can be useful in many
applications. This chapter presents two specific applications for the attestation
of embedded systems. First, we apply attestation in the automotive context
(Section 4.1). More specifically, we present a solution that uses attestation to
ensure the secure operation of embedded systems in road vehicles. Thus, our
solution prevents compromised embedded systems from jeopardizing the safety
of vehicles. In the second application (Section 4.2), we combine remote attestation
with existing code update techniques to achieve verifiable code updates, which
enforce the proper installation of software as well as the removal of malware. This
way, trust can be reestablished in potentially compromised devices, e.g., devices
with a (previously) vulnerable software that may have been compromised by an
adversary. Our solutions for both applications build on our attestation protocol
for low-end embedded systems (Chapter 3), which demonstrates the protocol’s
applicability in practice.

Remarks. Parts of this chapter have been published in [85, 86].

4.1 USE CASE 1: ELECTRONIC CONTROL UNITS IN ROAD VEHICLES
4.1.1 Motivation and Contribution

In the past decades, vehicles converted from mostly mechanical systems to
complex electronic systems with dozens of interconnected embedded computers,
called Electronic Control Units (ECUs). Nowadays, ECUs are accessible through
various communication protocols and interfaces, of which some are even wireless,
e.g., Bluetooth, WiFi, and LTE. This evolution drastically increased the attack
surface of vehicles and rendered established techniques to ensure the safety of
cars, like redundancy, reliability, and determinism, insufficient. In fact, recent
attacks [107] and security evaluations [30, 50] have demonstrated that ECUs can
be manipulated to perform malicious actions, which can lead to life-threatening
accidents. Consequently, the safety of modern vehicles can only be guaranteed
by establishing an appropriate level of security.

To secure vehicles, much effort has gone into the development [112, 119]
and standardization [2] of authentication protocols. These protocols protect
against network attacks, in which the adversary attempts to forge or manipulate
messages in the automotive network. Although authentication protocols are
essential for security, they cannot protect against all attacks. In particular, they are
unable to defend against software attacks, in which the adversary compromises
the software of ECUs to perform malicious actions. For instance, the firmware

35

36

ATTESTATION APPLICATIONS WITH EMBEDDED SYSTEMS

ID ECU Valid ECU O

1 LiDAR Sensor v’

2 ADAS Sensor Fusion Vv Sensor |
3 Brake Pedal Sensor ; @ Fusion ECU [L*

4 Brake Actuator
= Vehicle in unsafe state |
- Lock power supply)

(A
1

M Ethernet r_ - | ’J

Brake Pedal Brake Actu- ™
Sensor ECU T/ ator ECU @ w ’

Figure 4.1: Illustration of our system architecture in an electric car.

of brake actuators may be manipulated to refuse applying the actual brakes (cf.
Figure 4.1). As already explained in previous chapters, remote attestation is a
key technology to defend against such software attacks.

The potential of remote attestation to protect vehicles against software attacks
has already been recognized in existing works [97, 113, 145]. However, exist-
ing solutions suffer from limited applicability, as they either require ECUs to
implement a Trusted Platform Module (TPM) [97, 113] or the SANCUS research
architecture [145]. Yet, ECUs are not equipped with TPMs and SANCUS is commer-
cially unavailable. Furthermore, existing works either lack an implementation
and evaluation of the attestation [97, 145], or only provide an evaluation on
personal computers, but not on embedded systems (i.e., actual ECUs) [113].

Contribution. In this section, we present a scheme that recurrently ensures the
safe and secure operation of ECUs in road vehicles. In our scheme, a trusted
master ECU verifies the software integrity of all safety-critical ECUs in the vehicle,
each time drivers or passengers unlock the vehicle and open the door(s). Only
after all safety-critical ECUs are successfully verified, the master ECU mechanically
allows the vehicle to move, as illustrated in Figure 4.1. This way, compromised
ECUs are prevented from jeopardizing the safety of the vehicle.

To address the heterogeneous character of ECUs in road vehicles, our scheme
comprises two attestation techniques. The first technique is suited for simple ECUs
that possess only a small and modest system architecture, such as basic sensors
and actuators. It is based on our attestation protocol for low-end embedded
devices (Chapter 3). The second technique targets advanced ECUs that feature
ARM application processors, and hence are suited for more complex tasks,
e.g., sensor fusion. It makes use of the ARM TrustZone technology to securely
measure installed software and report the measurements. Both techniques are
applicable to a broad range of existing commodity ECUs that are deployed in
road vehicles.

4.1 USE CASE 1: ELECTRONIC CONTROL UNITS IN ROAD VEHICLES

We implement our scheme on commodity devices, which we connect in an
automotive CAN and Ethernet network. Measurements conducted in our setup
demonstrate that 100 ECUs can be verified in less than 1.4 seconds. Note that
typical vehicles contain 70-100 ECUs in total, so that the amount of safety-critical
ECUs can be expected to be less than 100. Based on our measurement results,
we argue that drivers and passengers are unable to notice any overhead to the
startup time of vehicles.

Outline. This section is organized as follows. First, we present our attestation
scheme (Section 4.1.2). Next, we evaluate our scheme (Section 4.1.3). Finally, we
conclude (Section 4.1.4).

4.1.2 Attestation Scheme for Road Vehicles

We first describe the basic functioning of our attestation scheme and then explain
its technical implementation details on simple and advanced ECUs.

Overview

The architecture of our scheme is analogous to ALE, our protocol for low-
end embedded devices (Chapter 3), except for two minor changes: The vehicle
manufacturer takes over the role of the network operator O in the deployment
phase, and the master ECU takes over the role of O in the attestation phase.

Accordingly, the center of our attestation scheme constitutes the master ECU.
At each time the vehicle is unlocked and then opened, the master verifies the
software integrity of a predefined set of safety-critical ECUs by executing our
proposed attestation protocol. The set of safety-critical ECUs is fixed at the roll-out
of the vehicle by the manufacturer, but can be changed later on, e.g., in case ECUs
need to be replaced. The manufacturer deploys each safety-critical ECU with two
different nonces, ng and 1, a unique identifier id, and a unique attestation key
ak that is only known to the ECU and the master. Furthermore, the master and
all safety-critical ECUs are supplied with the protocol code and data, as detailed
in Section 4.1.2. The protocol is illustrated in Figure 4.2 and described in the
following. The attestation takes place in two steps that are sequentially executed
when the vehicle is unlocked and opened. Note that compared with ALE, we
merged step 2 and 3, which decreased the number of steps by one.

Step (1). All safety-critical ECUs boot and measure their local software integrity.
To this end, ECUs compute a hash value over their installed software and store
it in im, the integrity measurement variable. Afterwards, each ECU derives a so-
called response key rk. ECUs generate rk by computing an Hash-based Message
Authentication Code (HMAC) over the boot nonce np and the measurements
im with the attestation key ak. In step (2), rk is used to answer the attestation
challenge from the master. If an ECU is in a compromised software state, im
differs from the ECU’s known good integrity measurement, so that rk does not

37

38

ATTESTATION APPLICATIONS WITH EMBEDDED SYSTEMS

s N\ 'd N\ 'd Y
Simple ECU Master ECU Advanced ECU
(2.2) Receive Nonce n (2.1) Send Nonce n (2.2) Receive Nonce
(@) « HMAC(rk; n || id) > n < Random() > «- HMAC(rk; n || id)
e LA (2.3) Verify each ECU 9 o.e @)
end Response ak', im' « RefValues(id) Send Response (1.2) Store Measurements
k' HMAC(ak’ ng|| im’) (AppD) @ < imyllim,||ims||...
if o !'= HMAC(rk'; n || id):
(1) Measure Firmware return false ’ OP-TEE + TA
@kHash(Firmware) return true (1.2) Measure SW
Derive Response Key (2.4)ng < n im;«<Hash(App1) (1.3) Derive Response Key

@) ~HMAC(ak; n, || im) im;Hash(App2) @) « HMAC(ak; n, || im)

L A,

Execute Firmware

" Secure World
‘j‘ Linux + IMA
Boot Code 'm (1.1) Secure Boot Boot Code
Database with Linux + OP-TEE Read-only Secure
Read-only Memory | Secure Storage L Reference Values) L Normal World Memory Storage |

Figure 4.2: Attestation of simple and advanced ECUs by the master ECU. Code and data
that is protected by secure hardware is shown in gray.

match the ECU’s expected response key. In step (2), this is eventually detected by
the master ECU when verifying the attestation response.

For a secure attestation, it is crucial that an adversary Adv, is unable to obtain
access to the attestation key ak of ECUs, and cannot tamper with the computation
of im and rk. The details to ensure this depend on the ECU type and are subject
to the following subsection (Section 4.1.2).

Step (2). The master ECU generates a random nonce n and broadcasts it to all
safety-critical ECUs. The nonce n functions as a challenge and prevents Adv,
from performing replay attacks with recorded attestation responses.

Upon the reception of n, ECUs overwrite ng with n. Since rk is dependent on np,
this causes rk to change in each attestation run. As discussed in Chapter 3, this
enables our scheme to recover from runtime attacks, in which Advsy, compromises
the software of ECUs at runtime, i.e., after step (1). Next, ECUs generate their
attestation response, which consists of two parts: (i) the identity id of the ECU,
and (ii) an HMAC ¢ that is computed over n and id with the response key rk from
step (1). Finally, ECUs send their attestation response, i.e., id and o, to the master
ECU.

The master ECU receives all responses and verifies them as follows. For each
safety-critical ECU, the master stores the known good integrity measurement in’
as well as the secret attestation key ak’. Based on the id contained in a received
response, the master retrieves the known good integrity measurement im’ and
the attestation key ak’ of an ECU. Using ak’ and im’ as well as the previous nonce
np, the master then computes the expected response key rk’. Afterwards, the
master generates an HMAC over 7 and id with the computed rk’, and compares
it with ¢ from the attestation response. If both values match, the attestation
response of the particular ECU is considered valid.

Only if all safety-critical ECUs replied with a valid response, the master ECU
regards the vehicle to be in a safe state. Only then, the master enables the vehicle
to move by releasing the lock for the ignition switch and/or power supply. Hence,

4.1 USE CASE 1: ELECTRONIC CONTROL UNITS IN ROAD VEHICLES

compromised ECUs can only prevent the vehicle from moving, but are unable to
jeopardize its safety.

Technical Details

Security Requirements. For a secure attestation, it is crucial that an adversary
Advg, (i) is unable to access ak, and (ii) cannot manipulate the computation of
the software integrity measurements im and the response key rk. If (i) and (ii)
are ensured, Advs, cannot compute rk. In addition, rk will reflect the software
integrity of the ECU. This means that rk only matches the expected response key
rk’, which is used by the master to verify the attestation response, in case the
respective ECU is in a trustworthy software state. Since Advg, can only bypass our
attestation scheme by violating (i) or (ii), all hardware and software that ensures
(i) and (ii) is our Trusted Computing Base (TCB).

More specifically, our TCB software consists of all code that is executed in
step (1), in which ak is accessed and im and rk are computed. Common for
hardware-based attestation schemes, we require the TCB software to be supported
by secure hardware that must enable the implementation of the following well-
known properties [51] (cf. Section 3.2.1): (i) TCB code has exclusive access to ak,
(ii) no leaks of ak, (iii) immutability of the TCB code, (iv) uninterruptibility of
the TCB code, and (v) controlled invocation of the TCB code. In the following, we
discuss the implementation of the TCB code and the secure hardware properties
on simple and advanced ECUs.

Implementation on Simple ECUs. Simple ECUs implement ALE, our proposed
attestation protocol for low-end embedded devices (Chapter 3), to realize the
security requirements. Accordingly, simple ECUs are deployed with a protected
bootloader B that is stored in Read-Only Memory (ROM) and contains the TCB
code, i.e., the code to execute step (1). The bootloader code is immediately
executed when the device starts and makes use of a secure storage to access
ak. The secure storage can be implemented, for instance, based on a simple
Memory Protection Unit (MPU) [71], an emulated MPU [44], an SRAM PUF [127],
or EEPROM that can be hidden [127].

In practice, simple ECUs frequently provide the required secure hardware prop-
erties, as they are based on microcontrollers that have shown to exhibit those
properties [44, 71, 85, 127]. Furthermore, since several years, all major manufac-
turers offer ECUs" that fulfill the HIS-SHE [46] and /or EVITA [148] standard. Both
standards provide a common specification for secure hardware in road vehicles.
They specify that ECUs must offer hardware support for immutable and uninter-
ruptible code to implement the secure boot functionality [9]. Recent work [44] has
shown that based on a secure boot, a secure storage can be emulated. Therefore,
all ECUs that implement the HIS-SHE and EVITA standard also implicitly fulfill
the secure hardware requirements to implement ALE (Chapter 3). Note that

E.g., AURIX from Infineon; MPC564xB/C, MPC5746M, MPC574xB-C-G from NXP; SPC564B/EC,
SPC56ECx from ST; RH850/P1x-C from Renesas.

39

40

ATTESTATION APPLICATIONS WITH EMBEDDED SYSTEMS

actual ECUs often offer a real MPU, whose use we prefer over an emulated MPU
(e.g., all ECUs mentioned in footnote! on the previous page provide an MPU).

Implementation on Advanced ECUs. Advanced ECUs utilize the same measures
as simple ECUs to implement the necessary properties. Hence, they also store their
boot code and boot data in ROM. Yet, to achieve increased functionality, we require
advanced ECUs to also feature the ARM TrustZone technology [6], which offers a
privileged second execution environment, called secure world. The secure world
is isolated by hardware from the normal world, in which the standard Operating
System (0S) and applications are running. Since the ARM Cortex-A15 from 2010,
all ARM application processors (Cortex-A) feature the TrustZone technology.
Moreover, the new ARMv8-M architecture brings TrustZone to microcontrollers,
namely Cortex-M23/M33/M35P processors. Additionally, we require the secure
storage of ak to be only accessible from the secure world, which is a common
requirement for TrustZone-based security services [49, 120]. To implement the
secure storage, manufacturers offer different solutions, such as hardware fuses,
TrustZone aware memory controllers, and/or IOMMU [49].

The additional secure hardware features are necessary because advanced
ECUs must rely on a different attestation technique than simple ECUs due to
their software complexity. Nowadays, a full-featured OS contains thousands of
constantly changing files. Predefining which memory regions must be measured
to detect malware, as required for simple ECUs, would hence be an impossible
task on advanced ECUs. Therefore, we instead present a flexible technique, where
any executable code is measured on demand at load-time, before it is executed.
Using the additional security features of advanced ECUs, our technique ensures
that the measurement code is unmodified, and executed potentially malicious
software is unable to tamper with already performed measurements.

More precisely, advanced ECUs are deployed with a bootloader that performs
a secure boot [9] of two software systems: (i) a Linux-based OS running in the
normal world, and (ii) a software called OP-TEE [99] running in the TrustZone
secure world (see Figure 4.2). The secure boot technology ensures that the
particular software comes from a trusted party, like the manufacturer, as opposed
to an adversary. For this purpose, the software is measured and the measurement
is compared with a reference measurement from a stored certificate. In case
actual and reference measurement differ or the signature verification of the
certificate fails, the software is not executed.

All (automotive) applications running on the advanced ECU are managed by
the Linux-based OS, which is deployed with an enabled Integrity Measurement
Architecture (IMA) [123]. IMA is part of recent Linux kernels and offers the
capability to measure binary files before their execution, including libraries and
configuration files. Each measurement is stored in the IMA measurement list
and contains, among others, the filename, filepath, and hash value computed
over the file.

The second securely booted software, OP-TEE, manages all applications that
are running in the TrustZone secure world. In particular, a special Trusted

4.1 USE CASE 1: ELECTRONIC CONTROL UNITS IN ROAD VEHICLES

Application (TA) is deployed in the secure world of advanced ECUs. The TA
provides an API that enables the IMA to pass performed measurements to
the TA. Passed measurements are concatenated in im (im = imq||imy||...) and
stored protected in the secure world. In addition, the TA offers a second API
to compute the response key rk. For this purpose, the TA takes a nonce ng and
returns an HMAC rk that is computed with the attestation key ak over np and
the concatenated measurements im. Note that the computation of rk can also
take place on demand in step (2). This is possible, as the computation is handled
in the secure world, which prevents potentially malicious code running in the
normal world from tampering with the computation.

4.1.3 Evaluation

In the following, we first describe our implementation setup. Afterwards, we
show and evaluate our measurements.

Implementation Setup

We selected two different hardware boards to represent simple and advanced
ECUs, and connected them in a CAN bus and via Ethernet. As a target platform
for simple ECUs, we used 5 Olimex ESP32-EVB development boards, which
feature 4 MB flash memory, a 240 MHz dualcore 32-bit microprocessor, 100
MBit Ethernet, and a CAN communication module. To implement the required
security properties (Section 3.2.1), we locked the bootloader of each ESP32-EVB
with the “one-time flash” option, such that it cannot be modified. Furthermore,
our deployed bootloader configures the MPU to enable only the bootloader code
access to the attestation key ak.

For advanced ECUs and the master ECU, we employed 6 Raspberry Pi 3
Model B+, which feature 1 GB RAM, a 1.4 GHz quadcore ARM Cortex-As53,
and Gigabit Ethernet. In addition, we extended each RPI3B+ with a SK Pang
PiCAN2 module to enable CAN communication. Unfortunately, we were unable
to implement all required security properties on the RPI3B+ (Section 4.1.2), as
the RPI3B+ insufficiently protects TrustZone secure world memory and lacks a
secure storage. We further acknowledge that our selected hardware lacks certain
safety features that can be found in typical automotive hardware, such as a
lockstep mode, ECC memory, and a large operating temperature range. However,
the implementation of a TrustZone-aware memory controller, secure storage, and
automotive safety features only entail a negligible runtime overhead and thus
have an insignificant effect on our performance measurements.

Runtime Measurements

Single-Device Runtime. We investigated the runtime overhead to verify a single
device. Table 4.1 outlines our averaged runtime measurements for the main

41

42

ATTESTATION APPLICATIONS WITH EMBEDDED SYSTEMS

Operation ESP32-EVB RPI3B+
Secure Boot Overhead 587.38 ms 508.29 ms
SHA-256 (32 B Flash) 0.04 MS 0.06 ms
SHA-256 (512 kB Flash) 126.71 ms 67.30 ms
SHA-256 (2 MB Flash) - 281.65 ms
HMAC-SHA-256 (32 B RAM) 0.10 MS 0.08 ms
HMAC-SHA-256 (64 B RAM) 0.12 MS 0.09 MS
HMAC-SHA-256 (1kB RAM) 0.37 ms 0.32 ms
Ethernet Round Trip Time 0.75 ms 0.44 MS
Ethernet Throughput 49.08 MBit/s 95.70 MBit/s
CAN Round Trip Time 0.17 mMS 0.85 ms
CAN Throughput 1.27 MBit/s 1.22 MBit/s

Table 4.1: Averaged measurements on the ESP32-EVB and RPI3B+.

building blocks of our attestation scheme on the ESP32-EVB and the RPI3B+. As
shown, the main overhead on both devices comes from the secure boot, which
ensures the immutability and uninterruptability of the boot code. The secure boot
takes with 587 ms on ESP32-EVB and 508 ms on RPI3B+ much more time than
other operations, as it involves multiple computationally expensive signature
verifications. Note that on other devices, a secure boot may not be required to
implement the secure hardware properties (Section 4.1.2).

Further overhead is imposed by cryptographic operations, which we imple-
mented with the mbed TLS library. During attestation, both devices compute a
SHA-256 hash value over all software to be executed. Whereas the ESP32-EVB
hashes a 512 kB firmware binary, which takes 127 ms, the RPI3B+ measures 29
tiles that sum up to a total of 2.5 MB, which takes 326 ms. Moreover, both devices
compute two HMACs, which consumes 0.24 ms runtime on the ESP32-EVB and
0.41 ms on the RPI3B+. The RPI3B+ requires more time than the ESP32-EVB be-
cause it computes an HMAC over 29 software integrity measurements, as opposed
to a single HMAC over the entire firmware binary. Furthermore, the master ECU,
an RPI3B+, requires 0.18 ms to recompute the HMACs and verify the attestation
response of an ESP32-EVB, and 0.44 ms to verify responses of an RPI3B+.

Additionally, the network communication also entails overhead, as a 16 bytes
challenge and 33 bytes response needs to be transmitted during attestation.
Interestingly, the performance of the network interfaces is quite different on the
ESP32-EVB and RPI3B+. On the ESP32-EVB, CAN is faster than Ethernet and
requires only 1.19 ms to transmit both challenge and response. By contrast, on the
RPI3B+, CAN is much slower than Ethernet and entails a total communication
overhead of 5.95 ms.

4.1 USE CASE 1: ELECTRONIC CONTROL UNITS IN ROAD VEHICLES

RPI3 CAN =e=— ESP32 Ethernet
==o==_RPI3 Ethernet =o= ESP32 CAN
900
Measured Projected
1200
- 850 —
\&/ P—
é’ 800 800
<
~ 750 == = 400 [~
700 L _I I I I o I I I
1 2 3 4 5 0 25 50 75 100

Number of prover devices

Figure 4.3: Runtime overhead of verifying multiple ECUs in different networks.

Altogether, the runtime overhead to perform the attestation of a single device
depends on the device type and network interface. It varies between at least 715
ms (on ESP32-EVB over CAN) and at most 844 ms (on RPI3B+ over CAN).
Multi-Device Runtime. Figure 4.3 depicts the runtime overhead to attest a
varying amount of ECUs over CAN and Ethernet. As shown, the fastest attestation
is possible with the ESP32-EVB over CAN, while the slowest is the RPI3B+ over
CAN. During attestation, safety-critical ECUs can perform many operations in

parallel, such as measuring software integrity or computing attestation responses.

For this reason, the runtime to attest many devices only slightly increases with
a raising number of devices in the network, compared with the overhead to
verify a single device. This demonstrates the good scalability of our attestation
scheme. In fact, our projections to large networks show that the attestation of
up to 100 devices takes even in the worst-case, being a CAN network with only
RPI3B+ devices, less than 1.4 seconds. Because a typical driver requires more
than 1.4 seconds to get in the vehicle and initiate its start, our scheme entails no
perceptible delays for drivers and passengers. Moreover, road vehicles typically
contain less than 100 safety-critical ECUs.

4.1.4 Summary

We presented an automotive attestation scheme in which a trusted master ECU
verifies the software integrity of all safety-critical ECUs in the vehicle each time
the vehicle is unlocked and opened. Only after the master has ensured that all
safety-critical ECUs are in a trustworthy software state, the master allows the
vehicle to move. This way, compromised ECUs are prevented from jeopardizing
the safety of the vehicle. To address the heterogeneity of ECUs, we presented
two distinct attestation techniques. The first technique targets simple sensor
and actuator ECUs, while the second technique is designed for more complex

43

44

ATTESTATION APPLICATIONS WITH EMBEDDED SYSTEMS

ECUs, e.g., used for sensor fusion. Since both techniques are applicable to many
existing commodity ECUs, our solution entails only minimal deployment costs.
We evaluated our scheme in an automotive network that uses CAN and Ethernet.
Our results show that the overall timing overhead to verify 100 ECUs is less than
1.4s. Thus, our scheme causes no perceptible delays for drivers and passengers.

4.2 USE CASE 2: SECURE CODE UPDATES IN MESH NETWORKS
4.2.1 Motivation and Contribution

A popular way to connect low-end embedded systems are wireless mesh net-
works. In mesh networks, all devices cooperate in the distribution of data in the
network, forming a decentralized and self-organized network topology. Recent
technologies like IEEE 802.11s, IEEE 802.15.4, ZigBee, Z-Wave, or Bluetooth en-
able embedded systems to establish large wireless mesh networks consisting of
numerous embedded systems. Nowadays, these networks are widely used in
industrial control, wireless sensor networks, home automation, building automa-
tion, military communication, or community networks. To maintain the security
of these networks, it is essential that devices provide the capability for remote
code updates. In fact, unpatched software vulnerabilities are currently the second
most predominant reason for malware infections on embedded devices [76]. Us-
ing secure code update mechanisms, the proper installation of software and the
erasure of malware can be verified. This enables to reestablish trust in potentially
compromised devices by enforcing the proper installation of security patches as
well as the erasure of potential malware.

A secure code update scheme for embedded devices in mesh networks must
provide several features. First, it has to ensure that devices verify the novelty,
integrity, and authenticity of code updates before installation. This feature is
necessary to prevent misuse of the code update mechanism, e.g., by downgrading
a software or installing malicious code. Second, the scheme must ensure that,
appropriately executed, it restores the integrity of the software state on a device,
even if the device was compromised before. Thus, an attacker who exploited a
vulnerability in the old software to compromise and gain control over a device
is removed from the device. However, compromised devices can simply deny
the execution of code updates or execute them inappropriately without restoring
software integrity. Therefore, after code update execution, the scheme must
verify whether all devices are in a trustworthy, i.e., an unmodified and up-to-
date, software state. To reduce potential damage caused by compromised devices,
the secure code update scheme should exclude untrustworthy devices from the
network. Furthermore, the scheme must be scalable, as it should allow for an
efficient update of all devices in large mesh networks. Moreover, it should be
applicable to already existing commodity low-end embedded devices. In this way,
the scheme can be retrofitted to currently deployed systems. Finally, a network

4.2 USE CASE 2: SECURE CODE UPDATES IN MESH NETWORKS

operator issuing a secure code update should be informed about the software
integrity of all devices in the network.

However, existing solutions do not satisfy all these requirements. Software-
and PoSE-based (Proofs of Secure Erasure) approaches are applicable to com-
modity devices, but rely on strong security assumptions that are hard to achieve
in practice [10, 51, 75, 116, 132]. Additionally, they allow a verifier to perform the
attestation with only one device but not a group of devices, as they rely on the
assumption that during attestation an adversary is unable to communicate with
any other party, except for the verifier. By contrast, hardware-based solutions pro-
vide much stronger security guarantees by relying on secure hardware modules.
Yet, security architectures which are applicable to low-end embedded systems,
such as TyTAN, SMART, TrustLite, or SANCUS, are still in research stage [23,
45, 82, 109]. These architectures have only been implemented as prototypes and
their future availability in commodity devices is uncertain.

Contribution. In this section, we present a secure code update scheme for mesh-
networked commodity low-end embedded devices that achieves all above men-
tioned properties. To verify the proper installation of code updates, the scheme
relies on ALE, our proposed attestation protocol for low-end embedded devices
(Chapter 3). In contrast to existing secure code update solutions (Section 2.1.3),
this makes our scheme applicable to many commodity low-end embedded de-
vices as well as to groups of interconnected devices. Receiving a code update, a
device checks its freshness and authenticity, and then installs the update. After
installation, each device verifies its local software integrity and ensures that only
unmodified and up-to-date software runs on the device. To enforce a proper
execution of the code update, neighboring devices mutually verify the genuine
and up-to-date software state of each other, and establish secure channels only
if the verification succeeds. Thus, compromised devices can either refuse an
appropriate execution of the code update, whereupon they are excluded from the
network, or perform a correct code update, whereby any present malware gets
eliminated. Issuing a secure code update for the network, the network operator
is able to learn the identity of all trustworthy and all untrustworthy network
devices. We implemented the scheme on exemplary low-end embedded systems
that were interconnected via ZigBee. Simulation results demonstrate that our
scheme scales well and is practically usable in networks with tens of thousands
of devices.

Outline. Section 4.2.2 describes our secure code update scheme. In Section 4.2.3,
we evaluate the performance of the proposed scheme. Finally, Section 4.2.4
concludes this section.

4.2.2 Secure Code Update Scheme

Our secure code update scheme comprises two phases: a deployment phase
and an online phase. The deployment phase is executed once, before the initial

45

46

ATTESTATION APPLICATIONS WITH EMBEDDED SYSTEMS

initialization of all devices. In the deployment phase, each low-end embedded
device D; is initialized by the trusted network operator O. After the devices
have been deployed, the online phase is executed repeatedly, once for every code
update. In the online phase, O issues a secure code update for all devices in the
network.

Deployment Phase

In the deployment phase, the network operator O generates a unique identifier
and signature key, consisting of a public key pk; and a private key sk;, for each
device D;. For the purpose of authenticating devices and for implementing
a challenge-based protocol to verify code update installations, we use public-
key cryptography. Therefore, the symmetric attestation key ak; from ALE (see
Chapter 3) is now replaced by the private signature key sk;. Consequently, sk;
is stored in a secure storage that can only be accessed during the execution of
the protected bootloader B (see Section 3.2). Furthermore, O equips each device
D; with a device certificate dc; and a software certificate sc;, both signed by O
with sko (dc;.sig, sc;.sig). The device certificate dc; stores the device class ¢ of D;,
the public key pk; of D;, and the identifier i. The software certificate sc; lists all
memory regions on D; where the code update routine and the firmware is stored.
In addition, sc; provides hash values over the data of these memory regions
(sci.hash). Thus, sc; can be used to verify the integrity of the installed software
on D;. In order to indicate the freshness of the software, sc; also stores a software
version number (sc;.ver). Moreover, each device initially stores the public key of
the trusted network operator pky in B. Both sc; and dc; are stored in a mutable
and unprotected memory region.

Additionally, O equips each device with the necessary code to perform a secure
code update. Our scheme relies on the untampered execution of code that attests
the integrity of the local software state. For this reason, code that implements
the attestation routine is stored in B, while the rest of the code (including the
actual code update functionality) is stored in a mutable and unprotected memory
region (see Figure 4.4). Table 4.2 summarizes relevant definitions used in the
deployment and the online phase.

O Trusted network operator ski Secret signing key of entity i
B Protected bootloader pk; Public signing key of entity i
D; Device with identity i dc; Device certificate of entity i

sh; Secret ECDH key of entity i 5C; Software certificate of entity i

ph; Public ECDH key of entity i cu. Code update for device class c

Table 4.2: Notation.

4.2 USE CASE 2: SECURE CODE UPDATES IN MESH NETWORKS

Mutable Memory Protected Bootloader (B)
Firmware(): CodeUpdateRoutine(): AttestationRoutine():
Start Code Update on Update|__call , |Stage 1: Code Update Distribution call|by | Stage 2: Local Software Integrity
Requests or Fatal Errors and Installation restprt | Attestation

call

Y

Start Verification of Neighbor Stage 3: Mutual Integrity Verification
Devices and Establishment return | and Setup of Shared Secrets

of Secure Channels key = - Secure Key Storage: @
: - y\\y Stage 4: Installation Reporting
Start Installation Reporting m
on Report Request @ e
return sh,ph,attest

Figure 4.4: lllustration of memory layout and control flow of the online phase.

Online Phase

The online phase consists of four different stages. In the first stage, O prepares
a code update package, which is distributed in the network and installed on
the devices. In the second stage, devices invoke the execution of the attestation
routine in B. The attestation routine verifies the integrity of the installed software
and ensures that a device subsequently executes an unmodified and up-to-date
software. Additionally, the attestation routine generates an attest which proves a
trustworthy software state by certifying an untampered and complete execution
of the attestation routine. In the third stage, neighboring devices verify the
software integrity attest of each other. If the verification is successful, devices
establish a secure channel. As untrustworthy devices are unable to attest their
valid software integrity, they cannot establish communication channels and thus
are excluded from the network. In the fourth stage, O obtains an installation
report, which exhibits the software state of all devices in the network. Figure 4.4
shows the memory layout of the code update scheme and illustrates the control

flow throughout all stages. In the following, we will explain each stage in detail.

Stage 1: Code Update Distribution and Installation

The online phase starts with O preparing a code update package cupkg. Cupkg
includes an ascending version number cupkg.no and a signature by O, in order
to prevent replay attacks and tampering with the code update package. Since
devices in the network may be heterogeneous, cupkg is able to address multiple
device classes. For each device class c in the network, cupkg contains a software
certificate sc., which specifies the correct software configuration for a device of
type c. In addition, all software certificates that are contained in cupkg store the
current cupkg version number (sc.ver = cupkg.no). Furthermore, for each device
class c that should be updated, cupkg contains code update data cu.. Code update
data cu, comprises the binary code of the update as well as instructions for its
installation (e.g., addresses where to store the binary code during installation).

After preparing cupkg, O sends a code update request followed by cupkg to
an arbitrary device in the network. This causes the recipient device to execute
stage one in the code update routine (see Figure 4.4). Next, the code update
routine receives cupkg and stores it in a free memory region. Devices that received

47

48

ATTESTATION APPLICATIONS WITH EMBEDDED SYSTEMS

communication link communication link

—————————————————— = secure channel
>

Figure 4.5: Cupkg distribution in stage 1 Figure 4.6: Establishment of secure chan-
and swstate message exchange nels in stage 3 in presence of
in stage 3. an adversary Dy.

cupkg check whether it contains a valid signature by O and whether its version
number is higher than the last received cupkg version number. If both checks
pass, devices send a code update request to their immediate neighboring devices
and subsequently forward cupkg to them. In this way, a flooding propagation of
cupkg is initiated (see Figure 4.5). Since efficient and secure code disseminations
in wireless mesh networks are well-understood [41, 58, 60, 93, 96, 122, 144], we
will not elaborate on the distribution of cupkg, but instead assume that eventually
each device in the network receives cupkg.

Devices that received, verified, and forwarded cupkg to their neighbors check
whether cupkg comprises a new code update for their device class. To this end,
each device D; examines whether cupkg contains a cuy for the local target device
class specified in dc;. If this is the case, a device uses the installation instructions
in cuy to install the update binary code. Note that, since the code update routine
is stored in mutable memory, the update routine itself may also be updated
during update installation. Furthermore, all devices in the network update their
local software certificate to the new software certificate for their device class and
then issue an attestation of the local software configuration (see next stage).

We propose that devices also invoke the execution of the code update routine
on fatal errors that render devices non-functional. This allows O to remotely
recover devices whose software accidentally became misconfigured or defective.

Stage 2: Local Software Integrity Attestation

In order to attest an untampered and up-to-date software state, devices invoke
the execution of the attestation routine. Since the attestation routine is stored in
the protected bootloader B (see Figure 4.4), its execution requires a device reboot.
As illustrated in Algorithm 4.1, the attestation routine starts with the retrieval
of the protected secret signing key sk. Next, the authenticity of the software
certificate sc is ensured by verifying whether sc was signed by O. If this is the
case, sc is used to check the local software integrity (denoted by the execution of
CheckCodelntegrity()). Consequently, hash values over all memory regions that
are listed in sc are taken and compared to the expected reference values specified
in sc.hash. If all measurements match their reference value, the verification of

4.2 USE CASE 2: SECURE CODE UPDATES IN MESH NETWORKS

the software integrity is successful. Upon a successful verification, the device
generates a new Elliptic curve Diffie-Hellman (ECDH) key pair (sh, ph) [95]
and computes attest by signing ph and sc.ver with sk. Afterwards, it is ensured
that no information about the secret signing key sk gets leaked (denoted by
the execution of HideSecret()). As described in Section 3.2, this may involve the
erasure of certain memory regions or the execution of specific instructions on
some commodity devices. Finally, the firmware is executed and sh, ph, and attest
are passed to the firmware (see Figure 4.4). The entry point of the firmware
is hardcoded in B. This ensures that the control flow is indeed passed to the
firmware, whose integrity was just verified, and not to malicious code that hides
somewhere in memory. However, if the verification of the software integrity is
unsuccessful, stage one in the code update routine is executed all over again.
In this way, devices are able to recover from situations where O accidentally
distributed a defective cupkg.

Algorithm 4.1: Execution of AttestationRoutine() (located in B).
1: procedure ATTESTATIONROUTINE(SC)
sk < RetrieveSecret()
if Verify(pkp; sc.sig; sc.content) and CheckCodelntegrity(sc.hash) :
sh, ph < GenKey()
attest <— GenSig(sk; ph||sc.ver)
HideSecret(sk)
StartFirmware(sh, ph, attest)
else :
HideSecret(sk)
StartCodeUpdateRoutine()

[
Q

We would like to point out that a valid attest proves that D runs a firmware
and code update routine whose integrity was successfully verified using a
software certificate with the version sc.ver. One reason for this are the three
device properties (see Section 3.2). They prevent an adversary from tampering
with the attestation routine, accessing sk outside of the attestation routine, and
interrupting the execution of the attestation routine. Another reason is the design
of the attestation routine, which prevents an adversary from generating a valid
attest without executing the attestation routine from the beginning. This is due
to the first instructions of the attestation routine, in which sk is retrieved and
thus must initially be executed to sign attest correctly. However, executing the
attestation routine from the beginning leads to its execution in entirety (see
third device property). This inevitably executes code which ensures that no
information about sk gets leaked, that the software integrity of D conforms to sc,
and that the firmware, and no unverified code, gets executed next. Tampering
with the input of the attestation routine is also unpromising for the adversary.
The only mutable data that the attestation routine relies on is sc. However, sc’s
integrity is verified before it is used to check the local software integrity. Using

49

50

ATTESTATION APPLICATIONS WITH EMBEDDED SYSTEMS

old scs as input for the attestation routine, devices can pass the local software
integrity verification with an outdated software state. Nevertheless, as we will
see in the next stage, this will be detected during the verification of attest by
neighboring nodes.

Stage 3: Mutual Integrity Verification and Setup of Shared Secrets

In the third stage, each device reaches out to neighboring devices in the network,
i.e., devices within immediate communication range. If a device D; finds a
neighbor D, whose software state has not yet been verified, it invokes a mutual
verification. For this purpose, D; generates a swstate; message comprising attest;,
ph;, and dc;, and sends this message to D,,. Upon receiving swstate;, D, generates
a swstate, message and sends it to D; (see Figure 4.5). Next, both devices invoke
the execution of stage three in their code update routines (see Figure 4.4) to
verify each others’ software integrity and establish a shared secret. Algorithm 4.2
illustrates this process in pseudocode.

Algorithm 4.2: Software integrity verification of a neighbor device D, on D;.

1: procedure VERIFYNEIGHBORSOFTWAREINTEGRITY(swstatey,)
attest,,dc,, ph, := swstate,
key < L
if VerSig(pko; dc,.sig; dcy.content)
and VerSig(dc,.pk,; attest,; ph,||sc;.ver) :
key <—KeyExchange(sh;, ph,,)
return key

N A RN

In order to verify the software state of D,,, D; initially checks dc, using pkp.
Next, D; verifies whether attest,, corresponds to the received ph, and the latest
software version, which D; stores in its local software certificate (sc;.ver). A
successful verification ensures that D, is in a software state that corresponds
to a sc from O’s latest cupkg. Thus, it ensures the integrity as well as the up-
to-dateness of D,,’s software state. In addition, verifying attest, confirms the
integrity and the authenticity of ph,. If the verification of dc, and attest, is
successful, D; uses its own secret ECDH key sh; and D,,’s public ECDH key
ph,, to perform a key exchange and establish a shared secret key. Note that if
D,’s verification of D;’s software state is also successful, both parties agree on
the same key. However, if any of the verifications fail, D; regards the software
state of D, as untrustworthy and does not reconstruct a shared secret. Next, the
attestation routine returns and passes key to the firmware (see Figure 4.4). If the
verification failed, the firmware causes D; to send D, a message that indicates a
failure. Nevertheless, D,, can re-request a mutual integrity verification with D; to
recover from connection breaks or other repairable errors.

If the verification was successful on both sides, D; and D, use key to establish
a confidential and authenticated channel. This channel is used for any further

4.2 USE CASE 2: SECURE CODE UPDATES IN MESH NETWORKS

communication between both parties. In this way, devices whose software is
in an untrustworthy state are effectively excluded from communication. An
adversary may try to pass the mutual software state verification by replaying
a swstate messages recorded from a trustworthy device. However, in doing so,
the adversary is not in the possession of the sh that correspond to the replayed
swstate message. For this reason, the adversary is not able to reconstruct the
correct key and the attack will be detected during the establishment of the secure
channel. Figure 4.6 illustrates a scenario in which a compromised device D, is
unable to attest its software state towards its neighboring devices and thus is
unable to establish a communication channel with them.

Stage 4: Installation Reporting

The fourth stage starts with O requesting an installation report from the network.
For this purpose, O initially uses the approach explained in stage three to
establish a secure channel with an arbitrary trustworthy device D; in the network.
In order to pass the integrity verification by D;, O generates a signature key pair,
issues a dc that authenticates the generated key, and uses the key to compute
attest. Next, O sends D; a request for an installation report over the established
channel. Devices that receive a report request invoke the execution of stage four in
their code update routines (see Figure 4.4). The report request is used to construct
a spanning tree whose root is O. For this purpose, D; broadcasts the request over
secure channels to all trustworthy neighboring devices, which in turn broadcast
the request. Broadcasting is repeated until the report request reaches leaf nodes in
the spanning tree, i.e., nodes whose neighbors all have received the request. Leaf
nodes then generate an installation report, which initially contains the identifier
of the particular leaf node. Afterwards, the installation report incrementally
gets propagated back to the root of the spanning tree. At each hop, a node
aggregates the report from its child nodes, includes its own identifier, and then
forwards the aggregated report to its parent node. Above a certain number of
aggregated identifiers, it is useful to encode the report as an n-bit array, where a
flipped bit at position k indicates that Dy is in a trustworthy state. Eventually, the
installation report gets transmitted from D; to O. Since O knows the identifiers of
all deployed devices, O can also assess the precise identifiers of all untrustworthy
devices. This may serve as a first step towards physically locating and recovering
compromised devices.

Note that listing the precise identifiers of all devices in the network causes a
considerable communication overhead in large mesh networks with many de-
vices. If O does not require detailed information about the identity of trustworthy
and untrustworthy devices, it is reasonable to implement a more coarse-grained
report type. For instance, O could initially only request for the total number of
trustworthy devices or the number of trustworthy devices per device class.

51

52

ATTESTATION APPLICATIONS WITH EMBEDDED SYSTEMS

4.2.3 Evaluation

Setup

We implemented the proposed secure code update scheme on Stellaris EK-
LM4F120XL microcontrollers. The Stellaris is a low-cost embedded system from
Texas Instrument which features an 80 MHz ARM Cortex-M4F microproces-
sor and provides 256 kB of protectable flash memory. To enable wireless mesh
connectivity based on the ZigBee standard, we equipped the Stellaris microcon-
trollers with CC2530 BoosterPacks from Anaren. In the following, we consider a
homogeneous network of Stellaris microcontrollers in a static network topology.
We measured network and computational delays of our implementation in small
real word mesh networks. In order to evaluate the scalability of the secure code
update scheme, we simulated large-scale networks based on our measurements.
We found out that the network topology plays an important role for the code
update runtime. This is due to the high communication costs for the transmission
of the binary code updates.

We implemented the key exchange using Elliptic Curve Diffie-Hellman (EC-
DH) with Curve2s5519 [18]. For the signature scheme, we used an Edwards-
curve Digital Signature Algorithm (EdDSA) called Ed25519, which is based on
Curve25519 [19]. We implemented the hash function using SHA-512, while the
secure and authentic channel uses AES in Galois/Counter Mode (AES-GCM).

Runtime Measurements

Network Runtime Performance. For unicast messages between two neighboring
nodes in the mesh network, we measured an average maximum throughput of
35.0 kbps on the application layer. Although the measured throughput is only a
fraction of the theoretical maximum throughput of 250 kbps in ZigBee networks,
other performance evaluations revealed similar performance losses in reality [25].
In addition, we measured an average one-hop round-trip time (RTT) of 13.5 ms
with the smallest message size (1 byte) and 18.5 ms with the biggest message
size (81 bytes). Carrying out measurements for the broadcast throughput, we
found out that the broadcast frequency on the CC2530 BoosterPack is limited
according to the specification of the ZigBee Pro stack. In practice, we measured a
maximum broadcast throughput of 0.65 kbps. Thus, for performance reasons,
we implemented all network communication as unicast transmissions. During
protocol execution, additional overhead is generated through the restart of the
devices. We measured that a full device restart, comprising an initialization of
the device and a join in the mesh network, takes on average 2338 ms.

Cryptographic Runtime Performance. Table 4.3 shows an excerpt of our cryp-
tographic runtime measurements on the Stellaris microcontroller. We would
like to stress that we based our implementation on platform independent and
unoptimized C code [17, 9o]. Recent works have shown that assembler optimized

4.2 USE CASE 2: SECURE CODE UPDATES IN MESH NETWORKS

Algorithm Function Runtime Function Runtime

ed25519 GenKey() 18 ms KeyExchange() 48 ms
GenSig(16 B) 19 ms VerSig(16 B) 51 ms
GenSig(1024 B) 22 ms VerSig(1024 B) 53 ms

AES-GCM AuthEncrypt(16 B) 0.1 ms AuthDecrypt(16 B) 0.1 mS
AuthEncrypt(1024B) 1.8 ms AuthDecrypt(1024B) 1.8 ms

SHA-512 Hash(16 B) 0.4 ms Hash(20480 B) 54.7 ms
Hash(1024 B) 3.1 ms Hash(163 840 B) 435.1 ms

Table 4.3: Cryptographic runtime measurements on the Stellaris.

code for low-end embedded systems can improve the performance of crypto-
graphic operations by orders of magnitudes [37, 42]. We presume that similar
performance improvements are also possible on the Stellaris platform, if the used
cryptographic primitives were optimized for ARM Cortex-M4F microprocessors.

Storage Consumption

Compared to a naive code update approach that only distributes the binary code
of the update but provides no security, our scheme requires additional storage
for data. In fact, each device must store sc (ca. 212 bytes), dc (100 bytes), pko
(32 bytes), sk (64 bytes), ECDH keys (96 bytes), and shared secrets (32 bytes per
neighbor). Hence, with k being the number of neighboring devices, the storage
overhead for data adds up to 504 + 32 - k bytes.

Further storage consumption arises due to the size of the code. Our reference
implementation, which we use throughout this performance evaluation, requires
66 kB of protected storage in B. However, almost all the storage is spent for
the implementation of the Ed25519 signature scheme. By using an Ed25519
implementation that is particularly suited for low-memory systems [15], we were
able to reduce the size of B to 7.7 kB, albeit increasing the runtime for crypto-
graphic operations®. This smaller implementation makes our scheme applicable
to all commodity low-end embedded devices analyzed in Section 3.2.2, since all
of them offer at least 8 kB of protectable flash memory. Reusing the signature
scheme in B, additional 15.1 kB of code in mutable memory are consumed for the
implementation of the network communication, key exchange, encryption and
decryption, and protocol logic. In total, our reference implementation consumes
81.1 kB and our code size optimized implementation consumes 22.9 kB of storage.
This is an acceptable overhead of 31.6 % and 8.9 % of the available storage on
the Stellaris platform.

Yet, existing works have shown that a signature scheme which achieves about the same runtime
performance than our reference implementation can be implemented in less than 4 kB of code by
using platform dependent assembler directives [37, 103].

53

54

ATTESTATION APPLICATIONS WITH EMBEDDED SYSTEMS

100

S 20 Ha | m— Secure code update
o - .
; « |=== Conventional code update 8o
5] 15 - % |=== Overhead o
ﬁ '_ — 60)
v 107 40 5
£ &
I
5 57 -1 20
M -----
| | | | I el el PN
0 20 40 60 8 100 120 140 16p

Code update size (kB)

Figure 4.7: Single device runtime performance with varying code update sizes.

Single Device Secure Code Update Runtime

We simulated the runtime of our code update scheme under various conditions
and compared it to a conventional code update approach. The conventional
code update approach distributes and installs code updates and ensures the
authenticity, integrity, and freshness of updates on the devices. However, it does
not exclude devices that are in an untrustworthy software state from the network
and also provides no report listing all trustworthy devices for the network
operator.

Figure 4.7 compares the runtime on a single device between our secure code
update approach and the conventional code update approach with varying code
update sizes. It shows the runtime of both approaches in seconds as well as the
percentage overhead of our secure approach. The mesh network consists of 1024
nodes which are arranged in a binary tree topology. Since devices in the network
require different amounts of time to perform the code update, e.g., some devices
transmit a smaller installation report or they need not forward the new code
update to neighboring devices, we averaged the runtime over all devices in the
network. Figure 4.7 illustrates that the size of the code update has a linear impact
on the code update runtime. This is almost entirely due to the transmission
time of the code update. In fact, the runtime overhead of our secure approach
is nearly independent of the code update size, as it increases only slightly from
0.7 seconds with a 1 kB code update to 1.1 seconds with a 160 kB code update.
For that reason, compared with the conventional scheme, the runtime overhead
decreases from 22.0% to 1.4% with an increasing size of the code update.

Figure 4.8 shows the runtime for a 30 kB code update on a single device
with a varying number of neighbor devices. We distributed the code update to
the measured device first, which is why all surrounding neighbor devices are
supplied with the code update during protocol execution. This causes a linear
increase of the code update runtime. However, the additional runtime of our
secure update approach also increases linearly with the number of neighbor
devices. This is due to the time neighboring devices require to mutually verify

4.2 USE CASE 2: SECURE CODE UPDATES IN MESH NETWORKS

6 8o
£ 51
b 60
g 47 D)
£ ¢
g 37 40 .5
g 5
g 2 === Secure code update ~
§ == = Conventional code update 20
e 17 Overhead

I I I I I I I I o
1 2 3 4 5 6 7 8 9 10

Number of neighbors

@)

Figure 4.8: Single device runtime performance with a varying number of neighbors.

300
©)
g 200
0 == = Secure code update binary tree
é === Secure code update 4-ary tree

100 |- == = Conventional code update binary tree

Conventional code update 4-ary tree

| | | | |
O 100000 200000 300000 400000 500000

Number of devices in network

Figure 4.9: Network runtime performance with varying network sizes.

each others’ software state during protocol execution. Thus, with a varying
number of neighbor devices, the runtime overhead remains rather constant at
approximately 4%.

Network Secure Code Update Runtime

We further evaluated the total runtime required to perform a secure code update
with all nodes in the mesh network. Figure 4.9 shows the total runtime for a
30 kB code update with varying numbers of nodes, using the secure or the
conventional code update approach. The network topology is arranged as a
binary tree or a 4-ary tree. The figure demonstrates that due to the tree network
topologies, the code update runtime increases logarithmically with the number
of devices in the network. We configured our secure update scheme to report
the precise device ids of all trustworthy devices to the network operator. As this
causes the installation report to grow proportional with the network size, the
gap between the runtime of our secure approach and the conventional approach

increases considerably when the network contains more than 100.000 devices.

In such large network, our secure code update scheme performs better if the
network is arranged in a broader but flatter network topology, as this decreases

55

56 ATTESTATION APPLICATIONS WITH EMBEDDED SYSTEMS

25000 F{™ ™ Secure code update chain
=== Secure code update star
_
é 20000 [~-{== = Conventional code update chain
. -~
= Conventional code update star -
2 15000 |- Saee
£ -- -
= - -
g L —
5 10000 T e
~ - -
- -
000 [=z=="
> - A/’
-
-
e ———] |]]
[} 20000 40000 60000 80000 100000

Number of devices in network

Figure 4.10: Network runtime performance with varying network sizes.

the average size of the report (among others, it increases the number of leaf nodes
that must only transmit their own id to the parent node). Therefore, in networks
with more than 106.000 devices, our code update scheme performs better in a
4-ary tree network topology than in a binary tree topology. Nevertheless, for
smaller networks, the runtime overhead is quite low in tree network topologies.
To be precise, the runtime overhead remains below 2% for up to 25.000 devices
and is less than 5% for up to 100.000 devices.

However, mesh networks could also embrace unfavorable topologies. Fig-
ure 4.10 depicts the total runtime performance for a 30 kB secure code update
in a network with a chain topology and a star topology. The star topology is
constituted of three device chains branching off a central star device. Figure 4.10
shows that in such an inconvenient network topology, the runtime for a code
update attains extremely high values. This is caused by the long transmission
time for the code update and the installation report. Nevertheless, even in the
worst case, which is the chain topology, the overhead of our secure approach
compared to the conventional approach is below 2% for up to 4.000 devices and
less than 11% for up to 30.000 devices in the network.

We would like to stress that the overhead is largely introduced by transmitting
the precise ids of trustworthy devices to the network operator. If we instead
configure our scheme to report only the total number of trustworthy devices to
the operator, the network runtime overhead becomes almost negligible compared
to the conventional approach. In fact, this way, the runtime overhead is less than
1.5% for 10 devices and less than 0.35% for networks with 500.000 devices.

4.2.4 Summary

We presented a secure code update scheme for commodity low-end embedded
devices that are connected in large mesh networks. Our scheme offers desirable
security features for patching software vulnerabilities in these networks. It
enforces that all devices which properly execute the code update only run
unmodified and up-to-date software. Devices that refuse a proper execution of

4.2 USE CASE 2: SECURE CODE UPDATES IN MESH NETWORKS

our scheme, and thus run outdated or compromised software, are detected by
their neighboring devices and excluded from the network. Issuing a secure code
update, the network operator learns which devices are in a trustworthy and
which devices are in an untrustworthy software state. Since our scheme is based
on ALE (Chapter 3), it can be applied to a broad range of existing commodity low-
end embedded devices. In addition, we showed that the scheme scales well and
is practically usable in networks with tens of thousands of devices. Compared to
a conventional code update, which offers none of the described security features,
our scheme imposes a runtime overhead of 2.1% in the best case and 11.9% in
the worst case for a network with 30.000 devices and a firmware update size of
30 kB. Thus, our solution is also well suited for future developments, where we
expect networks with low-end embedded devices to increase in size.

57

ATTESTATION OF HIGHLY DYNAMIC AND DISRUPTIVE
NETWORKS

Collective attestation protocols aim at an efficient attestation of many, or even
all, devices in the network. To this end, collective attestation protocols typically
arrange a virtual spanning tree during attestation, which enables the efficient
transmission and aggregation of information between prover devices and the
network operator. However, maintaining a spanning tree topology is inefficient
or even inapplicable when devices in the network are mobile or lack continuous
connectivity. In this chapter, we present SALAD, a collective attestation protocol
for highly dynamic and disruptive networks. SALAD uses a novel distributed
approach, where devices incrementally establish a common view on the integrity
of all devices in the network. In contrast to other attestation protocols, SALAD
performs well in highly dynamic and disruptive network topologies, increases
resilience against targeted Denial of Service (DoS) attacks, and allows the network
operator to obtain the attestation result from any device. Moreover, SALAD is
capable of mitigating physical attacks in an efficient manner, which is achieved by
adapting and extending recently proposed aggregation schemes. We demonstrate
the security of SALAD and show its effectiveness by providing large-scale
simulation results.

Remark. Parts of this chapter have been published in [83].

5.1 MOTIVATION AND CONTRIBUTION

Collective attestation protocols (Section 2.1.2) aim at the efficient attestation of
many interconnected devices. To achieve scalability, collective attestation proto-
cols typically rely on a virtual spanning tree, whose root is the verifier. During
protocol execution, devices verify their child devices in the spanning tree and
propagate an aggregated report to their parent devices. In this way, aggregated
reports are incrementally propagated back to the verifier, who eventually receives
a report that indicates all healthy network devices. Note that this approach is
applied in our secure code update scheme (Section 4.2) as well as in our subse-
quently proposed protocols SCAPI (Chapter 6) and PASTA (Chapter 7), albeit in
a modified form.

A tree-based attestation is very efficient in fully-connected and quasi-static
networks. However, in various use cases, device groups operate in sparsely popu-
lated networks with high device mobility, e.g., in environmental monitoring [128],
offshore exploration [57], agricultural production [26], or emergency communi-
cation [143]. In these highly dynamic and/or disruptive networks, tree-based
attestation approaches are inefficient or even inapplicable. This is because high

59

60

[=

ATTESTATION OF HIGHLY DYNAMIC AND DISRUPTIVE NETWORKS

network dynamics lead to reallocations in the spanning tree, so that devices that
are neighbors in the spanning tree may shortly afterwards already be several
hops away from each other. In addition, network disruptions may break such
distant routes over several hops after a short time, such that devices are even
unable to communicate with their (virtual) neighbors in the spanning tree in the
first place. Furthermore, in constantly partitioned networks, only a fraction of all
devices may take part in the construction phase of the spanning tree and it is
unclear how all other devices participate in the attestation.

Contributions. In this chapter, we present SALAD, a collective attestation proto-
col for highly dynamic and disruptive networks. Instead of routing attestation
results along a (virtual) spanning tree [7, 11, 28, 68], SALAD pursues a distributed
approach where all devices uniformly establish the attestation result. For this pur-
pose, devices within communication range mutually attest the software integrity
of each other. Upon success, devices exchange their accumulated attestation
proofs, which demonstrate the integrity of further devices in the network. In
this way, devices gradually expand their view on the software integrity of other
devices in the network, until all devices eventually share the same result about
the network state.

The distributed approach of SALAD brings several benefits in dynamic and
disruptive networks. First, it increases resilience against targeted Denial of Service
(DoS) attacks, in which the communication of only a few devices is impeded to
prevent an attestation of many other devices. Second, the verifier can obtain the
attestation result from any network device, hence, does not require to hold a
connection to a specific, potentially moving, device. Finally, as attestation proofs
are shared among all devices using simple device-to-device communication,
no routing mechanism is required. This not only saves communication and
computational resources, but, most importantly, enables a seamless operation in
highly dynamic and/or disruptive networks.

Besides detecting software attacks, SALAD also considers physical attacks.
Attestation protocols that detect physical attacks, e.g., DARPA [68], US-AID [65],
SCAPI (Chapter 6), or PASTA (Chapter 7), rely on assumptions (Section 2.4)
that render them inapplicable in highly disruptive network topologies. For this
reason, SALAD only focuses on the mitigation of physical attacks, but not on
their detection. In SALAD, each device authenticates its attestation report with a
unique key. Thus, a physical adversary can only forge a valid attestation result
for devices that have been physically tampered with, but not for other devices.
Unfortunately, existing techniques to aggregate, i.e., compress, the emerging
additional authentication tags [7, 28, 68] can only be applied in tree-based
protocols. This is because they are unable to aggregate intersecting attestation
reports’, which frequently occur in SALAD’s distributed attestation approach.
However, small attestation reports are vital in dynamic networks. They not only
decrease communication, runtime, and energy consumption, but also ensure that

E.g., existing aggregation schemes are unable to merge an aggregate containing device A and B
with an aggregate containing device B and C, as both aggregates contain B.

5.2 SALAD: SECURE AND LIGHTWEIGHT ATTESTATION OF DYNAMIC NETWORKS

devices are able to exchange their reports in the first place, since communication
links can break any time. Therefore, we propose two extensions to existing
aggregation techniques that make them applicable in SALAD. Compared with
a basic solution, the extended schemes are able to decrease the communication
by up to 40% and runtime by 95%. To further decrease the overhead, we present
an approach that enables the parameterization of security and performance
in the proposed aggregation schemes. We will show that using this tradeoff,
communication can be decreased by more than 90% and runtime by 98% while
providing sufficient statistical security for common attestation use cases.

Moreover, we demonstrate the security and performance of SALAD. Although
our protocol is suitable for many device types and network topologies, we
will specifically show its applicability in challenging network scenarios, namely,
ZigBee connected low-end embedded devices moving with high (drone) speed
in large areas. To this end, we provide simulation results based on measurements
of SALAD on low-end embedded devices.

Outline. In Section 5.2 we present SALAD, our attestation protocol for highly
dynamic and disruptive networks. Section 5.3 describes different aggregation
schemes that enable SALAD to efficiently mitigate physical attacks. In Section 5.4,
we evaluate the performance of SALAD. Section 5.5 concludes this chapter.

5.2 SALAD: SECURE AND LIGHTWEIGHT ATTESTATION OF DYNAMIC NET-
WORKS

Our attestation protocol, named SALAD, consists of two different phases. The
deployment phase (Section 5.2.1) is executed once, in a trusted environment by
the network operator O. In this phase, all devices are initialized and deployed.
Afterwards, O can repeatedly execute the attestation phase (Section 5.2.2) to verify
the software integrity of all devices in the network.

5.2.1 Deployment Phase

In the deployment phase, the network operator O initializes the Trusted Execu-
tion Environment (TEE) of each device D; with a unique device identifier i, O’s
public key pkp, and a unique attestation phase identifier curpid;. We implement
curpid as a counter that is initially set to zero.

In addition, each D; stores a symmetric attestation key ak;, required to generate
an attestation report that attests the software integrity of D; towards O. To reduce
the size of attestation reports, SALAD makes use of specific aggregation schemes,
which are described in the next section (Section 5.3). Procedures that involve
our aggregation schemes are the generation, partitioning, aggregation, and
verification of attestation reports, denoted by GenRep(), SliceRep(), AggRep(), and
VerRep(), which are used as black boxes in this section.

61

62 ATTESTATION OF HIGHLY DYNAMIC AND DISRUPTIVE NETWORKS

Acronym Usage

(@) trusted network operator

i unique identifier for device D;

sko, pkp signature key pair of O

ckij channel key between D; and D;

ski, pk; D;’'s asymmetric key pair for KeyExchange()
ak; D;’s attestation key for GenRep()

cert; Dy’s certificate to authenticate pk;
KDF(string) derives key from secret

GenSig(key; msg) generates signature

VerSig(key; sig; msg) verifies signature

GenMac(key; msg) generates message authentication code
VerMac(key; mac; msg) verifies message authentication code
KeyExchange(sk; pk) establishes shared secret via ECDH

VerSW (vss) checks software state according to vss
GenRep(key; i; sp) generates attestation report
SliceRep(desc; rep) slices local report for receiver device
AggRep(repy; repr) aggregates two attestation reports
VerRep(ky ... ky, rep) verifies attestation report

Table 5.1: Overview of our notation.

Furthermore, devices implement a function VerSW(vss) that takes vss, a set of
valid software states, as input. VerSW(vss) measures the local software state (vss
may describe what should be measured) and compares the measurement to the
expected measurement in vss. If both values match, the device is assumed to be
in a healthy software state and VerSW() returns true. Otherwise VerSW() returns
false. We deliberately abstracted from any implementation details of VerSW() to
support a wide range of integrity measurement mechanisms. In practice, VerSW()
may be implemented as a simple hash function measuring the binary code of
the software, or as an advanced control-flow-attestation mechanism that also
protects against runtime attacks [3].

We henceforth assume that any two devices D; and D; in the network share a
common channelkey ck;;. For performance reasons, pairwise channel keys can
be preinstalled, if devices provide enough free storage. Otherwise, each device
D; holds an asymmetric key pair (sk;, pk;) as well as a certificate cert;, containing
a signature over pk; from O. This enables devices to establish an authenticated
channelkey on demand. To this end, both devices exchange their cert and pk,
verify the other’s pk and cert with pky, and then perform a key exchange, e.g.,
Elliptic Curve Diffie Hellman (ECDH), using their own sk and the other’s pk.

5.2 SALAD: SECURE AND LIGHTWEIGHT ATTESTATION OF DYNAMIC NETWORKS

Furthermore, O equips all devices with the functionality to perform the attes-
tation phase (Section 5.2.2). Except for network message processing, any protocol
code is stored and executed inside the TEE of devices. For convenience, we as-
sume that all devices are initialized at once. Yet, O may deploy a new device
at any time by initializing the new device as described. Table 5.1 summarizes
relevant definitions.

5.2.2 Attestation Phase

Overview. The attestation phase allows the network operator O to verify the
software integrity of all devices in the network. It consists of four steps: (1) O pre-
pares an attestation initiation and sends it to an arbitrary device in the network.
(2) Devices that receive the attestation initiation verify and propagate it to their
neighboring devices, i.e., all devices that are within direct communication range.
Furthermore, they generate their own attestation report, which attests the soft-
ware state of the particular device. (3) Neighboring devices mutually exchange
attestation reports. After ensuring the software integrity of a neighboring device,
a device aggregates its stored attestation report with the neighbor’s report. This
way, each device holds an aggregated report that gradually contains more and
more healthy devices. (4) O reconnects to the network, receives the attestation
report from an arbitrary device, and verifies it. If the report is valid, O learns the
identity of participating network devices with a healthy software state. Finally,
O either stops the attestation phase or waits for more devices to participate in
the attestation. In the following, each step of the attestation protocol, formalized
in Figure 5.1, is described in detail.

(1) Attestation Initiation. First, O defines vss, the set of valid software states,
which describes all software configurations that O regards as healthy, e.g., be-
cause they represent the correct and most recent software configurations. After
setting vss, O increases the phase id pid, which uniquely identifies the current
attestation phase, and chooses appropriate security parameters sp for the attesta-
tion report. Details about sp are given in the next section (Section 5.3). Moreover,
O computes a signature sig over vss, pid and sp using sko. Finally, O connects
to an arbitrary device D; and emits an initiation message msg;,;t, containing vss,
pid, sp, and sig.

(2) Generation of Attestation Reports. A device D; that receives an attestation
initiation msg;,;; verifies its freshness and authenticity by checking whether the
phase identifier is new and the signature from O is valid. In addition, D; uses the
specified valid software states vss to verify whether it is in a healthy (VerSW()
returns true) or compromised software state. Only if all checks pass, D; will
update its current phase identifier curpid; to pid and generate an attestation
report rep; (GenRep()), which proves that D; is in a known good state according
to vss. Generating an attestation report involves the use of one of the aggregation
schemes presented in Section 5.3. For now, it is only important to note that

63

64

ATTESTATION OF HIGHLY DYNAMIC AND DISRUPTIVE NETWORKS

Network Operator O Device D; Devices Dy, D;, Dy, . - .

(1) msginit (2)

— 7 processMsglnit()
vss < valid software states 0 or--------------------—o a
pid < pid +1 ‘
rand VerSig(pke; sig; vss||pid||sp)
|

sp < report security parameter
"and VerSW(uss) :

sig < GenSig(skp; vss||pid||sp)
, , curpid; < pid

msginit <= vss||pid||sp|lsig .

rep; < GenRep(ak;; curpid;; sp)

MSGann < curpid;||rep;.ids

) MS&ann_ processMsgAnn()

r-- - - - '7 -0 ’ 77777777 i
if curpid; > curpidy, :

MS&initreq
-

MS&initreq « 1

and rep;.ids \ repy.ids # D :

mMSZrepreq < Trepy.ids

| |
| |
| |
| |
I I
velseif curpid; = curpidy !
| |
| |
| |
| |

msgipip . __°_ 0 T 2
_

MSZann
o

.............................. D; encounters Dy, that has already received msgiyitvvovvvneiiiii ..

(3) ms&ann

_

processMsgRepReq() MSrepreq
Lo

processMsgAnn()

|k + KDF (cki||curpid;)
I
I macy, < GenMac(mk;; srep)

|
| MSGrep < srep||maci
g g g g -

msgrep processMsgRep()
e I ~
Uk <— KDF(cky || curpidy)
|if VerMac(mki; mac; srep) :
|
! repy < AggRep(srep; repy)
|
I

MSZann MSGann <— curpidy||repy.ids
¢ L E)

... Dj exchanges and accumulates reports with more devices (D, Dy, Dy, ...). Eventually, O connects to D; . ..

(4) MSZrepreq

R —

msgrep
PRt

processMsgRepReq()

mk,-o — KDF(Ckapld)
if VerMac(mk;,; mac;; srep)
and VerRep(pid; ak;...aky; srep) :

return srep.ids

Figure 5.1: The attestation protocol after secure channel establishment, i.e., all devices
share a channel key ck and know their identities.

5.2 SALAD: SECURE AND LIGHTWEIGHT ATTESTATION OF DYNAMIC NETWORKS

each report rep consists of two parts: (i) a device description rep.ids, listing the
identifier of all healthy devices that contributed to rep, and (ii) a data structure
rep.proofs, which provides the actual proof that all listed devices in rep.ids are
healthy. Initially, D;’s device description rep;.ids contains the identifier i and
rep;.proofs consists of a MAC computed over the attestation phase id curpid;
with D;’s attestation key ak;. Finally, D; generates an announcement message
msgann, Which is used to announce towards neighboring devices that D; holds
a new attestation report. Message msgu,, contains the phase identifier curpid;
as well as the currently stored device identifiers in the report rep;.ids, which is
initially only D;’s identifier 1.

We would like to emphasize that all protocol code is executed inside the TEE
of devices (Section 5.2.1). Due to the assumption on the TEE (Section 2.4), Advs,
is unable to generate a valid report rep and cannot manipulate the valid software
states vss as well as the phase id curpid. Furthermore, as each attestation proof
is authenticated with a unique attestation key, Adv,, can only forge attestation
reports for physically compromised devices, where Adv,, has broken the TEE and
gained access to the attestation keys. Yet, for all other devices, Advy,, is unable to
forge a valid attestation proof.

(3) Distributed Report Aggregation. After completing Step 2, a device D; broad-
casts msg,u, to announce its attestation report to other devices D; encounters.
A device D that receives msgau,, checks the freshness and relevance of msgaux,
which is indicated by the phase id pid. If Dy has not yet received the issued
attestation initiation, which is only the case if its stored phase id curpidy is
smaller than the just received curpid;, then Dj will ask D; through a message
MSSinitreq to forward the initial attestation message msg;y;; from O. On receiving
msginit, Dx performs the earlier described Step 2 to generate an attest for itself.
If, however, Dy has already attested itself in the current attestation phase
(curpid; = curpidy), then both devices will exchange their attestation reports.
For efficiency reasons, Dy will only initiate this exchange, if D; announces an
attestation proof for at least one device that is not already contained in D;’s report.
Dy checks this by comparing the list of device ids rep;.ids, already communicated
in message msguun, With its own list of attested devices repy.ids. If a difference is
identified, Dy requests for D;’s report by sending a message 1sgpre; that also
includes the device identifiers of all its stored attestation proofs repy.ids. This
allows D; to generate a subset srep of its own stored report (with the for now
unspecified function SliceRep()) that only contains the attestation proofs that Dy’s
report is missing. After generating srep, D; authenticates srep with a MAC macy,
which is computed by the function GenMac(). The key mk;; to compute this MAC
is derived from the channel key ck;; as well as the phase id curpid; using a Key
Derivation Function (KDF). This form of authentication prevents Advy, from
reusing MACs that were captured from other devices or previous attestation
phases. Both srep and mac;; are transmitted from D; to Dy in a message msgrep.
On receiving msgyep, Dy recomputes the MAC key mac;; and then verifies the
received report srep with the function VerMac(). This ensures that (i) srep has

65

66

ATTESTATION OF HIGHLY DYNAMIC AND DISRUPTIVE NETWORKS

not been manipulated during transmission, (ii) srep originates from D;, and (iii)
D; is healthy according to vss (as otherwise, D; would not have set curpid; to pid
in the previous step). If the verification is successful, Dy will aggregate srep with
its local report repy. This functionality is realized by AggRep(), which stores the
union of rep;.ids and repy.ids as well as rep;.proofs and repy.proofs in repy. Since
this operation increases Dy’s accumulated attestation proofs, Dy distributes an
updated msgu,, to inform its neighboring devices.

(4) Attestation Finalization. Eventually, O connects to an arbitrary device D;
and request, receives, and verifies the attestation report of D; using the same
protocol as described in Step 3. The time O waits between Step 1 and Step 4
is dependent on the network size, network density, device mobility, security
parameters, and device-to-device communication capabilities. O may conduct
real-world experiments or simulations to estimate a proper waiting time. In a
network with 3000 devices, a communication range of 5om, a deployment area of
5000m X 5000m, high network dynamics, and a high security level, we identified
an optimal waiting time of approximately 20 minutes (Section 5.4.2). Next, O
verifies all attestation proofs contained in the received report using VerRep(), as
described in Section 5.3. Thereby, attacks where Advy,, attempts to fake a healthy
system state for devices with a compromised software, but healthy hardware, are
detected. If both checks pass, O considers all devices listed in the report to be
healthy. Depending on O’s goals, that is, verifying specific devices, the majority
of devices, or all devices, O either ends the attestation phase or waits for more
devices to contribute to the aggregated report.

To end the attestation phase, O sends a signed finish message containing the
phase id pid to D;. Devices that receive the finish message verify its authenticity,
stop executing Step 3, and propagate the finish message to neighboring devices
that still execute Step 3. We note that the attestation result may exhibit false posi-
tives, as O cannot be sure whether all healthy devices indeed contributed to the
received report. However, it is impossible to distinguish between a compromised
and an absent device, i.a., as compromised device can intentionally not respond
during attestation. Nevertheless, O can increase the probability that all healthy
devices are contained in the attestation result by not emitting a finish message
and repeating Step 4 at a later time, thereby prolonging the waiting time.

Remarks. For clarity, we omitted implementation details. In practice, timeouts
are required to prevent the protocol from halting upon manipulations or er-
rors. Furthermore, it is more efficient to only transmit the quantity and hash
value of device identifiers in the announcement messages (15g4,,), instead of
actually transmitting all identifiers from the report. Moreover, when receiving
an announcement message msg_ . from a D;, it is useful to not only check for
proofs to receive but also to check for proofs that D; is missing, in order to
initiate an exchange of these. Additionally, the retransmission of the same m5g;,
to a particular device should be avoided, e.g., when a device is encountered
repeatedly.

5.3 ATTESTATION REPORT AGGREGATION

Security. As specified in our adversary model (Section 2.4), we refer to an
attestation protocol as secure, if an adversary is unable to report a valid attest,
i.e., a healthy system state, for a device that is at the time of its own attestation in
a compromised state. To pass the attestation phase with a compromised device
Dy, an adversary must (i) generate an attestation report rep4 that contains a
valid attestation proof for D4, and (ii) transmit rep4 with a valid msg., to a
healthy device or the network operator O.

Advg,, who cannot break the security of the TEE, is unable to achieve both (i)
and (ii). Since all protocol code is executed inside the TEE, verifying the software
integrity on compromised devices fails in Step 2, so that compromised devices
refuse to update their phase id curpid and to generate a report (failing (i)). Due
to the outdated curpid, compromised devices construct an invalid MAC key mk
in Step 3, hence, are unable to generate a msgy., that contains a valid MAC and
is accepted by healthy devices (failing (ii)).

By contrast, Advy, can achieve (ii), since Advy, can break into the TEE of a
device, gain access to a valid MAC key mk for the current attestation phase, and
thus synthesize valid msg,., messages that are accepted by other healthy devices.
To achieve (i) and generate a valid attestation proof for D4, Advy,, requires access
to the attestation key ak 4 of D 4. However, Advy,, has only access to the attestation
key of devices that are physically tampered with. Thus, Advy, can only forge
valid attestation proofs for physically compromised devices, but no other devices.
Since physical attacks require a lot of resources and do not scale (Section 2.4),
SALAD effectively mitigates physical attacks.

Moreover, Denial of Service (DoS) attacks in the network only affect devices
whose communication is directly disturbed, e.g., jammed by Advg,. All other
devices can successfully participate in the attestation.

5.3 ATTESTATION REPORT AGGREGATION

In the following, we first describe a contemporary basic solution to represent
attestation reports and apply it to SALAD (Section 5.3.1). Afterwards, we present
two aggregation schemes, which aim at minimizing the message and storage
overhead entailed by the basic scheme (Section 5.3.2). Finally, we propose an
approach that allows the parameterization of security and performance in the
proposed schemes (Section 5.3.3).

5.3.1 Basic MAC Scheme

MACSimple. In the straight forward solution, attestation reports store the attesta-
tion proofs of individual devices unaggregated, as a list of signatures or Message
Authentication Codes (MACs) [28]. On embedded devices, MACs are preferred
over signatures for efficiency reasons. We adapt this approach to SALAD in a
scheme that is henceforth referred to as MACSimple. Recall that in SALAD an

67

68

ATTESTATION OF HIGHLY DYNAMIC AND DISRUPTIVE NETWORKS

attestation report rep consist of two parts: (1) rep.ids, a list of device identifiers
describing all devices that contributed to the attestation report; (2) rep.proofs, a
data structure that stores the attestation proofs of all devices listed in rep.ids. In
MACSimple, rep.ids and rep.proofs are both lists. In the following, we describe all
operations performed by MACSimple.

GenRep(ak;; curpid;; sp): To generate a new report, D; sets rep.ids to a list that
only contains its identifier i. Furthermore, D; computes its attestation proof by
generating a MAC over curpid; with its attestation key ak; (GenMac(ak;; curpid,)).
Afterwards, rep.proofs is set to a list that only contains the computed MAC. The
security parameter sp defines the settings of the MAC algorithm.

AggRep(repA; repB): Two reports are aggregated by concatenating both lists,
i.e., the device ids (repA.ids and repB.ids) and the attestation proofs (rep A.proofs
and repB.proofs). Afterwards, duplicates within each list are removed.

SliceRep(repA; repB.ids): To generate a subset srep of repA that specifically
contains no attestation proofs from devices listed in repB.ids, srep.ids is set to
the relative complement of repB.ids in repA.ids (srep.ids = repA.ids \ repB.ids).
In addition, the appropriate attestation proofs from rep A.proofs are copied to
srep.proofs, taking into account their order in srep.ids.

VerRep(pid; ak;...aky; rep): O verifies a report by recomputing the MAC for
each device contained in rep.ids and checking whether the recomputed MACs
match the particular MACs in rep.proofs. If this is the case, O assumes that all
devices listed in rep.ids are in a healthy system state.

To minimize the size of rep.ids, device ids are represented in three different
ways, depending on the number of entries: as a list of ids present in the report,
as a list of device ids not present in the report, or as an n-bit vector where a one
at position i indicates that D; is in the report.

5.3.2 Extended MAC Aggregation Schemes

Motivation. With the basic scheme (Section 5.3.1) attestation reports are relatively
large, as they contain an individual MAC from each device that contributed
to the report. To reduce the size of rep.proofs, recent protocols employ tree-
based aggregation schemes that compress multiple signatures or MACs into a
small aggregate [7, 68]. In these protocols, devices form a static tree topology,
in which each node aggregates its own report with the reports of its children,
before transmitting the aggregated report to its parent. Since this approach is
uneconomical in dynamic or even infeasible in disruptive networks, SALAD
pursues a distributed approach, where devices pass their own attestation proof
to multiple devices. Hence, devices may need to aggregate reports that contain
an intersection, i.e., at least one proof from the same device is present in both
reports.

Figure 5.2 illustrates the occurrence of an intersection for a small exemplary
network. The figure shows the attestation of six devices over five time periods.
In each time period, all devices that meet exchange their aggregates. Starting

69

5.3 ATTESTATION REPORT AGGREGATION

TﬁNxﬁQ\\NQ\\in 7©Q\MQ\NQ_\Q7 EEE EEE E E u._mEmU{_\/_
ﬁmQ\NQ;QiE ?Q\NAN;Qiﬂ EEE HEE
‘a<sa | s=1
Fa*aa’'dl| Pa*a“a'd) | st 9T fa“a’'d]| [a"a’'d Apsain)HvIN
TQ&Q\NQQQ* TQ%Q\NQQQ* 4ﬁN\ a*a QA 7Q a*a ﬁi ?Q\\NQQQ* ?Q\NQQQ*
fa"adPd | fata"dlfd) | fafadfd) | Pafa | 9| wewsovw
[aldFd)| Fdldld sq<'a
‘a-tq | v=1
m / / % / s
Fa"aad | [aa"a’d |faa"a’d |faraiad) | e d)| [0 | oo | faeta
Fa<a'a) | [Faa"d
[Gfad| fdferd| faldfd | fafa | oW
fata'd| [a%a'd| fa%a'd| fata’a | #=ovn | as'a | *
EE EE HEWSDHY N
z I =
fa'q| farg | wEooww | T
[g| | HEWSOVIA
ﬁ\ =
ig | Apeeoovw | LT T
% a Yq €q q ta YIS ‘Wo) |]

Figure 5.2: Attestation report aggregation with the MACGreedy and MACSmart aggrega-

tion schemes. Column Time shows an abstract time period, Comm. illustrates
devices that meet and exchange reports, Scheme annotates the aggregation
scheme. Columns D; to Dy show the aggregated attestation proofs stored by

the particular device. Intersecting aggregates are highlighted in red.

70

ATTESTATION OF HIGHLY DYNAMIC AND DISRUPTIVE NETWORKS

with time t = 1, O invokes the attestation protocol by notifying D;, which in
t = 2 exchanges aggregates with D;. In t = 3, D; and D3 meet, as well as
D, and Dy4. At t = 4, devices D; and D, meet for the second time. Yet, now
they cannot merge their aggregated proofs, since D; has a proof for
and D, has a proof for that both contain an attestation proof for
D; and D,. In simulations, we discovered that these intersections frequently
occur in dynamic and disruptive networks (Section 5.4). MACSimple can union
intersecting reports because it stores each proof individually, i.e., unaggregated.
By contrast, advanced aggregation schemes are unable to resolve intersections,
as their aggregates cannot be reverted back into individual proofs. For instance,
protocols that use MAC-based attestation proofs [68] perform an XOR-operation
for aggregation [77]. Hence, intersections cancel each other out upon aggregation,
e.g., D1 and D, would store the (incomplete) aggregate after performing
a XOR-operation at t = 4.

To take advantage from MAC aggregation [77] in SALAD, we propose two
extended MAC aggregation schemes that can handle intersecting attestation
reports. Both schemes require attestation reports to store not only one aggregated
attestation proof and device identifier list, as in MACSimple, but multiple tuples of
attestation proofs and device identifier lists. Consequently, each report stores /
report tuples, where a tuple with index 1 < i <[consists of a single aggregated
MAC rep.proofs; and a device identifier list rep.ids;. Each rep.ids; indicates the
identity of all devices whose attestation proof is aggregated in rep.proofs;.

MACGreedy. Our first MAC-based aggregation scheme, named MACGreedy, aims
at minimizing the storage consumption of attestation reports by aggregating
all MACs in a greedy manner, using a XOR aggregation. More specifically,
MACGreedy attempts to immediately aggregate any report tuple of newly received
reports with all stored report tuples. If a received report tuple can, due to
intersections, not be aggregated with any stored tuple, it is appended as a
new tuple to the stored report. As a result, all report tuples stored in rep are
intersecting and cannot be further aggregated. Moreover, MACGreedy removes all
tuples that are subsets of other tuples, to further reduce the size of the overall
report. Algorithm 5.1 depicts the precise pseudocode for aggregating two reports.
Generating and verifying attestation reports is similar to MACSimple, despite
each tuple in the report must be processed individually. To generate a subset
report of rep that specifically covers certain devices with SliceRep(), MACGreedy
finds a minimum combination of tuples in rep that cover the requested device
identifiers. Unfortunately, finding this combination is an NP-complete problem,
namely, a variation of the minimum set cover problem. In our implementation
(Section 5.4), we solve this problem by initially selecting all tuples that are the
only tuples covering a request device identifier. Afterwards, a greedy heuristic
iteratively selects the tuple that covers the most requested device identifiers, until
all device identifiers are covered by the selected tuples. This approach turned
out to provide sufficient solutions in comparatively short time (Section 5.4).

5.3 ATTESTATION REPORT AGGREGATION

Algorithm 5.1: Pseudocode of AggRep() function in MACGreedy.

1: procedure AggRep(repA; repB)
2: fori=1,2,...,len(repB) do

3: merged <« false
4 fork=1,2,...,len(repA) do
5: if (repB.ids; NrepA.ids;) = @ then
6: repA.proofs, < repA.proofs;, @ repB.proofs;
7: repA.ids; < repA.ids; UrepB.ids;
8: merged < true
o: break
10: if merged = false then
11: repA.proofs; +len(repA) < repB.proofs;
12: 1epA.idSy {jen(repa) < repB.ids;
13: fori=1,2,...,len(repA) do
14: fork=1,2,...,len(repB) do
15: if i # k and repA.ids; C repA.ids; then
16: repA.proofs < repA.proofs \ repA.proofs;
17: repA.ids < repA.ids \ repA.ids;
18: return repA

MACSmart. The objective of our second MAC aggregation scheme, MACSmart,
is to minimize the size of transmitted attestation reports. For this purpose,
MACSmart stores received report tuples separately, and only aggregates (XORs)
them for transmission, which reduces communication costs. We remark that this
approach is noticeably different to storing individual proofs (as in MACSimple),
since transmitted tuples, i.e., also received tuples, are aggregated by the sending
device to the best of its abilities. In detail, AggRep(repA,repB) generates a new
report that contains all tuples of repA and repB. Only when an attestation report
is prepared for transmission with SliceRep(), MACSmart aggregates stored tuples
in an optimal way to cover specific attestation proofs and their device identifiers.
Like in MACGreedy, this requires MACSmart to solve a variation of the set cover
problem. However, in addition, MACSmart must also solve a variation of the
set packing problem, to find an optimal combination of tuples that are non-
intersecting, hence, can be aggregated (in MACGreedy this is redundant as all
stored tuples are intersecting). We implemented a heuristic that is able to solve
this issue in reasonable time on low-end embedded devices (Section 5.4). The
heuristic initially constructs a graph in which tuples are represented as vertices
and all non-intersecting tuples are connected by edges. Then, we employ the
Bron-Kerbosch algorithm [24] to find maximal cliques in the graph. A clique is a
subset of vertices where each vertex is connected to all other vertices by an edge.
Accordingly, each clique in our graph is a set of non-intersecting tuples, hence,
can be aggregated to a single tuple. Our heuristic constructs the final result by

71

72

ATTESTATION OF HIGHLY DYNAMIC AND DISRUPTIVE NETWORKS

iteratively determining the largest (remaining) clique, aggregating its tuples, and
appending the aggregate to the result. Using this approach, MACSmart achieves a
stronger aggregation with fewer intersections than MACGreedy, albeit at a higher
storage overhead. Figure 5.2 demonstrates that MACSmart enables D; and D; to
exchange (D4} respectively D3, at t = 4. When requested for their full report in
t = 4, this would allow D; and D, to assemble the optimal report ,
which contains only a single aggregated proof. At the same time, MACGreedy
requires D; and D, to assemble a report that contains two attestation proofs,
namely, [D1, D>, D3] and [D1, D>, D4l Nevertheless, as shown in t = 5, MACSmart
cannot prevent the arising of intersecting tuples. Hence, with many devices,
transmitted reports still contain evermore tuples that cannot be aggregated.

5.3.3 Trading Security for Performance

MAC Truncation. The extended MAC aggregation schemes presented in the
last section (Section 5.3.2) are able to decrease the communication costs of
MACSimple by up to 40%. Nevertheless, in networks with high dynamics or many
devices, their entailed communication, runtime, or storage costs may still be
too high (Section 5.4). For these cases, we propose that, instead of using the
standard MAC size [68], aggregation schemes truncate MACs to save overhead.
Thereto, we parameterize the aggregation schemes MACSimple(t), MACGreedy(f),
MACSmart(t), which operate like before, but shorten the attestation proofs,
i.e.,, MACs, to t bits. The parameter t is chosen by the network operator O
in each attestation phase. Because certain MAC algorithms are vulnerable to
truncation attacks [147], we suggest to use Hash-based Message Authentication
Codes (HMAC) [92]. Accordingly, a device D; generates its attestation proof
by using the t leftmost bits of an HMAC computed over curpid; with the key
ak; (HMAC(ak;, curpid;)). For security, the HMAC specification recommends to
set t to at least 80 bits [92]. Yet, in the following, we argue that when using
MACSimple(t), a t < 80 bits can be a reasonable choice in many use cases of
attestation.

Security. Due to the authenticated exchange of attestation reports, Advy, is unable
to contribute an attest to any report. Hence, changing t only affects the security
against Advy,,, but not Advg,.

Moreover, devices use their secret attestation key to compute the HMAC,
which is unknown to an adversary. Thus, collision attacks on the HMAC are
irrelevant and only preimage attacks need to be considered. Using an output size
of n bits typically provides n bits security against preimage attacks, as opposed
to n/2 bits against collision attacks (due to birthday attacks). Hence, to provide
a high security level of 128 bits, it is sufficient to set ¢ = 128.

Furthermore, t itself has no influence on the preimage resistance of the HMAC.
Using a low t increases the probability with which Advy,, can successfully forge
the HMAC, but not the probability with which Advy,, can break the preimage

5.3 ATTESTATION REPORT AGGREGATION

t | Forged MACs | Pr[Advy,wins| || Devices | Report Size

1 1 0.5 100 25 bytes

1 10 0.000977 1000 250 bytes
10 1 0.000977 100 138 bytes
10 10 7.89 10731 1000 1375 bytes
20 1 9.54-10~7 100 263 bytes
20 10 6.22-107 1000 | 2625 bytes
80 1 8271072 100 1013 bytes
128 1 294-107% 1000 | 16125 bytes

Table 5.2: Statistical security and size of attestation report for MACSimple(t) with different
truncate parameter ¢ (bits), number of forged MACs from Advy,,, and number
of devices in the network.

resistance, thus, reconstruct attestation keys. In short, Advy,, has no advantage
over guessing an HMAC, which is successful with the probability 1/2".

In MACSimple(t), this probability of successfully forging an attestation proof
only holds for one device in a single run of the attestation phase. Recall that Adv,,
requires significant resources to physically compromise a few devices. Therefore,
in practice, it may be enough to prevent Advj,, from faking a healthy system
state for many devices, and/or for the same device over multiple attestation
rounds, in order to render physical attacks uneconomical and deter Advy,,. This
is especially the case when O only needs to determine whether the majority
of devices are in a healthy state. However, the probability of success for Advy,,
exponentially decreases with the number of forged attestation proofs and rounds,
rapidly becoming negligible. Thus, the goal of preventing any form of scalable
attacks is achieved even for very low ¢, e.g., t = 20. Table 5.2 provides precise
numbers for different configurations. Note that in MACGreedy and MACSmart,
truncated MACs have more severe security implications. This is due to their
MAC aggregation, which allows Advy,, to successfully fake an attestation proof
for multiple devices by forging only a single MAC.

Furthermore, we would like to emphasize that the attestation phase can only be
initiated and verified by O. Advj,, has no indications whether a forged attestation
report is valid or invalid, before handing it to O. However, if the verification
of the attestation report fails, O can take actions like increasing ¢ or physically
inspecting devices in the network to look for manipulations. For this reason,
forging an attestation proof may not be required to be as hard as breaking
common cryptographic primitives.

In practice, t needs to be adjusted to the particular use case. Yet, due to the
provided reasons as well as the security and performance insights from Table 5.2
and our evaluation (Section 5.4), we observe that MACSimple(20) provides an

73

74

ATTESTATION OF HIGHLY DYNAMIC AND DISRUPTIVE NETWORKS

Scheme Operation Runtime

ed25519 GenKey() 18.26 ms
KeyExchange() 48.84 ms
VerSig(32B) 50.67 ms

SHA-256 Hash(32 B) 0.08 ms
Hash(32 kB) 40.02 MS

SHA-256 HMAC GenMAC/VerMAC(32B) 0.23 ms
GenMAC/VerMAC(32kB) 39.86 ms

Table 5.3: Runtime of cryptographic algorithms on the Stellaris board.

adequate security for typical use cases while increasing performance by more
than an order of magnitude.

5.4 EVALUATION

In this section, we first describe our implementation and measurements (Sec-
tion 5.4.1). Then, we present our simulation setup and the results of our network
simulations (Section 5.4.2).

5.4.1 Implementation and Measurements

Implementation. As a target platform for our implementation, we employed
three Stellaris LM4F120H5QR microcontrollers from Texas Instruments that were
equipped with CC2530 BosterPacks from Anaren for ZigBee wireless network-
ing capabilities in the 2.4 GHz band. The Stellaris microcontrollers feature an
80 MHz ARM Cortex-M4F core, 256 kB flash, and 32 kB SRAM memory. Fur-
thermore, they provide the minimal hardware properties required for remote
attestation [127]. Cryptographic primitives were implemented based on Tiny-
Crypt [69] and Supercop [17]. In detail, we used SHA-256 as a cryptographic hash
function, a Keyed-Hash Message Authentication Code (HMAC) based on SHA-
256 as a MAC and KDF, and Elliptic Curve Diffie-Hellman (ECDH) as well as
Edwards-Curve Digital Signature Algorithm (EdDSA) based on Curve25519 [18]
for key exchanges and digital signatures.

For the implementation of our secure code update scheme (Section 4.2) and
SCAPI (Chapter 6), we also employed the Stellaris as a target platform. Nev-
ertheless, compared to the implementation of our secure code update scheme
and SCAPI, we switched from SHA-512 with Supercop [17] to SHA-256 with
TinyCrypt [69], which increased the performance of hash computations, as shown
in the following.

5.4 EVALUATION

100 Devices MACSimple MACGreedy MACSmart
AggRep() 0.18 ms 1.91 mS 0.64 ms
SliceRep() 0.09 Ms 2.59 ms 2.71 ms

500 Devices MACSimple MACGreedy MACSmart
AggRep() 0.79 ms 29.89 ms 5.72 ms
SliceRep() 0.42 ms 24.01 ms 20.07 Ms
1000 Devices MACSimple MACGreedy MACSmart
AggRep() 2.55 ms 76.56 ms 13.83 ms
SliceRep() 1.25 ms 52.05 ms 45.75 ms
1500 Devices MACSimple MACGreedy MACSmart
AggRep() 4.42 ms 137.35 ms 20.44 MS
SliceRep() 2.17 ms 94.40 ms 73.33 ms

Table 5.4: Runtime of aggregation schemes on the Stellaris board.

Runtime Measurements. Table 5.3 shows runtime measurements of the imple-
mented cryptographic algorithms used in SALAD. All operations that devices
frequently perform during attestation, that is, authenticating and verifying mes-
sages, consume very little runtime (< 1 ms). Only signature verification (to verify
O’s attestation request), attesting the device’s software (hash over complete
firmware), and performing a key exchange (introducing a new device to the
network), consume more runtime, with around 50 ms per operation, which is
still practical.

The generation of reports (GenRep()) comes at negligible cost, but their aggre-
gation (AggRep()) and partitioning (SliceRep()) can be computationally expensive,
depending on the used aggregation scheme. We experimentally evaluated the
runtimes of all proposed aggregation schemes in networks of different sizes.
Table 5.4 illustrates averaged runtime measurements of the procedures AggRep()
and SliceRep() for 100, 500, 1000, and 1500 devices. The table shows that MACSim-
ple provides the best runtime. This is because only comparatively inexpensive
operations are required (cf. binary search is its most expensive operation). By con-
trast, MACGreedy and MACSmart perform complex algorithmic tasks (Section 5.3).
This involves solving an NP-complete problem for which we implemented a
fast greedy heuristic. AggRep() is faster in MACSmart than in MACGreedy be-
cause MACGreedy attempts to aggregate all report tuples immediately, whereas
MACSmart only aggregates report tuples in SliceRep().

Network Measurements. In Section 4.2.3 we already showed network measure-
ments for Stellaris LM4F120H5QR microcontrollers that were equipped with
CC2530 BosterPacks from Anaren for ZigBee wireless networking capabilities.

75

76

ATTESTATION OF HIGHLY DYNAMIC AND DISRUPTIVE NETWORKS

Simple(256) —— Greedy(256) —— Smart(256) Simple(20) = = =
Simple(128) —-=—- Greedy(128) —-—- Smart(128) Simple(1)
T T T T
14 -
12
10

Communication (kB)

o N A OO

Figure 5.3: Average communication costs per device in networks of different sizes and
with low (1-2 m/s) network dynamics.

5.4.2 Simulation Setup and Results

Simulation Setup. To simulate SALAD in large networks, we used the OM-
NeT++ [146] event simulator. We implemented SALAD at the application layer
and configured delays based on our runtime and network measurements. On
lower network layers, we applied a simplified communication model that enables
unimpaired communication whenever devices are within communication range.
Two devices were only allowed to communicate half-duplex and while other
devices within reach were inactive. In this respect, the granularity of our com-
munication model lies between typical models used for the simulation of sparse
(DTN) and dense (MANET) network topologies. This allows us to provide more
realistic results than DTN simulators [80] while being able to scale simulations
to a few thousands devices, which is infeasible with MANET simulators [21].
In general, we set the firmware size that is attested to 30 kB and the device
communication range to 50m, being half of the distance specified in ZigBee. A
simulation run starts with the network operator sending an attestation initiation
to the first device and ends with all devices sharing the same attestation result.
Each data point represents the average of 8 simulations with different seed
values. At the start of each simulation, devices are randomly deployed in a
5.000m X 5.000m area and then move according to the random waypoint mobility
model, which is one of the most popular mobility models to evaluate DTN
and MANETs. Consequently, devices repeatedly select a random destination
within the area and then move towards this destination at a specified speed.
In contrast to actual mobility traces that enable to examine the performance
in specific application scenarios, synthetic mobility models, like the random
waypoint mobility model, are well-suited to assess the general performance. We
acknowledge that the random waypoint mobility model leads to a nonuniform
spatial distribution of devices in the area [20], where devices are more likely
to be located in the center of the area, as opposed to its edges. Nevertheless,

5.4 EVALUATION

Simple(256) —— Smart(256) Simple(20) - - -
Simple(128) ==~ Smart(128) Simple(1)

250

200

150

100

50

Communication (kB)

0
1000 2000 3000

Nodes
(a) Large networks with low dynamics (1-2 m/s).

250
200
150
100

50

Communication (kB)

1000 2000 3000
Nodes
(b) Large networks with high dynamics (10-20 m/s).

Figure 5.4: Average communication costs per device in networks of different sizes and
with low (1-2 m/s) or high (10-20 m/s) network dynamics.

SALAD is free from assumptions on the spatial uniformity of devices. Thus,
for the general conclusions that can be derived from simulations it is irrelevant
whether the random waypoint or a more uniform mobility model is used.

Communication Costs. Figure 5.3 and 5.4 depict the average application layer
traffic per device (sent and received) in medium-sized networks with up to 250
devices (Figure 5.3) and larger networks with up to 3500 devices (Figure 5.4). The
simulation shows that communication costs are strongly dependent on the used
aggregation scheme and its parameters. This is because communication during
attestation is dominated by the exchange of attestation reports (1msg.p), which
are represented according to the selected aggregation scheme (Section 5.3).

In medium-sized networks (Figure 5.3), MACGreedy and MACSmart outper-
form MACSimple by requiring considerably less communication. In detail, when
SHA256-HMAC s are not truncated, MACSmart reduces the communication costs
of MACSimple by 42.2% with 50 devices or 31.8% with 200 devices. In general,
MACGreedy performs worse than MACSmart, as its aggregation strategy is opti-
mized for storage rather than communication.

77

78

ATTESTATION OF HIGHLY DYNAMIC AND DISRUPTIVE NETWORKS

1.00

c T L y T T
9 f(—r:r ! I
g 07> I | : MACSimple (256) — | |
T 0.50 I | MACGreedy (256) = |
5 | : MACSmart (256)
8 0.25 | !
g 000 | | : 1 | | | | |

0 100 200 300 400 500 600 700 800
c 100 — - . . .
o ! |
g 0> A | MACGreedy (128) — | |
T 050) i i MACSIimple (128) == |
5 1 | MACSmart (128)
2 025) | | -
g 0.00 X 1 | 1 | | | |

0 20 40 60 80 100 120
c 1.00 T T T T T T T
S |
T 075 F " i
2 0.50 | MACSimple (20) —— | |
2 MACSimple (1)
q% 0.25 : .
o 0.00 1 | | | 1 | | |

0 2 4 6 8 10 12 14

Time (min)

Figure 5.5: Fraction of final report that an average device stores at a given time in a
network with 3000 devices and high dynamics (device speed 10-20 m/s).
The average time till the first/last network device stores the final report is
indicated by vertical dotted/solid lines.

A very efficient way to further reduce communication cost is to truncate the
SHA256-HMAC, which is indicated for all schemes by parameter t < 256. Recall
that the chances of Advy,, to successfully forge an attestation report increases with
a decreasing t. Nevertheless, in Section 5.3.3, we showed that MACSimple(20) pro-
vides sulfficient security for typical attestation use cases (but not MACGreedy(20)
or MACSmart(20)). We observe that communication costs can be reduced by
almost a factor of two for MACSmart(128) and MACGreedy(128) and by up to one
order of magnitude for MACSimple(20). Since MACSimple communicates MACs
in an unaggregated form, it benefits more from truncated MACs than MACSmart
and MACGreedy, as shown by t = 128 in Figure 5.3 and 5.4.

Investigating the more promising schemes MACSimple and MACSmart in larger
networks, we see that MACSmart outperforms MACSimple for the standard MAC
size, but for all truncation parameters t € {1,20,128}, MACSimple entails less
communication. We also observe that significantly more communication is re-
quired with high (Figure 5.4b) than with low network dynamics (Figure 5.4a).
Reason for this are connection breaks, which occur more frequently with high
dynamics. Whenever devices communicate but are unable to exchange an at-
testation report successfully due to connection disruptions, communication is
wasted. The probability that a report exchange fails increases when devices move
fast (high dynamics) and attestation reports are big (large networks). This is
why aggregation techniques that lead to smaller reports suffer less from high
network dynamics. Consequently, as shown in Figure 5.4, MACSimple(1) and

5.4 EVALUATION

MACSmart(256) MACSmart(128) MACSimple(20) = = =
MACSimple(256) === MACGreedy(128) == = = MACSimple(1)
MACGreedy(256) == MACSimple(128) == =
100 T T T T T
N 80
[oa)
X
© 60
o
o
g 40
Y— K
o
a 20 |/
0
500 1000 1500 2000 2500 3000
Nodes

Figure 5.6: Average per device storage consumption of attestation reports.

MACSimple(20) perform only slightly worse in high, compared with low, network
dynamics. We also varied the network density by enlarging or reducing the
deployment area but found no impact on the communication costs.

Attestation Runtime. In smaller networks, we identified that the selected ag-
gregation scheme has only little influence on the attestation runtime and com-
munication or computational optimizations will not be able to further reduce
the runtime. This is because SALAD already pursues the fastest approach of
achieving a common attestation result on all devices, as attestation proofs are
propagated in an epidemic manner. Instead, we found the major bottleneck for
the attestation runtime in the lack of communication opportunities between
devices. Thus, in smaller networks, attestation runtimes are heavily dependent
on the underlying mobility model.

Nevertheless, in highly dynamic networks with many devices, attestation re-
ports become large and devices may have too little contact time to successfully
exchange their reports. In these networks, attestation runtime can be significantly
improved by using an aggregation scheme that leads to more compact reports,
thereby, increases the probability of success for report exchanges. Figure 5.5
illustrates this effect in a network with 3000 devices and high network dynamics.
The figure depicts the average number of devices, measured as a fraction of
all devices, that contributed to the report at a particular time. As shown, com-
pared with the basic aggregation scheme MACSimple, attestation runtime can
be decreased by more than an order of magnitude using MACSmart, or almost
two orders of magnitude when truncating MACs with MACSimple(20). Thus, in
large dynamic networks, only MACSmart(128) and MACSimple(t < 20) achieve a
complete attestation with a practical runtime in the range of 10 to 20 minutes. If
it is sufficient to merely verify a fraction of all devices, the attestation result can
be obtained much earlier. For instance, the majority of devices can be verified in
less than one third of the time required to verify all devices.

79

8o

ATTESTATION OF HIGHLY DYNAMIC AND DISRUPTIVE NETWORKS

Storage. The vast majority of storage is consumed by channel keys (ck) and
attestation reports. Whereas channel keys consume 161 bytes on each device,
with n being the number of network devices, the storage consumption of attes-
tation reports depends on the selected aggregation scheme. Figure 5.6 shows
the storage consumption of the final attestation report on an average device in
the network. It illustrates that our extended schemes, MACGreedy and MACSmart
consume less storage than MACSimple in networks up to roughly 600 devices
when truncating MACs to 128 bits, or in all networks with untruncated MACs.
Although MACGreedy was designed with storage consumption in mind, it unfor-
tunately performs in most cases only a little better than MACSmart. Again, by
truncating MACs, the overhead can be radically reduced, for instance, by more
than two orders of magnitude when comparing MACSimple(256) with MACSim-
ple(1). Note that transmitted reports are much smaller than stored reports, as
SliceRep() ensures that only fractions of the actual report are transmitted during
attestation.

Summary. Our evaluation revealed that the selected aggregation scheme has a
big impact on the attestation phase. Using MACSmart, the communication and
runtime overhead can be reduced by up to 40% and 95%, compared with the basic
scheme MACSimple. However, it is even more efficient to apply MACSimple(t) and
truncate MACs to an output length of ¢ < 128 bits. For instance, MACSimple(20),
provides a security level that is suitable for typical attestation use cases while
reducing communication, runtime, and storage costs by more than an order
of magnitude. This enables SALAD to be a secure and lightweight attestation
scheme for highly dynamic and disruptive networks.

5.5 SUMMARY

In this chapter, we presented SALAD, a collective attestation protocol for highly
dynamic and disruptive networks. SALAD pursues a novel distributed approach,
in which all devices exchange and accumulate proofs that attest the trustwor-
thiness of devices in the network. This way, SALAD performs well in highly
dynamic and disruptive networks, enables the verifier to obtain the attestation re-
sult from any network device, increases resilience to denial of service attacks, and
also mitigates physical attacks. To reduce communication costs and attestation
runtime, we presented aggregation schemes that compress the size of exchanged
attestation proofs. Compared with a basic solution, our aggregation schemes are
able to reduce the communication and runtime overhead by 40%, resp. 90%, for
a very high security level, and by more than 90%, resp. 98%, for a security level
sufficient for practical use cases. We demonstrated the security of SALAD and
evaluated our protocol in network simulations based on measurements that we
conducted on low-end embedded devices.

ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

Traditional attestation protocols only protect against software attacks and con-
sider physical attacks to be out of scope. Due to this reason, an adversary is able
to corrupt their attestation results after physically tampering with the hardware
of prover devices. Recently proposed protocols combine collective attestation
with absence detection to detect software and physical attacks. However, these
protocols suffer from limited scalability and robustness, which impairs their
applicability in practice. In this chapter, we present a scalable attestation protocol
that detects software and physical attacks. Based on the assumption that physical
attacks require an adversary to capture and disable devices for a noticeable
amount of time, our protocol identifies devices with compromised hardware
and software. Compared to existing solutions, our protocol reduces commu-
nication complexity and runtimes by orders of magnitude, precisely identifies
compromised devices, and is robust against failures or network disruptions. We
demonstrate that our protocol is highly efficient in well-connected networks and
operates robust in very dynamic network topologies.

Remark. Parts of this chapter have been published in [88].

6.1 MOTIVATION AND CONTRIBUTION

Embedded systems are frequently used in applications where they are publicly
accessible, left unattended, and deployed in large quantities. These circumstances
allow an adversary to physically approach and tamper with the hardware of
embedded devices much easier than with the hardware of traditional computer
systems. Collective attestation protocols (Section 2.1.2), which enable the efficient
attestation of entire networks, commonly only protect against software attacks [7,
11, 28, 44, 65, 67]. Thus, by physically compromising devices, an adversary can
corrupt their attestation results and fake a healthy system state for devices that
are actually in a compromised state.

DARPA [68] represents the first approach to solve this problem by combining
existing scalable attestation approaches [7, 11] with absence detection [32] to
detect both software and physical attacks. Absence detection builds on the
assumption that an adversary, who physically tampers with a device, must
temporarily take the device offline for a noticeable amount of time, e.g., to
disassemble the device and extract secret keys [14]. To detect offline and thus
physically compromised devices, each device periodically emits a heartbeat
that needs to be received, verified, and logged by every other device in the
network. Although a functional solution to the problem, the protocol suffers from
several shortcomings. First, the amount of exchanged messages per periodically

81

82

[

ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

executed heartbeat period scales quadratically with the number of devices in the
network. This causes scalability issues in large networks with respect to network
communication, energy consumption, and runtime performance. Furthermore,
the protocol is error-prone, since a single defective transmission of a heartbeat
suffices to cause a false positive, where a healthy device is mistakenly regarded
as compromised. Aggravating this, the protocol is only able to attest the state of
the overall network and cannot identify particular compromised devices. Hence,
a single false positive causes the entire network to be mistakenly regarded as
compromised. Finally, the protocol relies on the assumption that the network
topology is static and connected, which is a strong limitation.

Contribution. In this chapter, we present SCAP], a scalable attestation protocol
that detects software and physical attacks. To detect physical tampering, SCAPI
builds on the established assumption that an adversary needs to take a device
offline to physically tamper with it [32, 33, 65, 68]. During protocol execution,
healthy prover devices maintain a secret communication key that compromised
devices are unable to obtain, which excludes compromised devices from the
network. This approach is similar to our secure code update scheme (Section 4.2),
where the key is, however, only dependent on the software integrity of prover
devices. By contrast, in SCAPI, the key is dependent on the hardware integrity,
whereas the software integrity is determined using existing scalable software
attestation approaches [7, 11].

In detail, all physically healthy devices share a common session key that is
periodically regenerated by a leader device and propagated in the network. To
transmit the newest session key from one device to the other, sender and receiver
must mutually authenticate themselves with the previous session key. Since a
device that is under physical attack has to be absent for at least one period, it
will miss this period’s session key and thus be unable to obtain any further keys.
To prevent collusion between compromised devices, session keys are stored in
lightweight secure hardware and are transmitted encrypted via secure channels.
During the actual attestation, devices that fail to authenticate with the newest
session key are regarded as physically compromised, whereas devices with
a compromised software are detected based on existing software attestation
techniques. In case of network partitioning or outages of leader devices, new
leader devices are determined in the network, which take over the task of
previous leaders. We show the security of our protocol against an adversary who
compromises all but one device in the network and evaluate its scalability and
robustness. Our results demonstrate that our protocol is highly efficient in well-
connected networks and operates robust in very dynamic network topologies.

As a result, SCAPI provides several improvements over DARPA [68]. First,
it reduces the number of transmitted messages per time period from O(n?) to
O(n), where n denotes the total number of devices in the network®. In this way,

In fact, when detecting physically compromised devices through their absence, O(n)
transmitted messages per time period is the best possible solution, since each device
must at least send or receive one message.

6.2 SCAPI: SCALABLE ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

SCAPI achieves scalability to millions of devices. Second, SCAPI is more robust
against network delays by relying on a unidirectional 1-to-n delay-tolerant link in
each session period, in contrast to an n-to-n continuous link. In addition, SCAPI
can recover from device outages and network partitioning, which increases
robustness against failures or targeted DoS attacks. Moreover, we present an
extended version of SCAPI that further enhances delay robustness by requiring
devices to contact their neighboring devices only once, at any time of the session
period. Finally, SCAPI can precisely identify devices whose hardware and/or
software is compromised, if less than half of all devices in the network are
compromised.

Outline. In Section 6.2, we present SCAPI, our scalable attestation protocol to
detect software and physical attacks. In Section 6.3, we extend the protocol to
improve its robustness in dynamic network topologies. In Section 6.4, we evaluate
the performance of SCAPI. Section 6.5 concludes this chapter.

6.2 SCAPI: SCALABLE ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

SCAPI consists of three different phases. In the deployment phase (Section 6.2.1), the
trusted network operator O initializes each device once, before the first operation
of the network. The session key update phase (Section 6.2.2) is periodically executed
during the operation of the network. In this phase, all physically uncompromised
devices maintain a secret group key, the session key. We will show how the session
key is periodically regenerated and propagated in the network. In addition, we
will demonstrate that physically compromised devices are unable to obtain a
valid session key. In the attestation phase (Section 6.2.3), O verifies the software
and hardware integrity of all devices in the network and obtains a report that
exhibits either the overall or the precise network state. As opposed to all our
attestation protocols presented in previous chapters, SCAPI is secure against a
physical adversary Advy,, (Section 2.4).

6.2.1 Deployment Phase

Preliminaries. We discretize time into non-overlapping periods t € {1,2,3, ...}
of a fixed session length 6. To protect against physical attacks of length J,
(Section 2.4), we require 6 < §,/2. The starting times of each time period are
referenced with Py, P,, P3, The real time can be read by any device from
a reliable read only clock (Section 2.3) using Time(), which for simplicity is
assumed to be synchronized between all devices. Nevertheless, clock drifts could
be tolerated by periodically synchronizing device clocks and considering the
maximum allowed clock skew in é,. Moreover, each device keeps track of the
time period ¢, running from time P; until P;;, in which the device needs to
update its session key.

83

84

ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

Acronym Usage

) length of time/session period

t time pointer for next session key update

i unique device identifier of D;

skeyr session key valid in current time period
Skpext session key valid in next time period

ckij channel key between D; and D;

ak; attestation key to generate individual attests
dk; device key for authentication with O

Table 6.1: Overview of secrets stored in the TEE of a device D;.

Enrollment. In the enrollment phase, the network operator O initializes the
TEE (Section 2.3) of all devices with several secrets. First, devices store two
initial session keys sk, and sky.y¢, which function as a group secret between all
healthy devices. Second, each device D; is equipped with two device-dependent
symmetric keys dk;, used during attestation to verify the authenticity of O,
and ak;, used to generate device attests. In addition, each device stores t, a
time pointer to the next session key update period, and its own unique device
identifier i. Furthermore, O equips each device with the functionality to perform
the session key update (Section 6.2.2) and attestation phase (Section 6.2.3). Any
protocol code, except for network message processing, is stored and executed
inside the TEE. For convenience, we assume an initial enrollment of all devices.
However, O may enroll a new device at any point in time by first obtaining sk,
and skyeyt from the network and then initializing the new device as described
above. Table 6.1 provides a summary of relevant definitions.

6.2.2 Session Key Update Phase

Basic Idea. The session key update phase is the core of SCAPL. It excludes de-
vices from the network that are offline for an entire time period and, hence, are
assumed to be physically compromised. For this purpose, a session key sk_,,.,
shared by all healthy devices, is periodically updated in a way that physically
compromised devices are unable to obtain the newest sk_,,. In every time pe-
riod, a so-called leader device generates a new secret session key sk, .. for the
subsequent time period, which is propagated in the network. Propagating sk, .,
requires sender and receiver device to authenticate themselves with the current
session key sk_, .. At the start of every new time period, devices overwrite sk
with sk, ., and the device leader generates and distributes a new sk, ,.,.

A device that has been physically tampered with is offline for > J, and
consequently misses the transmission of sk, , in at least one time period ¢,, as

cur

6.2 SCAPI: SCALABLE ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

Sender Device D; Receiver Device D;

r-T TS T TS TS TS TS T TS TS TS TS T T T a
|
|

Execute in TEE: @

jifi=1and P, < Time() < Ppyq :
skeur <= SKnext

I

I

I

! k | hl

| sknext +5 {0, 1} | Execute in TEE: @

I I I

: fetrd msg,; e : if P < Time() < P, : :

i Broadcast(msg,,,,,) — = 1 - |

Lo _______ a1 ! k < sk !

ety 7 msg i :n;w : nALEtnc(sk ® ck;j; 0) i

Execute in TEE: 3 0y B T AENCSKar WK B)
if P <Ti P : st -
if Py < Time() < P i Execute in TEE: @

msgy |
— — if P < Tlme() <Py

I

! skyext < ADecOrAbort(skeyr @ ckij; msg;)
ottt

i Broadcast(msg,,,,,)

I
|
I
i if ADecOrAbort(skcur © ckij; msgreq) =0:
I
! msgg, < AEnc(skeur & ckij; Skyext)

Figure 6.1: Session key transmission protocol between a sender D; and a receiver D;
after channel key establishment, i.e., both devices share a channel key ck;;
and know their identities.

dq > 26. As a result, the compromised device does not possess a valid sk, for
ts + 1 and is also unable to obtain a valid session key for any subsequent time
period t, 4 2,t, + 3, Thus, even when compromising many devices, Advy,, is
only able to obtain session keys of past time periods, which are of no use, as
their validity already expired. Since SCAPI secures any communication using
the current session key sk, physically compromised devices are effectively
excluded from the network, in particular during the execution of the attestation
phase (Section 6.2.3). In the following, we describe the session key transmission
protocol, formalized in Figure 6.1, in detail. It is run between two neighboring

devices to transfer the session key from one device to the other.

Session Key Transmission Protocol. For simplicity, we henceforth assume that
two neighboring devices have already established a unique symmetric channel
key ck;; that is stored in their TEEs. Pairwise channel keys between devices can
either be preinstalled in the enrollment phase or established on demand when
devices communicate with each other for the first time. In the latter case, devices
perform a key exchange that is authenticated with the current session key sk_,
to prevent man-in-the-middle attacks [73].

The emission of the new session key in every time period is initialized by the

leader device D;, which is the first device in the network (see @D in Figure 6.1).

As soon as the leader observes that the real time Time() has reached the start
of a new time period (P; < Time() < P;11), the leader first updates the session

key of the current time period sk, to the most recently exchanged key skyext.

We remark that there is no need to store past keys, which could be denoted
as sky,sk,, sks, ..., since only the current and next session key are relevant for
any device. After updating the current session key, the leader generates a new

85

86

ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

random session key sk, for the subsequent period ¢ + 1 and increments its time
pointer t by one. Consequently, the time period described by the pointer is now
ahead of the real time P; > Time(). This indicates that a device is in possession
of a valid session key for the upcoming time period. Next, the leader informs its
neighbors about the new session key with a message msg, . .

On receiving msg, ., from any device D;, a device D; will enter its TEE and
check whether the next time period has been reached (see). If this is the
case, D; will update its current session key to the previously communicated one.
Afterwards, D; encrypts and authenticates (AEnc()) a fixed string, e.g., ‘0" with
the current session key sk, that is XOR-ed with the channel key ck;; shared by
both devices. The result is sent from D; to D; in msgyeg-

Next, D; verifies the correctness of msg, from D; (see ®). A successful
authenticated decryption (ADecOrAbort()) shows D; that D; is in possession of
the current session key, and thus physically uncompromised. Only then, D;
answers with a message msg,, containing the next session key sky,yt, which is
also authenticated and encrypted with sk.,, XOR-ed with ck;;. Message msg_, is
a good example to emphasize the necessity of the channel key ck;;. In this case,
ckij, only known to D; and D;, prevents Advy,, from obtaining the newest session
key. If ck;; is not used to encrypt msg,;, Advy,, could gradually decrypt recorded
msg,, messages with an old (expired) session key that Advj, obtained from a
third physically compromised D4, and finally decrypt and obtain the newest
session key.

On receiving msgg, D; performs an authenticated decryption of msgg. If it
succeeds, D]- stores the new session key as skyyx¢, increments its time period
pointer, and announces the new session key to its neighbors with msg, . = (see
@). Neighboring devices of D; that have not yet received the newest session key
then perform the session key transmission protocol with D;. This time D; acts
as the sender and the particular neighboring device as the receiver. Figure 6.2a
illustrates the session update phase in a network with 6 healthy devices and one
adversarial device D4 that was physically compromised in time period t = 2.

We note that the update of the session key relies on the availability of the
leader device, which constitutes a single point of failure. In Section 6.3, we extend
the protocol to improve its robustness against device outages, network delays
and partitioning, or targeted DoS attacks. Furthermore, this as well as all further
SCAPI protocols are presented in a simplified way for reasons of clarification.
In practice, message types must be authenticated and timeouts must prevent
devices from hanging during protocol execution upon errors.

6.2.3 Attestation Phase

Basic Idea. The attestation phase allows the network operator O to verify the
integrity of the software and hardware of all network devices. To initiate the
attestation phase, O connects to an arbitrary device and sends an attestation
request, which is then propagated in the network and answered by all devices

6.2 SCAPI: SCALABLE ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

communication link MSOnew 44
g Y e [P
skq gDy =— D; i)
sko = SKcur Tt MSQPreq l ‘;',-:"'”/
Py
) sk3 = sk next
R Z =
/SN /RN 75N
't D5 3 D5 4 1D, 3
;.’_—__‘,, ;.,:;f,’/ ;.,:;f,’/
MSInew

.........

(a) Session key update phase: All devices store the initial session key sk; that was used to secure
the exchange of sk,. Subsequently, sk, is used to exchange the next session key sk, for the
upcoming time period ¢ = 3. Such an exchange is illustrated between D4 and Dg. We observe
that D4 was physically compromised in time period ¢t = 2 and thus did not receive sk,.
Consequently, D 4 is unable to obtain sky or any following session key.

=== secure channel (sk¢yr®ck) .=, RN
<2 attestation report D, i 1 D, b

healthy:
1,2,3
4,5,6

(b) Attestation phase: The attestation request from O was forwarded to all devices that were in
possession of the current session key sk;. D 4’s attest is not included in the attestation report,
as Dy is excluded from all communication in the attestation protocol. Using a spanning tree
topology, attestation reports are propagated back to O and aggregated at each hop.

Figure 6.2: In Figure 6.2a a session key update phase is illustrated for 7 devices in time
period ¢t = 2. In Figure 6.2b, the same network is illustrated in time period
t = 3 while answering an attestation request from O.

with an attestation report. Emitting an attestation request, O selects to verify
either the overall or the precise network state. The former is secure against an
adversary who compromises all but one device (A = 1, see Section 2.4), but only
outputs a Boolean result, namely whether all devices are healthy or not. The latter
precisely identifies compromised devices by id. Yet, it relies on the assumption
that at least half of all devices in the network are healthy, i.e., A > n/2, with n
being the total number of prover devices. Propagating the attestation request
through the network arranges a spanning tree whose root is O. This enables
efficient transmission and aggregation of attestation reports along the spanning
tree back to O [7, 11, 68].

Instead of relying on a tree-based approach, SCAPI can also apply the dis-
tributed approach of SALAD (Chapter 5). Building on SALAD enables SCAPI to

87

88

ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

perform the attestation phase in highly dynamic and disruptive networks, albeit
at the cost of scalability and efficiency. To this end, only a minor modification
to the attestation phase of SALAD is necessary: Any communication between
two devices D; and D; must be authenticated and encrypted using the current
session key sk.,, XOR-ed with the channel key ck;; shared by both devices. Since
physically compromised devices lack sk, this prevents Adv,, from participating
in the attestation phase, so that O receives a report that only contains healthy
devices.

In the following, we first introduce essential building blocks, namely, the
verification of the software integrity (VerifySW), and the generation (GenRep),
aggregation (MergeRep), and verification (VerRep) of attestation reports. Although
function names for handling attestation reports are the same in SCAPI and
SALAD (Chapter 5), their implementations are different. This is because SCAPI
uses a tree-based aggregation approach, whereas SALAD relies on a distributed
approach. After introducing all building blocks, we describe the attestation
protocol, which is formalized in Figure 6.3. Figure 6.2b illustrates the attestation
phase in a network with 6 healthy devices and one adversary device D4 that
was physically compromised.

Verification of Software Integrity. When initiating an attestation of the network,
O defines a set of valid software states vss in the attestation request. Vss specifies
all software configurations that are permitted by O, e.g., because they repre-
sent the correct and most recent software states. Devices implement a function
VerifySW() in their TEE that takes vss as an argument. Internally, VerifySW()
measures the local software configuration (vss could contain a description what
should be measured) and generates a measurement that is compared to the
respective expected measurement value defined by O in vss. VerifySW() returns
true if both values match, and false otherwise. We deliberately abstract from any
implementation details for the underlying integrity measurement mechanism to
support a wide range of attestation mechanisms.

During the execution of the attestation protocol, each device determines its
software state. Devices being in an untrustworthy software state (VerifySW(vss)
= false) immediately abort the attestation phase, such that O receives a report
that exclusively contains healthy devices.

Attestation Reports. During attestation, each healthy device generates an attest,
which proves that the device is in a healthy software and hardware state. A
device D; generates its attest by computing an HMAC with its attestation key
ak; over an initial challenge ts from O. An attestation report condenses attests of
one or multiple devices. It consists of a secure aggregate and, if O verifies the
precise network state, a device description. The aggregate contains the attests of all
devices that contributed to the attestation report. A secure aggregate of multiple
attests is computed by XOR-ing all attests [77]. The device description lists all
devices whose attest is in the aggregate and is only required when O requests
for the precise network state. To minimize the size of the device description, it
can be represented in three different ways: as a list of device ids present in the

6.2 SCAPI: SCALABLE ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

Network Operator O Device D; Devices D}, Dy,

@ MSgry Executein TEE: @

vss <— valid sw states I

type « attestation type i tag < ADecOrAbort(dk;; msg,,,)

ts < Time() + € | vss||typel|ts < tag e B
tag < vss||type]|ts 1if Time() < ts and VerifySW(vss) : | Execute in TEE: 3

MS8att | !
— 1 tag < ADecOrAbort(ske,r ® ckij; msg,,.) i

ivssthpths « tag i
1if Time() < ts and VerifySW(vss) : |
i attest < HMAC(ak;; ts) i
i repj < GenRep(attest; type) i
I I
I I

attest < HMAC(ak;; ts)

msg,,, < AEnc(dk;; tag) i
' rep; + GenRep(attest; type)
|

i msg,;; < AEnC(SkCM b Ck,']; ttlg)J

! Execute in TEE: @ !

I I
i rep;j < ADec(skeur @ ckij; msg,,,) |
|

|

i7ep; + MergeRep(rep;; rep;)
L

i msg,,, < AEnc(skeur ® ckij; repj)

| Execute in TEE: ® | MS8au
| | ... D proceeds like D;, see above ...
1repy < ADec(skeur & cki; msgn’p) omsg,, kP]

PR

! |
1 rep; <— MergeRep(rep;; repy)
msgV€5 : .
®: MG AEnc(dk;; rep;)

r <= ADecOrAbort(dk;; m5gres)
returnVerRep(7; ts)

Figure 6.3: Illustration of the attestation protocol after secure channel establishment, i.e.,
all devices share a channel key ck and know their identities.

aggregate, as a list of ids not present in the aggregate, or as an n-bit vector where
a one at position k indicates that Dy is in the aggregate. An attestation report is
generated by the function GenRep(), which takes as input the attest of a device
and the attestation type (overall or precise state). Multiple attestation reports are
aggregated by the function MergeRep(), which merges all device descriptions (if
available) and XORs all attests.

O is able to verify an attestation report by passing the report and the initial
challenge fs to the function VerRep(). It recomputes the attests for all devices,
whose ids are contained in the device description. Given no description, O
recomputes the attests for all devices. If the recomputed aggregate equals the
reported aggregate and if at least n1/2 attests are included in the report, then
the report is assumed to be valid. Only then, all attested devices are assumed
to be healthy and VerRep() returns a bit vector, where a zero/one at position k
indicates that Dy is in a compromised/healthy state.

Attestation Protocol. Initially, the network operator O connects to a device D;
and emits an attestation request msg.; (see D in Figure 6.3). The request is
authenticated and encrypted with the device key dk;, known only to D; and O,
and contains all valid software states vss that are permitted by O. In addition, the
request comprises the attestation type, i.e., overall or precise network attestation,
and a timestamp ts that is dated in the future and serves two purposes: (1) as an
expiry date (Time() + €) for the attestation request, and (2) as a challenge for the
computation of individual device attests.

89

90

ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

Next, D; verifies the authenticity and freshness of the attestation request to
prevent Advy,, from performing network-wide denial of service attacks (see).
Furthermore, D; verifies whether it is in a trustworthy software state by passing
vss to VerifySW(). If all checks pass, D; generates its individual attestation report
rep;, which initially only contains D;’s own attest. Moreover, D; propagates the
attestation request to all neighboring devices. This and all following commu-
nication between devices is secured with the current session key sk, and the
respective channel key ck, in order to prevent physically compromised devices
from participating in the attestation protocol.

Any device that receives an attestation request first verifies the request and then
also propagates the request to its neighboring devices. These steps are repeated
until the attestation request reaches leaf devices whose neighbors already have
received a request. Leaf devices return their attestation report to their parent
device, i.e., the device from which they initially obtained the attestation request
(see). Parent devices merge their own attestation report with all reports they
receive from child devices (see @), and propagate the merged report to their
parent devices. Eventually, D; merges a final report that contains all healthy
devices in the network. This final report is encrypted under dk; and transmitted
to O (see (®).

O verifies the report by passing it with the initial challenge ts to VerRep()
(see ®). If the report is valid, O assumes that all devices listed in the report are
healthy. Physically compromised devices could not participate in the protocol,
as they lacked sk.,,. Likewise, devices with a compromised software did not
contribute to the attestation report, since they aborted protocol execution.

We note that if the attestation phase is executed while the session key is up-
dated, some parent devices may already have the new session key skj,.xs while
their child devices still possess the old sk.,,. To prevent synchronization issues,
such parent devices must first propagate sky.y; to their child devices, before they
receive the encrypted attestation reports from them. Additionally, the attestation
protocol must either complete in time J, or O has to periodically check the
presence of D; during attestation. In the latter case, there is no restriction for the
attestation phase runtime. The measures are necessary to prevent Advy,, from
physically compromising D; during the attestation phase, which would enable
Advy,, to extract an aggregate and induce attests of physically compromised
devices. Furthermore, the attestation phase currently does not tolerate device
mobility or device outages during protocol execution. For the purpose of han-
dling low to medium network dynamics and disruptions, SCAPI can be extended
with common ad-hoc networking techniques, i.e., a routing protocol, introducing
timeouts, and maintaining a virtual spanning tree topology. In order to handle
high network dynamics and disruptions, SALAD’s distributed approach can be
applied to SCAPI, as previously described.

6.3 ROBUSTNESS EXTENSION

6.3 ROBUSTNESS EXTENSION

In wireless networks, device mobility can lead to broken connections, which
increase communication delays or even cause temporarily partitioned networks.
To tolerate network dynamics in the attestation phase, either a virtual spanning
tree or SALAD'’s distributed approach can be employed (see Section 6.2.3). In
this way, the functionality and security of the attestation protocol is preserved,
albeit, communication and runtime increases. However, network disruptions are
much more severe during the session key update phase, since increased delays
or temporary outages can provoke false positive errors, where healthy devices
are mistakenly regarded as physically compromised. This is a common issue
that all absence detection approaches have to contend with [32, 33, 62, 65, 68].
The issue is caused by their underlying assumption that devices being absent for
more than a certain amount of time ¢ are regarded as physically compromised.

In this section, we extend the session key update phase (Section 6.2.2) to
minimize the amount of false positives during attestation. Thereby, we increase
SCAPT’s robustness against network partitioning, failures, and delays, making it
more suitable for dynamic and disruptive network topologies.

Part 1 — Tolerating Device Outages. When attesting the precise network state,
SCAPT tolerates up to n/2 device outages with the exception of the leader device.
This is an improvement compared to DARPA [68], which is intolerant towards a
single device outage. Nevertheless, the leader device constitutes a single point
of failure that can render the protocol dysfunctional, e.g., upon a leader device
outage, network partitioning, or targeted DoS attacks. To continue service when
the leader itself becomes absent, we propose that devices in the network elect
a new leader in a self-organizing manner. The new leader is identified by the
lowest device identifier and takes over the task of the previous leader, i.e., the
periodic emission of a new session key.

In detail, devices now store the device identifier (id) of their current leader in
Dinin, which is set to 1 during enrollment. When a device fails to receive the next
session key from the current leader within a time Jy,t (dour << 9), it first elects
itself as a temporary leader. A temporary leader initially generates its own next
session key, sets D,,;,, to its own id, and periodically announces the existence of
a new session key with msg;.,. For efficiency reasons, we combine this leader
election with the transmission of the next session key, issued by the new leader.
Therefore, msguew, Msgreq, and msgg now additionally carry the id of the device
whose session key is announced, requested, or transmitted. A device D]- that
receives msgyue from a neighboring device D;, compares the announced id with
its stored D,in- In case id is lower, D; performs the session key transmission
protocol (Section 6.2.2) with D; to obtain the next session key of device id. On
success, D; sets its Dy, to id, regards D, as leader, and henceforth announces
and distributes the next session key of Dj;. In this manner, the id and next
session key of the device with the lowest id will propagate in the network and
will replace all other temporary leaders as well as their session keys. The newly

91

92

ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

elected leader recognizes itself as the leader, when it only received messages
from devices with higher ids during election. Note that the original leader has
the smallest id in the entire network, hence, its return is implicitly tolerated
within the same session.

Part 2 — Tolerating Link Delays. Thus far, the session key update phase relies on
a 1-to-n delay-tolerant link between the possibly changing leader and all other
devices. Although this is a major advance over DARPA [68], which requires a
continuous n-to-n link, in certain network topologies the leader may not be able
to continually reach all devices within time J. In general, 6 can be increased
to meet the dynamics of such networks. Yet, this comes at the expense of an
increased attacking time J, > 2 - §, hence, lower security. In the following, we
present an alternative solution to increase robustness against extreme delays.
In our approach, devices support multiple leaders and session keys per period
by propagating not only the leader’s next session key, but k next session keys
from devices with the lowest id in the network. Thus, up to k (< n), instead of
1, session keys can be valid in every time period. As a result, SCAPI is robust
and secure as long as the network can be represented as an undirected connected
graph, where (i) each node depicts a device, and (ii) an edge between two nodes
indicates that both devices share at least one common session key.

In detail, devices that fail to receive sky.y from their leader generate their own
next session key and become leaders themselves, as described above. However,
instead of forwarding only a single key from their future leader, devices now
store and exchange multiple current and next session keys. For each current and
next session key devices store, they record the identifier id of the device that
generated the key. This list of stored key ids is appended to each emitted 15g;¢4.
Nevertheless, to reduce communication overhead, we propose that devices limit
the number of advertised key ids in msg,., to k entries, namely, those with
the lowest id. A device D; that receives msgue, from a neighboring device D;
compares the advertised key id list with its own stored keys. If D; advertised
the id of a current session key sk, that D; stores, both devices can continue
executing the key transmission protocol and use sk, as a session key to secure
communication (see Section 6.2.2). However, they only do so, if D; also advertised
at least one key that is new to Dj, i.e., D; listed an id in msg,e, that is not
contained in Dj’s stored key id list. If this is the case, Dj requests all such
new keys from D; by listing their ids in msg;e;. Receiving msgy.; with a list of
requested current and/or next key ids, D; answers with a msgg that contains the
actual value of the requested keys.

Note that devices exchange the k-th current and next session keys from devices
with the lowest id. This reduces fragmentation in the current and next session
period, i.e., the number of devices not sharing a common session key. A higher
k provides more robustness, but increases the communication overhead in the
network. If kK = 1, the approach corresponds to the extension in part one.

Security. All protocol extension code and data is stored in the TEE of devices,
and device identifiers as well as session keys in msg.; and msg are transmitted

6.4 EVALUATION

authenticated and encrypted by sk, @ ck, with sk, being issued by any previous
leader device. The key ids in m5g,e, can be transmitted in plain, as any forgery
will inevitable be detected by the sender when processing 115g;e;. Therefore, the
security of the proposed extension can be reduced to the security of the original
session key update phase (Section 6.2.2).

6.4 EVALUATION

In the following, we evaluate SCAPI and its protocol extensions. First, we describe
our setup, give details of the implementation, and present our measurements
(Section 6.4.1). Then, we report on simulation results conducted in static large-
scale networks to demonstrate the scalability of SCAPI (Section 6.4.2) as well
as dynamic network topologies to show the robustness of our protocol (Sec-
tion 6.4.3).

6.4.1 Implementation and Measurements

Setup. We used the same setup as in our secure code update scheme (Section 4.2)
and SALAD (Section 5.4). Accordingly, we implemented our protocol on Stellaris
EK-LM4F120XL microcontrollers that were equipped with Anaren’s CC2530
BoosterPacks. The Stellaris provides the minimal hardware requirements to
perform remote attestation [127], but unfortunately lacks a write-protected device
clock to prevent malware from tampering with the device time (Section 2.3).

Runtime Measurements. We based our implementation on the same libraries
that we used for our secure code update scheme. Please refer to Section 4.2.3 for
network and cryptographic runtime measurements.

Memory Costs. In our implementation, devices store their own ECDH key pair
(64 bytes), the current and the next session key (each 16 bytes), the leader device
id (4 bytes), j secure channel keys and device ids (each 20 bytes), and a timestamp
(4 bytes). The number j of stored secure channel keys can be adjusted to the
particular memory requirements, since devices can establish channel keys right
away by performing an ECDH key exchange with a neighboring device. If the
multiple leader protocol extension is used, devices store up to k current and
next session keys and their respective device id (each 20 bytes). Further, devices
need to temporarily store the attestation report during attestation. The size of
the attestation report is dependent on the number 7 of devices and the number
of attests contained in the report. In the worst case, where the device description
must be represented as an n-bit vector, it amounts to n/8 + 64 bytes. However,
using another representation, such as a list of device ids contained in the report
(Section 6.2.3), the actual size of the report is much lower for many devices in the
network. In total, devices require 72 + j - 20 + k - 40 bytes of permanent storage
and at most 1/8 + 64 bytes of temporary storage.

93

94

ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

Runtime (s)

: : 8-ary tree + ke = ==
0.5 [s : 8-ary tree e | |

: : : 4-ary tree e
2-1ary tree _—

0 100000 200000 300000 400000 500000
Number of devices in network

Figure 6.4: Session key update runtimes in various static topologies. The dotted line
includes the initially needed key exchanges (ke).

6.4.2 Scalability Simulation Results

Setup. In order to demonstrate the scalability of SCAPI, we performed network
simulations in static network topologies. In these networks, all devices are con-
nected and stationary, so there are no link breaks or delays for determining routes
in the network. We used the OMNeT++ framework [146] to simulate a homoge-
neous network with ten to multiple million Stellaris devices, implemented our
protocol on the application layer, and used computational and network delays
based on our measurements.

Session Key Update Runtime. We simulated the runtime of the session key
update phase in various topologies. Figure 6.4 shows the runtime for a binary,
4-ary, and 8-ary tree topology with up to 550 000 devices, where the leader device
is located at the root of the tree. The figure demonstrates that in tree network
topologies, runtime increases logarithmically with the number of devices in the
network. Under these conditions, the transmission of next session keys achieves
an outstanding performance, requiring less than 2.4 seconds to reach 500000
devices in an 8-ary-tree and less than 1.8 seconds in a binary tree topology. Even
with multiple million devices, runtime remains below 2 seconds in a binary
tree topology. Only the first propagation of the next session key in the network
requires little more time, since neighboring devices initially need to exchange
public keys and perform key exchanges to establish their channel keys. Yet, even
with the additional key exchanges, runtime remains below 2.8 seconds for more
than 500 000 devices.

Attestation Runtime. Figure 6.5 shows the runtime of the attestation phase for a
binary and 8-ary tree topology with up to 550 000 devices, where the network
operator is located at the root of the tree. During attestation, devices verify
the integrity of installed software by computing a SHA512 digest over a 30 kB
software and comparing the digest to an expected value that is specified in the

6.4 EVALUATION

128 e froee s e e, L

Runtime (s)

8-ary tree with ids e
2-ary tree with ids e |
0.5 b 8-ary tree no ids = = |
2-ary tre1e no ids = 1-

0.25 . .
0 100000 200000 300000 400000 500000

Number of devices in network

Figure 6.5: Attestation runtimes in two static topologies for verifying the overall (no ids)
or precise (with ids) network state.

attestation request. Additionally, we varied the attestation type, requesting either
for the precise network state (solid lines) or the overall network state (dashed
lines). Figure 6.5 demonstrates that reporting precise device identifier introduces
a notable overhead. When reporting the overall network state, attestation runtime
increases barely with the number of devices in the network, remaining below
3 seconds even for networks with multiple million devices in almost any tree
topology. Yet, when reporting precise device ids, runtime increases to 158 seconds
for 500 000 devices due to the large size of the attestation report, which increases
proportionally with the network size. Nevertheless, we consider that 2.5 minutes
is an acceptable timeframe to obtain a report that precisely lists which devices
out of half a million are in a compromised state. Moreover, to increase efficiency,
O may only verify the precise network state, if the (faster) verification of the
overall network state fails.

Communication Costs. During a session key update phase, each device sends
and receives multiple msg,ew (1 byte), msgre; (45 bytes), and msgy (45 bytes)
messages, depending on the particular network topology and the position of the
respective device in that topology (i.e., root, middle, or leaf device). If devices
need to establish a secure channel key, they need to mutually exchange their
public keys, which causes an additional message overhead of 32 bytes. For
instance, in a binary tree topology, devices transmit on average 182 bytes, or
310 bytes with the initial key exchange, in each session key update phase.

During the attestation phase, devices receive one msg;e; or msga (both 108
bytes), send a msg, and receive a msgy., to/from non-leaf neighbor devices, and
send one msgrep OF Msgres (both < 1/8 + 92 bytes for precise state or 92 bytes
for overall state) to their parent device or O. In summary, assuming a binary
tree topology, devices transmit on average 400 bytes, if the overall network state
is attested. If the precise network state is attested and the network consists
of n = 10000 devices in a binary tree topology, devices transmit on average
1314 bytes.

95

96

ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

Summary. We demonstrated that SCAPI is highly efficient in static network
topologies. In comparison to DARPA [68], we reduce the number of transmitted
messages per session period from O(n?) to O(n), thus, decreasing protocol
communication costs and runtime. To illustrate this advantage, in binary-tree
topologies our approach is 27 times faster with n = 2000 devices and 3800 times
faster with 500 000 devices. As a result, SCAPI saves energy costs, supports larger
networks, and tolerates a substantially shorter session length 6 (e.g., a 3 seconds
¢ is sufficient in the presented network topologies). Note that a shorter session
length increases security, as 6, > 2 - 4. Furthermore, for comparison we already
considered the fastest variant presented in [68], which requires each device to
store n symmetric keys. In our protocol, devices must only store the keys of
neighboring devices, e.g., 3 in a binary tree topology.

When attesting the state of the entire network, both protocols ([68] and SCAPI)
show a runtime that scales logarithmically with n. Nevertheless, in contrast
to [68], SCAPI also allows to determine the ids of compromised devices with an
acceptable overhead even in larger networks.

6.4.3 Robustness Simulation Results

Setup. We evaluated the robustness of SCAPI to false positives by simulat-
ing worst-case scenarios, where the network topology is highly partitioned as
well as constantly changing. To this end, we randomly deployed devices in a
1000m X 1000m square area and applied a random waypoint mobility model,
where each device moves at a random speed between 5 and 15 m/s. In order to
simulate link disruptions, network delays, and signal interference in a realistic
manner, we modeled a 802.15.4 physical and medium access control layer using
the INET framework for OMNET++ [64]. We set the wireless communication
range to 50m, representing 50% of the distance specified in the ZigBee standard,
and the session period to 5 minutes, detecting physical attacks that require more
than 10 minutes. Simulating both layers, device mobility, and multiple days of
runtime requires a huge amount of computational power, making it infeasible to
scale simulations to thousands of devices [21]. Nevertheless, as we will show in
the following, the main hurdle is to operate robust in sparse topologies, where
the network is constantly partitioned. We showed in the previous section that our
protocol performs well in dense networks with permanently connected devices.

Robustness. We examined the elapsed time until the absence detection of SCAPI
produces false positives, i.e., healthy devices that are regarded as physically
compromised because they did not receive the next session key on time in the key
update phase. Figure 6.6 illustrates the average runtime until a certain amount
of false positives occur with or without the robustness extension (Section 6.3).
The figure shows that the network must be sufficiently dense in order that the
randomly moving devices meet each other frequently enough to exchange the
next session key on time. In fact, there is an exponential correlation between

6.4 EVALUATION

250

T T T T T

with extension, 3 false positive(s) *++«

with extension, 2 false positive(s) = = -

200 F with extension, 1 false positive(s) = 4
without extension, 3 false positive(s) *+++ y

without extension, 2 false positive(s) = = -

= p
§‘ 150 - without extension, 1 false positi_ve(s') o4
Y -
£
£ 100
)
4

50 |

O L

0 10

Number of devices in network

Figure 6.6: Average runtime of SCAPI in highly dynamic networks until false positives
occur.

device density and robustness. This causes the average error-free runtime to
quickly increase from 2.5 days with 35 devices to 72.8 days with 55 devices,
when using the robustness extension. To illustrate the sparseness in this scenario,
35 optimally distributed and connected devices cover 17.0% of the area and 55
devices 26.6%. The figure also demonstrates the effectiveness of the robustness
extension. Without extension, approximately 60% more devices are required
to achieve comparable error-free runtimes. Investigating false positives, we
identified the main cause in the random movement of devices. Commonly, a
single device does not encounter other devices, and thus has no chance to receive
the next session key on time. This cannot be prevented by faster computations
or smaller communication delays in our protocol, but only by increasing the
duration of the session period. We observed that this hiding of single devices
has barely any cascading effect. Hence, as shown in Figure 6.6, if tolerating a
minimal amount of false positives, significantly longer runtimes are possible.

We further analyzed the time required in each session key update phase to
establish an error-free network state with and without the robustness extension.
Figure 6.7 shows for a varying amount of time the largest fraction of devices that
shares a common next session key (without extension) or is connected through
multiple next session keys (with extension). The figure illustrates the importance
of the network density. In dense networks, session keys can spread faster and thus
reach more devices in shorter time. Nevertheless, with our proposed extension,
we eliminate the bottleneck that the leader device’s next session key must reach
all other devices on time. Instead, temporarily unconnected devices generate
and distribute their own individual next session keys and tolerate multiple valid
keys per period. Hence, a robust network state is already established if devices
exchanged their individual session keys with immediate neighboring devices. In
the described setting and with 50 devices, this state is already reached within
182 seconds.

97

98

ATTESTATION OF SOFTWARE AND PHYSICAL ATTACKS

T -

x 09 nT -
g o8 .
S 07 i
£
o 0.6 4
)
3 3
%5 0.4 K . with extension, 70 devices == ||
c 0.3 //. x4 with extension, 50 devices == ||
2 DA 4 with extension, 30 devices ==
g 02 iy, without extension, 70 devices = = = [
g1 without extension, 50 devices === ||

1 ; withouF extensionf 30 devicef -

0
0 50 100 150 200 250 300

Time (seconds)

Figure 6.7: Average runtime required for the distribution of next session keys.

Summary. We demonstrated the robustness of SCAPI to false positives in extreme
scenarios. Although our protocol targets connected network topologies, we
showed that it also performs robust in disruptive and highly dynamic topologies,
where it achieves error-free runtimes in the range of multiple weeks. We also
exhibited the advantage of our protocol extension (Section 6.3). It provides the
same robustness as the unextended protocol in almost half as dense networks. By
contrast, DARPA [68] relies on continuous links, and hence is unable to deal with
network disruptions. Yet, even if DARPA is extended to support disruptions, n
devices must successfully deliver a message to n other devices in each session
period. In comparison, SCAPI improves robustness in two stages. First, our
unextended protocol relies on one device sending a message to n devices. Second,
in the extended version, devices must merely reach immediate neighboring
devices once, at any time during a session period.

6.5 SUMMARY

We presented SCAPI, a scalable attestation protocol that detects physical attacks.
Compared to DARPA [68], our protocol reduces the number of transmitted
messages per time period from O(n?) to O(n), thus scaling to millions of devices
and outperforming existing solutions by orders of magnitude. In addition to
verifying the overall state of the network, SCAPI is able to precisely identify
devices that run compromised software or have been physically manipulated.
We demonstrated that our protocol is robust even in very dynamic network
topologies, as it quickly recovers from device outages or network partitioning.

ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

In autonomous networks, embedded devices operate collaboratively in a dis-
tributed and self-organizing manner. These autonomous embedded systems have
special requirements on scalability, performance, robustness, and security, which
are only insufficiently addressed by existing attestation protocols. In this chapter,
we propose PASTA, a practical attestation protocol for autonomous embedded
systems. Compared with our previously proposed protocols, PASTA expands
the 1:n relation between verifier, i.e., network operator, and prover devices to
m:n. In particular, PASTA enables many low-end embedded prover devices to
attest their integrity towards many potentially untrustworthy low-end embed-
ded verifier devices. Furthermore, PASTA is fully decentralized and thus able
to overcome arbitrary network and device outages. Like SCAPI (Chapter 6),
PASTA can detect physical attacks, albeit in a more robust way, which suits
the demands of autonomous embedded systems. We implement our protocol,
conduct measurements, and simulate large networks. The simulation results
show that our protocol scales to large networks with millions of devices and
improves robustness by multiple orders of magnitude compared with SCAPL

Remark. Parts of this chapter have been published in [84].

7.1 MOTIVATION AND CONTRIBUTION

Embedded devices are increasingly deployed in distributed and autonomous net-
works, in which devices operate collaboratively with minimal or no supervision.
Specific application scenarios include industrial control [31], smart cities [74],
building automation [118], logistics [72], or environmental monitoring [53]. How-
ever, existing attestation protocols are unable to fulfill the requirements on scal-
ability, performance, robustness, and security that are needed for autonomous
embedded systems. In the following, we elaborate on these requirements and
provide a summary in Table 7.1.

Scalability and Performance: Autonomous networks of embedded systems may
comprise thousands of collaborating low-end embedded devices. For instance,
a network may contain many actuator devices that control a safety-critical
process based on measurements received from many sensor devices. In this case,
all actuators need to verify that all sensors from which they receive data are
uncompromised. Hence, sensors must be provers and actuators must be verifiers
(and potentially provers as well). Collective attestation protocols (see Section 2.1.2)
address this issue to some extent, as they distribute the computational and
communication burden across all provers in the network [7, 11, 28, 67, 68]. This
allows a scalable and efficient attestation of the entire network. Yet, collective

99

100

ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

Scalability Performance Robustness Security

Scalable Publicly Efficient Efficient Decen- Robust Detec-
Prover Verifi- Report Report tralized to Net. tion of
Attesta- able Genera- Verifica- Attesta- Disrup- Physical

tion Report tion tion tion tions Attacks
SEDA [11] L O [] [] O 0 @)
SANA [7]) [) () O O © O
DARPA [68] L O [] [] O o []
SeED [67] L O [] [] O © @)
LISA [28] L O [] [] O 0 O
SALAD (§ 5) © O [] ([] O [] @)
SCAPI (§ 6) L O [] [] O © L
PASTA (§ 7) L [] [] [] L] L

Table 7.1: Overview of collective attestation protocols and features important for the
attestation of autonomous embedded systems.

attestation protocols are typically centralized, meaning that only a single entity,
which is usually the network operator, is capable of verifying the attestation result.
In fact, only one collective attestation protocol considers multiple verifiers [7].
However, it poses a high computational burden on provers and even more
on verifiers, which makes it unsuitable in cases where provers and especially
verifiers perform time-critical operations or have limited computational power,
e.g., as they are low-end embedded devices®.

Robustness: Autonomous systems typically need to operate undisturbed with-
out manual intervention for long times, during which the system may have to
overcome network and device disruptions. Therefore, an attestation protocol for
autonomous systems must be robust and sustain its security service in case of
failures. However, the dependence of existing protocols on a centralized [11, 28,
67, 68] or external verifier [7] that initiates, controls, and verifies the attestation,
constitutes a single point of failure, which impairs robustness.

Security: For reasons explained in previous chapters, embedded devices are
often at a higher risk of being physically manipulated than general-purpose
computers. Collective attestation protocols have recently been combined with
absence detection (see Section 2.1.2) to also detect physical attacks. Unfortunately,
existing attestation protocols that consider physical attacks are prone to network
and device outages, whereupon healthy, but temporarily unreachable, provers
are mistakenly regarded as physically compromised. Thus, their additionally
limited robustness make them unsuitable for autonomous systems.

For example, the authors report that a 48 MHz embedded prover device requires more than 2.2
seconds to generate its attestation report and a server (Amazon EC2 t2.micro instance) requires
more than 1 second to verify an attestation report containing 1000 prover devices [7].

7.1 MOTIVATION AND CONTRIBUTION

Contribution. In this chapter, we propose PASTA, a practical attestation proto-
col for autonomous networks of embedded devices. In PASTA, prover devices
periodically collaborate to generate so-called tokens. Each token attests the in-
tegrity of all provers that participated in its generation. During token generation,
provers mutually ensure their integrity and then make use of a Schnorr-based
multisignature scheme to compute an aggregated signature, which is stored
in the token and attests the provers’ integrity. The aggregated signature is of
constant size and can be efficiently generated, which ensures scalability and
performance. Furthermore, the aggregated signature is publicly and efficiently
verifiable, which enables even untrustworthy low-end embedded devices to
rapidly verify the integrity of all provers.

To increase the availability of the attestation result in case of network and
device outages, tokens are distributed to all devices in the network, instead of
being stored centralized. Since tokens are protected by their contained signature,
any device can store and forward tokens, which facilitates their quick distribution.
Moreover, PASTA is fully decentralized, because all provers equally ensure the
freshness of tokens by periodically initiating a new token generation. Thus,
in case of arbitrary network or device outages, all remaining operative and
connected provers still sustain the token generation and attest their integrity
towards all network devices.

In addition to software attacks, PASTA is also able to detect physical attacks.
For this purpose, PASTA relies on the common assumption that physical attacks
require an adversary to take a targeted device offline for at least the time period
4, (e.g., 10min) [32, 33, 65, 68]. Hence, any prover whose last participation in
a token generation is more than or equal to J, time ago is considered to be
physically compromised. In contrast to SCAPI (Chapter 6), PASTA calculates the
absence time of each prover individually, which gives provers twice as much time
to participate in the protocol. Thus, compared with SCAPI, PASTA can increase
robustness against disruptions while providing the same security level or halve
4, to provide stronger security guarantees with the same level of robustness.

Physical attacks require not only much time, but also expensive equipment
and laborious handwork of highly skilled personnel. In our adversary model
(Section 2.4), we therefore argued that a physical adversary may only be able
to successfully tamper with a limited number of devices simultaneously. Based
on this assumption and the property of tokens to be publicly verifiable, PASTA
is able to reunite groups of prover devices that have been separated for longer
than §, time, meaning that any prover of one group has not generated a token
with any prover of the other group within é, time and thus violated the original
absence assumption. To reunite groups, provers of different groups exchange
their generated tokens that (i) testify the permanent presence of all provers of
the particular group during the separation, and (ii) could not have been forged
by an adversary under the aforementioned assumption due the large number of
provers in that group. This way, PASTA can detect physical attacks and recover

101

102

ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

from long-lasting network splits that segmented a network in separated groups,
as opposed to any other attestation protocol.

Finally, we discuss the security of PASTA and show its scalability in large
networks and robustness in dynamic as well as disruptive network topologies.

Outline. The rest of this chapter is organized as follows. In Section 7.2, we explain
Schnorr multisignatures, which are a required building block in our protocol.
Section 7.3 presents PASTA, a practical attestation protocol for autonomous
embedded systems. In Section 7.4, we evaluate the performance and robustness
of PASTA. Section 7.5 concludes this chapter.

7.2 SCHNORR MULTISIGNATURES

Our proposed attestation protocol makes use of Schnorr multisignatures to re-
duce the size of generated signatures and the computational costs to verify them.
Schnorr signatures [125] rely on a cyclic group G of prime order g, a generator
¢ of G, and a hash function Hash(). A signature key pair (x,y) is generated by
choosing a random secret key x € Z,; and computing the corresponding public
key y = ¢*. In the Schnorr multisignature setting [16], there are n signers, who
each possess an individual secret key xj, ..., x, and a corresponding public key
y1 = §,...,y, = £ In order to collectively sign a common message msg,
signers perform the following steps:

1. 1; < GenCommit(): k; <= Zg; 1; = gki.
Description: Each signer i picks a random secret k; € Z,; and computes a
commitment r; = gkf.

2. 7 < AggCommit(ry; ro; oy 1) 7 =11 q 74
Description: The commitment r; of each signer i is aggregated into a final
commitment r by computing r = [T 7;.

3. s; < GenSig(r; msg): ¢ = Hash(r|\msg); s; = k; + cx;.

Description: Each signer i computes the common challenge ¢ = Hash(r||msg),
which is based on the aggregated commitment r and the message msg to be
signed. Afterwards each signer i generates its partial signature s; = k; + cx;.

4. 5 < AggSig(s1; 52; ..; Sn): 5 = Litq Sie
Description: The signature s; of each signer i is aggregated in a final signature

s by computing s = Y\ ; s;. The final aggregated signature consists of the
tuple (r,s).

To verify the aggregated signature sig = (,s) with the public keys vy, ..., y,, of
all signers, a verifier executes VerSig(yy, ..., y,; sig; msg), which comprises the
following steps:

7.3 PASTA: PRACTICAL ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

1.y < AggKey(yr, Yo, - Yn)t Y =TT Vi
Description: The public keys of all signers that contributed to (7, s) is aggre-
gated by computing y = [T\, y;.

2. valid /invalid < Verify(r,s): ¢ = Hash(r||msg); &° Z ry~.

Description: The verifier first computes the common challenge c based on
and msg. Finally, the verifier regards the aggregated signature as valid if
g° = ry%, and in the other case as invalid.

Note that a corrupt signer could set its public key to y; = ¢<1 (T, y;) ! and

then forge valid signatures on behalf of all n signers. However, this so-called
rogue-key attack [16, 104] is irrelevant in our attestation protocol, as all keys
are predeployed (Section 7.3.1) and only uncompromised devices are able to
participate in the signing process (Section 7.3.2).

7.3 PASTA: PRACTICAL ATTESTATION OF AUTONOMOUS EMBEDDED SYS-
TEMS

In this section, we describe our attestation protocol PASTA. Compared with our
previously proposed attestation protocols, PASTA enables multiple entities to be
a verifier and check the integrity of all provers in the network. More specifically,
each device D; participating in PASTA is a verifier V; and can additionally
be a prover P;. This implies that any prover at the same time also acts as a
verifier. Provers implement the necessary security requirements (Section 2.3) and
perpetually engage in the protocol execution. As opposed to provers, devices
that are only verifiers do not need to implement secure hardware and are not
required to periodically execute PASTA. Thus, any device, including entities that
are potentially untrustworthy or only occasionally connect to the network, e.g.,
an external network operator, can act as a verifier.

PASTA consists of three different phases. In the deployment phase, each device is
set up once by the network operator. Afterwards, prover devices in the network
continually execute the token generation phase, in which provers repeatedly gener-
ate tokens. Each token attests the software and hardware integrity of all provers
that participated in its generation, at the generation time. Simultaneous to the
token generation phase, all devices, i.e., provers and verifiers, perform the token
exchange phase. In this phase, devices distribute, verify, and validate the generated
tokens from the provers. Devices eventually use their verified and validated
tokens to determine the integrity of all provers in the network. In the following,
we describe the deployment (Section 7.3.1), token generation (Section 7.3.2), and
token exchange phase (Section 7.3.3). Finally, we explain the token validation
(Section 7.3.4), which is part of the token exchange.

103

104

ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

7.3.1 Deployment Phase

Initially, devices in the network are deployed and set up by the network operator
O. Each device D; is equipped with a unique identifier i and the public signature
key yo of O. Devices that are provers additionally store a token signature key
pair (x;, y;). A prover P; uses its private token key x; to generate tokens that
prove its integrity. To verify tokens from P;, a device D; requires the public
token key y; of P;. Therefore, all devices in the network store the public keys
of all prover devices. In addition, any two devices D; and D; hold a unique
symmetric channel key ck;j, which they use to authenticate any communication
between them. To save storage, O may equip devices with a further key pair and
a certificate over the public key. This enables devices to establish a channel key
on demand and exchange public token keys ad-hoc. Provers store and execute
all protocol data and code inside their TEE. Thus, an adversary must perform
physical attacks to obtain secrets or tamper with the protocol execution.

Moreover, all devices maintain a token set TS, which initially contains the
initialization token Tpy. Each token T consists of a timestamp T.ts, a list of device
identifiers T.ids, an aggregated signature T.sig, and a Boolean flag T.valid. T.ts
records the time when the token was generated, T.ids stores the identifiers of all
provers that participated in the token generation, T.sig contains the aggregated
signature from all participating provers computed over T.ts and T.ids, and
T.valid indicates whether the device that stores T has successfully validated T
(T.valid = true) or not. A device D; considers T as valid, if D; has ensured that
all provers listed in T.ids were at time T.ts never offline for longer than the attack
time J,, hence, were physically healthy at T'ts. The validity flag is not protected
by the signature T.sig because T.valid is volatile and set by each device itself.
Since all provers are assumed to be healthy at protocol start, the initialization
token Tj stores the start time of the protocol in Tj.ts, the identifier of all provers
in Ty.ids, the aggregated signature over Ty.ts and Ty.ids from all provers in Ty.sig,
and true in Ty.valid.

For convenience, we assume the initial deployment of all devices in the network.
Nonetheless, O can enroll a new device D; at any later stage. To this end, D; is
initialized as described, but additionally equipped with a certificate that allows
other devices to establish required keys with D; on demand. If D; is a prover
device, it also holds a special token that contains its deployment time and the
identifier and signature of O and D;. Table 7.2 summarizes relevant definitions.

7.3.2 Token Generation Phase

Overview. After deployment, prover devices periodically generate tokens that
attest their integrity at the token generation time. To this end, provers recurrently
execute the token generation protocol, which consists of two communication
rounds.

7.3 PASTA: PRACTICAL ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

Acronym Usage

D;/V;/P; device / verifier / prover with identifier

(@) trusted network operator

Yo public signature verification key of O

xi /Y private / public token key of prover P;

ckij channel key between D; and D;

T token; T contains: T.ts, T.ids, T.sig, T.valid
Ogen time between periodic token generations

ba time Advy,, must take D; offline during attack
B number of provers Advy,, can compromise in J,
Time() returns current time

VerifySW() returns if local software state is trustworthy
IsHealthy(P;) returns if P; is healthy (# compromised)

ReqNewToken(d) returns if token needs to be regenerated

Table 7.2: Notation.

In the first round, a virtual spanning tree is arranged in the network, whose
root is a particular initiator prover device that starts the protocol. The tree allows
data from the initiator to be efficiently broadcasted to all provers and data from
all provers to be efficiently propagated back to the initiator. At first, all provers
receive a token generation request from the initiator and then respond with
their Schnorr commitments and their device identifiers. Both the identifiers and
commitments are collected and aggregated in each hop, and then forwarded to
the next hop along the tree towards the initiator. Eventually, the initiator receives
the identity of all participating provers and their commitments. In the second
round, the initiator broadcasts the aggregated commitments, current time, and
prover identifiers, which forms the attestation challenge. Subsequently, provers
generate a partial signature over the time and prover identifiers, which is also
aggregated and propagated along the tree to the initiator. After collecting all
signatures, the initiator assembles the final token T. T contains the time in T'ts,
the prover identifiers in T.ids, and the aggregated signature over T.ts and T.ids
in T.sig.

During token generation, provers communicate authenticated using their
channel key ck, which prevents a network adversary from manipulating the
protocol execution. To also protect against compromise of the software and
hardware, provers only participate in the token generation if they have ensured
their own software integrity and the physical integrity of their neighboring
provers in the tree. To verify their own software integrity, provers implement
a function VerifySW(), which measures the local state and returns true if the

105

106

ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

software is in a trustworthy state*. We abstract from implementation details of
VerifySW() to support a wide range of attestation mechanisms [3, 38, 108, 150].
Recall that any protocol code is executed inside the TEE, such that Advy, is unable
to bypass VerifySW(). Furthermore, provers implement a function IsHealthy(7;),
which determines the integrity of provers using tokens that were generated
in previous runs of the token generation protocol and were then propagated,
verified, and validated in the token exchange phase. IsHealthy(P;) returns true
if P; has proven to be healthy within the last §, time and false otherwise. Since
Advy,, requires at least J, time to perform physical attacks, provers that pass
IsHealthy(P;) are physically healthy at the present time. Details of IsHealthy(7P;)
are given in the next subsection (Section 7.3.3).

In the following, we explain both rounds of the token generation protocol in
detail.

Round 1: Initialization. To ensure that prover devices periodically engage in the
token generation, each prover monitors the freshness of its own tokens. A prover
device initiates a token generation, whenever it notices that the newest token T
in whose generation it participated is older than a specific generation interval
JOgen, as indicated by the function ReqNewToken(dg), shown in Algorithm 7.1.

Algorithm 7.1: P; determines if it must initiate a token generation.

1: procedure ReqNewToken(4)

2 forT € TS do

3: if i € T.ids and T.ts > Time() — J then
4 return false

5 return frue

The generation interval é,., must be a fraction of 6, (Jgen < J4) to ensure that each
prover participates at least once in a token generation within J, time. A prover
that fulfills this requirement has never been offline for longer than ¢, time and
is therefore considered to be physically healthy by all network devices. A small
Jd¢en enhances resilience to network disruptions, as tokens are generated more
frequently, but on the downside increases communication and computational
effort.

As illustrated in Figure 7.1, the token generation protocol starts with a prover
P; that checks whether it requires a new token and is in a trustworthy software
state, using ReqNewToken(J¢.;) and VerifySW(). If both checks pass, P; will
initiate a token generation in the network. To this end, P; stores its identifier i in
ids; and the current time in fs, which then both form the token initiation message
msginit.- Furthermore, P; generates its Schnorr commitment r; over a random
secret (Section 7.2). Next, any neighboring prover P; that is in a physically

Depending on the implementation, the software state may actually be measured prior to the
invocation of VerifySW(). For instance, a TPM computes hash values over software binaries before
they are loaded [108], so that VerifySW() only compares already performed measurements from
the TPM with known good reference values.

7.3 PASTA: PRACTICAL ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

‘P; (initiator device) P; (branch device) Px (leaf device)
if RequwToken((ng) MSinit Processlnit(msg,'nit)
and VerifySW() : Uif Time() < ts+ 4,

ts < Time() ‘and ReqNewToken (o)

. o |

ids; < [i] 'and VerifySW()

msinit < ts||ids;
for j € Neighbors() :
if IsHealthy(P;) :

I

I

I

:

and IsHealthy(P;) : i
for k € Neighbors() \ i : !
if IsHealthy(Py) : 3

I

I

I

I

I

" - . o MS8init
Send(P;; Wfsgzmt) Send(Py; msginir) ——— Processlnit(msgii)
r; < GenCommit() ids; < ids; U j SendReply()
. . F--—— - Rt bl
1y GenCommit() gy 8y il
I) I
ProcessReply(15g;c;) B i 2 L
}rif Time() < ts+dq: j}
i ldSl < ldS] U idsk i
|71 ¢ AeeCommitlry) |
Msgrep
ProcessReply (1158yep) ———— SendReply()
MSZchal <— tsHidsiHri
for j € Neighbors() Nids; :
j ghbors() Nids; : on
Send(Pj; msgchar) — ProcessChallenge(m5gcpa1)
. . R A e B
Sj GenS|g(ri; tSHldS,’) if Time() <ts+ 8, ,
I I
Tits s | for k € Neighbors() Nids; \ i : |
T.ids « ids; : , " mSehal
T oalid t;ue ! Send(Py; msgc’”’l‘) P ProcessChallenge(msg jar)
) 1 sj < GenSig(r;; ts||ids;) | SendResponse()
77777777777777777777777 Fm- T TS oo o o
MSGresy | MSGresp < ts||s !
ProcessResponse(115gresp) — JSend("Pj; Msgresp) |
}rif Time() < ts+ 0, : 7} 77777777777777777
S heeSies) j
"M88resp SendResponse()

ProcessResponse(11sgyesp)

T.sig < (ri,5;)

if VerSig(vV vy, T.sig; ts|ids;)
T.ids

mel.u

TS <~ TSUT

Figure 7.1: Illustration of the token generation protocol. Prover P; initiates the token
generation, whereupon a spanning tree is constructed. P; represents a branch
device, which is connected to P; and Py. Py is a leaf device, as it is only
connected to P;. When receiving messages, provers unpack their content,
e.g., ts and ids; from msg;,;;. For clarity, we omitted the authentication of
messages. In practice, all exchanged messages between any two provers P;
and P; are authenticated by the sender and verified by the receiver using the
channel key ck;;.

107

108

ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

healthy state, determined by P; using IsHeaIthy(Pj), is sent msgi,;. All messages
are authenticated by the sender and verified by the receiver using the respective
channel key. Invalid messages are dropped and not processed. For clarity, we
omitted message authentication in Figure 7.1.

A prover device P; that receives a message msg;y;; initially ensures that the
token generation was initiated within the last ¢, time, as Time() < ts + d,.
This time check is executed whenever provers receive a message in the token
generation protocol to prevent a network adversary from replaying recorded
messages from previous runs of the protocol. Next, P; checks whether it would
soon require a token generation, indicated by a call to the function ReqNewToken()
with a specific join interval Jj,;, that is smaller than the generation interval
Ogen (Ojoin < Ogen)- Using a smaller interval to join a token generation than to
initiate one saves overhead, as it prevents the costly initiation of multiple token
generations in close succession. Afterwards, P; checks whether the prover from
which it received msg;,;: is physically healthy and itself is in a trustworthy
software state. If both checks also pass, P; joins the token generation session.
To this end, P; stores its own identifier j and the received identifiers ids; in
its own ids; and generates its Schnorr commitment r;. Additionally, P; invites
further healthy neighboring provers to join the current token generation session
by propagating msg;,i;. Note that provers only ensure the integrity of their
neighboring provers, but not of all provers that participate in the token generation.
This is because provers can rely on the trustworthiness of healthy neighbors and
be confident that they in turn ensure the physical integrity of their neighbors.
Thus, a chain of trust is established that prevents any physically compromised
prover from participating in the token generation.

Prover devices that receive a msg;,;; from P; likewise perform the same steps as
P;. This way, beginning with the initiator device P;, a spanning tree is arranged
in the network, where parent provers invite their children to join the token
generation. Eventually, msg;,;; is received by leaf devices that have no children
because all their neighbors are already participating in the token generation
are compromised or recently generated a token. Receiving msg;,i;, each leaf
device P, answers its parent with a msg;., message, which contains the token
generation timestamp fs, the prover identifier idsy, and the Schnorr commitment
rr. A prover P; that receives a msgyep from a child prover P merges the received
device identifiers idsy with its stored identifiers in ids; and aggregates the received
Schnorr commitment 7, with its stored commitment in r; (Section 7.2). After
processing the msg, from all child provers, provers create their own msg.,
and send it to their own parent devices, which in turn perform the same steps.
Finally, the initiator prover P; receives and aggregates the identifiers and Schnorr
commitments of all provers that are participating in the token generation session.

Round 2: Finalization. After the first round, the only data that the initiator
prover P; is missing to generate the final token T, is the aggregated signature s of
all participating provers, computed over T'.ts and T.ids. To collect s, P; prepares
a message msgnqa1, Which stores ts, ids;, and r;. Next, msg .y, is propagated in the

7.3 PASTA: PRACTICAL ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

network from device to device, using the tree topology from the first round. With
the content of msgy,, each participating prover P; then computes its partial
signature s; (Section 7.2). Afterwards, partial signatures are forwarded along
the tree topology back to the initiator P; and are aggregated in each hop, like
commitments in the first round. P; eventually receives and aggregates the partial
signatures of all participating provers in s;. Finally, P; builds the token T, which
stores s in T.ts, ids; in T.ids, true in T.valid, and the tuple (r;,s;) in T.sig. In case
T.sig is valid, P; adds T to its token set TS. Thus, T attests that all provers listed
in T.ids have been healthy at T.ts. Finally, P; uses the token exchange phase
(Section 7.3.3) to distribute T in the network.

Remarks. For clarity, we described the token generation in a simplified version.
In practice, timers and error messages must prevent the protocol from hanging if
messages are lost or replayed, verification checks fail, or provers are invited to
join the same token generation multiple times. Furthermore, to support network
dynamics during token generation, an ad-hoc routing protocol must enable
each device to reach its (initial) neighboring devices in the virtual tree topology.
Additionally, we recommend that provers store different values for dge,. For
instance, a dedicated leader prover may use a lower J¢., than other provers.
This prevents multiple provers from initiating a token generation simultaneously,
which would result in the unnecessary generation of multiple tokens. Instead,
the dedicated leader prover would always initiate the token generation and other
provers would only take over, if the leader is unavailable.

7.3.3 Token Exchange Phase

Token Exchange. After executing the token generation protocol, the initiator
device holds a new token that testifies the integrity of one or multiple provers
at the token generation time. To make this information available to all network
devices, generated tokens are propagated and stored by all devices. For this
purpose, devices within direct communication range continuously synchronize
their token set TS. A synchronization is initiated when devices connect to
each other or a connected neighboring device just generated or received a new
token. For efficiency, devices only exchange tokens that the receiver is missing.
To determine the missing tokens, devices initially compare the number and
checksums of their stored tokens.

Any device, including untrustworthy devices, can participate in the exchange
of tokens and act as a data mule. This is feasible and secure, as the integrity and
authenticity of each token T is protected by its contained aggregated signature
T.sig. Devices verify the signatures of all received tokens. Corrupt tokens, which
fail the verification, are discarded and are not added to the token set TS. Note
that the signature verification only protects against Advg,, but not Advy,,, who is
able to forge token signatures of provers after physically tampering with them.
Attacks from Advy, are prevented by the token validity flags, which are not

109

110

ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

transferred during token exchange. Instead, each device sets T.valid to false for
any token T that is received and added to TS. This indicates that the device
storing T has not (yet) ensured that the provers listed in T.ids have never been
offline for longer than J, time. Because provers listed in invalid tokens may
potentially be in a compromised state, invalid tokens are disregarded when
determining the integrity of provers with IsHealthy(). To determine and set the
validity of stored tokens, each device performs a so-called token validation after
it has synchronized all tokens with its neighboring devices, which is described in
detail in the next subsection (Section 7.3.4). The token validation checks whether
Advy,, has been unable to physically tamper with all provers listed in T.ids based
on the limitations of Advy,, (Section 2.4), the timestamp in T'.ts, the current time,
and the chain of trust derived from already validated stored tokens. Any token T
that passes these checks is marked as valid, with T.valid set to true. Tokens that
could not be validated are still kept, i.e., not discarded from TS, since tokens
received in the future may prove their validity.

In case a receiver D; of tokens determines with IsHealthy(7P;) that the sender
P; is a healthy prover, D; can take advantage of P;’s trustworthiness. To this end,
transmitted tokens are protected by a MAC using the channel key ck;; of involved
devices D; and P;. Thus, D; can rely on the authenticity of the channel as well
as the correct behavior of P;. This enables D; to omit verifying the signature of
received tokens as well as transferring the token validity flags from P;, which
both saves computational resources.

Devices routinely discard tokens whose timestamp is so old that they neither
play a role in determining the healthiness of provers (T.ts < Time() — é,) nor in
establishing validity in other tokens (T.ts < Time() — p/pB - 6,), with B being the
concurrency factor and p the total number of provers.

Determining the Integrity of Provers. Devices that have synchronized and vali-

dated their token set T'S can afterwards determine the integrity of provers. To this
end, devices execute the function IsHealthy(7P;), which is shown in Algorithm 7.2.

Algorithm 7.2: A device determines the integrity of a prover P;.

1: procedure IsHealthy(P;)

2 for T € TS do

3: if i € T.ids and Time() < T.ts + 6, and T.valid then
4 return true

5 return false

Devices that execute IsHealthy(P;) check whether P; participated in the gener-
ation of a token T whose validity has been ensured and which was generated
within the last J, time. A prover P; that passes these checks has proven to be in
a trustworthy software state between the time T.ts and now. In addition, P; is
physically healthy at the present time, as T testifies the physical integrity of P;
at T.ts and successful physical attacks require at least the attack time J,.

7.3 PASTA: PRACTICAL ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

According to the adversary model (Section 2.4), our attestation protocol is
secure, if Advs, and Advy,, are unable to fake a healthy system state for a prover
P, that is at the time of its own attestation in a compromised state. To fake a
healthy state for P,, Advy,, hence, also the weaker Advs,, would need trick a
device D; into storing a token T that passes IsHealthy(P,). To this end, Advy,
must forge T in a way that it contains a valid signature for P,, since D; will only
accept T during token exchange, if T passes the signature verification. To forge
a valid token signature for P,, Advy,, must possess the private token key x, of
P,. By performing network attacks or compromising the software on P,, Advj,,
is unable to get access to x,. This is because all secrets and protocol code are
stored and execute inside the TEE of provers and never leave the TEE. In addition,
the TEE is immutable by compromised software (Section 2.3) and the token
generation protocol code enforces that provers with a compromised software quit
the protocol execution. Hence, a software-compromised prover P, is unable to
access its private token key x,. However, Advy,, may also physically compromise
P, to gain access to x,, which enables Adv, to forge valid token signatures
on behalf of P,. Yet, because Advy,, must take P, offline for J, time during the
physical attack, P, will not generate a token for more than é, time. Thus, after
the physical attack is completed, all devices will only store outdated tokens from
P, and regard P, as compromised when executing IsHealthy(P,). As a result, P,
is from then on neither able to participate in the token generation with other
healthy provers, nor able to issue a token that will pass the token validation on
healthy devices, as described in the following subsection (Section 7.3.4).

Note that devices cannot distinguish between an unreachable and a compro-
mised prover. We assume that Advy,, has full control over the network and, thus,
can prevent the generation and exchange of tokens in the network. Hence, if
there is no token T that attests the integrity of a prover P;, a device must assume
that P; is in a compromised state.

7.3.4 Token Validation

Overview. The token validation is the essential part of PASTA to detect physical
attacks. Recall that a stored validated token T testifies that all provers listed
in T.ids were physically healthy at T.ts. By contrast, the authenticity of stored
invalid tokens has not been ensured (yet), meaning that each invalid token could
have been forged by Advy,, and list physically compromised provers in T.ids and
a bogus timestamp in T.ts. During token validation, a device D; updates the
validity flags of all stored invalid tokens, whereby any invalid token for which
D; can rule out that it is forged by Advy,, is marked as valid. More specifically, D;
uses its already validated tokens to build a chain of trust between all physically
healthy provers, which are provers that were never offline for longer than the
attack time ¢,. Starting with the initialization token pre-deployed as valid, D;
iteratively uses the information from already validated tokens to validate further
invalid tokens. In this process, D; makes use of the time and simultaneously

111

112

ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

Algorithm 7.3: D; validates its stored tokens in step one.

1: procedure ValidateTime()

2: hdevs < @ > provers considered healthy
3 fori=1,2,..,ndo

4 if IsHealthy(P;) then
5: hdevs < hdevs Ui
6 for T € TS do

7 if (T.valid = false) and (T.ids N hdevs # @) then
8 T.valid < true

9

goto3

limitations of Advy,,, which are stated in (1) and (2) in our adversary model
(Section 2.4). In case D; attempts to validate a forged token T,, D; will be unable
to establish a chain of trust for provers listed in T,, since they have been offline
for at least J, time during the physical attack. Consequently, D; will not mark T,
as valid.

The token validation consists of two steps. In each step, tokens are validated
taking assumption (1), respectively (2), on Advy,, into account. Below, we describe
both steps in detail.

(1) Validation of Time Assumption. In the first step, already validated tokens
are used to determine the set of healthy provers. With the set of healthy provers,
invalid tokens are then validated. The process is illustrated in Algorithm 7.3 and
explained in the following.

2-5: Initially, a device D; determines and stores the identifiers of all provers that
D; considers to be healthy in hdevs. For this purpose, D; uses the function
IsHealthy(), which we described in the previous subsection (Section 7.3.3).

6-9: Next, D; makes use of hdevs to validate tokens from its token set TS. In
detail, the validity flag T.valid of any token T that lists a healthy prover,
which is the case if T.ids N hdevs # @, is set to true. This is because healthy
provers only engage in the token generation with other healthy provers.
Since hdevs testifies that at least one prover in T.ids is healthy, all provers
in T.ids must be healthy. Thus, T cannot have been forged by Adv,, and
is set valid. Next, D; starts the procedure all over again. This is necessary,
as T may now testify the integrity of additional provers that are currently
not contained in hdevs. With the extended hdevs, already processed tokens
that were not validated in the current iteration of the procedure may be
validated in the next iteration.

For clarity, Figure 7.2 shows an example for the validation of the time assump-
tion.

(2) Validation of Simultaneity Assumption. In the second step, devices addi-
tionally make use of the assumption that Advy,, is unable to compromise more

7.3 PASTA: PRACTICAL ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS 113

‘ Legend: @ Token Tq valid @ Token T, invalid Prover P, healthy Prover P3 unhealthy ‘

Before Token Validation: {Token Set of P;:

(1) Token Exchange
TN b=

I:I 29,00 5a=10{
O Time()

(2) Token’
Validation

After Token Validation: Token Set of P;:

Time()
—_—

Prover P; receives the tokens Ty, T3, Ty, and T5 from prover Pj at time 20. Before the token
validation, P; considers P3, Py, Ps, Pg, and P7 to be compromised, since P; does not store a
validated and recent (i.e., less than Time() — J, time old) token that lists P3, Py, Ps5, P, or Py.
During token validation, P iteratively establishes a chain of trust based on already validated
tokens, as indicated by the arrows. Initially, token T; testifies the integrity of P; and P, at time
Tj.ts = 11. Because Advy,, would have had too little time to tamper with P; or P, between Tj.ts
and now, both provers must be physically healthy at the present moment. Since 7P, must be healthy
and is listed in T5, Ts cannot be forged by Advy,,, hence, is set valid. Next, the newly validated
T5 testifies the integrity of P, which is why token Ty is set valid. Finally, Ty testifies that Py is
healthy, so that Ty is set valid. Token T3 cannot be validated, since PP; does not store a validated
and recent token that testifies the integrity of provers listed in T3, i.e., P5 and Py, at the present
time. Thus, T3 may be forged by Advy,,, hence, remains invalid. After token validation, P; regards
P2, P3, Ps, and Py as healthy, due to the newly received and validated tokens.

Figure 7.2: Illustration of the token validation from the perspective of a prover P;. This
scenario represents a highly disrupted network, where provers only rarely
had a connection to each other. Thus, provers were unable to periodically
perform the token generation as a group. The concurrency factor §3 is set to co,
which means that Advy,, can physically compromise all provers concurrently.

than B provers per §, time concurrently. Based on this assumption, validated
tokens that are outdated, i.e., older than ¢,, can be used to validate remaining
invalid tokens from the first token validation step. This is possible, as outdated
validated tokens may testify the healthiness of so many provers at a past time
that Advy,, would be unable to have physically compromised all of them at the
present time. Therefore, newer (yet) invalid tokens generated by one of those
healthy provers must be valid.

More specifically, each validated token T, testifies the healthiness of all provers
listed in T, at time T,.ts. At the present time, Advy,, can at the maximum have
physically compromised maxcdevs = | (Time() — Ty,.ts)/d,] - p provers of Ty. If
an invalid token T; shares more than maxcdevs provers with T, i.e., | T;.ids N
Ty.ids| > maxcdevs, then T; must be valid. This is because to forge T;, Advy,,
has to compromise all provers listed in T;, which is, however, a contradiction

114

ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

Algorithm 7.4: D; validates its stored tokens in step two.

1:
2
3
4
5:
6.
7
8
9

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

procedure ValidateSimultaneity/()
for T; € TS do
if T;.valid = false then > attempt to validate T;
itoks < {i}
idevs < T;.ids
for T, € TS do
if (k ¢ itoks) and (T.ts > T;.ts) then
maxcdevs < | (Time() — T;.ts)/é,] - B
if | Ti.ids N idevs| > maxcdevs then
itoks < itoks Uk
idevs < idevs U Ty.ids
gotoo6

vdevs < @
for T, € reverse(sort(TS)) do > highest T.ts first
if (Ty.valid) and (Ty.ids Nidevs # @) then

maxcdevs < | (Time() — Ty.ts) /64 - B

vdevs < vdevs U (Ty.ids N idevs)

if |vdevs| > maxcdevs then > itoks valid

for k € itoks do
TS.Ty..valid = true

ValidateTime()
go to 2

to the fact that at least one prover in T;.ids N T,.ids must be healthy. A larger
intersection |T;.ids N Ty.ids| enables T, to be older and still be used for validation,
which increases robustness against device and network disruptions. To maximize
this intersection, T; and T, can be extended by further tokens from TS that share
the same device identifiers with either T; or T,. This way, two device identifier
sets, idevs and vdevs, of invalid (idevs) and valid (vdevs) tokens can be used,
which results in the extended intersection idevs N vdevs. The process is illustrated
in Algorithm 7.4 and explained in the following.

2-5:

6-12:

A device D; iteratively selects an invalid token T; from TS and attempts to
validate T; in the following steps. Initially, the index i of T; is recorded in
itoks and provers listed in T; are stored in idevs.

Next, itoks is iteratively extended by further tokens to be validated, and
idevs is enlarged by their listed prover identifiers. In this process, itoks is
constructed in a way that a single valid token in itoks is capable of testifying
the validity of all tokens in itoks. To this end, TS is examined for tokens
that (i) are not contained in itoks and are more recent than T;.ts, and (ii)
share more provers with idevs than Advy,, can compromise between T;.ts
and now. A token T fulfills (i) if k ¢ itoks and Ty.ts > T;.ts. To fulfill (ii),
| Ty.ids N idevs| must be larger than maxcdevs = | (Time() — T;.ts)/dq] - B. If

7.3 PASTA: PRACTICAL ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS 115

both checks pass, itoks is extended by k and idevs by Tj.ids. Afterwards, this
step (6-12) is repeated.

The checks (i) and (ii) ensure that if all tokens in itoks are valid, Ty must
be valid, and vice versa. This is because between now and the time T;.ts,
being according to (i) the oldest of all tokens itoks and Tj, Advy,, can only
compromise maxcdevs provers. Since more than maxcdevs provers are ac-
cording to (ii) contained in idevs N Ti.ids, Advy,, would have had too little
time to tamper with all provers idevs N Ty.ids, which Advy,, requires to forge
Tj or all itoks tokens. By ensuring that each token Ty added to itoks fulfills
(i) and (ii), itoks obtains the property that a single valid token in itoks is able
to testify the validity of all tokens in itoks. This property is important for
the following step (13-22).

13-22: Next, D; determines which provers vdevs C idevs were listed in already
validated tokens, hence, were healthy at a past time ¢. If the amount of vdevs
is greater than maxcdevs = | (Time() —t)/d,] - B, at least one prover in idevs
must be healthy at the current time. Thus, at least one token from itoks,
namely the token listing the healthy prover, must be valid. This implies that
all tokens in itoks must be valid due to the property of itoks.

In detail, validated tokens in TS are examined in descending order regarding
their timestamp. For a token T, that attests the integrity of provers in
idevs at an earlier time T,.ts, maxcdevs amounts to | (Time() — Ty.ts) /6] - B.
For the first found token T, that attests the integrity of provers in idevs,
vdevs amounts to the intersection between idevs and T,.ids: vdevs = idevs N
T,.ids. However, because provers that are healthy at T,.ts are also healthy
at Ty.ts < T.ts, vdevs inherits all provers from previous iterations for any
subsequently found token T that attests the integrity of provers in idevs:
vdevs = vdevs U (T, .ids N idevs). If it is eventually ensured that idevs are
healthy, as |vdevs| > maxcdevs, all tokens from itoks are set valid. Since the
newly validated tokens may be able to change the validity of stored invalid
tokens, both steps of the token validation are executed again.

For clarity, Figure 7.3 shows an example for the validation of the simultaneity
assumption.

Further Solutions to Validate Tokens. The described token validation works well
for devices that regularly exchange and validate tokens. However, some devices
may only occasionally connect to the network to check the integrity of provers,
such as, for instance, a verifier device from the network operator. Depending on
their absence time and the parameters J, and f, such devices may have issues
establishing the chain of trust in healthy provers and, therefore, may falsely
regard healthy provers as compromised. In fact, for a proper token validation,
each device needs to reconnect to the network at least every 6, < [p/B] - Ja
time, with p being the total number of healthy provers in the network. For
instance, in a network with 1000 provers, an attack time J, of 1omin, and an

116

ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

‘ Legend: (@) Token Ty valid (2) Token T invalid Prover P; healthy [:l Prover P3 unhealthy‘

Before Token Validation:
Token Set of P3:

IDDDDDDD
I:Il 6a=10{20 - @——®_%—@ v vdevs

RN N T T,
(2) Token ©_©_® idevs |

i f

(1) Token Exchange -

After Token Validation: Token Set of P;:

[A] [E 7] (2] [E][#][7]

10 : ®_®_®
@0
201 0.
'
TimeO) 4ol &—6® @—0—@

Prover P; receives the tokens T5, Ty, and T; from prover P, at time 40. The concurrency factor
B is 2, which enables P; to validate tokens based on the simultaneity assumption. As indicated
by the arrows, P uses the outdated (T.ts < Time() — 6, = 30) but already validated tokens T,
T, and T; to validate the newly received tokens Ts and Ty. In detail, Ty, T,, and T3 testify that
vdevs = { P4, Ps, Ps, P7, Ps } were physically healthy at (at least) T;.ts ~ 11, which is the oldest
timestamp in Ty, T, and T3. Between Tj.ts and now, Advy,, could at maximum have physically
compromised maxcdevs = | (Time() — Tq.ts)/d,] - B = 4 provers of vdevs. Because vdevs contains
5 provers, at least one prover of vdevs must be healthy at the present time. This directly implies
that T5 or T7 (or both) must be valid. For instance, assuming that P is healthy, Ts must be valid.
However, since T5 and T7 both list Ps, the validity of Ts further implies the validity of T; and vice
versa. This is because assuming that either T5 or T7 is valid, Advy,, would have too little time to
physically tamper with Ps after T5 ~ 31 or T; ~ 39, which is among others necessary to forge T5
or T;. Thus, both Ts and T; must be genuine and are marked as valid. By contrast, P; is unable to
validate token T, generated by P, and P3. This is because between Tj.ts ~ 27, at which P, and
‘P53 were healthy, and now, Advj,, would have had enough time to physically compromise P, and
P53 and forge token Tg.

Figure 7.3: Illustration of the token validation from the perspective of P; and with g = 2.

attack concurrency factor B of 5, J.x amounts to 33.3 hours. In case a device is
absent from the network for longer than J., time, we propose two alternative
solutions to validate tokens.

The first solution is to fall back to the approach of existing attestation protocols
that detect physical attacks like DARPA [68] or SCAPI (Section 6). They build on
assumption (3) of our adversary model (Section 2.4), which states that Adv,, is
unable to physically compromise more than a specific amount A of provers in
the network. Based on this assumption, a secure attestation of p — A + 1 provers
can be guaranteed. To this end, a device D; determines all provers pdevs that
are listed in tokens with a timestamp more recent than J,: T.ts > Time() — 6,. If
|pdevs| is greater than p — A, all pdevs provers must be healthy. Subsequently, D
marks all stored tokens that list a prover from pdevs as valid.

7-4 EVALUATION

The second solution is applicable in case provers provide some form of phys-
ical tamper evidence. In this case, the integrity of hdevs provers is ensured by
physically inspecting the particular provers. Next, all tokens that list a prover
from hdevs are set valid. Finally, all other stored tokens are validated by executing
our proposed token validation.

7.4 EVALUATION

In this section, we first describe our implementation and show measurements
conducted on low-end embedded devices (Section 7.4.1). Next, we evaluate the
scalability of PASTA by presenting simulations of static networks (Section 7.4.2).
Finally, we provide simulation results of PASTA in highly dynamic and disruptive
networks to assess its robustness (Section 7.4.3).

7.4.1 Implementation and Measurements

Implementation. As a target platform for our implementation, we employed
four ESP32-PICO-KIT V4 development boards. The core of the boards constitute
a 7x7x0.94mm? ESP32-PICO-D4 system-in-package module, which features Wi-Fi
and Bluetooth functionalities, 4 MB flash memory, and a 240 MHz dual-core 32-
bit microprocessor. Due to its ultra-small size and low-energy consumption, the
ESP32-PICO-Dj is well suited for space-limited or battery-operated applications,
e.g., as wearable, medical, or sensor devices. Furthermore, it provides the Secure
Boot feature and thus the minimal hardware properties required for remote
attestation [44, 127].

We used SHA-256 as a cryptographic hash function and a Keyed-Hash Message
Authentication Code (HMAC) based on SHA-256 for message authentication. To
implement both, we made use of the mbed TLS code [1]. Our implementation
of the Schnorr multisignature scheme is based on the Bitcoin cryptographic
code [56], which offers a library for elliptic curve operations on curve secp256ki.

Measurements. We found out that the runtime of PASTA is dominated by the
cryptographic algorithms and network performance. Table 7.3 depicts runtime
measurements of the employed cryptographic algorithms. To attest its integrity,
a prover device hashes its firmware and generates a token using the Schnorr
multisignature scheme, which consumes around 40.1 ms of runtime in total with
a firmware size of 50 kB. The runtime required to verify the integrity of provers
listed in a received token depends on various factors. If the token is obtained
from an untrustworthy device and the receiver does not store the aggregated
public key of all m provers listed in the token, hence, must compute the key
ad-hoc, the computation consumes 20.95 4 0.11m ms. If the receiver uses a stored
aggregated key, the runtime amounts to 20.95 ms. If the token is received from
a healthy (i.e., trustworthy) prover, verifying the integrity requires less than
0.06 ms, as only the authenticity of the received message, but not the token

117

118

ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

Algorithm Function Runtime
Schnorr MuSign ~ GenCommit(k € Z; r = g¥) 21.284 ms
AggCommit(r =ry - 12) 0.109 ms
GenChallenge(c = Hash(r||msg)) 3.819 ms
GenSig(s =k + ¢ - x) 2.449 ms
AggSig(s = s1+52) 0.006 ms
Schnorr MuVerify ~ AggKey(y = y; - y5) 0.109 mMs
Verify(c = Hash(r||msg); &° Z ry¢) 20.896 ms
HMAC-SHA-256 HMAC(16B) 0.042 ms
HMAC(1024 B) 0.301 MS
SHA-256 Hash (51200 B) 13.171 mMS

Table 7.3: Cryptographic runtime measurements on the ESP32.

signature, needs to be verified. For communication between devices, we used
the Wi-Fi communication capabilities of the ESP32-PICO-D4. Unfortunately,
our measurements were significantly below the stated theoretical throughput
of 150 MBit/s, as we measured an average throughput of 12.51 MBit/s on the
application layer using TCP and an average round trip time of 4.63 ms.

Memory Consumption. Each device stores its id (4B), signature key (32B),
public key of O (64 B), channel key of each prover (16m B), and public key of
each prover (64m B). Each stored token consumes between 69 B and 69 + m /8B
(worst-case). Assuming a network with 10000 provers, our scheme consumes at
most 781.4kB + |token|-1.28 kB. The memory consumption can be reduced by
establishing channel keys and public keys on demand, and storing aggregated
public keys.

Conclusion. We showed that PASTA imposes a low computational complexity
and memory consumption on each device. This makes PASTA practical, even
on low-end embedded devices. Compared with SANA [7], the only protocol
that allows a scalable attestation of many provers towards untrustworthy verifier
devices (but is centralized and only detects software attacks), PASTA requires
at least one order of magnitude less computational overhead to generate the
attestation result and two orders of magnitude less to verify it.

7.4.2 Static Network Simulations

Simulation Setup. To evaluate PASTA in large networks, we performed network
simulations with the OMNeT++ [146] event simulator. We implemented PASTA
on the application layer and used delays based on our runtime and network
measurements. On lower network layers, we applied a simplified communication

7-4 EVALUATION

200 chain
- ring
Z 150 [~ -star
Y 4
£ ool .
=l I R P+t N PO
: -
~
50~
ok 1]]]
o 2000 4000 6000 8000 10000
Number of prover devices
2.5
8-ary tree
2.0 - T T e
. grary tree | L
2z 2-ary tree| | L.ectD ettt
QE) 1. 5 s e A L AT
= JERRS L
g Lo .-t"““"‘\
~ ¢""
0.5
0.0]]]]
o 200000 400000 600000 800000 1000000

Number of prover devices

Figure 7.4: Runtime of a token generation in various static topologies. Dotted lines
represent topology changes between iterations of the token generation.

model that enables devices within direct communication range unimpaired
half-duplex communication, as long as no other device within range transmits
data.

Token Generation. To examine the scalability of PASTA, we conducted simu-
lations in static networks. In these networks, each device is connected to the
overall network topology and connections between devices remain (almost) fixed.
Figure 7.4 shows our simulation results for the runtime of the token generation
phase with a varying number of network devices and different network topolo-
gies. As shown, the runtime heavily depends on the network topology. Tree
topologies enable more provers to perform computations and communication
simultaneously in the network. In fact, whereas more than one million prover
devices arranged in a tree topology can be attested in less than 1.0s, the attesta-
tion of 10000 provers in a chain topology requires 192.1s. Fortunately, devices
are in typical application scenarios much more likely connected in some form of
tree topology than in long chains.

Furthermore, we also investigated the performance in quasi dynamic networks,
in which the network topology changes in random ways before the token gen-
eration protocol is executed. In completely static networks, the initiator device
can assume a static set of participating provers, such that provers do not have to
transmit their identifiers during token generation. In quasi dynamic networks,
which are represented as dotted lines in Figure 7.4, this is not possible, since

119

120 ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

8-ary tree 4-ary tree ===+ 50% provers == 10% provers === 95% provers

300

Runtime (s)
N
o}
3

=
Q
o

(0] 200000 400000 600000 800000 1000000
Number of devices

(a) Devices compute the aggregated public key of provers ad-hoc.

o
o
I

=
o —
— -
o e e
-

o
Y
|

Runtime (s)
o
i
X’

| | | |
0 200000 400000 600000 800000 1000000

Number of devices

(b) Devices use a stored aggregated public key of provers.

Figure 7.5: Token exchange runtimes in various static topologies and with a varying
ratio between prover and verifier devices.

provers may leave or join the network between runs of the token generation
protocol. Due to the additional communication of device identifiers, the token
generation runtime is slightly higher in quasi dynamic networks and increases
with an increasing number of provers.

Token Exchange. Figure 7.5 illustrates the runtime required to exchange a single
token between all devices in the network. The exchanged token was generated
by all provers and attests their integrity. We varied the total number of devices,
network topology, and ratio between prover and verifier devices. In addition,
devices either computed the aggregated public key of provers ad-hoc, depicted in
Figure 7.5a, or used a precomputed and stored aggregated public key, depicted
in Figure 7.5b. During token exchange, the aggregated public key is required
to verify the token signature, which protects the token integrity. The key must
be computed whenever a token is received from an untrustworthy device and
the token lists a new set of prover devices for which the receiver does not yet
store the aggregated public key. As shown, the difference between computing the
key ad-hoc and using a precomputed key is huge. Whereas in the first case the

7-4 EVALUATION

runtime to exchange and verify a token in a network with one million devices
amounts to a few minutes, in the latter case it is less than o0.7s. However, we
would like to emphasize that in networks with up to 4000 devices, the token
exchange runtime is even in the worst-case, that is, with new sets of provers in
each token exchange, always below 1s.

Another essential factor for the performance of the token exchange is the ratio
between provers and verifiers in the network. In case the network contains many
provers and only few untrustworthy devices, devices need to verify the signature
of received tokens less often and the runtime decreases, as shown by the solid
lines in Figure 7.5a. This is because devices can omit verifying the signature of
tokens that are received from healthy provers (Section 7.3.3). On the contrary,
if there are only few provers and many verifiers, devices need to verify tokens
frequently. Nonetheless, in this case, each token contains less prover devices and
the aggregated public key required to verify the token can be computed much
faster. In total, this also results in a low runtime, as shown by the dashed lines. A
balanced number of healthy provers and verifiers results in the highest runtime.
Yet, when devices store the precomputed public key required to verify a received
token, the impact of the ratio between provers and verifiers is less significant
because verifying tokens is then much faster, as shown in Figure 7.5b.

Conclusion. We showed that PASTA is scalable to very large networks due to
its small communication and computational overhead. In the best case, which
is a static network with a uniform tree topology and only prover devices, one
million provers can attest and verify the integrity of each other in less than 2.91s
(token generation plus token exchange). Yet, even in the worst case, which is a
network with approximately 41 % verifier devices and a topology that changes
between runs of the protocol, 1000 devices (410 verifiers and 590 provers) are
able to verify the integrity of all 590 provers within 71.7s.

7.4.3 Dynamic Network Simulations

Simulation Setup. In order to simulate dynamic and disruptive network topolo-
gies, we extended our simulation setup for static networks (Section 7.4.2). Instead
of using static connections between devices, we set the device communication
range to 50m and deployed devices randomly in a 1000m x 1000m area. During
simulation, devices repeatedly select a random destination within the area and
then move towards this destination at a specified speed, which is repeatedly set
to a random value between 5 and 15m/s (random waypoint mobility model).
PASTA’s parameters dge; and Jjyi, to initiate and join a token generation were
set to 10s and 5s. In addition, we assumed that Advy,, requires at least 10 min to
physically tamper with a prover, i.e., §; = 10 min. Thus, the simulation settings
and parameters are the same as in the evaluation of SCAPI (Section 6.4).

Robustness of Attestation. To assess the robustness of PASTA, we investigated
the runtime until prover devices are mistakenly regarded as physically compro-

121

122

ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

’@: 1500
i I: = = PASTA, 2 fp Il
2 1000 1 —— PASTA, 1 fp I
£ I |== SCAPL2fp 1'
Ed
1
50 bett = SCAPL 1 fp
E 500 etter II
S /
8,
| 1 il
© % 10 20 30 40 50 60
Number of prover devices
(a) Varying number of false positives (fp).
1500
= = PASTA, data mules _
|| PASTA, verifiers ,/" —-——
1000 P SCAPI _-7

500

Operating time (days)

20 21 22 23 24 25 56 27 28 29 30
Number of devices (20 are provers)

(b) Single false positive (1 fp) and increasing number of non-prover
devices.

Figure 7.6: Error-free runtime of prover attestation, i.e., runtime until prover devices are
mistakenly regarded as physically compromised.

mised. In dynamic and disruptive networks, provers only occasionally have a
connection to each other. Hence, a healthy prover may be unable to communicate
with other provers for longer than J, time, whereupon the prover is regarded
as physically compromised. Note that the considered scenarios deliberately go
beyond typical application scenarios for autonomous embedded systems to
determine the boundaries of PASTA.

Figure 7.6a shows the runtime until either one or two provers are falsely
regarded as physically compromised. The network only consists of prover devices,
whose number we varied. Furthermore, we set the concurrency factor g, which
defines the number of provers Advy,, can physically compromise within J, time,
to co. Thus, we assumed that Advy, is able to physically attack all provers
concurrently. In addition, we compared PASTA with SCAPIL. As shown, the
robustness of both protocols exponentially increases with the number of provers
in the network. With more provers, the network becomes denser, which allows
for more communication between the devices. By contrast, in sparser networks,
chances are higher that a particular prover does not encounter any other prover
within é, time, so that all other provers will regard the isolated prover as absent,
hence, physically compromised. With the random movement of devices, it is
significantly more likely that a single prover is isolated, as opposed to a group
of provers. This is why the runtime for a misclassification of two provers is

7-4 EVALUATION

on average almost twice as high as for a single prover. In comparison, SCAPI
requires roughly three times more provers to achieve the same error-free runtime
as PASTA, or, with the same number of provers, operates two orders of magnitude
less robustly. This is because in SCAPI each prover must have a connection to
other provers at least every J,/2 time, as opposed to §, time in PASTA. Therefore,
PASTA is significantly more robust to network dynamics and disruptions.

In practice, autonomous embedded systems usually not only contain provers,
but also (potentially untrustworthy) devices that are not attested. To evaluate
SCAPI and PASTA in these scenarios, we set the number of provers to 20 and then
added an increasing number of either data mules (dashed lines) or verifiers (solid
lines). Whereas verifiers continuously verify the integrity of provers, data mules
(e.g., access points) merely store and forward tokens. As depicted in Figure 7.6b,
PASTA runs much more robustly with an increasing number of non-prover
devices. This is due to the fact that PASTA enables any device to propagate
tokens in the network. By contrast, non-prover devices have no impact on the
robustness of SCAPI. In SCAPI, provers communicate encrypted with a secret
key that cannot be shared with (potentially untrustworthy) non-prover devices,
which are therefore unable to participate in the attestation protocol. Figure 7.6b
also shows that the error-free runtime of PASTA is higher in networks with data
mules than with verifiers. The reason for this is that data mules do not verify the
integrity of provers, so that fewer devices in the network can falsely classify a
healthy prover as compromised.

In the next simulation, whose results are shown in Figure 7.7, we arranged
an impassable horizontal barrier in the middle of a 800m x 800m area, and
deployed half of all devices in each of the two partitions. As a result, connections
between devices from the same partition are much more likely to occur than
connections between devices from different partitions. In addition, we varied
the number of provers and the concurrency factor B. If 8 is set to co, Advy,, can
compromise all provers concurrently, as in all previous simulations. With the
barrier, it is more likely that whole groups of provers are separated from each
other for longer than J, time, than single provers. This allows PASTA to make
use of its unique feature to reunite separated groups of prover devices. A lower
concurrency factor § allows separated groups of provers to be smaller and be
separated from other groups for longer times. In fact, setting a slightly lower
B in our simulations leads to an increased robustness of up to multiple orders
of magnitude. In contrast, SCAPI immediately produces false positives after
d,/2 time, i.e., 5min, with up to 9o provers (not shown in Figure 7.7). This is
no surprise, since Figure 7.6a already showed that SCAPI performs significantly
worse than PASTA with = co.

Conclusion. We demonstrated that PASTA is significantly more robust to net-
work disruptions than SCAPI (Section 6). In the same networks, PASTA has
shown to achieve an average error-free operating time that is up to 450 times
higher than SCAPI. This huge gap in the robustness even further increases
when (i) the network contains additional non-prover devices, e.g., verifier or

123

124 ATTESTATION OF AUTONOMOUS EMBEDDED SYSTEMS

__ 8o 1
wn
2 . = p=2
T 6ot I B=4
g ! : =6
§ better I I —— ﬁ_S
S g - =
,5 : N
® L i ! — B=o00
S 20 H |
g ! g
o ! A
o i T 1 B
o 20 40 60 8o

Number of prover devices

Figure 7.7: Error-free runtime of prover attestation with an impassable barrier in the
deployment area that separates the network in two parts.

network infrastructure devices, or (ii) it is assumed that Advy,, can only physically
tamper with a limited number of provers simultaneously. Whereas in the first
case, PASTA outperforms SCAPI by three orders of magnitude, the second case
enables PASTA to run reliable in network topologies in which an attestation with
SCAPI is impossible.

7.5 SUMMARY

In this chapter, we presented PASTA, an attestation protocol that is particularly
suited for autonomous networks of embedded devices. As opposed to other
protocols, PASTA (i) allows many provers to attest their integrity towards many
verifiers in a scalable and efficient way; (ii) is decentralized, hence, independent of
any entity that manages the attestation, and (iii) is able to detect physical attacks
in a much more robust way than any existing protocol. In simulations based
on real-world measurements, we showed that one million low-end embedded
prover devices are able to attest their software and hardware integrity within 0.5
in a token of only 68 bytes. The token can be verified by a low-end embedded
device within 0.06 ms or 21ms, depending on whether the token is received
from a prover or a potentially untrustworthy network device. Furthermore, we
demonstrated that PASTA is much more robust than our previously proposed
attestation protocol SCAPI (Section 6). In disruptive networks, it achieves an
error-free operating time that is several orders of magnitude higher than SCAPI.

CONCLUSION

We conclude this thesis by summarizing our contributions (Section 8.1) and
outlining directions for future research (Section 8.2).

8.1 SUMMARY

Remote attestation constitutes an effective technique to face the increasing num-
ber of attacks on networked embedded systems. It allows to detect whether
remote devices are in a trustworthy system state (or not). Thus, remote attesta-
tion enables to quickly identify and respond to attacks on embedded devices,
and mitigate their damage. In this thesis, we advanced the state of the art in the
attestation of embedded systems in three main ways.

First, we targeted the secure attestation of commodity low-end embedded
devices. Existing attestation protocols rely on secure hardware to achieve strong
security guarantees. The necessary secure hardware is, however, unavailable in
low-end embedded devices. We presented ALE, an attestation protocol that relies
on less secure hardware while providing the same (strong) security guarantees
as existing hardware-based protocols. The relaxed requirements on secure hard-
ware allow ALE to be in particular applicable to commodity low-end embedded
devices. As a result, our protocol enables various novel applications that were
previously impractical due to weak security guarantees or lack of secure hard-
ware. To demonstrate this, we applied ALE in two specific use cases, namely,
ECUs in road vehicles and code updates for wireless sensor networks. In the first
use case, we proposed a scheme that ensures the secure and safe operation of
embedded systems in road vehicles. We showed that our scheme is applicable
to many automotive embedded systems, as they often adhere to automotive
standards that fulfill ALE’s demands on secure hardware. In the second use
case, we proposed a secure code update scheme for mesh-networked low-end
embedded devices. Our scheme enforces the proper installation of updates and
the erasure of potential malware on all devices in the network. Unlike other
solutions, our scheme is, due to its strong security guarantees, applicable in mesh
networks, where an adversary may have compromised various devices.

Next, we aimed at the efficient attestation of multiple devices that are con-
nected in particularly challenging networks. More specifically, we focused on
highly dynamic and disruptive network topologies. In these topologies, existing
attestation protocols are impractical or even inapplicable. We proposed SALAD,
an attestation protocol that can efficiently verify multiple devices in highly
dynamic and disruptive networks. In addition, SALAD provides an increased
resilience against DoS attacks, allows a verifier to obtain the attestation result

125

126

CONCLUSION

from any device, and considers a physical adversary who is able to tamper with
the hardware of devices in the network. In the presence of a physical adversary,
SALAD guarantees a secure attestation of all physically uncompromised devices,
unlike other collective attestation protocols. Nevertheless, SALAD is unable to
detect physically compromised devices.

Finally, we explored practical attestation protocols that defend against invasive
physical attacks. We presented two protocols, SCAPI and PASTA, that not only
detect devices whose software is compromised but also devices whose hard-
ware has been tampered with. Existing attestation protocols that aim to detect
physically compromised devices suffer from limited scalability and robustness.
Our first protocol, SCAPI, specifically addresses scalability and efficiency, in
which respect it outperforms existing protocols by several orders of magnitudes.
Furthermore, SCAPI entails only a low computational and memory overhead,
which makes it applicable to low-end embedded devices. In comparison, our
second protocol, PASTA, targets more powerful low-end and mid-range embed-
ded devices. In return, PASTA provides more robustness against device outages
and network disruptions than SCAPI. Additionally, PASTA allows embedded
prover devices to attest their integrity towards multiple potentially untrustworthy
embedded verifier devices. These properties make PASTA particularly suited for
autonomous networks of embedded systems.

In short, we presented protocols that enable a more secure, efficient, and robust
attestation of embedded devices. In addition, we applied one of our protocols in
two novel usage scenarios. With our contributions, we advanced the practicality
of remote attestation on embedded devices, which we hope will facilitate the
deployment and use of remote attestation in practice.

8.2 FUTURE WORK

Although this thesis advanced remote attestation techniques for embedded
systems in various directions, there are still open challenges that require future
work. The following paragraphs outline these challenges.

Provable Secure Attestation. All our attestation protocols were carefully de-
signed to meet the stated security goals (Section 2.4). Nevertheless, even most
carefully designed protocols sometimes turn out to have security vulnerabilities.
In order to provide more evidence for the security of attestation protocols, re-
cent works aimed at provable security [10, 110, 111]. Thus far, VRASED [111]
constitutes the only formally verified hardware-based attestation protocol. How-
ever, VRASED only considers the attestation of a single device and relies on
hardware modifications that prevent its application in commodity embedded
systems. Therefore, more research is needed to prove the security of contempo-
rary collective attestation protocols or attestation protocols that are applicable to
commodity embedded devices, which we presented in this thesis.

8.2 FUTURE WORK

Runtime Attestation of Road Vehicles. In Section 4.1, we presented a scheme
that ensures the secure and safe operation of embedded systems in road vehicles.
Our scheme detects compromised automotive embedded systems at the start
of the vehicle, but is unable to detect compromised devices after the vehicle is
started. To also detect attacks during the operation of vehicles, our scheme can
be extended with DIAT [4], a runtime attestation protocol for autonomous em-
bedded systems. Nevertheless, besides detection, the incident response approach
of our scheme must also be adjusted. So far, our scheme locks the ignition switch
or power supply whenever a compromised state has been detected. However,
during operation, a vehicle may be moving at high speed along a highway. In this
case, shutting down the engine or power supply threatens the safety of vehicles,
vehicle occupants, and other road users. Hence, more research is needed to find
appropriate incident responses for this application scenario.

Analysis of Physical Tamper Resistance. Another interesting direction of re-
search is to investigate the resistance of commodity embedded systems against
invasive and semi-invasive physical attacks. Existing works typically explore
novel physical attacks but lack precise numbers about the costs and time that is
needed to perform these attacks. By quantifying the precise resistance against
physical attacks, the capabilities of a physical adversary can be narrowed down
and parameters for the absence detection can be adjusted accordingly. As a result,
this would enhance the security and robustness of our proposed attestation
protocols that defend against physical attacks (Chapters 6 and 7).

Extended Evaluation. To evaluate our attestation protocols, we implemented
them, measured their performance in small networks, and then simulated large
networks based on our measurements. However, network simulations always
introduce modeling and discretization errors. One way towards more realistic
simulation results is to use non-synthetic mobility trace, e.g., recorded from
actual deployment scenarios. Nonetheless, to obtain precise evaluation results
for specific scenarios, our protocols would need to be tested in large-scale real-
world experiments. Ideally, the protocols are evaluated in realistic application
scenarios, such as drone-based delivery systems or wireless sensor networks.
Unfortunately, performing such real-world experiments involves a significant
effort. This is because different network topologies and device movements need
to be considered and a large testbed with hundreds of interconnected embedded
devices is required.

127

BIBLIOGRAPHY

[1] ARM Holdings. mbed TLS. URL: https://t1ls.mbed.org/.
[2] AUTOSAR. Specification of Secure Onboard Communication. V.4.3.1.

[3] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, An-
drew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. “C-FLAT: control-
flow attestation for embedded systems software.” In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM. 2016, pp. 743—754-

[4] Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-
Reza Sadeghi, and Matthias Schunter. “DIAT: Data Integrity Attestation
for Resilient Collaboration of Autonomous Systems.” In: 26th Annual
Network and Distributed System Security Symposium (NDSS). The Internet
Society. 2019.

[5] Trusted Computing Platform Alliance. Main Specification, Version 1.1 b.
2002.

[6] Tiago Alves and Don Felton. TrustZone: Integrated Hardware and Software
Security. ARM Technical White paper. 2004.

[71 Moreno Ambrosin, Mauro Conti, Ahmad Ibrahim, Gregory Neven, Ahmad-
Reza Sadeghi, and Matthias Schunter. “SANA: Secure and Scalable Ag-
gregate Network Attestation.” In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM. 2016,
PP- 731-742.

[8] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. “Innova-
tive technology for CPU based attestation and sealing.” In: Proceedings
of the 2nd International Workshop on Hardware and Architectural Support for
Security and Privacy (HASP). ACM. 2013.

[o] William A Arbaugh, David] Farber, and Jonathan M Smith. “A secure
and reliable bootstrap architecture.” In: 1997 IEEE Symposium on Security
and Privacy (S&P). IEEE Computer Society, 1997, pp. 65-71.

[10] Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen Schulz, and Chris-
tian Wachsmann. “A security framework for the analysis and design of
software attestation.” In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM. 2013, pp. 1-12.

[11] N Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza Sadeghi,
Matthias Schunter, Gene Tsudik, and Christian Wachsmann. “SEDA:
Scalable Embedded Device Attestation.” In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (CCS). ACM.

2015, pp. 964-975.

129

https://tls.mbed.org/

130

BIBLIOGRAPHY

[12]

[22]

N Asokan, Thomas Nyman, Norrathep Rattanavipanon, Ahmad-Reza
Sadeghi, and Gene Tsudik. “ASSURED: Architecture for secure software
update of realistic embedded devices.” In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. Vol. 37. 11. 2018, pp. 2290—
2300.

Atmel. Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V Datasheet. 2014.

Alexander Becher, Zinaida Benenson, and Maximillian Dornseif. “Tamper-
ing with motes: Real-world physical attacks on wireless sensor networks.”
In: Third International Conference on Security in Pervasive Computing (SPC).
Vol. 3934. Lecture Notes in Computer Science. Springer, 2006, pp. 104-118.

Daniel Beer. Curvez5519 and Ed25519 for low-memory systems. 2014. URL:
https://www.dlbeer.co.nz/oss/c25519.html.

Mihir Bellare and Gregory Neven. “Multi-signatures in the plain public-
key model and a general forking lemma.” In: Proceedings of the 13th ACM
Conference on Computer and Communications Security (CCS). ACM. 2006,

PP- 390-399-

Daniel] Bernstein. Supercop: System for Unified Performance Evaluation
Related to Cryptographic Operations and Primitives. URL: https://bench.cr.
yp.to/supercop.html.

Daniel] Bernstein. “Curve25519: new Diffie-Hellman speed records.” In:
oth International Conference on Theory and Practice of Public-Key Cryptography
(PKC). Vol. 3958. Lecture Notes in Computer Science. Springer, 2006,
pp. 207—-228.

Daniel] Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. “High-speed high-security signatures.” In: Journal of Cryptographic
Engineering. Vol. 2. 2. Springer, 2012, pp. 77-89.

Christian Bettstetter, Giovanni Resta, and Paolo Santi. “The Node Distri-
bution of the Random Waypoint Mobility Model for Wireless Ad Hoc
Networks.” In: IEEE Transactions on Mobile Computing (TMC). Vol. 2. 3.
2003, pp. 257-269.

Ben Romdhanne Bilel, Nikaein Navid, and Mohamed Said Mosli Bouksiaa.
“Hybrid cpu-gpu distributed framework for large scale mobile networks
simulation.” In: 16th IEEE/ACM International Symposium on Distributed
Simulation and Real Time Applications (DS-RT). IEEE Computer Society,
2012, Pp- 44753-

Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. “Aggregate
and verifiably encrypted signatures from bilinear maps.” In: Advances in
Cryptology - International Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT). Vol. 2656. Lecture Notes in Computer
Science. Springer, 2003, pp. 416—432.

https://www.dlbeer.co.nz/oss/c25519.html
https://bench.cr.yp.to/supercop.html
https://bench.cr.yp.to/supercop.html

[28]

[29]

[31]

BIBLIOGRAPHY

Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian
Wachsmann, and Patrick Koeberl. “TyTAN: Tiny trust anchor for tiny

devices.” In: Proceedings of the 52nd Annual Design Automation Conference
(DAC). ACM, 2015, pp. 341-346.

Coen Bron and Joep Kerbosch. “Algorithm 457: finding all cliques of an
undirected graph.” In: Communications of the ACM. Vol. 16. 9. ACM, 1973,
Pp. 575-576.

T Ryan Burchfield, S Venkatesan, and Douglas Weiner. “Maximizing
throughput in zigbee wireless networks through analysis, simulations

and implementations.” In: Proceedings of the 1st International Workshop on
Localized Algorithms and Protocols for Wireless Sensor Networks (LOCALGOS).

2007, pp. 15-29.
Jenna Burrell, Tim Brooke, and Richard Beckwith. “Vineyard computing;:
Sensor networks in agricultural production.” In: IEEE Pervasive computing.
Vol. 3. 1. 2004, pp. 38—45.

John Butterworth, Corey Kallenberg, Xeno Kovah, and Amy Herzog. “Bios
chronomancy: Fixing the core root of trust for measurement.” In: Proceed-
ings of the 2013 ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM. 2013, pp. 25-36.

Xavier Carpent, Karim Eldefrawy, Norrathep Rattanavipanon, and Gene
Tsudik. “Lightweight Swarm Attestation: a Tale of Two LISA-s.” In: Pro-
ceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security (ASIACCS). ACM. 2017, pp. 86-100.

Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio
Soriente. “On the difficulty of software-based attestation of embedded
devices.” In: Proceedings of the 2009 ACM Conference on Computer and
Communications Security (CCS). ACM. 2009, pp. 400—-409.

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska
Roesner, Tadayoshi Kohno, et al. “Comprehensive experimental analyses
of automotive attack surfaces.” In: Proceedings of the 2oth USENIX Security
Symposium (USENIX-Security). USENIX Association, 2011, pp. 77-92.

Jiming Chen, Xianghui Cao, Peng Cheng, Yang Xiao, and Youxian Sun.
“Distributed collaborative control for industrial automation with wire-
less sensor and actuator networks.” In: IEEE Transactions on Industrial
Electronics. Vol. 57. 12. 2010, pp. 4219—4230.

Mauro Conti, Roberto Di Pietro, Luigi Vincenzo Mancini, and Alessandro
Mei. “Emergent properties: detection of the node-capture attack in mobile
wireless sensor networks.” In: Proceedings of the First ACM Conference on
Wireless Network Security (WiSec). ACM. 2008, pp. 214-219.

131

132

BIBLIOGRAPHY

[33]

Mauro Conti, Roberto Di Pietro, Andrea Gabrielli, Luigi V Mancini, and
Alessandro Mei. “The smallville effect: social ties make mobile networks
more secure against node capture attack.” In: Proceedings of the 8th ACM In-
ternational Workshop on Mobility Management & Wireless Access (MOBIWAC).
ACM, 2010, pp. 99—-106.

Andrei Costin, Jonas Zaddach, Aurélien Francillon, Davide Balzarotti,
and Sophia Antipolis. “A large-scale analysis of the security of embed-
ded firmwares.” In: Proceedings of the 23rd USENIX Security Symposium
(USENIX-Security). USENIX Association, 2014, pp. 95-110.

Payment Card Industry Security Standards Council. Payment Card Industry
PTS HSM Security Requirements v2.0. PCI, Wakefield, MA, USA, 2012.

Ang Cui, Michael Costello, and Salvatore]. Stolfo. “When Firmware
Modifications Attack: A Case Study of Embedded Exploitation.” In: 20th
Annual Network and Distributed System Security Symposium (NDSS). The
Internet Society. 2013.

Ruan De Clercq, Leif Uhsadel, Anthony Van Herrewege, and Ingrid
Verbauwhede. “Ultra low-power implementation of ECC on the ARM
Cortex-Mo+.” In: Proceedings of the 51st Annual Design Automation Confer-
ence (DAC). ACM, 2014, pp. 1121-1126.

Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lucas
Davi, Patrick Koeberl, N Asokan, and Ahmad-Reza Sadeghi. “LO-FAT:
Low-overhead control flow attestation in hardware.” In: Proceedings of the
54th Annual Design Automation Conference (DAC). ACM, 2017, pp. 241—246.

Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza Sadeghi.
“LiteHAX: lightweight hardware-assisted attestation of program execu-
tion.” In: 2018 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD). IEEE. 2018, pp. 1-8.

Danny Dolev and Andrew Yao. “On the security of public key protocols.”
In: IEEE Transactions on Information Theory. Vol. 29. 2. IEEE, 1983, pp. 198—
208.

Wei Dong, Chun Chen, Jiajun Bu, and Wen Liu. “Optimizing Relocatable
Code for Efficient Software Update in Networked Embedded Systems.”
In: ACM Transactions on Sensor Networks (TOSN). Vol. 11. 2. ACM, 2014,
22:1-22:34.

Michael Diill, Bjorn Haase, Gesine Hinterwalder, Michael Hutter, Christof
Paar, Ana Helena Sanchez, and Peter Schwabe. “High-speed Curve25519
on 8-bit, 16-bit, and 32-bit microcontrollers.” In: Designs, Codes and Cryp-
tography. Vol. 77. 2-3. Springer, 2015, pp. 493-514.

Rachid El Bansarkhani and Jan Sturm. “An Efficient Lattice-Based Mul-
tisignature Scheme with Applications to Bitcoins.” In: 15th International
Conference on Cryptology and Network Security (CANS). Vol. 10052. Lecture
Notes in Computer Science. Springer, 2016, pp. 140-155.

[45]

[50]

[51]

[54]

BIBLIOGRAPHY

Karim Eldefrawy, Norrathep Rattanavipanon, and Gene Tsudik. “THYDRA:
hybrid design for remote attestation (using a formally verified microker-
nel).” In: Proceedings of the 10th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec). ACM. 2017, pp. 99—110.

Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito.
“SMART: Secure and Minimal Architecture for (Establishing Dynamic)
Root of Trust.” In: 19th Annual Network and Distributed System Security
Symposium (NDSS). The Internet Society. 2012.

R Escherich, I Ledendecker, C Schmal, B Kuhls, C Grothe, and F Schar-
berth. SHE — Secure Hardware Extension Functional Specification Version 1.1
(rev 439). 2009.

Arved Esser, Florian Kohnhduser, Nadine Ostern, Kevin Engleson, and
Stephan Rinderknecht. “Enabling a Privacy-Preserving Synthesis of Rep-
resentative Driving Cycles from Fleet Data using Data Aggregation.”
In: 2018 215t International Conference on Intelligent Transportation Systems
(ITSC). IEEE Computer Society, 2018, pp. 1384-1389.

Donald L Evans, Phillip Bond, and Arden Bement. FIPS Pub 140-2: Security
Requirements for Cryptographic Modules. Federal Information Processing
Standards Publication, Mar. 2002.

Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. “Komodo: Using verification to disentangle secure-enclave hard-
ware from software.” In: Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP). ACM, 2017, pp. 287-305.

Ian Foster, Andrew Prudhomme, Karl Koscher, and Stefan Savage. “Fast
and Vulnerable: A Story of Telematic Failures.” In: gth USENIX Workshop
on Offensive Technologies (WOOT). USENIX Association, 2015.

Aurélien Francillon, Quan Nguyen, Kasper B Rasmussen, and Gene
Tsudik. “A minimalist approach to remote attestation.” In: Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). European Design
and Automation Association, 2014, pp. 1-6.

Freescale Semiconductor. Using the Kinetis Flash Execute Only Access Con-
trol Feature - 6.3 Entry into execute-only code on the ARM Cortex-My core.
Application Note. 2015.

Walter Fuertes, Diego Carrera, César Villacis, Theofilos Toulkeridis, Fer-
nando Galarraga, Edgar Torres, and Herndn Aules. “Distributed system
as internet of things for a new low-cost, air pollution wireless monitoring
on real time.” In: 19th IEEE/ACM International Symposium on Distributed
Simulation and Real Time Applications. IEEE Computer Society, 2015, pp. 58—
67.

Gartner Inc. Gartner Says 8.4 Billion Connected "Things” Will Be in Use in
2017, Up 31 Percent From 2016. 2017. URL: http://www.gartner.com/
newsroom/id/3598917.

133

http://www.gartner.com/newsroom/id/3598917
http://www.gartner.com/newsroom/id/3598917

134

BIBLIOGRAPHY

[55]

[56]

(571

[59]

Gartner Inc. Gartner Says Detection and Response is Top Security Priority for
Organizations in 2017. 2017. URL: http://www.gartner.com/newsroom/id/
3638017.

GitHub: bitcoin-core/secp256ki1. “Optimized C library for EC operations
on curve secp256k1.” In: URL: https://github.com/bitcoin- core/
secp256k1.

Zheng Guo, Gioele Colombi, Bing Wang, Jun-Hong Cui, Dario Maggiorini,
and Gian Paolo Rossi. “Adaptive routing in underwater delay/disruption
tolerant sensor networks.” In: 2008 Fifth Annual Conference on Wireless on
Demand Network Systems and Services (WONS). IEEE Computer Society,
2008, pp. 31-39.

Andrew Hagedorn, David Starobinski, and Ari Trachtenberg. “Rateless
deluge: Over-the-air programming of wireless sensor networks using
random linear codes.” In: Proceedings of the 7th International Conference on
Information Processing in Sensor Networks (IPSN). IEEE Computer Society,

2008, pp. 457—466.

Steven Hanna, Rolf Rolles, Andrés Molina-Markham, Pongsin Poosankam,
Kevin Fu, and Dawn Song. “Take two software updates and see me in
the morning: The case for software security evaluations of medical de-
vices.” In: 2nd USENIX Workshop on Health Security and Privacy (HealthSec).
USENIX Association, 2011.

Daojing He, Chun Chen, Sammy Chan, and Jiajun Bu. “SDRP: A secure
and distributed reprogramming protocol for wireless sensor networks.”
In: IEEE Transactions on Industrial Electronics. Vol. 59. 11. 2012, pp. 4155—
4163.

Kevin Hemsley and Ronald Fisher. “A History of Cyber Incidents and
Threats Involving Industrial Control Systems.” In: 12th IFIP WG 11.10
International Conference on Critical Infrastructure Protection (ICCIP). Vol. 542.
IFIP Advances in Information and Communication Technology. Springer,
2018, pp. 215-242.

Jun-Won Ho. “Distributed detection of node capture attacks in wireless
sensor networks.” In: Smart Wireless Sensor Networks. ISBN: 978-953-307-
261-6. InTech, 2010, pp. 345-360.

Lingxuan Hu and David Evans. “Secure aggregation for wireless net-
works.” In: 2003 Symposium on Applications and the Internet Workshops
(SAINT). IEEE Computer Society, 2003, pp. 384—391.

INET Framework. URL: https://inet.omnetpp.org/.

Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Gene Tsudik. “Us-aid: Unat-
tended scalable attestation of iot devices.” In: 2018 IEEE 37th Symposium on
Reliable Distributed Systems (SRDS). IEEE Computer Society. 2018, pp. 21—

30.

http://www.gartner.com/newsroom/id/3638017
http://www.gartner.com/newsroom/id/3638017
https://github.com/bitcoin-core/secp256k1
https://github.com/bitcoin-core/secp256k1
https://inet.omnetpp.org/

[67]

[74]

[75]

BIBLIOGRAPHY 135

Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Gene Tsudik. “HEALED:
HEaling & Attestation for Low-end Embedded Devices.” In: 23rd Interna-
tional Conference on Financial Cryptography and Data Security (FC). Lecture
Notes in Computer Science. Springer, 2019.

Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Shaza Zeitouni. “SeED: se-
cure non-interactive attestation for embedded devices.” In: Proceedings
of the 10th ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec). ACM. 2017, pp. 64—74.

Ahmad Ibrahim, Ahmad-Reza Sadeghi, Gene Tsudik, and Shaza Zeitouni.
“DARPA: Device attestation resilient to physical attacks.” In: Proceedings
of the gth ACM Conference on Security & Privacy in Wireless and Mobile
Networks (WiSec). ACM. 2016, pp. 171-182.

Intel Open Source Technology Center. TinyCrypt Cryptographic Library.
2017. URL: https://github.com/0lorg/tinycrypt.

Kazuharu Itakura. “A public-key cryptosystem suitable for digital mul-
tisignatures.” In: NEC J. Res. Dev. Vol. 71. 1983.

Lukas Jager, Richard Petri, and Andreas Fuchs. “Rolling dice: Lightweight
remote attestation for cots iot hardware.” In: Proceedings of the 12th Interna-
tional Conference on Availability, Reliability and Security (ARES). ACM, 2017,
Pp- 951-958.

Reiner Jedermann, Christian Behrens, Detmar Westphal, and Walter Lang.
“Applying autonomous sensor systems in logistics - Combining sensor
networks, RFIDs and software agents.” In: Sensors and Actuators A: Physical.
Vol. 132. 1. Elsevier, 2006, pp. 370-375.

Ik Rae Jeong, Jonathan Katz, and Dong Hoon Lee. “One-round proto-
cols for two-party authenticated key exchange.” In: Second International
Conference on Applied Cryptography and Network Security (ACNS). Vol. 3089.
Lecture Notes in Computer Science. Springer, 2004, pp. 220-232.

Jiong Jin, Jayavardhana Gubbi, Slaven Marusic, and Marimuthu Palaniswami.
“An information framework for creating a smart city through internet of
things.” In: IEEE Internet of Things Journal. Vol. 1. 2. 2014, pp. 112-121.

Ghassan O Karame and Wenting Li. “Secure Erasure and Code Update
in Legacy Sensors.” In: 8th International Conference on Trust and Trustwor-
thy Computing (TRUST). Vol. 9229. Lecture Notes in Computer Science.
Springer, 2015, pp. 283—299.

Kaspersky Lab. New trends in the world of IoT threats. 2018. URL: https://
securelist.com/new-trends-in-the-world-of-iot-threats/87991/.

Jonathan Katz and Andrew Lindell. “Aggregate message authentica-
tion codes.” In: The Cryptographers’ Track at the RSA Conference (CI-RSA).
Vol. 4964. Lecture Notes in Computer Science. Springer, 2008, pp. 155-169.

https://github.com/01org/tinycrypt
https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/
https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/

136 BIBLIOGRAPHY

[78] Stefan Katzenbeisser, Unal Kocabas, Vladimir RoZi¢, Ahmad-Reza Sadeghi,
Ingrid Verbauwhede, and Christian Wachsmann. “PUFs: Myth, fact or
busted? A security evaluation of physically unclonable functions (PUFs)
cast in silicon.” In: 14th International Workshop on Cryptographic Hardware
and Embedded Systems (CHES). Vol. 7428. Lecture Notes in Computer
Science. Springer, 2012, pp. 283-301.

[79] Ari Kerdnen, Mehmet Ersue, and Carsten Bormann. Terminology for
Constrained-Node Networks. REC 7228. Internet Engineering Task Force
(IETF), 2014.

[80] Ari Kerdnen, Jorg Ott, and Teemu Karkkdinen. “The ONE simulator for
DTN protocol evaluation.” In: Proceedings of the 2nd International Conference
on Simulation Tools and Techniques for Communications, Networks and Systems

(SIMUtools). 55. ICST/ACM, 2009.

[81] Wolfgang Killmann and Kerstin Lemke-Rust. Common Criteria Protection
Profile—Cryptographic Modules, Security Level “Enhanced”. Bundesamt fiir
Sicherheit in der Informationstechnik (BSI). 2008.

[82] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varad-
harajan. “TrustLite: a security architecture for tiny embedded devices.” In:
Proceedings of the Ninth European Conference on Computer Systems (EuroSys).
ACM, 2014, pp. 1001-1014.

[83] Florian Kohnhduser, Niklas Biischer, and Stefan Katzenbeisser. “SALAD:
Secure and Lightweight Attestation of Highly Dynamic and Disruptive
Networks.” In: Proceedings of the 2018 on Asia Conference on Computer and
Communications Security (ASIACCS). ACM. 2018, pp. 329-342.

[84] Florian Kohnh&duser, Niklas Biischer, and Stefan Katzenbeisser. “A Practi-
cal Attestation Protocol for Autonomous Embedded Systems.” In: 2019
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE Com-
puter Society, 2019.

[85] Florian Kohnhduser and Stefan Katzenbeisser. “Secure Code Updates
for Mesh Networked Commodity Low-End Embedded Devices.” In: 21st
European Symposium on Research in Computer Security (ESORICS). Vol. 9879.
Lecture Notes in Computer Science. Springer, 2016, pp. 320-338.

[86] Florian Kohnhduser, Dominik Piillen, and Stefan Katzenbeisser. “Ensuring
the Safe and Secure Operation of Electronic Control Units in Road Vehi-
cles.” In: 2019 IEEE Security and Privacy Workshops (SPW). IEEE Computer
Society, 2019.

[87] Florian Kohnhiuser, André Schaller, and Stefan Katzenbeisser. “PUF-
based software protection for low-end embedded devices.” In: 8th Interna-

tional Conference on Trust and Trustworthy Computing (TRUST). Vol. 9229.
Lecture Notes in Computer Science. Springer, 2015, pp. 3—21.

[98]

BIBLIOGRAPHY

Florian Kohnhduser, Niklas Biischer, Sebastian Gabmeyer, and Stefan
Katzenbeisser. “SCAPI: A Scalable Attestation Protocol to Detect Soft-
ware and Physical Attacks.” In: Proceedings of the 10th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec). ACM. 2017,
pp- 75-86.

Florian Kohnh&user, Milan Stute, Lars Baumgértner, Lars Almon, Stefan
Katzenbeisser, Matthias Hollick, and Bernd Freisleben. “SEDCQOS: A
Secure Device-to-Device Communication System for Disaster Scenarios.”
In: 2017 IEEE g42nd Conference on Local Computer Networks (LCN). IEEE
Computer Society, 2017, pp. 195-198.

Markus Kosmal. Shared AES-GCM: Attempt for a cross platform AES-GCM
encryption. URL: https://mko-x.github.io/SharedAES-GCM/.

Xeno Kovah, Corey Kallenberg, Chris Weathers, Alexander Herzog, Matthew

Albin, and John Butterworth. “New results for timing-based attestation.”
In: 2012 IEEE Symposium on Security and Privacy (S&P). IEEE Computer
Society, 2012, pp. 239-253.

Hugo Krawczyk, Ran Canetti, and Mihir Bellare. HMAC: Keyed-Hashing
for Message Authentication. RFC 2104. Network Working Group, 1997.

Sandeep Kulkarni and Limin Wang. “Energy-efficient multihop repro-
gramming for sensor networks.” In: ACM Transactions on Sensor Networks
(TOSN). Vol. 5. 2. ACM, 2009, pp. 1601-1640.

James LaPiedra. The Information Security Process: Prevention, Detection and
Response. SANS Institute: Information Security Reading Room 20, 2002.

Laurie Law, Alfred Menezes, Minghua Qu, Jerry Solinas, and Scott Van-
stone. “An efficient protocol for authenticated key agreement.” In: Designs,
Codes and Cryptography. Vol. 28. 2. Springer, 2003, pp. 119-134.

Yee Wei Law, Yu Zhang, Jiong Jin, Marimuthu Palaniswami, and Paul
Havinga. “Secure rateless deluge: Pollution-resistant reprogramming and
data dissemination for wireless sensor networks.” In: EURASIP Journal on
Wireless Communications and Networking. Vol. 2011. Hindawi Publishing
Corp., 2011.

Gyesik Lee, Hisashi Oguma, Akira Yoshioka, Rie Shigetomi, Akira Otsuka,
and Hideki Imai. “Formally verifiable features in embedded vehicular
security systems.” In: IEEE Vehicular Networking Conference (VNC). IEEE
Computer Society, 2009, pp. 1-7.

Yanlin Li, Jonathan M McCune, and Adrian Perrig. “VIPER: verifying
the integrity of PERipherals’ firmware.” In: Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS). ACM. 2011,
pp- 3-16.
Linaro. OP-TEE: Open Portable Trusted Execution Environment. URL: op -
tee.org.

137

https://mko-x.github.io/SharedAES-GCM/
op-tee.org
op-tee.org

138

BIBLIOGRAPHY

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Linux Foundation.. Intel Quark Microcontroller Software Interface. URL: https:
//downloadcenter.intel.com/download/25619/Intel-Quark-Microcontroller-
Software-Interface.

Linux Foundation.. Zephyr Project. URL: https://www . zephyrproject .
org/.

Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters.
“Sequential Aggregate Signatures and Multisignatures Without Random
Oracles.” In: Advances in Cryptology - International Conference on the The-
ory and Applications of Cryptographic Techniques (EUROCRYPT). Vol. 4004.
Lecture Notes in Computer Science. Springer, 2006, pp. 465-485.

Ken Mackay. Micro-ECC. URL: http://kmackay.ca/micro-ecc/.

Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille.
“Simple Schnorr Multi-Signatures with Applications to Bitcoin.” In: De-
signs, Codes and Cryptography. Springer, 2018, pp. 1—26.

Christian Meurisch, Julien Gedeon, Artur Gogel, The An Binh Nguyen,
Fabian Kaup, Florian Kohnhaeuser, Lars Baumgaertner, Milan Schmittner,
and Max Muehlhaeuser. “Temporal coverage analysis of router-based
cloudlets using human mobility patterns.” In: 2017 IEEE Global Commu-
nications Conference (GLOBECOM). IEEE Computer Society, 2017, pp. 1—
6.

Silvio Micali, Kazuo Ohta, and Leonid Reyzin. “Accountable-subgroup
multisignatures.” In: Proceedings of the 8th ACM Conference on Computer
and Communications Security (CCS). ACM. 2001, pp. 245—254.

Charlie Miller and Chris Valasek. “Remote exploitation of an unaltered
passenger vehicle.” In: Black Hat USA. 2015.

Thomas Morris. “Trusted platform module.” In: Encyclopedia of Cryptogra-
phy and Security, 2nd Ed. Springer, 2011, pp. 1332-1335.

Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van
Herrewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and
Frank Piessens. “Sancus: Low-cost Trustworthy Extensible Networked De-
vices with a Zero-software Trusted Computing Base.” In: Proceedings of the
22th USENIX Security Symposium (USENIX-Security). USENIX Association,

2013, PpP- 4797494

Ivan Oliveira Nunes, Ghada Dessouky, Ahmad Ibrahim, Norrathep Rat-
tanavipanon, Ahmad-Reza Sadeghi, and Gene Tsudik. “Towards System-
atic Design of Collective Remote Attestation Protocols.” In: 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS). IEEE.
2019.

https://downloadcenter.intel.com/download/25619/Intel-Quark-Microcontroller-Software-Interface
https://downloadcenter.intel.com/download/25619/Intel-Quark-Microcontroller-Software-Interface
https://downloadcenter.intel.com/download/25619/Intel-Quark-Microcontroller-Software-Interface
https://www.zephyrproject.org/
https://www.zephyrproject.org/
http://kmackay.ca/micro-ecc/

BIBLIOGRAPHY 139

[111] Ivan Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Michael
Steiner, and Gene Tsudik. “VRASED: A Verified Hardware /Software Co-
Design for Remote Attestation.” In: Proceedings of the 28th USENIX Security
Symposium (USENIX-Security). Santa Clara, CA, 2019.

[112] Stefan Niirnberger and Christian Rossow. “- vatiCAN - Vetted, Authenti-
cated CAN Bus.” In: 18th International Conference on Cryptographic Hardware
and Embedded Systems (CHES). Vol. 9813. Lecture Notes in Computer Sci-
ence. Springer, 2016, pp. 106—124.

[113] Hisashi Oguma, Akira Yoshioka, Makoto Nishikawa, Rie Shigetomi, Akira
Otsuka, and Hideki Imai. “New attestation based security architecture for
in-vehicle communication.” In: Proceedings of the Global Communications
Conference (GLOBECOM). IEEE, 2008, pp. 1909-1914.

[114] Haemin Park, Dongwon Seo, Heejo Lee, and Adrian Perrig. “SMATT:
Smart Meter ATTestation Using Multiple Target Selection and Copy-Proof
Memory.” In: Computer Science and its Applications. Springer, 2012, pp. 875—
887.

[115] Youngseok Park, Yunmok Son, Hocheol Shin, Dohyun Kim, and Yongdae
Kim. “This Ain’t Your Dose: Sensor Spoofing Attack on Medical Infusion
Pump.” In: 10th USENIX Workshop on Offensive Technologies (WOOT).
USENIX Association, 2016.

[116] Daniele Perito and Gene Tsudik. “Secure Code Update for Embedded
Devices via Proofs of Secure Erasure.” In: 15th European Symposium on
Research in Computer Security (ESORICS). Vol. 6345. Lecture Notes in
Computer Science. Springer. 2010, pp. 643-662.

[117] Bartosz Przydatek, Dawn Song, and Adrian Perrig. “SIA: Secure informa-
tion aggregation in sensor networks.” In: Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems (Sensys). ACM, 2003,
pp- 255-265.

[118] Bing Qiao, Kecheng Liu, and Chris Guy. “A multi-agent system for
building control.” In: Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT). IEEE Computer Society,
2006, pp. 653-659.

[119] Andreea-Ina Radu and Flavio D Garcia. “LeiA: A lightweight authen-
tication protocol for CAN.” In: 215t European Symposium on Research in
Computer Security (ESORICS). Vol. 9879. Lecture Notes in Computer Sci-
ence. Springer, 2016, pp. 283-300.

[120] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah
Cox, Paul England, Chris Fenner, Kinshuman Kinshumann, Jork Loeser,
Dennis Mattoon, et al. “fTPM: A Software-Only Implementation of a TPM
Chip.” In: Proceedings of the 25th USENIX Security Symposium (USENIX-
Security). USENIX Association, 2016, pp. 841-856.

140

BIBLIOGRAPHY

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Srivaths Ravi, Anand Raghunathan, and Srimat Chakradhar. “Tamper
resistance mechanisms for secure embedded systems.” In: Proceedings of
the 17th International Conference on VLSI Design (VLSID). IEEE Computer

Society, 2004, pp. 605-611.

Michele Rossi, Nicola Bui, Giovanni Zanca, Luca Stabellini, Riccardo
Crepaldi, and Michele Zorzi. “SYNAPSE++: code dissemination in wire-
less sensor networks using fountain codes.” In: IEEE Transactions on Mobile
Computing (TMC). Vol. 9. 12. IEEE, 2010, pp. 1749-1765.

Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert Van Doorn.
“Design and Implementation of a TCG-based Integrity Measurement
Architecture.” In: Proceedings of the 13th USENIX Security Symposium
(USENIX-Security). USENIX Association, 2004, pp. 223—238.

Dries Schellekens, Brecht Wyseur, and Bart Preneel. “Remote attestation
on legacy operating systems with trusted platform modules.” In: Science
of Computer Programming. Vol. 74. 1-2. Elsevier, 2008, pp. 13—22.

Claus-Peter Schnorr. “Efficient signature generation by smart cards.” In:
Journal of cryptology. Vol. 4. 3. Springer, 1991, pp. 161-174.

Geert-Jan Schrijen and Vincent van der Leest. “Comparative analysis of
SRAM memories used as PUF primitives.” In: Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2012, pp. 1319-1324.

Steffen Schulz, André Schaller, Florian Kohnh&user, and Stefan Katzen-
beisser. “Boot Attestation: Secure Remote Reporting with Off-The-Shelf
IoT Sensors.” In: 22nd European Symposium on Research in Computer Security
(ESORICS). Vol. 10493. Lecture Notes in Computer Science. Springer, 2017,
PP- 437-455.

Leo Selavo, Anthony Wood, Qing Cao, Tamim Sookoor, Hengchang
Liu, Aravind Srinivasan, Yafeng Wu, Woochul Kang, John Stankovic,
Don Young, et al. “Luster: wireless sensor network for environmental
research.” In: Proceedings of the 5th International Conference on Embedded
Networked Sensor Systems (Sensys). ACM, 2007, pp. 103-116.

Arvind Seshadri, Mark Luk, and Adrian Perrig. “SAKE: Software attesta-
tion for key establishment in sensor networks.” In: 4th IEEE International
Conference on Distributed Computing in Sensor Systems (DCOSS). Vol. 5067.
Lecture Notes in Computer Science. Springer, 2008, pp. 372—385.

Arvind Seshadri, Adrian Perrig, Leendert Van Doorn, and Pradeep Khosla.
“Swatt: Software-based attestation for embedded devices.” In: 2004 IEEE
Symposium on Security and Privacy (S&P). IEEE Computer Society, 2004,
pp. 272—282.

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]
[142]

BIBLIOGRAPHY

Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert Van
Doorn, and Pradeep Khosla. “Pioneer: verifying code integrity and en-
forcing untampered code execution on legacy systems.” In: Proceedings
of the 20th Symposium on Operating Systems Principles (SOSP). ACM. 2005,
pp. 1-16.

Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. “SCUBA: Secure code update by attestation in sensor
networks.” In: Proceedings of the 5th ACM Workshop on Wireless Security
(WISE). ACM. 2006, pp. 85-94.

Sergei Petrovich Skorobogatov. “Semi-invasive attacks: a new approach to
hardware security analysis.” PhD thesis. University of Cambridge, 2005.

Sergei Skorobogatov. “Physical attacks on tamper resistance: progress
and lessons.” In: Proceedings of the 2nd ARO Special Workshop on Hardware
Assurance, Washington, DC. 2011.

Sergei Skorobogatov. “Physical attacks and tamper resistance.” In: Intro-
duction to Hardware Security and Trust. Springer, 2012, pp. 143-173.

Sergei Skorobogatov. “How microprobing can attack encrypted memory.”
In: 2017 Euromicro Conference on Digital System Design (DSD). IEEE. 2017,
PP. 244—251.

Paul Stelling, Cheryl DeMatteis, lan Foster, Carl Kesselman, Craig Lee,
and Gregor von Laszewski. “A fault detection service for wide area
distributed computations.” In: Cluster Computing. Vol. 2. 2. Springer, 1999,
pp- 117-128.

Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jo-
vanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford.
“Keeping Authorities "Honest or Bust" with Decentralized Witness Cosign-
ing.” In: 2016 IEEE Symposium on Security and Privacy (S&P). IEEE Com-
puter Society, 2016, pp. 526—545.

Trusted Computing Group (TCG). TPM Main Part 1 Design Principles,
Specification Version 1.2. 2006.

Gelareh Taban and Virgil Gligor. “Efficient handling of adversary attacks
in aggregation applications.” In: 13th European Symposium on Research
in Computer Security (ESORICS). Vol. 5283. Lecture Notes in Computer
Science. Springer, 2008, pp. 66-81.

Texas Instruments. Stellaris LM4F120H5QR Microcontroller Data Sheet. 2013.

Texas Instruments. Software IP Protection on MSP432P4xx Microcontrollers -
10.1 Interrupt Handling in IP Protected Secure Zone. 2015.

141

142

BIBLIOGRAPHY

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Noriki Uchida, Noritaka Kawamura, Tomoyuki Ishida, and Yoshitaka Shi-
bata. “Proposal of autonomous flight wireless nodes with delay tolerant
networks for disaster use.” In: Eighth International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS). IEEE Computer
Society, 2014, pp. 146-151.

Osman Ugus, Dirk Westhoff, and Jens-Matthias Bohli. “A ROM-friendly
secure code update mechanism for WSNs using a stateful-verifier T-time

signature scheme.” In: Proceedings of the Second ACM Conference on Wireless
Network Security (WISEC). ACM. ACM, 2009, pp. 29—40.

Jo Van Bulck, Jan Tobias Miihlberg, and Frank Piessens. “VulCAN: Ef-
ficient component authentication and software isolation for automotive
control networks.” In: Proceedings of the 33rd Annual Computer Security
Applications Conference (ACSAC). ACM, 2017, pp. 225-237.

Andrés Varga and Rudolf Hornig. “An overview of the OMNeT++ simu-
lation environment.” In: Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and Systems &
Workshops (SIMUtools). 60. ICST/ACM, 2008.

Peng Wang, Dengguo Feng, Changlu Lin, and Wenling Wu. “Security of
Truncated MACs.” In: 4th International Conference of Information Security
and Cryptology (INSCRYPT). Vol. 5487. Lecture Notes in Computer Science.
Springer, 2009, pp. 96-114.

Marko Wolf and Timo Gendrullis. “Design, implementation, and eval-
uation of a vehicular hardware security module.” In: 14th International
Conference on Information Security and Cryptology (ICISC). Vol. 7259. Lecture
Notes in Computer Science. Springer, 2011, pp. 302-318.

Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. “SDAP: A secure
hop-by-hop data aggregation protocol for sensor networks.” In: ACM
Transactions on Information and System Security (TISSEC). Vol. 11. 4. ACM,
2008, pp. 1801-1843.

Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ahmad
Ibrahim, Yier Jin, and Ahmad-Reza Sadeghi. “ATRIUM: Runtime attes-
tation resilient under memory attacks.” In: 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2017, pp. 384-391.

	Declaration
	Abstract
	Kurzfassung
	Publications
	Acknowledgments
	Contents
	Acronyms

	1 Introduction
	1.1 Remote Attestation
	1.2 Goal and Scope of this Thesis
	1.3 Summary of Contributions
	1.4 Thesis Outline

	2 Preliminaries
	2.1 Background
	2.1.1 Remote Attestation
	2.1.2 Collective Attestation
	2.1.3 Secure Code Updates
	2.1.4 Secure Aggregation
	2.1.5 Physical Attacks

	2.2 System Model
	2.3 Device Requirements
	2.4 Adversary Model

	3 Attestation of Commodity Low-End Embedded Systems
	3.1 Motivation and Contribution
	3.2 Secure Hardware Requirements
	3.2.1 Hardware Security Properties
	3.2.2 Implementation on Commodity Low-End Embedded Systems

	3.3 ALE: Attestation of Low-End Embedded Systems
	3.3.1 Deployment Phase
	3.3.2 Attestation Phase
	3.3.3 Security Analysis

	3.4 Extensions for Real-World Use
	3.5 Proof of Concept
	3.5.1 Implementation
	3.5.2 Performance Evaluation

	3.6 Summary

	4 Attestation Applications with Embedded Systems
	4.1 Use Case 1: Electronic Control Units in Road Vehicles
	4.1.1 Motivation and Contribution
	4.1.2 Attestation Scheme for Road Vehicles
	4.1.3 Evaluation
	4.1.4 Summary

	4.2 Use Case 2: Secure Code Updates in Mesh Networks
	4.2.1 Motivation and Contribution
	4.2.2 Secure Code Update Scheme
	4.2.3 Evaluation
	4.2.4 Summary

	5 Attestation of Highly Dynamic and Disruptive Networks
	5.1 Motivation and Contribution
	5.2 SALAD: Secure and Lightweight Attestation of Dynamic Networks
	5.2.1 Deployment Phase
	5.2.2 Attestation Phase

	5.3 Attestation Report Aggregation
	5.3.1 Basic MAC Scheme
	5.3.2 Extended MAC Aggregation Schemes
	5.3.3 Trading Security for Performance

	5.4 Evaluation
	5.4.1 Implementation and Measurements
	5.4.2 Simulation Setup and Results

	5.5 Summary

	6 Attestation of Software and Physical Attacks
	6.1 Motivation and Contribution
	6.2 SCAPI: Scalable Attestation of Software and Physical Attacks
	6.2.1 Deployment Phase
	6.2.2 Session Key Update Phase
	6.2.3 Attestation Phase

	6.3 Robustness Extension
	6.4 Evaluation
	6.4.1 Implementation and Measurements
	6.4.2 Scalability Simulation Results
	6.4.3 Robustness Simulation Results

	6.5 Summary

	7 Attestation of Autonomous Embedded Systems
	7.1 Motivation and Contribution
	7.2 Schnorr Multisignatures
	7.3 PASTA: Practical Attestation of Autonomous Embedded Systems
	7.3.1 Deployment Phase
	7.3.2 Token Generation Phase
	7.3.3 Token Exchange Phase
	7.3.4 Token Validation

	7.4 Evaluation
	7.4.1 Implementation and Measurements
	7.4.2 Static Network Simulations
	7.4.3 Dynamic Network Simulations

	7.5 Summary

	8 Conclusion
	8.1 Summary
	8.2 Future Work

	 Bibliography

