830 research outputs found

    High-Level Synthesis Hardware Design for FPGA-Based Accelerators: Models, Methodologies, and Frameworks

    Get PDF
    Hardware accelerators based on field programmable gate array (FPGA) and system on chip (SoC) devices have gained attention in recent years. One of the main reasons is that these devices contain reconfigurable logic, which makes them feasible for boosting the performance of applications. High-level synthesis (HLS) tools facilitate the creation of FPGA code from a high level of abstraction using different directives to obtain an optimized hardware design based on performance metrics. However, the complexity of the design space depends on different factors such as the number of directives used in the source code, the available resources in the device, and the clock frequency. Design space exploration (DSE) techniques comprise the evaluation of multiple implementations with different combinations of directives to obtain a design with a good compromise between different metrics. This paper presents a survey of models, methodologies, and frameworks proposed for metric estimation, FPGA-based DSE, and power consumption estimation on FPGA/SoC. The main features, limitations, and trade-offs of these approaches are described. We also present the integration of existing models and frameworks in diverse research areas and identify the different challenges to be addressed

    An empirical evaluation of High-Level Synthesis languages and tools for database acceleration

    Get PDF
    High Level Synthesis (HLS) languages and tools are emerging as the most promising technique to make FPGAs more accessible to software developers. Nevertheless, picking the most suitable HLS for a certain class of algorithms depends on requirements such as area and throughput, as well as on programmer experience. In this paper, we explore the different trade-offs present when using a representative set of HLS tools in the context of Database Management Systems (DBMS) acceleration. More specifically, we conduct an empirical analysis of four representative frameworks (Bluespec SystemVerilog, Altera OpenCL, LegUp and Chisel) that we utilize to accelerate commonly-used database algorithms such as sorting, the median operator, and hash joins. Through our implementation experience and empirical results for database acceleration, we conclude that the selection of the most suitable HLS depends on a set of orthogonal characteristics, which we highlight for each HLS framework.Peer ReviewedPostprint (author’s final draft

    Energy-efficient hardware design based on high-level synthesis

    Get PDF
    This dissertation describes research activities broadly concerning the area of High-level synthesis (HLS), but more specifically, regarding the HLS-based design of energy-efficient hardware (HW) accelerators. HW accelerators, mostly implemented on FPGAs, are integral to the heterogeneous architectures employed in modern high performance computing (HPC) systems due to their ability to speed up the execution while dramatically reducing the energy consumption of computationally challenging portions of complex applications. Hence, the first activity was regarding an HLS-based approach to directly execute an OpenCL code on an FPGA instead of its traditional GPU-based counterpart. Modern FPGAs offer considerable computational capabilities while consuming significantly smaller power as compared to high-end GPUs. Several different implementations of the K-Nearest Neighbor algorithm were considered on both FPGA- and GPU-based platforms and their performance was compared. FPGAs were generally more energy-efficient than the GPUs in all the test cases. Eventually, we were also able to get a faster (in terms of execution time) FPGA implementation by using an FPGA-specific OpenCL coding style and utilizing suitable HLS directives. The second activity was targeted towards the development of a methodology complementing HLS to automatically derive power optimization directives (also known as "power intent") from a system-level design description and use it to drive the design steps after HLS, by producing a directive file written using the common power format (CPF) to achieve power shut-off (PSO) in case of an ASIC design. The proposed LP-HLS methodology reduces the design effort by enabling designers to infer low power information from the system-level description of a design rather than at the RTL. This methodology required a SystemC description of a generic power management module to describe the design context of a HW module also modeled in SystemC, along with the development of a tool to automatically produce the CPF file to accomplish PSO. Several test cases were considered to validate the proposed methodology and the results demonstrated its ability to correctly extract the low power information and apply it to achieve power optimization in the backend flow

    An Efficient Classification of Hyperspectral Remotely Sensed Data Using Support Vector Machine

    Get PDF
    This work present an efficient hardware architecture of Support Vector Machine (SVM) for the classification of Hyperspectral remotely sensed data using High Level Synthesis (HLS) method. The high classification time and power consumption in traditional classification of remotely sensed data is the main motivation for this work. Therefore presented work helps to classify the remotely sensed data in real-time and to take immediate action during the natural disaster. An embedded based SVM is designed and implemented on Zynq SoC for classification of hyperspectral images. The data set of remotely sensed data are tested on different platforms and the performance is compared with existing works. Novelty in our proposed work is extend the HLS based FPGA implantation to the onboard classification system in remote sensing. The experimental results for selected data set from different class shows that our architecture on Zynq 7000 implementation generates a delay of 11.26 µs and power consumption of 1.7 Watts, which is extremely better as compared to other Field Programmable Gate Array (FPGA) implementation using Hardware description Language (HDL)  and Central Processing Unit (CPU) implementation

    High-Level Synthesis Based VLSI Architectures for Video Coding

    Get PDF
    High Efficiency Video Coding (HEVC) is state-of-the-art video coding standard. Emerging applications like free-viewpoint video, 360degree video, augmented reality, 3D movies etc. require standardized extensions of HEVC. The standardized extensions of HEVC include HEVC Scalable Video Coding (SHVC), HEVC Multiview Video Coding (MV-HEVC), MV-HEVC+ Depth (3D-HEVC) and HEVC Screen Content Coding. 3D-HEVC is used for applications like view synthesis generation, free-viewpoint video. Coding and transmission of depth maps in 3D-HEVC is used for the virtual view synthesis by the algorithms like Depth Image Based Rendering (DIBR). As first step, we performed the profiling of the 3D-HEVC standard. Computational intensive parts of the standard are identified for the efficient hardware implementation. One of the computational intensive part of the 3D-HEVC, HEVC and H.264/AVC is the Interpolation Filtering used for Fractional Motion Estimation (FME). The hardware implementation of the interpolation filtering is carried out using High-Level Synthesis (HLS) tools. Xilinx Vivado Design Suite is used for the HLS implementation of the interpolation filters of HEVC and H.264/AVC. The complexity of the digital systems is greatly increased. High-Level Synthesis is the methodology which offers great benefits such as late architectural or functional changes without time consuming in rewriting of RTL-code, algorithms can be tested and evaluated early in the design cycle and development of accurate models against which the final hardware can be verified
    corecore