44,169 research outputs found

    A water-vapor electrolysis cell with phosphoric acid electrolyte

    Get PDF
    Feasibility of phosphoric acid water vapor electrolysis cell for spacecraft cabin air conditioning syste

    Model-driven Enterprise Systems Configuration

    Get PDF
    Enterprise Systems potentially lead to significant efficiency gains but require a well-conducted configuration process. A promising idea to manage and simplify the configuration process is based on the premise of using reference models for this task. Our paper continues along this idea and delivers a two-fold contribution: first, we present a generic process for the task of model-driven Enterprise Systems configuration including the steps of (a) Specification of configurable reference models, (b) Configuration of configurable reference models, (c) Transformation of configured reference models to regular build time models, (d) Deployment of the generated build time models, (e) Controlling of implementation models to provide input to the configuration, and (f) Consolidation of implementation models to provide input to reference model specification. We discuss inputs and outputs as well as the involvement of different roles and validation mechanisms. Second, we present an instantiation case of this generic process for Enterprise Systems configuration based on Configurable EPCs

    Zero-Delay Rate Distortion via Filtering for Vector-Valued Gaussian Sources

    Full text link
    We deal with zero-delay source coding of a vector-valued Gauss-Markov source subject to a mean-squared error (MSE) fidelity criterion characterized by the operational zero-delay vector-valued Gaussian rate distortion function (RDF). We address this problem by considering the nonanticipative RDF (NRDF) which is a lower bound to the causal optimal performance theoretically attainable (OPTA) function and operational zero-delay RDF. We recall the realization that corresponds to the optimal "test-channel" of the Gaussian NRDF, when considering a vector Gauss-Markov source subject to a MSE distortion in the finite time horizon. Then, we introduce sufficient conditions to show existence of solution for this problem in the infinite time horizon. For the asymptotic regime, we use the asymptotic characterization of the Gaussian NRDF to provide a new equivalent realization scheme with feedback which is characterized by a resource allocation (reverse-waterfilling) problem across the dimension of the vector source. We leverage the new realization to derive a predictive coding scheme via lattice quantization with subtractive dither and joint memoryless entropy coding. This coding scheme offers an upper bound to the operational zero-delay vector-valued Gaussian RDF. When we use scalar quantization, then for "r" active dimensions of the vector Gauss-Markov source the gap between the obtained lower and theoretical upper bounds is less than or equal to 0.254r + 1 bits/vector. We further show that it is possible when we use vector quantization, and assume infinite dimensional Gauss-Markov sources to make the previous gap to be negligible, i.e., Gaussian NRDF approximates the operational zero-delay Gaussian RDF. We also extend our results to vector-valued Gaussian sources of any finite memory under mild conditions. Our theoretical framework is demonstrated with illustrative numerical experiments.Comment: 32 pages, 9 figures, published in IEEE Journal of Selected Topics in Signal Processin
    corecore