1,349 research outputs found

    Vectorization of Large Amounts of Raster Satellite Images in a Distributed Architecture Using HIPI

    Full text link
    Vectorization process focus on grouping pixels of a raster image into raw line segments, and forming lines, polylines or poligons. To vectorize massive raster images regarding resource and performane problems, weuse a distributed HIPI image processing interface based on MapReduce approach. Apache Hadoop is placed at the core of the framework. To realize such a system, we first define mapper function, and then its input and output formats. In this paper, mappers convert raster mosaics into vector counterparts. Reduc functions are not needed for vectorization. Vector representations of raster images is expected to give better performance in distributed computations by reducing the negative effects of bandwidth problem and horizontal scalability analysis is done.Comment: In Turkish, Proceedings of International Artificial Intelligence and Data Processing Symposium (IDAP) 201

    Impact of Geographical Information Systems on Geotechnical Engineering

    Get PDF
    Over the last four decades Geographical Information Systems (GIS) have emerged as the predominant medium for graphic representation of geospatial data, including geotechnical, geologic and hydrologic information routinely used by geotechnical and geoenvironmental engineers. GIS allow unlimited forms of spatial data to be co-mingled, weighted and sorted with any number of physical or environmental factors. These data can also be combined with weighted political and aesthetic values to create hybrid graphic products capable of swaying public perceptions and decision making. The downside of some GIS products is that their apparent efficacy and crispness can also be deceptive, if data of unparalleled reliability is absorbed in the mix. Disparities in data age and quality are common when compiling geotechnical and geoenvironmental data. Despite these inherent shortcomings, GIS will continue to grow and evolve as the principal technical communication medium over the foreseeable future and engineers will be forced to prepare their work products in GIS formats which can be widely disseminated through the world wide web. This paper presents the historical evolution of GIS technologies as it relates to the impact in geotechnical engineering, concluding with four case histories on the application of this emerging technology

    A Climate Change Vulnerability Assessment among Small Farmers: A Case Study in Western Honduras

    Get PDF
    Climate change is now affecting every known society. Small farmers in Low Income Countries (LICs) are especially vulnerable to climate change patterns because they depend heavily on rain, seasonality patterns, and known temperature ranges. To help build climate change resilient communities among rural farmers, the first step is to understand the impact of climate change on the population. This dissertation aims to use information and communication technology (ICT) to assess climate change vulnerabilities among rural farmers. To achieve this overall goal, this dissertation first proposes a comprehensive Climate Change Vulnerability Assessment Framework (CCVAF) that integrates both community level and individual household level indicators. The CCVAF was instantiated into a GIS-based web application named THRIVE for different decision makers to better assess how climate change is affecting rural farmers in Western Honduras. Qualitative evaluation of the THRIVE showed that it is an innovative and useful tool. The CCVAF and its instantiation provides an important initial step towards building climate change resilience among rural farmers. It is the first attempt to provide a comprehensive set of the indicators with related measurements and data sources for climate change vulnerability assessment. The framework thus contributes to the knowledge base of the climate change vulnerability assessment. It also contributes to the design science literature by providing guidelines to design a class of climate change vulnerability assessment solutions. To the best of our knowledge, the CCVAF is the first generalizable artifact that can be used to build a group of ICT-based climate change vulnerability assessment solutions. Another knowledge contribution of this dissertation is its reproducibility by making the input and output data available to the research and practitioner community through a GeoHub. For practical contributions, the framework can be easily used by researchers and practitioners to consistently design a vulnerability assessment tool, starting with the set of indicators organized by the three-level determinants, and following specific spatial data analysis and models. Such an ICT-based tool adds practical values to tackle climate change challenges

    Multiscale visualization approaches for Volunteered Geographic Information and Location-based Social Media

    Get PDF
    Today, “zoomable” maps are a state-of-the-art way to explore the world, available to anyone with Internet access. However, the process of creating this visualization has been rather loosely investigated and documented. Nevertheless, with an increasing amount of available data, interactive maps have become a more integral approach to visualizing and exploring big datasets and user-generated data. OpenStreetMap and online platforms such as Twitter and Flickr offer application programming interfaces (APIs) with geographic information. They are well-known examples of this visualization challenge and are often used as examples. In addition, an increasing number of public administrations collect open data and publish their data sets, which makes the task of visualization even more relevant. This dissertation deals with the visualization of user-generated geodata as a multiscale map. The basics of today’s multiscale maps—their history, technologies, and possibilities—are explored and abstracted. This work introduces two new multiscale-focused visualization approaches for point data from volunteered geographic information (VGI) and location-based social media (LBSM). One contribution of this effort is a visualization methodology for spatially referenced information in the form of point geometries, using nominally scaled data from social media such as Twitter or Flickr. Typical for this data is a high number of social media posts in different categories—a post on social media corresponds to a point in a specific category. Due to the sheer quantity and similar characteristics, the posts appear generic rather than unique. This type of dataset can be explored using the new method of micro diagrams to visualize the dataset on multiple scales and resolutions. The data is aggregated into small grid cells, and the numerical proportion is shown with small diagrams, which can visually merge into heterogenous areas through colors depicting a specific category. The diagram sizes allow the user to estimate the overall number of aggregated points in a grid cell. A different visualization approach is proposed for more unique points, considered points of interest (POI), based on the selection method. The goal is to identify more locally relevant points from the data set, considered more important compared to other points in the neighborhood, which are then compared by numerical attribute. The method, derived from topographic isolation and called discrete isolation, is the distance from one point to the next with a higher attribute value. By using this measure, the most essential points can be easily selected by choosing a minimum distance and producing a homogenous spatial of the selected points within the chosen dataset. The two newly developed approaches are applied to multiscale mapping by constructing example workflows that produce multiscale maps. The publicly available multiscale mapping workflows OpenMapTiles and OpenStreetMap Carto, using OpenStreetMap data, are systematically explored and analyzed. The result is a general workflow for multiscale map production and a short overview of the toolchain software. In particular, the generalization approaches in the example projects are discussed and these are classified into cartographic theories on the basis of literature. The workflow is demonstrated by building a raster tile service for the micro diagrams and a vector tile service for the discrete isolation, able to be used with just a web browser. In conclusion, these new approaches for point data using VGI and LBSM allow better qualitative visualization of geodata. While analyzing vast global datasets is challenging, exploring and analyzing hidden data patterns is fruitful. Creating this degree of visualization and producing maps on multiple scales is a complicated task. The workflows and tools provided in this thesis will make map production on a worldwide scale easier.:1 Introduction 1 1.1 Motivation .................................................................................................. 3 1.2 Visualization of crowdsourced geodata on multiple scales ............ 5 1.2.1 Research objective 1: Visualization of point collections ......... 6 1.2.2 Research objective 2: Visualization of points of interest ......... 7 1.2.3 Research objective 3: Production of multiscale maps ............. 7 1.3 Reader’s guide ......................................................................................... 9 1.3.1 Structure ........................................................................................... 9 1.3.2 Related Publications ....................................................................... 9 1.3.3 Formatting and layout ................................................................. 10 1.3.4 Online examples ........................................................................... 10 2 Foundations of crowdsourced mapping on multiple scales 11 2.1 Types and properties of crowdsourced data .................................. 11 2.2 Currents trends in cartography ......................................................... 11 2.3 Definitions .............................................................................................. 12 2.3.1 VGI .................................................................................................. 12 2.3.2 LBSM .............................................................................................. 13 2.3.3 Space, place, and location......................................................... 13 2.4 Visualization approaches for crowdsourced geodata ................... 14 2.4.1 Review of publications and visualization approaches ........... 14 2.4.2 Conclusions from the review ...................................................... 15 2.4.3 Challenges mapping crowdsourced data ................................ 17 2.5 Technologies for serving multiscale maps ...................................... 17 2.5.1 Research about multiscale maps .............................................. 17 2.5.2 Web Mercator projection ............................................................ 18 2.5.3 Tiles and zoom levels .................................................................. 19 2.5.4 Raster tiles ..................................................................................... 21 2.5.5 Vector tiles .................................................................................... 23 2.5.6 Tiling as a principle ..................................................................... 25 3 Point collection visualization with categorized attributes 26 3.1 Target users and possible tasks ....................................................... 26 3.2 Example data ......................................................................................... 27 3.3 Visualization approaches .................................................................... 28 3.3.1 Common techniques .................................................................... 28 3.3.2 The micro diagram approach .................................................... 30 3.4 The micro diagram and its parameters ............................................ 33 3.4.1 Aggregating points into a regular structure ............................ 33 3.4.2 Visualizing the number of data points ...................................... 35 3.4.3 Grid and micro diagrams ............................................................ 36 3.4.4 Visualizing numerical proportions with diagrams .................. 37 3.4.5 Influence of color and color brightness ................................... 38 3.4.6 Interaction options with micro diagrams .................................. 39 3.5 Application and user-based evaluation ............................................ 39 3.5.1 Micro diagrams in a multiscale environment ........................... 39 3.5.2 The micro diagram user study ................................................... 41 3.5.3 Point collection visualization discussion .................................. 47 4 Selection of POIs for visualization 50 4.1 Approaches for point selection .......................................................... 50 4.2 Methods for point selection ................................................................ 51 4.2.1 Label grid approach .................................................................... 52 4.2.2 Functional importance approach .............................................. 53 4.2.3 Discrete isolation approach ....................................................... 54 4.3 Functional evaluation of selection methods .................................... 56 4.3.1 Runtime comparison .................................................................... 56 4.3.2 Use cases for discrete isolation ................................................ 57 4.4 Discussion of the selection approaches .......................................... 61 4.4.1 A critical view of the use cases ................................................. 61 4.4.2 Comparing the approaches ........................................................ 62 4.4.3 Conclusion ..................................................................................... 64 5 Creating multiscale maps 65 5.1 Examples of multiscale map production .......................................... 65 5.1.1 OpenStreetMap Infrastructure ................................................... 66 5.1.2 OpenStreetMap Carto ................................................................. 67 5.1.3 OpenMapTiles ............................................................................... 73 5.2 Methods of multiscale map production ............................................ 80 5.2.1 OpenStreetMap tools ................................................................... 80 5.2.2 Geoprocessing .............................................................................. 80 5.2.3 Database ........................................................................................ 80 5.2.4 Creating tiles ................................................................................. 82 5.2.5 Caching .......................................................................................... 82 5.2.6 Styling tiles .................................................................................... 82 5.2.7 Viewing tiles ................................................................................... 83 5.2.8 The stackless approach to tile creation ................................... 83 5.3 Example workflows for creating multiscale maps ........................... 84 5.3.1 Raster tiles: OGC services and micro diagrams .................... 84 5.3.2 Vector tiles: Slippy map and vector tiles ................................. 87 5.4 Discussion of approaches and workflows ....................................... 90 5.4.1 Map production as a rendering pipeline .................................. 90 5.4.2 Comparison of OpenStreetMap Carto and OpenMapTiles .. 92 5.4.3 Discussion of the implementations ........................................... 93 5.4.4 Generalization in map production workflows .......................... 95 5.4.5 Conclusions ................................................................................. 101 6 Discussion 103 6.1 Development for web mapping ........................................................ 103 6.1.1 The role of standards in map production .............................. 103 6.1.2 Technological development ..................................................... 103 6.2 New data, new mapping techniques? ............................................. 104 7 Conclusion 106 7.1 Visualization of point collections ..................................................... 106 7.2 Visualization of points of interest ................................................... 107 7.3 Production of multiscale maps ........................................................ 107 7.4 Synthesis of the research questions .............................................. 108 7.5 Contributions ....................................................................................... 109 7.6 Limitations ............................................................................................ 110 7.7 Outlook ................................................................................................. 111 8 References 113 9 Appendix 130 9.1 Zoom levels and Scale ...................................................................... 130 9.3 Full information about selected UGC papers ................................ 131 9.4 Timeline of mapping technologies .................................................. 133 9.5 Timeline of map providers ................................................................ 133 9.6 Code snippets from own map production workflows .................. 134 9.6.1 Vector tiles workflow ................................................................. 134 9.6.2 Raster tiles workflow.................................................................. 137Heute sind zoombare Karten Alltag für jeden Internetznutzer. Die Erstellung interaktiv zoombarer Karten ist allerdings wenig erforscht, was einen deutlichen Gegensatz zu ihrer aktuellen Bedeutung und Nutzungshäufigkeit darstellt. Die Forschung in diesem Bereich ist also umso notwendiger. Steigende Datenmengen und größere Regionen, die von Karten abgedeckt werden sollen, unterstreichen den Forschungsbedarf umso mehr. Beispiele für stetig wachsende Datenmengen sind Geodatenquellen wie OpenStreetMap aber auch freie amtliche Geodatensätze (OpenData), aber auch die zunehmende Zahl georeferenzierter Inhalte auf Internetplatformen wie Twitter oder Flickr zu nennen. Das Thema dieser Arbeit ist die Visualisierung eben dieser nutzergenerierten Geodaten mittels zoombarer Karten. Dafür wird die Entwicklung der zugrundeliegenden Technologien über die letzten zwei Jahr-zehnte und die damit verbundene Möglichkeiten vorgestellt. Weitere Beiträge sind zwei neue Visualisierungsmethoden, die sich besonders für die Darstellung von Punktdaten aus raumbezogenen nutzergenerierten Daten und georeferenzierte Daten aus Sozialen Netzwerken eignen. Ein Beitrag dieser Arbeit ist eine neue Visualisierungsmethode für raumbezogene Informationen in Form von Punktgeometrien mit nominal skalierten Daten aus Sozialen Medien, wie beispielsweise Twitter oder Flickr. Typisch für diese Daten ist eine hohe Anzahl von Beiträgen mit unterschiedlichen Kategorien. Wobei die Beiträge, bedingt durch ihre schiere Menge und ähnlicher Ei-genschaften, eher generisch als einzigartig sind. Ein Beitrag in den So-zia len Medien entspricht dabei einem Punkt mit einer bestimmten Katego-rie. Ein solcher Datensatz kann mit der neuen Methode der „micro diagrams“ in verschiedenen Maßstäben und Auflösungen visualisiert und analysiert werden. Dazu werden die Daten in kleine Gitterzellen aggregiert. Die Menge und Verteilung der über die Kategorien aggregierten Punkte wird durch kleine Diagramme dargestellt, wobei die Farben die verschiedenen Kategorien visualisieren. Durch die geringere Größe der einzelnen Diagramme verschmelzen die kleinen Diagramme visuell, je nach der Verteilung der Farben für die Kategorien. Bei genauerem Hinsehen ist die Schätzung der Menge der aggregierten Punkte über die Größe der Diagramme die Menge und die Verteilung über die Kategorien möglich. Für einzigartigere Punkte, die als Points of Interest (POI) angesehen werden, wird ein anderer Visualisierungsansatz vorgeschlagen, der auf einer Auswahlmethode basiert. Ziel ist es dabei lokal relevantere Punkte aus dem Datensatz zu identifizieren, die im Vergleich zu anderen Punkten in der Nachbarschaft des Punktes verglichen nach einem numerischen Attribut wichtiger sind. Die Methode ist von dem geographischen Prinzip der Dominanz von Bergen abgeleitet und wird „discrete isolation“ genannt. Es handelt sich dabei um die Distanz von einem Punkt zum nächsten mit einem höheren Attributwert. Durch die Verwendung dieses Maßes können lokal bedeutende Punkte leicht ausgewählt werden, indem ein minimaler Abstand gewählt und so räumlich gleichmäßig verteilte Punkte aus dem Datensatz ausgewählt werden. Die beiden neu vorgestellten Methoden werden in den Kontext der zoombaren Karten gestellt, indem exemplarische Arbeitsabläufe erstellt werden, die als Er-gebnis eine zoombare Karte liefern. Dazu werden die frei verfügbaren Beispiele zur Herstellung von weltweiten zoombaren Karten mit nutzergenerierten Geo-daten von OpenStreetMap, anhand der Kartenprojekte OpenMapTiles und O-penStreetMap Carto analysiert und in Arbeitsschritte gegliedert. Das Ergebnis ist ein wiederverwendbarer Arbeitsablauf zur Herstellung zoombarer Karten, ergänzt durch eine Auswahl von passender Software für die einzelnen Arbeits-schritte. Dabei wird insbesondere auf die Generalisierungsansätze in den Beispielprojekten eingegangen und diese anhand von Literatur in die kartographische Theorie eingeordnet. Zur Demonstration des Workflows wird je ein Raster Tiles Dienst für die „micro diagrams“ und ein Vektor Tiles Dienst für die „discrete isolation“ erstellt. Beide Dienste lassen sich mit einem aktuellen Webbrowser nutzen. Zusammenfassend ermöglichen diese neuen Visualisierungsansätze für Punkt-daten aus VGI und LBSM eine bessere qualitative Visualisierung der neuen Geodaten. Die Analyse riesiger globaler Datensätze ist immer noch eine Herausforderung, aber die Erforschung und Analyse verborgener Muster in den Daten ist lohnend. Die Erstellung solcher Visualisierungen und die Produktion von Karten in verschiedenen Maßstäben ist eine komplexe Aufgabe. Die in dieser Arbeit vorgestellten Arbeitsabläufe und Werkzeuge erleichtern die Erstellung von Karten in globalem Maßstab.:1 Introduction 1 1.1 Motivation .................................................................................................. 3 1.2 Visualization of crowdsourced geodata on multiple scales ............ 5 1.2.1 Research objective 1: Visualization of point collections ......... 6 1.2.2 Research objective 2: Visualization of points of interest ......... 7 1.2.3 Research objective 3: Production of multiscale maps ............. 7 1.3 Reader’s guide ......................................................................................... 9 1.3.1 Structure ........................................................................................... 9 1.3.2 Related Publications ....................................................................... 9 1.3.3 Formatting and layout ................................................................. 10 1.3.4 Online examples ........................................................................... 10 2 Foundations of crowdsourced mapping on multiple scales 11 2.1 Types and properties of crowdsourced data .................................. 11 2.2 Currents trends in cartography ......................................................... 11 2.3 Definitions .............................................................................................. 12 2.3.1 VGI .................................................................................................. 12 2.3.2 LBSM .............................................................................................. 13 2.3.3 Space, place, and location......................................................... 13 2.4 Visualization approaches for crowdsourced geodata ................... 14 2.4.1 Review of publications and visualization approaches ........... 14 2.4.2 Conclusions from the review ...................................................... 15 2.4.3 Challenges mapping crowdsourced data ................................ 17 2.5 Technologies for serving multiscale maps ...................................... 17 2.5.1 Research about multiscale maps .............................................. 17 2.5.2 Web Mercator projection ............................................................ 18 2.5.3 Tiles and zoom levels .................................................................. 19 2.5.4 Raster tiles ..................................................................................... 21 2.5.5 Vector tiles .................................................................................... 23 2.5.6 Tiling as a principle ..................................................................... 25 3 Point collection visualization with categorized attributes 26 3.1 Target users and possible tasks ....................................................... 26 3.2 Example data ......................................................................................... 27 3.3 Visualization approaches .................................................................... 28 3.3.1 Common techniques .................................................................... 28 3.3.2 The micro diagram approach .................................................... 30 3.4 The micro diagram and its parameters ............................................ 33 3.4.1 Aggregating points into a regular structure ............................ 33 3.4.2 Visualizing the number of data points ...................................... 35 3.4.3 Grid and micro diagrams ............................................................ 36 3.4.4 Visualizing numerical proportions with diagrams .................. 37 3.4.5 Influence of color and color brightness ................................... 38 3.4.6 Interaction options with micro diagrams .................................. 39 3.5 Application and user-based evaluation ............................................ 39 3.5.1 Micro diagrams in a multiscale environment ........................... 39 3.5.2 The micro diagram user study ................................................... 41 3.5.3 Point collection vis

    A multi-agent system for on-the-fly web map generation and spatial conflict resolution

    Get PDF
    Résumé Internet est devenu un moyen de diffusion de l’information géographique par excellence. Il offre de plus en plus de services cartographiques accessibles par des milliers d’internautes à travers le monde. Cependant, la qualité de ces services doit être améliorée, principalement en matière de personnalisation. A cette fin, il est important que la carte générée corresponde autant que possible aux besoins, aux préférences et au contexte de l’utilisateur. Ce but peut être atteint en appliquant les transformations appropriées, en temps réel, aux objets de l’espace à chaque cycle de génération de la carte. L’un des défis majeurs de la génération d’une carte à la volée est la résolution des conflits spatiaux qui apparaissent entre les objets, essentiellement à cause de l’espace réduit des écrans d’affichage. Dans cette thèse, nous proposons une nouvelle approche basée sur la mise en œuvre d’un système multiagent pour la génération à la volée des cartes et la résolution des conflits spatiaux. Cette approche est basée sur l’utilisation de la représentation multiple et la généralisation cartographique. Elle résout les conflits spatiaux et génère les cartes demandées selon une stratégie innovatrice : la génération progressive des cartes par couches d’intérêt. Chaque couche d’intérêt contient tous les objets ayant le même degré d’importance pour l’utilisateur. Ce contenu est déterminé à la volée au début du processus de génération de la carte demandée. Notre approche multiagent génère et transfère cette carte suivant un mode parallèle. En effet, une fois une couche d’intérêt générée, elle est transmise à l’utilisateur. Dans le but de résoudre les conflits spatiaux, et par la même occasion générer la carte demandée, nous affectons un agent logiciel à chaque objet de l’espace. Les agents entrent ensuite en compétition pour l’occupation de l’espace disponible. Cette compétition est basée sur un ensemble de priorités qui correspondent aux différents degrés d’importance des objets pour l’utilisateur. Durant la résolution des conflits, les agents prennent en considération les besoins et les préférences de l’utilisateur afin d’améliorer la personnalisation de la carte. Ils améliorent la lisibilité des objets importants et utilisent des symboles qui pourraient aider l’utilisateur à mieux comprendre l’espace géographique. Le processus de génération de la carte peut être interrompu en tout temps par l’utilisateur lorsque les données déjà transmises répondent à ses besoins. Dans ce cas, son temps d’attente est réduit, étant donné qu’il n’a pas à attendre la génération du reste de la carte. Afin d’illustrer notre approche, nous l’appliquons au contexte de la cartographie sur le web ainsi qu’au contexte de la cartographie mobile. Dans ces deux contextes, nous catégorisons nos données, qui concernent la ville de Québec, en quatre couches d’intérêt contenant les objets explicitement demandés par l’utilisateur, les objets repères, le réseau routier et les objets ordinaires qui n’ont aucune importance particulière pour l’utilisateur. Notre système multiagent vise à résoudre certains problèmes liés à la génération à la volée des cartes web. Ces problèmes sont les suivants : 1. Comment adapter le contenu des cartes, à la volée, aux besoins des utilisateurs ? 2. Comment résoudre les conflits spatiaux de manière à améliorer la lisibilité de la carte tout en prenant en considération les besoins de l’utilisateur ? 3. Comment accélérer la génération et le transfert des données aux utilisateurs ? Les principales contributions de cette thèse sont : 1. La résolution des conflits spatiaux en utilisant les systèmes multiagent, la généralisation cartographique et la représentation multiple. 2. La génération des cartes dans un contexte web et dans un contexte mobile, à la volée, en utilisant les systèmes multiagent, la généralisation cartographique et la représentation multiple. 3. L’adaptation des contenus des cartes, en temps réel, aux besoins de l’utilisateur à la source (durant la première génération de la carte). 4. Une nouvelle modélisation de l’espace géographique basée sur une architecture multi-couches du système multiagent. 5. Une approche de génération progressive des cartes basée sur les couches d’intérêt. 6. La génération et le transfert, en parallèle, des cartes aux utilisateurs, dans les contextes web et mobile.Abstract Internet is a fast growing medium to get and disseminate geospatial information. It provides more and more web mapping services accessible by thousands of users worldwide. However, the quality of these services needs to be improved, especially in term of personalization. In order to increase map flexibility, it is important that the map corresponds as much as possible to the user’s needs, preferences and context. This may be possible by applying the suitable transformations, in real-time, to spatial objects at each map generation cycle. An underlying challenge of such on-the-fly map generation is to solve spatial conflicts that may appear between objects especially due to lack of space on display screens. In this dissertation, we propose a multiagent-based approach to address the problems of on-the-fly web map generation and spatial conflict resolution. The approach is based upon the use of multiple representation and cartographic generalization. It solves conflicts and generates maps according to our innovative progressive map generation by layers of interest approach. A layer of interest contains objects that have the same importance to the user. This content, which depends on the user’s needs and the map’s context of use, is determined on-the-fly. Our multiagent-based approach generates and transfers data of the required map in parallel. As soon as a given layer of interest is generated, it is transmitted to the user. In order to generate a given map and solve spatial conflicts, we assign a software agent to every spatial object. Then, the agents compete for space occupation. This competition is driven by a set of priorities corresponding to the importance of objects for the user. During processing, agents take into account users’ needs and preferences in order to improve the personalization of the final map. They emphasize important objects by improving their legibility and using symbols in order to help the user to better understand the geographic space. Since the user can stop the map generation process whenever he finds the required information from the amount of data already transferred, his waiting delays are reduced. In order to illustrate our approach, we apply it to the context of tourist web and mobile mapping applications. In these contexts, we propose to categorize data into four layers of interest containing: explicitly required objects, landmark objects, road network and ordinary objects which do not have any specific importance for the user. In this dissertation, our multiagent system aims at solving the following problems related to on-the-fly web mapping applications: 1. How can we adapt the contents of maps to users’ needs on-the-fly? 2. How can we solve spatial conflicts in order to improve the legibility of maps while taking into account users’ needs? 3. How can we speed up data generation and transfer to users? The main contributions of this thesis are: 1. The resolution of spatial conflicts using multiagent systems, cartographic generalization and multiple representation. 2. The generation of web and mobile maps, on-the-fly, using multiagent systems, cartographic generalization and multiple representation. 3. The real-time adaptation of maps’ contents to users’ needs at the source (during the first generation of the map). 4. A new modeling of the geographic space based upon a multi-layers multiagent system architecture. 5. A progressive map generation approach by layers of interest. 6. The generation and transfer of web and mobile maps at the same time to users

    Coastal management and adaptation: an integrated data-driven approach

    Get PDF
    Coastal regions are some of the most exposed to environmental hazards, yet the coast is the preferred settlement site for a high percentage of the global population, and most major global cities are located on or near the coast. This research adopts a predominantly anthropocentric approach to the analysis of coastal risk and resilience. This centres on the pervasive hazards of coastal flooding and erosion. Coastal management decision-making practices are shown to be reliant on access to current and accurate information. However, constraints have been imposed on information flows between scientists, policy makers and practitioners, due to a lack of awareness and utilisation of available data sources. This research seeks to tackle this issue in evaluating how innovations in the use of data and analytics can be applied to further the application of science within decision-making processes related to coastal risk adaptation. In achieving this aim a range of research methodologies have been employed and the progression of topics covered mark a shift from themes of risk to resilience. The work focuses on a case study region of East Anglia, UK, benefiting from the input of a partner organisation, responsible for the region’s coasts: Coastal Partnership East. An initial review revealed how data can be utilised effectively within coastal decision-making practices, highlighting scope for application of advanced Big Data techniques to the analysis of coastal datasets. The process of risk evaluation has been examined in detail, and the range of possibilities afforded by open source coastal datasets were revealed. Subsequently, open source coastal terrain and bathymetric, point cloud datasets were identified for 14 sites within the case study area. These were then utilised within a practical application of a geomorphological change detection (GCD) method. This revealed how analysis of high spatial and temporal resolution point cloud data can accurately reveal and quantify physical coastal impacts. Additionally, the research reveals how data innovations can facilitate adaptation through insurance; more specifically how the use of empirical evidence in pricing of coastal flood insurance can result in both communication and distribution of risk. The various strands of knowledge generated throughout this study reveal how an extensive range of data types, sources, and advanced forms of analysis, can together allow coastal resilience assessments to be founded on empirical evidence. This research serves to demonstrate how the application of advanced data-driven analytical processes can reduce levels of uncertainty and subjectivity inherent within current coastal environmental management practices. Adoption of methods presented within this research could further the possibilities for sustainable and resilient management of the incredibly valuable environmental resource which is the coast

    A fully automatic, interpretable and adaptive machine learning approach to map burned area from remote sensing

    Get PDF
    The paper proposes a fully automatic algorithm approach to map burned areas from remote sensing characterized by human interpretable mapping criteria and explainable results. This approach is partially knowledge-driven and partially data-driven. It exploits active fire points to train the fusion function of factors deemed influential in determining the evidence of burned conditions from reflectance values of multispectral Sentinel-2 (S2) data. The fusion function is used to compute a map of seeds (burned pixels) that are adaptively expanded by applying a Region Growing (RG) algorithm to generate the final burned area map. The fusion function is an Ordered Weighted Averaging (OWA) operator, learnt through the application of a machine learning (ML) algorithm from a set of highly reliable fire points. Its semantics are characterized by two measures, the degrees of pessimism/optimism and democracy/monarchy. The former allows the prediction of the results of the fusion as affected by more false positives (commission errors) than false negatives (omission errors) in the case of pessimism, or vice versa; the latter foresees if there are only a few highly influential factors or many low influential ones that determine the result. The prediction on the degree of pessimism/optimism allows the expansion of the seeds to be appropriately tuned by selecting the most suited growing layer for the RG algorithm thus adapting the algorithm to the context. The paper illustrates the application of the automatic method in four study areas in southern Europe to map burned areas for the 2017 fire season. Thematic accuracy at each site was assessed by comparison to reference perimeters to prove the adaptability of the approach to the context; estimated average accuracy metrics are omission error = 0.057, commission error = 0.068, Dice coefficient = 0.94 and relative bias = 0.0046

    Efficient Point Clustering for Visualization

    Get PDF
    The visualization of large spatial point data sets constitutes a problem with respect to runtime and quality. A visualization of raw data often leads to occlusion and clutter and thus a loss of information. Furthermore, particularly mobile devices have problems in displaying millions of data items. Often, thinning via sampling is not the optimal choice because users want to see distributional patterns, cardinalities and outliers. In particular for visual analytics, an aggregation of this type of data is very valuable for providing an interactive user experience. This thesis defines the problem of visual point clustering that leads to proportional circle maps. It furthermore introduces a set of quality measures that assess different aspects of resulting circle representations. The Circle Merging Quadtree constitutes a novel and efficient method to produce visual point clusterings via aggregation. It is able to outperform comparable methods in terms of runtime and also by evaluating it with the aforementioned quality measures. Moreover, the introduction of a preprocessing step leads to further substantial performance improvements and a guaranteed stability of the Circle Merging Quadtree. This thesis furthermore addresses the incorporation of miscellaneous attributes into the aggregation. It discusses means to provide statistical values for numerical and textual attributes that are suitable for side-views such as plots and data tables. The incorporation of multiple data sets or data sets that contain class attributes poses another problem for aggregation and visualization. This thesis provides methods for extending the Circle Merging Quadtree to output pie chart maps or maps that contain circle packings. For the latter variant, this thesis provides results of a user study that investigates the methods and the introduced quality criteria. In the context of providing methods for interactive data visualization, this thesis finally presents the VAT System, where VAT stands for visualization, analysis and transformation. This system constitutes an exploratory geographical information system that implements principles of visual analytics for working with spatio-temporal data. This thesis details on the user interface concept for facilitating exploratory analysis and provides the results of two user studies that assess the approach

    MSPGI : a geoportal feasibility study - Planning Authority MSP geoportal MSP Implementation Initiative

    Get PDF
    Directive 2014/89/EU calls for Member States to apply Maritime Spatial Planning (MSP) in their marine waters. In applying this framework, Member States are required to adopt a process to analyse and organise human activities to achieve ecological, economic and social objectives. The preparation of a MSP plan is the key deliverable expected from Member States and in doing so are expected to organise the use of the best available data, and decide how to organise the sharing of information necessary for MSP plans. The availability of information for stakeholders can also contribute towards effective co-ordination at a national level particularly in regulating different maritime sectors.EASME/EMFF/2015/1.2.1.3/02/SI2.742101peer-reviewe
    • …
    corecore