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ABSTRACT 

A Climate Change Vulnerability Assessment among Small Farmers: 

A Case Study in Western Honduras 

By 

Claudia Cáceres 

Claremont Graduate University: 2021 

 

Climate change is now affecting every known society.  Small farmers in Low Income Countries (LICs) 

are especially vulnerable to climate change patterns because they depend heavily on rain, seasonality 

patterns, and known temperature ranges. To help build climate change resilient communities among rural 

farmers, the first step is to understand the impact of climate change on the population. This dissertation 

aims to use information and communication technology (ICT) to assess climate change vulnerabilities 

among rural farmers. To achieve this overall goal, this dissertation first proposes a comprehensive 

Climate Change Vulnerability Assessment Framework (CCVAF) that integrates both community level 

and individual household level indicators. The CCVAF was instantiated into a GIS-based web application 

named THRIVE for different decision makers to better assess how climate change is affecting rural 

farmers in Western Honduras. Qualitative evaluation of the THRIVE showed that it is an innovative and 

useful tool. The CCVAF and its instantiation provides an important initial step towards building climate 

change resilience among rural farmers. It is the first attempt to provide a comprehensive set of the 

indicators with related measurements and data sources for climate change vulnerability assessment. The 

framework thus contributes to the knowledge base of the climate change vulnerability assessment. It also 

contributes to the design science literature by providing guidelines to design a class of climate change 

vulnerability assessment solutions. To the best of our knowledge, the CCVAF is the first generalizable 

artifact that can be used to build a group of ICT-based climate change vulnerability assessment solutions. 

Another knowledge contribution of this dissertation is its reproducibility by making the input and output 



 
 

data available to the research and practitioner community through a GeoHub. For practical contributions, 

the framework can be easily used by researchers and practitioners to consistently design a vulnerability 

assessment tool, starting with the set of indicators organized by the three-level determinants, and 

following specific spatial data analysis and models. Such an ICT-based tool adds practical values to tackle 

climate change challenges.  
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CHAPTER 1: INTRODUCTION 

Climate change is now affecting every known society. According to the Intergovernmental Panel 

on Climate Change (IPCC) Fifth Assessment Report (AR5), climate change has a clear human influence 

with the highest anthropogenic greenhouse gas emissions (GHG) in history, diminishing snow levels and 

ice caps, rising sea levels, and warming atmosphere and oceans. Higher intensity extreme climatic events 

and more frequent occurrences are also observed and expected (IPCC, 2014; Schmidhuber & Tubiello, 

2007; UN, 2018).  

Disadvantaged people, such as rural poor and smallholder producers in developing countries, are 

at a higher risk as the changes in climate patterns will impact crop yields and undermine food security, 

especially among subsistence farmers who generally produce low yields and are least able to cope with 

their effects (Altieri et al., 2015; Antle, 1995; FAO, 2017; IPCC, 2014; P. Jones & Thornton, 2003; Kang 

et al., 2009; Misra, 2014; Schmidhuber & Tubiello, 2007; UN, 2018; World Bank, 2013).  According to 

FAO (2017), climate change affects food security in four dimensions: food availability, food access, food 

utilization and food stability (FAO, 2017).   

Climate change is also expected to the slow economic growth of nations and regions. In recent 

studies of 134 countries, a temperature rise of 1° C was expected to significantly reduce the per capita 

GDP by 9 % (World Bank, 2013). Developing and least developed countries often suffer from frequent 

extreme climatic events. Poverty reduction efforts in these countries are more difficult as planned 

resources are diverted towards disaster relief, creating new poverty traps and hunger hotspots (IPCC, 

2014; P. Jones & Thornton, 2003; Morton, 2007; Thomalla et al., 2006; World Bank, 2013). For example, 

when Djibouti suffered from a severe drought in 2011, the country lost 20 years of its development effort 

and its poverty level rose to the level seen in 2002 (World Bank, 2013). Changes in weather patterns, such 

as drought or heavy rains leading to flooding, are also projected to generate an increase in human 

migration especially in developing countries because the population in these countries has less adaptive 

capacity to climatic variability (FAO, 2017; IPCC, 2014; Milman et al., 2018).   
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Agriculture is still a main source of income and food security in many developing and low-

income countries, especially in rural areas (Baca et al., 2014).  As temperatures increase, the need for 

irrigation water also increases. Water stress affects smallholder and subsistence farmers in developing 

countries (Morton, 2007). Even with a moderate increase in temperature (1 - 2 °C) in tropical regions, 

maize, rice, and wheat yields are expected to be negatively impacted (Morton, 2007). For example, P. 

Jones & Thornton (2003) tested a third-order Markov rainfall model to simulate how rainfall variability 

would impact maize production in the Latin America and African regions. The model shows a 10% 

decrease in maize yields by 2055, which can be disruptive for rural communities who depend on maize 

for subsistence and livestock feed (P. Jones & Thornton, 2003).  The change in climate may also alter the 

dynamics of pest populations as temperature increases directly influence their reproduction (Altieri et al., 

2015). For example, Arabica coffee, one of the most important crops in the Mesoamerican region, is 

seriously threatened by the increase in temperature and resulting pest infestations. Ethiopia and Kenya 

have already seen a shift in the distribution of wild coffee and a reduction in yields (Baca et al., 2014).   

Subsistence agriculture is an approach that has changed little over the centuries, utilizing few 

mechanical or industrial inputs and with little technical assistance. Its goals are primarily food production 

for home use and local sales for household cash needs. It is generally practiced on small land holdings, 

and is a common scenario among the Central American region (Bouroncle et al., 2017; Holland et al., 

2017; Imbach et al., 2017). These small farmers depend heavily on rain and are highly vulnerable to any 

change in precipitation or climate patterns. Many of these farmers are already food insecure and live in 

precarious conditions. For this reason, they are a priority in climate change adaption plans (Holland et al., 

2017; Morton, 2007).  

Climate change adaptation focuses on strengthening resilience and reducing vulnerability (FAO, 

2018). Many planned processes, proposed or new policies, and technological innovations (Altieri et al., 

2015; FAO, 2018; Misra, 2014; Neil Adger et al., 2005) have been advanced to deal with the impact of 

climate change, especially those that affect food production, and adaptation has become an anticipatory 

measure. Climate change adaptation should involve the local communities, civil society, international 
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organizations, governments at the local, regional and national level (Neil Adger et al., 2005). Policy 

makers need to identify vulnerable populations to understand the shocks and stressors they may be facing 

now and in the future, and allocate possible adaptation resources to them (Bouroncle et al., 2017). They 

need to assess these populations’ adaptive capacity and identify vulnerabilities.  Information is often 

limited due to the difficulty of obtaining data about these vulnerable populations, and their expected 

shocks and stresses, particularly those faced by marginal communities of small farmers in low-income 

countries. To assess the adaptive capacity of a population, both primary and secondary data are needed. 

Primary data are collected at the individual household or community level. Secondary data are usually 

generated by governments and can be used to estimate adaptive capacity locally or regionally. The data 

challenge exists as the “availability, quality, consistency and reliability” of these data can be limited 

(Holland et al., 2017). To help build climate change resilient communities among rural farmers, the first 

step is to understand the impact of climate change on the population, its land, and its agricultural 

practices. This dissertation aims to use information and communication technology (ICT) to assess 

climate change vulnerabilities among rural farmers. More specifically, the ICT will be used to collect 

both primary and secondary data for rural farmers in low-income countries and use these data for 

understanding the climate change vulnerabilities of the targeted population.  

 

1.1 Research Problem and Research Questions 

As described earlier, this dissertation aims to use information, communication, and technology (ICT) 

to assess climate change vulnerabilities among rural farmers. To achieve this overall objective, this 

dissertation seeks to answer the following research questions: 

1. What determinants and variables need to be analyzed to assess climate change vulnerability? 

2. How can climate change exposure and sensitivity be measured using geospatial technology? 

3. What determinants and variables are needed to measure the adaptive capacity of the communities? 
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While reviewing empirical studies on climate change, it is clear a large portion of the analyses 

focus on identifying the possible damage and areas where climate change impact will disproportionally 

affect agriculture, especially in developing countries at higher climate risk (Altieri et al., 2015; Antle, 

1995; Arbuckle et al., 2015; Howden et al., 2007; Imbach et al., 2012, 2017; Morton, 2007; Tan & 

Shibasaki, 2003).  While expected impacts are well studied, mechanisms for identifying vulnerable areas 

are not. For this reason, innovative ways to measure and identify vulnerable areas are needed on 

dimensions that may be disproportionately impacted by climate change, such as various aspects of the 

natural environment – the focus of this dissertation. With the advancement of new spatial technologies, 

Geographic Information Systems (GIS), Remote Sensing (RS) and Artificial Intelligence (AI) with its 

subsets Machine Learning and Deep Learning are now and can be widely used for a wide swath of 

analyses critical to successfully understanding and managing environmental and agricultural 

vulnerability. These include crop productivity and yield estimations, crop management challenges (Huang 

et al., 2018; Sahu et al., 2011; Singh et al., 2015a; Tan & Shibasaki, 2003), environmental vulnerability 

and degradation assessments (Hassan et al., 2015; Mohamed et al., 2013), soil degradation, moisture and 

erosion measurements (Diodato & Ceccarelli, 2004; Jain & Das, 2010; Song et al., 2016), agricultural 

early warning and  decision support system (DSS) (Rembold et al., 2017; Suksa-Ngiam et al., 2016), 

deforestation (Ahmadi, 2018; DeFries et al., 2007; P. Kumar et al., 2010; Yoshikawa & Sanga-Ngoie, 

2011), climate change risk assessment and adaptation (Kunapo et al., 2016; Rizzi et al., 2012) droughts 

(AghaKouchak et al., 2015; Bagheri, 2016; Mishra & Nagarajan, 2011), forest fires (Caceres, 2011; 

Chuvieco & Salas, 1996; Erten & Kurgun, 2002a; Jaiswal et al., 2002a), systems to monitor vector-borne 

animal and plant diseases, and other environmental epidemiological applications (Khormi & Kumar, 

2014; VoPham et al., 2018). The next section provides a broader look into the environmental factors 

considered to assess climate change vulnerability. 
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CHAPTER 2: LITERATURE REVIEW 

This literature review contains a review of two major sections of research: 

2.1 Vulnerability and Climate Change 

2.2 Exposure and Sensitivity Determinants 

 

2.1 Vulnerability and Climate Change 

The word vulnerable has its origins in the Latin noun vulnus which means wound. Vulnus led to 

the Latin verb vulnerare which means to wound and to the Latin adjective vulnerabilis which means 

vulnerable (Kelly & Adger, 2000; Luna, 2018; Merriam-Webster, 2019).  Today, the term vulnerability is 

extensively used in a wide variety of research areas including poverty and development, food security, 

emergency preparedness, economic development, climate change and recently also has been used in 

moral philosophy and bioethics. It is a term being conceptualized differently depending on the domain 

being used, evolving throughout time with no consensus on its meaning. Of particular importance, its 

subject, and the identification of vulnerable populations, has been generously labeled as vague. In some 

cases, the difference in conceptualizations can become problematic in climate change research. Scholars 

from different fields collaborate and a consistent terminology is needed for improved collaboration and 

communication (Brooks, 2003; Füssel, 2007; Luna, 2018). Vulnerability also describes the analysis to 

measure powerlessness, marginality and how susceptible a group or individual can be to a harmful 

situation being caused by multiple stressors and pathways (Adger, 2006). Vulnerability has become a 

central concept to climate change research as the effects of climate change are being widely observed and 

the development of vulnerability assessments are being used to raise awareness, develop policies and to 

monitor of adaptation measures (GIZ, 2013, 2014; Hinkel, 2011). If one intends to create a vulnerability 

assessment (to encourage a change in a community or inform policy makers), one must determine the 

methodology to measure vulnerability.  

Empirical studies show the use of a variation of the basic formula to measure vulnerability: 

“Vulnerability = Risk + Response” or “Vulnerability= Baseline + Hazard + Response” (Moret, 2014). 
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One of the main objectives of this dissertation is to develop a framework to assess and identify the 

vulnerability of households in the area under study. As the vulnerability and adaptation literature grows 

and uses a wide array of concepts (Brooks, 2003), it is important to start by defining several concepts that 

will be part of this vulnerability analysis: vulnerability, exposure, resilience, sensitivity, and adaptive 

capacity. This dissertation will use the definitions provided by (IPCC & Edenhofer, 2014; McCarthy & 

IPCC, 2001) as follows: 

• Vulnerability: “The degree to which a system is susceptible to, or unable to cope with, adverse 

effects of climate change, including climate variability and extremes. Vulnerability is a function of 

the character, magnitude, and rate of climate variation to which a system is exposed, its sensitivity, 

and its adaptive capacity” 

• Exposure: “The nature and degree to which a system is exposed to significant climatic variations” 

• Resilience: “The capacity of social, economic, and environmental systems to cope with a hazardous 

event or trend or disturbance, responding or reorganizing in ways that maintain their essential 

function, identity, and structure, while also maintaining the capacity for adaptation, learning, and 

transformation” 

• Sensitivity: “Sensitivity is the degree to which a system is affected, either adversely or beneficially, 

by climate-related stimuli. The effect may be direct (e.g., a change in crop yield in response to a 

change in the mean, range, or variability of temperature) or indirect (e.g., damages caused by an 

increase in the frequency of coastal flooding due to sea-level rise).” 

• Adaptive capacity: “The ability of systems, institutions, humans, and other organisms to adjust to 

potential damage, to take advantage of opportunities, or to respond to consequences.” (IPCC & 

Edenhofer, 2014) 

When developing a vulnerability assessment, empirical studies show different approaches can be 

used. (Below et al., 2012) identifies three ontological approaches: theory-driven, data-driven and 

combination of empirical and theoretical. The theory-driven approach uses a literature review to select the 
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variables being measured, but this approach provides a level of uncertainty as to whether the variables 

being chosen can really measure vulnerability. The data-driven approach selects the variables being 

measured through expert opinion or through the correlation of past events, but this approach does not 

assess the variables through a benchmark but limits itself to expert opinion. The third approach is a 

response to the weaknesses of the other approaches. Two specific examples are the Livelihood 

Vulnerability Index proposed by (Hahn et al., 2009) and the Vulnerability assessment using an Indicator 

approach proposed by (Gbetibouo et al., 2010) (Below et al., 2012). Both approaches will be described in 

more depth in following subsections. (Gbetibouo et al., 2010) mentions the use of two very similar 

approaches: the econometric approach and the indicator approach. The econometric approach uses 

metrics as consumption or yields mainly measuring loss but does not completely target exposure, 

sensitivity and adaptive capacity which are the three main vulnerability dimensions. The indicator 

approach uses specific indicators or a combination of them to measure vulnerability to compute indices or 

weighted averages but again this approach is limited to the actual variables selected for the assessment 

being useful for monitoring and evaluation (M&E) purposes (Gbetibouo et al., 2010). (Below et al., 2012) 

proposes an activity-based adaptation index (AAI) which is a different approach starting with a 

quantitative assessment of previous adaptation processes.  

 

2.1.1 Climate Change Vulnerability Assessment 

A Climate Change Vulnerability Assessment (CCVA) is a commonly used tool to help define 

interventions for climate change adaptation plans and are generally used to measure the vulnerability of 

communities or natural systems (e.g. watersheds) exposed to climatic phenomena prioritizing the 

intervention needed (Bouroncle et al., 2017; GIZ, 2013). Several authors emphasize the importance of 

shifting from measuring the vulnerability of a given geographic location but instead focusing on the 

assessment of variables and specific stressors (Füssel, 2007) . The changes in an agricultural livelihood 

during a period due to exposure, sensitivity and adaptive capacity define the vulnerability of that 

livelihood (Bouroncle et al., 2017). Vulnerability is determined by the farm’s biophysical features and the 
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farmer’s socioeconomic condition (Altieri et al., 2015). Vulnerability is hard to observe or measure 

directly, but can be deduced by estimating exposure, sensitivity and adaptive capacity using qualitative 

and quantitative information with indicators and variables (GIZ, 2013). The potential impact (PI) is the 

combination of sensitivity and exposure that may occur if adaptation is not considered when a change in 

climate happens. Previous CCVA studies done in the Central American region, have mainly focused on 

specific groups such as cooperatives or on specific crops such as coffee, but lack a real definition on 

where the adaptation efforts should focus geographically or how these groups of farmers should adapt 

(Bouroncle et al., 2017). (Bouroncle et al., 2017), developed a “quantitative indicator-based CCVA” of 

municipalities (second level of administrative division) in El Salvador, Guatemala, Honduras, and 

Nicaragua. The study represents the PI as the “expected absolute change in climatic suitability for crops” 

including exposure using bioclimatic variables and General Circulation Models from IPCC. The Adaptive 

Capacity Index (ACI) was also mapped for all the municipalities in the study based on three conditions: 

“basic need satisfaction, resources for innovation and resources for transforming innovation into actions” 

(Bouroncle et al., 2017).  The sum of PI and ACI resulted as the Vulnerability Index (VI) for every 

municipality resulting in three quantiles (low, medium, and high) which helps to identify the most 

vulnerable municipalities. The study results show Honduras has most of its territory with medium to low 

Adaptive Capacity, except for the areas with high population density which has high Adaptive Capacity.   

Honduras also scores with higher VI as a result of higher PI and lower ACI (Bouroncle et al., 2017). 

The approach chosen to conduct a CCVA determines the unit under evaluation (e.g., households, 

watersheds, or communities), the scale (e.g., country, community, household), and the availability of data. 

The two commonly used approaches are: Top-Down and Bottom-Up. The Top-Down approach uses 

global and regional scenarios to assess possible impact starting with an analysis of the impacts of climate 

change. The Bottom-Up approach focuses first on the people affected and its study unit is smaller (e.g., 

communities) and typically the people in the communities are part of the assessment but also, they are 

providers of data and may assist in the analysis integrating local knowledge in the process. A combination 
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of top-down and bottom-up approaches has also been useful in the past increasing the acceptance to 

results  (GIZ, 2013, 2014). 

 

2.1.2 Livelihood Vulnerability Index 

A livelihood may be defined as an environment comprised of assets allowing a means of living 

(Krantz, 2001) and which provides adequate levels of food and cash. The term Sustainable refers to the 

production of resources in the long-term without compromising the resources for future generations. A 

livelihood may become sustainable if one has access to land ownership, or livestock, or fishing, hunting 

or any source of stable employment that allows a stable source of income. The Sustainable Livelihoods 

Approach (SLA) uses five types of assets: natural, social, financial, physical, and human capital, all useful 

in supporting a household to withstand shocks (Chambers & Conway, 1992; Hahn et al., 2009). However, 

the SLA only addresses sensitivity and adaptative capacity.  With changes in climate, this approach is no 

longer feasible as it does not address the complex changes the environment is experiencing.  A new 

approach is needed to integrate exposure and household adaptation.  The Livelihood Vulnerability Index 

(LVI) combines methods estimating the impacts climate change is having in different communities using 

several indicators to measure exposure, variability, adaptive capacity, and sensitivity.  (Hahn et al., 2009) 

uses seven major components: socio-demographic profile, livelihood strategies, social networks, health, 

food, water, natural disasters, and climate variability. The LVI applies an equal weighted average 

approach and each subcomponent has an equal weight (Hahn et al., 2009) but this equal weighting is seen 

as a weakness, given it is hard to assume all the subcomponents can have an equal effect (Below et al., 

2012).    

 

2.1.3 Indicator Approach 

 (Gbetibouo et al., 2010) focuses on the farming sector in South Africa and proposes the 

integration of biophysical and socioeconomic indicators from the farming regions under study. But this 

approach is also subjective as it is limited to the selection of specific variables. Seeking to reduce 
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subjectivity, two steps were followed: a) literature review on different vulnerability assessments; and b) 

indicators were assessed through an expert panel using a criterion to identify which ones were relevant, 

adequate, easy to grasp, and had data available to measure them. Through the assessment indicators 

measured exposure (frequency of past climate extremes, predicted change in temperature and rainfall), 

sensitivity (irrigation rate, land degradation index, crop diversification index, share small-scale), and 

adaptive capacity (share of farmers in farms, literacy rate, HIV prevalence, farm income, infrastructure 

index).   The values are then normalized and then weighted depending on the indicator and using a 

principal component analysis (PCA) method (Gbetibouo et al., 2010). But according to (Below et al., 

2012) the determination of every weight is through the data structure and may result in contradictory 

weights (Below et al., 2012).   

 

2.1.4 Activity-based adaptation index (AAI) 

Vulnerability is also measured by how a community is able to adapt through responses and the 

availability of resources (Adger et al., 2003) but its measurement is challenging as many of the variables 

used are uncertain (Below et al., 2012). Agriculture is highly sensitive to climate changes as is regularly 

seen by the impact of meteorological phenomena El Niño and La Niña, so it is crucial to identify 

adaptation options (Howden et al., 2007). Adaptation can be seen as the reduction of dependence by the 

diversification of food production (Adger et al., 2003) through the incorporation of different 

varieties/species with higher resistance to heat waves, alteration of fertilizer rates, changing irrigation 

timings, “harvesting” water, undertaking soil moisture conservation, and many others (Howden et al., 

2007).  In order to obtain better results, adaptation should follow local-level analysis. (Below et al., 2012) 

proposes an activity-based adaptation index (AAI), which is a quantitative assessment to measure 

adaptation determinants linking local livelihood indicators. This approach analyzes poverty levels and 

different strategies taken by the household through socioeconomic variables with a further statistical 

analysis using factor analysis and multiple regression (Below et al., 2012). 
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2.2 Exposure and Sensitivity Determinants 

While reviewing empirical studies on climate change, it is clear a large portion focuses on 

identifying the possible damages and areas where its impacts will be the most intense predominantly 

agriculture in developing countries (Altieri et al., 2015; Antle, 1995; Arbuckle et al., 2015; Howden et al., 

2007; Imbach et al., 2012, 2017; Morton, 2007; Tan & Shibasaki, 2003).  For this reason, innovative 

ways to measure and identify vulnerable areas are needed and are needed on dimensions that are affected 

by climate change, such as the environmental factors which this research paper addresses. With the 

advancement of new spatial technologies, Geographic Information Systems (GIS), Remote Sensing and 

Artificial Intelligence with its subsets Machine Learning and Deep Learning are now widely used for crop 

productivity and yield estimations, crop management (Huang et al., 2018; Sahu et al., 2011; Singh et al., 

2015a; Tan & Shibasaki, 2003), assessing environmental vulnerability and degradation (Hassan et al., 

2015; Mohamed et al., 2013), assessing soil degradation, moisture and erosion (Diodato & Ceccarelli, 

2004; Jain & Das, 2010; Song et al., 2016), agricultural early warning and  decision support system (DSS) 

(Rembold et al., 2017; Suksa-Ngiam et al., 2016), assessing deforestation (Ahmadi, 2018; DeFries et al., 

2007; P. Kumar et al., 2010; Yoshikawa & Sanga-Ngoie, 2011), climate change risk assessment and 

adaptation (Kunapo et al., 2016; Rizzi et al., 2012) droughts (AghaKouchak et al., 2015; Bagheri, 2016; 

Mishra & Nagarajan, 2011), monitoring forest fires risk (Caceres, 2011; Chuvieco & Salas, 1996; Erten & 

Kurgun, 2002a; Jaiswal et al., 2002a), and monitoring vector-borne diseases and other environmental 

epidemiological applications (Khormi & Kumar, 2014; VoPham et al., 2018). The next section provides a 

broader look into the factors considered to assess climate change vulnerability. 

 

2.2.1 Forest Disturbances 

A forest disturbance is an environmental fluctuation that disturbs the normal health of a forest 

ecosystem and impacts the resources available through it (van Lierop et al., 2015). It is expected that 

climate change will deeply impact forest ecosystems through abiotic disturbances agents such as fires, 

snow, wind, and droughts, as well as through biotic disturbances such as insect outbreaks and pathogens. 
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Both types of disturbances affect forest growth, survival, yields and wood quality. Another source of 

forest disturbance include deforestation due to a change in land use.  A disturbance disrupts the potential 

of the ecosystem to provide a service to a community and affects its resilience with the grave 

consequence of lasting impacting its balance (FAO (3), 2019; Seidl et al., 2017; van Lierop et al., 2015). 

Among the key environmental disturbances affecting forests are temperature variability, wind speed, 

atmospheric moisture and water availability (Seidl et al., 2017).   

This study will include as part of its vulnerability assessment the study of the following 

disturbances: fire, deforestation, droughts and insect outbreaks and each disturbance will be described in 

following sections. 

 

2.2.1.1 Fire and Forest Fire Risk Zones 

A forest fire is a natural ecological process and is a traditional agricultural practice in Honduras 

for land management, regenerating grasslands and eliminating pests (Caceres, 2011; Lineal & Laituri, 

2013).  But this practice may have adverse consequences as uncontrolled fires can easily spread into 

national parks or surrounding areas affecting the livelihood of the population and the air quality of the 

area (Brandt, 1966; Davies et al., 2009; Lineal & Laituri, 2013). In recent years, we have seen an increase 

in forest fires most likely due to changes in land use, although climate changes should also be considered 

since variation in precipitation changes the fuel conditions which increases fire risks (Chuvieco, 1999).  

According to (Seidl et al., 2017), climate change has a direct and indirect effect on a forest fire as it may 

affect the fuel moisture, the ignition source, the speed of fire spread, the fuel availability, flammability 

and fuel continuity.  

Since its inception, GIS and Remote Sensing have demonstrated their value as tools to observe or 

study active or historic forest fires. This is because they can correlate different variables to further 

develop models resulting in forest fire risk zone maps (Adab et al., 2013; Caceres, 2011; Chuvieco et al., 

2019; Chuvieco & Congalton, 1989a; Erten & Kurgun, 2002a; Giglio et al., 2016; Yin et al., 2004). 
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In recent years, wildfire activity has increased and the response to those events requires access to 

timely information for resource allocation, budgeting, management, and planning.  As technology 

advances, improved applications capable for Earth observation are possible allowing the near-real time 

data monitoring and processing of fire-related data. One source of environmental data including active 

fire data is provided through the Moderate-resolution Imaging Spectroradiometer (MODIS) which is a 

sensor onboard Terra and Aqua satellites. Both satellites are part of the National Aeronautics and Space 

Administration (NASA) Earth Observing System (EOS) mission. MODIS uses an algorithm capable of 

detecting “fire pixels” containing active fire(s) when the satellite passes and classifying them as: missing 

data, cloud, non-fire, fire or unknown. MODIS provides daily active fire data and 500m tile burned area. 

To make this data available, two systems were developed: the MODIS Rapid Response (MRR) system 

and the Fire Information for Resource Management System (FIRMS). The MRR tool provides different 

resolutions for true-color imagery in near real time.  FIRMS is a tool oriented towards GIS users allowing 

the capability of handling data in GIS desktop software (Davies et al., 2009; Giglio et al., 2016). This 

Dissertation uses the FIRMS tool as a source to obtain and map active fires in the area under study. 

The term fire risk and fire danger can be used interchangeably depending on the authors 

(Chuvieco, 2003). According to FAO (1986) fire risk is “the chance of fire starting, as affected by the 

nature and incidence of causative agencies; an element of the fire danger in any area” and fire danger is 

“the resultant, often expressed as an index, of both constant and variable danger factors affecting the 

inception, spread and difficulty of control of fires and the damage they cause” (FAO, 1986).  Other 

authors identify a fire risk zone as an area prone to fire hazard which can easily spread to surrounding 

areas (Chuvieco & Congalton, 1989a; Gai et al., 2011) consider the union of fire hazard and fire ignition 

as a fire risk zone (Chuvieco, 2003; Chuvieco & Congalton, 1989b). Another terminology clarification is 

the one provided by Chuvieco (1999) distinguishing the beginning of a fire as fire ignition or 

flammability and the spread of a fire as fire behavior risk or fire hazard, and both approaches require an 

integration of different spatial variables (Chuvieco, 1999). 
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Empirical studies provide different methodologies using Remote Sensing and GIS to identify fire 

hazard areas. Understanding the factors influencing forest fires is essential for mapping forest risk zones 

(Chuvieco & Congalton, 1989b; Jaiswal et al., 2002a). These factors include environmental (landcover, 

land use), physiographic (elevation, slope, aspect), climatic (wind, rainfall, relative humidity, 

temperature), soils types, water availability (Chuvieco, 1999), proximity to roads and proximity to 

settlements. These factors can determine where fires are more likely to start, where they can propagate, 

and may predict the intensity of forest fires (Caceres, 2011; Chuvieco, 1999, 2003; Chuvieco & 

Congalton, 1989a; Gai et al., 2011; Mohammadi et al., 2014; Sağlam et al., 2008).  Other studies add 

unemployment rates in the area of study as a human risk factor to their model to identify if there is 

correlation between them and fires occurrences but found no correlation between them (Maingi & Henry, 

2007). Other studies focus on identifying human risk factors including socio-economic, housing patterns, 

human presence variables and historical trends of human-caused fires (Martínez et al., 2009).  

A common methodology to develop forest fires risk zones uses a model to calculate a fire hazard 

index by overlaying the spatial layers of the factors listed previously to quantify the level of risk. This 

approach uses a hierarchical scheme having some layers with greater influence weighted higher according 

to the impact they have to increase the risk of fire (Caceres, 2011; Chuvieco, 2003; Chuvieco & 

Congalton, 1989b; Erten & Kurgun, 2002a; Gai et al., 2011; Jaiswal et al., 2002a; Sağlam et al., 2008). 

Recent studies incorporate the use of logistic regression, linear regression, and artificial neural networks, 

(Chuvieco, 1999, 2003; Martínez et al., 2009; Mohammadi et al., 2014) or spatial-temporal analysis 

(Sağlam et al., 2008) for fire occurrence prediction at different scales.  

 

2.2.1.2 Deforestation 

Deforestation has grave implications for the availability of water locally. It also introduces 

variations of local climate patterns affecting crop productivity, thereby endangering communities that 

depend on agricultural products for their survival. Through general circulation models (GCMs), it can be 

predicted that a drastic loss of tropical forest will itself result in warming between 0.1 – 0.7 °C. Forest 
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changes. especially the reduction of tropical forest, affect the climate locally, regionally, and globally. 

Some factors to measure the sensitivity of a regional climate may include soil type, vegetation, 

topography, climatology, and forest cover distribution. Using Remote Sensing, it is possible to observe 

the changes in evapotranspiration comparing areas with existing forest versus areas which have been 

converted to pasture or growth of crops (Lawrence & Vandecar, 2015).  The development of forest cover 

maps allows the delineation of remaining forest, and the identification of land use change through 

remotely sensed imagery. Land cover monitoring is possible using the seven bands available in the 

MODIS sensor, which provides an improved spectral option and accuracy in comparison to previous 

sensors. Methodologies to map land cover include fuzzy estimations, plant density isolines, empirically 

calibrated estimates, and regression tree algorithm for tree canopy cover estimation (Hansen et al., 2003). 

As technology advances, the recent combination of spatial science and artificial intelligence (AI) has 

formed the science field of geospatial artificial intelligence (geoAI) (Maher, 2018; VoPham et al., 2018) 

providing the opportunity to develop Models for Land Cover Classification using Deep Learning.  

 

2.2.2 Drought and Soil Moisture 

Drought is a climatic condition impacting human activities, ecosystems, agricultural production, 

and industrial activities, among others. Its effects may have devastating consequences in developing 

countries which may be affected by famines and migration of populations from impacted communities in 

search of food (Berg & Sheffield, 2018). The IPCC defines drought as “a period of abnormally dry 

weather long enough to cause a serious hydrological imbalance” (IPCC, 2012). It is a phenomenon 

affecting the global water cycle in its regional variability (AghaKouchak et al., 2015) starting with a 

reduction in precipitation in the long term resulting in low water levels affecting soil moisture and 

groundwater levels (Berg & Sheffield, 2018; Wilhite & Glantz, 1985). The scientific community has 

identified four approaches to measure drought: a) meteorological, b) agricultural, c) hydrological d) 

socioeconomic (AghaKouchak et al., 2015; Wilhite & Glantz, 1985).  
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Meteorological drought is the most common approach and generally identifies a “degree of 

dryness” and the timeframe of the event. Agricultural drought can take place in the absence of a 

meteorological drought when farming practices have degraded the land’s water- holding capacity or 

utilizing plants which reduce water availability to other plants or uses. Agricultural drought includes 

different meteorological characteristics that may impact in agricultural production and may include 

“precipitation shortages”, measurement of evapotranspiration, and a shift from the normal levels of 

precipitation. Hydrological drought focuses on the “surface or subsurface hydrology” including a change 

in the flow of streams and river basins. Socioeconomic drought may include the meteorological, 

agricultural, and hydrological droughts but focusing into the supply and demand of goods that may have 

been impacted by the reduction in water levels or reduction in water availability levels (Wilhite & Glantz, 

1985). Recently the ecological drought is being included as a new approach focusing on the deficit of 

water availability stressing ecosystems (University of Nebraska - National Drought Mitigation Center, 

2019).  

Empirical research suggest the 1965 Palmer Drought Severity Index (PDSI) as a widely method 

for drought monitoring (Berg & Sheffield, 2018; Hayes et al., 2000; Wilhite & Glantz, 1985) both 

Internationally and in the United States. According to PDSI, drought severity is related to the difference 

between actual precipitation and the needed precipitation for evapotranspiration (ET) and is used to 

monitor prolonged periods of dry weather and evaluate conditions of long-term moisture (Wilhite & 

Glantz, 1985) by estimating moisture deficits during a period of time(Berg & Sheffield, 2018). But 

(McKee et al., 1983) mentions that a drought analysis should consider time scale, probability, 

precipitation deficit, and the relationship of the definition to the impacts of droughts among others. In 

their discussion, they mention the commonly used PDSI does not contemplate the time scale as a 

measuring parameter even though it exists. They propose a new definition, and an indicator called the 

Standardized Precipitation Index (SPI), using only one variable as the input. Their proposed definition 

uses standardized precipitation from different time scales thus providing a quantitative definition of 

drought. They define drought as a period in which the SPI has been continuously negative and being 
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measured as a mild drought if the SPI value falls below zero, moderate drought if the SPI value is 

between -1.00 to -1.49, severe drought if the SPI value is between -1.50 to -1.99 and finally extreme 

drought if the value is less than -2.00. Th (McKee et al., 1983).  

Since its introduction in 1960, Remote Sensing has been a valuable, monitor of drought events 

and their ecosystem impacts. Currently there are three types of satellites in orbit: a) the high Earth orbit 

also called geosynchronous (GEO) satellite orbits at 35,780 km or higher and rotating in a speed of 

11,100 km/hour, b) mid Earth orbit at an altitude between 2,000 – 35,780 km and rotating in a speed of 

13,900 km/hour and c) low Earth orbit (LEO) at an altitude between 180 – 2,000 km and rotating in a 

speed of 27,500 km/hour. The geostationary orbit satellite matches the rotation of Earth and is used for 

weather monitoring, communications, helping locate ships and aircrafts or monitoring solar activity. The 

medium Earth orbit is the orbit used by the Global Positioning System (GPS) satellites and serves better 

for the observation of high latitude regions. The Low Earth orbit is the one used by many scientific and 

weather satellites given its speed the satellite is able to pass the Earth twice in a 24-hour period with one  

pass in daylight and the other in darkness (Riebeek, 2019). Using remote sensing common drought-

related variables are able to be regularly reviewed including: precipitation, soil moisture, groundwater, 

evapotranspiration and snow cover (AghaKouchak et al., 2015). This research will not include snow as a 

variable to measure given the climatic zone of the area of influence is tropical. 

 A key parameter when studying droughts is the Soil Moisture Content (SMC).  Studying SMC 

variations through monitoring precipitation deficit, solar radiation, soil evaporation, plant transpiration 

can help in forecasting climatic extremes (Berg & Sheffield, 2018; Ngo Thi et al., 2019).  

 

2.2.3 Health Access  

Honduras is a country of inequalities with weak institutions and access to health care is one of the 

main concerns for its population. According to the World Health Organization, the total Honduran health 

expenditure in 2014 per person was $400 and the total expenditure in health as a GDP percentage was 

8.7% (OMS, 2020).  Health is directly related to the economic status of an individual, and it has been 
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proven groups of individuals with lower income have higher probabilities of dying from chronic diseases 

and preventable diseases (Rápalo et al., 2005).  

According to April’s 2020 World Bank’s Poverty & Equity Brief, Honduras is one of the poorest 

countries in Latin America and Caribbean (LAC). Approximately 48.3% of its population lives in poverty 

with 16.5% of its population lives with less than US$1.90 a day and approximately 50.3% lives with less 

than US$5.5 per day. Approximately 60.1% of its rural population lives in poverty, representing 

approximately 2.5 million people (The World Bank, 2020). Honduras has three main health concerns: a) 

prevalence of infectious diseases including leishmaniasis, TB, and HIV/AIDs, and vector borne diseases 

as zika, dengue, chikungunya and malaria, b) non-communicable diseases as diabetes, and high blood 

pressure, and c) high levels of morbidity and mortality rates due to traffic accidents and homicides 

(OPS/OMS, 2016; Rodríguez & Arévalo, 2018). Sadly in 2013, the United Nations defined Honduras as 

having the highest homicide rates in the world with a rate of 82.1 per 100,000 habitants and reducing its 

rates in 2014 to 60 per 100,000 habitants (OPS/OMS, 2016). 

In recent years, there has been an increase in vector (often mosquito) borne infections mainly zika 

virus (ZIKV), dengue (DENV), chikungunya virus (CHIKV) raising global concerns as it was the 

declaration of ZIKV as a 2016 Public Health Emergency of International Concern (Banu et al., 2011; 

OPS/OMS, 2016; Paixão et al., 2018). Reports have concluded there is a direct relationship between 

vector borne infections and climate change as changes in temperature, precipitation and humidity affect 

the biology, ecology, and dispersion of the vector.  The vector’s geographic distribution changes as 

weather conditions change and may allow vectors to proliferate and expand their territory.  Climate 

change may also change the vector’s incubation periods. As droughts increase, communities may seek 

different ways of storing drinking water including the use of barrels or buckets.  Without the proper 

maintenance and care, these can increase the vector’s breeding sites. But in other areas where rainfall 

increases may create any container as a new breeding site expanding the mosquito population  (Banu et 

al., 2011; Paixão et al., 2018).     
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The Honduran Health Ministry offers its services in their own centers with their own doctors, 

nurses, and personnel but it is estimated only 50-60% of the population has access to these services. The 

Social Security Institute covers approximately 18% of the economically active population and the private 

sector covers approximately 10-15% of the population with capacity to pay for their expensive services. It 

is estimated 17% of the Honduran population does not have any access to health services (OPS/OMS, 

2016). The Honduran Health Ministry Public System offers different levels of access based on the 

location of the centers.  This study will mainly focus on the services offered in rural communities. The 

Rural Health Centers or CESAR (Spanish abbreviation) provides basic primary care by an auxiliary nurse 

and - in the best conditions - the center also includes a health volunteer and promoter. Their service is 

generally Mondays through Fridays from 7:00 am – 1:00 pm. The Medical-Dental Health Center or 

CESAMO (Spanish abbreviation) provides a higher level of health care with a multidisciplinary team 

formed by a doctor, nurse, auxiliary nurse social worker, a dentist, lab technician, and pharmacy assistant. 

Their service is generally Mondays through Fridays from 7:00 am – 1:00 pm. Both centers may also 

include security, cleaning and janitorial services depending on the circumstance (Transformemos 

Honduras, 2013). The Maternal and Child Center or CMI (Spanish Abbreviation) are public birth centers 

located in rural areas. These centers are staffed by an auxiliary nurse with limited resources (WHO, 

2007). The CMI are generally near the CESAMO. The system also includes regional and area hospitals 

with higher capacity for providing different health services including emergency services, surgeries, and 

several medical specialties. Even though regional and area hospitals offer more health services, there are 

still many cases where patients are transferred to main hospital cities as Tegucigalpa and San Pedro Sula. 

This transfer is generally done through ambulances or private cars travelling several hours on roads not 

always in the best condition. Transfers through helicopters are rare and not available to the general 

population. 
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2.2.4 Socioeconomic Analysis 

2.2.4.1 Economic Capacity and Access to Basic Needs  

To better understand and analyze poverty, it is essential to identify the best measurement 

methodologies. Alkire and Foster (2011) provide a framework to measure multidimensional poverty 

through the selection of dimensions and their cutoffs, dimensional weights, and poverty cutoffs.  Their 

method focuses on identifying multiple deprivations which are experienced simultaneously. This method 

requires data collection to individual or household level (Alkire & Foster, 2011). A similar framework is 

the one proposed by Alkire and Santos (2010) focusing on combination of deprivations affecting a 

household. The multidimensional poverty index (MPI) has three dimensions: health, education, and 

standard of living. Based on this index, a household is considered multidimensionally poor if the 

combination of its weighted ten indicators is 30% or more of the dimension (Alkire & Santos, 2010).  A 

common method used in Latin America is the Unsatisfied Basic Needs (UBN) focusing in determining if 

the household has home under the minimum standard of living, access to basic sanitary services, access to 

basic education and the economical capacity of the household provides a minimum consumption level 

(Hicks, 2000). Based on the UBN framework, CEPAL/UNDP (1988) proposed the following framework: 

Table 1. Unsatisfied Basic Needs (CEPAL & PNUD, 1988) 

Basic Needs Dimensions Census Variables 

Access to a House House Quality a) Wall material 

b) Floor material 

c) Roof material 

Overcrowding a) Number of persons in the house 

b) Number of rooms in the house 

Access to Basic Sanitary 

Service 

Availability a) Source of water in the household 

Type of Sewage Disposal 

Systems 

a) Access to basic services 

b) Sewage disposal system 

Access to Education Attendance of school age 

children to a school 

a) Age of the home members 

b) Attendance at school 

Economical Capacity Probability of insufficient 

household income 

a) Age of the home members 

b) Last educational level attained by head of 

the household 

c) Number of persons in a household 

d) Employment situation 
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A proposed methodology based on the CEPAL/UNDP can be seen in table 2. For a complete 

unsatisfied basic needs analysis, all basic needs should be incorporated. But the challenge COVID-19 

caused by imposing restrictions on travel, made the measurement of access to education and economic 

capacity impossible.  For this reason, this dissertation will only incorporate access to basic sanitary 

service and access to a house as part of the unsatisfied basic needs analysis. 

Table 2. Proposed methodology 

Basic Needs Dimensions Census Variables Weight 

Access to Basic 

Sanitary Service 

Availability a) Source of water in the household 25% 

Type of Sewage Disposal 

Systems 

a) Access to basic services 

b) Sewage disposal system 

Access to a 

House 

House Quality a) Wall material 

b) Floor material 

c) Roof material 

25% 

Access to 

Education 

Attendance of school age 

children to a school 

a) Age of the home members 

b) Attendance at a school 

25% 

Economical 

Capacity 

Probability of insufficient 

household income 

a) Age of the home members 

b) Last educational level attained by head of 

the household 

c) Number of persons in the household 

d) Employment situation 

25% 

 

Table 3. Access to Basic Sanitary Service 

Water Source Distance to Water Source Sewage Disposal System Weight 

a) Pipeline inside the 

house 

b) Pipeline reaching the 

yard or house 

property 

c) Bottle water 

 a) Toilet connected to sewer 

 

1 

a) Washing sink or open 

faucets 

b) Protected well in the 

household, yard, or 

house property 

 a) Toilet drains in river 

 

2 

a) Protected Public well a) 0 to 30 minutes, walking 

from the household, yard, 

or plot 

b) Water reaches the 

household, yard, or plot 

through pipeline 

a) Latrine with septic tank 

 

3 

a) Open well in the 

household 

b) Open well 

c) Water truck 

a) From30 to 60 minutes 

walking from the house 

a) Common pit latrine 

 

4 
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a) Water hole, river, 

creek, stream 

b) Pond, lake, reservoir 

c) Rainwater 

a) More than 60-minute 

walking from house 

a) No basic sanitary service or 

latrine 

 

5 

 

Table 4. Access to a House with basic requirements 

Floor Material Wall Material Roof Material Cooking Energy Weight 

a) Dirt a) Tin 

b) Daub wall 

a) Straw or similar 

b) Waste material 

a) No mud stove 5 

a) Rustic Wood a) Mud 

b) Wood 

a) Clay tile a) Mud or stone 

oven 

4 

a) Mud Brick a) Brick 

b) Block 

a) Concrete 

b) Galvanized sheet 

c) Zinc sheet 

a) Traditional mud 

stove 

3 

a) Cement Floor   a) Improved mud 

stove 

2 

a) Ceramic Floor 

b) Granite Floor 

c) Cement slab 

  a) Electric stove 

b) Gas stove 

1 

 

2.2.4.2 Dependency 

 An important measure of vulnerability in a household is the ratio of economic dependents to the 

economically active population. If the dependency ratio is high, it indicates a higher burden on the 

economically active population to provide the services and support the dependent need.  If there is a 

higher ratio of the young in the population it implies a need to invest in schools or child-care (United 

Nations (2), 2007). The measurement used in this research will follow the method provided by UN 

(2007): 

Dependency Ratio = 100 * ((Population 0-14) + (Population 65+)) / (Population 15-64) 

Given that the dependency ratio seeks to identify the population, which is economically 

dependent or dependent on services, this study will include in the dependency ratio the population with 

disabilities. The measurement formula used is the following: 

Dependency Ratio = 100 * ((Population 0-14) + (Population 65+) + (Population with Disability)) 

(Population 15-64) 
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2.3 Sustainable Development Goals 

Impacts of climate change need to be minimized through global solutions, as reducing greenhouse 

gas emissions or reducing vulnerability as development gains are undermined and already impoverished 

areas feel the effects with higher intensity (World Bank, 2013). To respond to climate change worldwide, 

175 parties adopted the Paris Agreement at the 21st Conference of the Parties (COP21) held in Paris 

committing to the 2030 Agenda for Sustainable Development. Sustainable Development Goal (SDG) 13 

aims to “take urgent action to combat climate change and its impact”. SDG13 focuses on integrating 

measures to mitigate and adapt to climate change into national policies, raising awareness, improving 

education, and strengthening institutions capacity (UN, 2018). 

It is essential to prioritize these efforts into developing sustainable adaptation measures that are 

more inclusive, and to integrate them with actions focused on poverty reduction and food security as well.   

Based on the 2030 Agenda Framework, this dissertation tries to address the needed efforts to achieve the 

following goals and targets: 

SDG1: End Poverty in all its forms everywhere 

• Target 1.5: “By 2030, build resilience of the poor and those in vulnerable situations and 

reduce their exposure and vulnerability to climate-related extreme events and other 

economic, social and environmental shocks and disasters” (UN (1), 2019). 

SDG2: End hunger, achieve food security and improved nutrition and promote sustainable 

agriculture 

• Target 2.3: “By 2030, double the agricultural productivity and incomes of small-scale 

food producers, in particular women, indigenous peoples, family farmers, pastoralists, 

and fishers, including through secure and equal access to land, other productive 

resources and inputs, knowledge, financial services, markets and opportunities for value 

addition and non-farm employment 
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• Target 2.4: By 2030, ensure sustainable food production systems and implement 

resilient agricultural practices that increase productivity and production, that help 

maintain ecosystems, that strengthen capacity for adaptation to climate change, extreme 

weather, drought, flooding and other disasters and that progressively improve land and 

soil quality” (UN (2), 2019). 

SDG13: Take urgent action to combat climate change and its impacts 

• Target 13.1: “Strengthen resilience and adaptive capacity to climate-related hazards and 

natural disasters in all countries 

• Target 13.2: Integrate climate change measures into national policies, strategies, and 

planning 

• Target 13.3 Improve education, awareness-raising and human and institutional capacity 

on climate change mitigation, adaptation, impact reduction and early warning” (UN (3), 

2019). 

 

2.4 Indicators to measure vulnerability and impact 

The diversity of definitions of vulnerability may be a source of confusion, as many overlaps with 

resilience, adaptive capacity, and exposure. At the same time, there is a wide collection of methodologies 

available to assess vulnerability, and these include a participatory approach or indicator-based applied to 

different spatial and temporal scales (Hinkel, 2011) and was previously discussed.  (Hinkel, 2011) defines 

measurement as “the systematic process of assigning a number to a phenomenon” following predefined 

rules which may include the use of quantitative concepts. But making the definition of vulnerability 

operational is a challenge as it is a theoretical concept, thus making it hard to measure. (Hinkel, 2011) 

proposes making vulnerability an operational concept by providing a method for “mapping it to 

observable concepts” instead of measuring and defining the method as an “operational definition”. When 

assessing vulnerability, the operational definition can be called the methodology of the assessment 

(Hinkel, 2011).  
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An indicator is a widely used term and is “a function from observable variables called indicating 

variables to theoretical variables”. The use of indicators is a way to “bridge academic work and political 

needs” (Hinkel, 2011) by synthesizing, quantifying, and standardizing a complex data phenomenon into a 

number with the possibility of communicating to stakeholders, decision makers or policy makers (FAO, 

2018; GIZ, 2014; Hinkel, 2011). Indicators are useful in both measuring progress, monitoring trends, 

justifying funds, and communicating priorities. Different indicators are already available to monitor the 

adaptation process of climate change projects, but not all indicators can be used equally, especially when 

considering spatial or temporal variability. At the same time, adaptation indicators have a direct link to 

development indicators given the connection between a community adapting and its development.  This 

shows the need to include standard indicators of both adaptation and development. An adaptation 

indicator should be simple, measurable, analytically sound, relevant to policy, and transparent. In order to 

develop an inclusive process, the framework (Figure 1) should include “natural resources and ecosystems, 

agricultural production systems, social and economic variables and institutions and policymaking” 

indicators (FAO, 2018).  The main categories and subcategories are summarized in Table 5.   

 

Figure 1 . The Basic Framework for Tracking Adaptation in Agriculture (FAO, 2018) 
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Table 5. Main and Subcategories of Indicators to Track Adaptation in Agriculture. Adapted from (FAO, 2018) 

Main Categories Subcategories 

Natural Resources 

and Ecosystems 

1 Availability of, and access to, quality water resources for agriculture 

2 Availability of, and access to, quality agricultural land and forests 

3 Status of ecosystems and their functioning 

Agricultural 

Production Systems 

1 Agricultural production and productivity 

2 Sustainable management of agricultural production systems 

3 Impact of extreme weather and climate events on agricultural 

production and livelihoods 

4 Projected impact of climate change on crops 

Socioeconomic 1 Food security and nutrition (vulnerability)  

2 Access to Basic Services 

3 Access to credit, government, or other sources of social protection 

4 Agricultural value addition, incomes, livelihood diversification 

Institutions and 

Policy Making 

1 Institutional and technical services 

2 Institutional capacity and stakeholder awareness 

 

The levels of adaptation are assigned to each category and may use a score between 0 (very low 

adaptation and 10 (very high adaptation) and is illustrated In Figure 2. 

 

Figure 2. Levels of Adaptation Progress within an Agricultural Adaptation-Tracking Framework (FAO, 2018) 
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CHAPTER 3: METHODOLOGY 

The impact of climate change is considered to be highly specific to location and context, and 

efforts to achieve resiliency of communities by increasing their adaptive capacity should also be location-

based (FAO, 2018). This dissertation will use information, communication, and technology (ICT) to 

assess climate change vulnerabilities among rural farmers. It proposes the designing and development of a 

framework to identify the area’s most vulnerable to climate change—a “Climate Change Vulnerability 

Assessment.” To build this, the innovation and transfer of both technology and knowledge is crucial. The 

design of a system is essential for its adoption, and as such is a central focus for to researchers and 

practitioners—as demonstrated by the amount of behavioral research focusing on system acceptance and 

usage.  

Design Science Research (DSR) is a widely accepted problem-solving paradigm conceptualized 

by (Hevner et al., 2004; Hevner & Chatterjee, 2010a), which focuses on innovative IT artifacts that may 

include “hardware, software, procedures and data” that contribute to knowledge (Chatterjee, 2015; 

Hevner & Chatterjee, 2010a). In IT research, IT artifacts become the object of study using theory to 

explain a) the intention to use, b) the perceived ease of use, or c) the actual usefulness of the IT-based 

artifact developed (Hevner et al., 2004).  

 

 

Figure 3. Design Science Research Cycles (Hevner, 2007) 
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This dissertation follows the DSR paradigm as it tries to 1) first understand the problem and its 

context, 2) design and develop innovative and useful artifacts that will help solve the problem, and 3) 

evaluate artifacts thoroughly. Figure 3 illustrates the DSR cycles, and Table 6 provides the DSR 

guidelines that will be followed in this dissertation.   

The process is as follows: Knowledge is acquired through the building of the artifact. An artifact 

can take the form of a Construct, Model, Method, Instantiation or Theories. A Construct can be defined 

as vocabulary or symbols; a Model is an abstraction and representation of a system; a Method can take 

the form of an algorithm and practices; and an Instantiation can be either an implemented or a prototype 

system; a Theory is the base for research and allows the understanding of a phenomena (Hevner & 

Chatterjee, 2010b). Moreover, seven guidelines proposed by (Hevner et al., 2004) (see Table 6 below) 

should somehow be addressed after completing research on the design science. Design-science research 

incorporates a set of expert activities to build an innovative artifact (Hevner et al., 2004; Holtkamp et al., 

2019). The artifact is then evaluated to improve the design and quality through an iterative process, with 

the main goal being the development of a useful product. It is not expected for an artifact built during 

design-science research to be a fully operational tool, but instead it helps define how an information 

system may help effectively solve a business problem (Hevner et al., 2004). 

Table 6. Design Science Research Guidelines (Hevner et al., 2004) 

Guideline Description 

Guideline 1: Design as an Artifact Design science research must produce a viable artifact in the form of a 

construct, a model, a method, or an instantiation. 

Guideline 2: Problem Relevance The objective of DSR is to develop technology-based solutions to 

important and relevant business problems. 

Guideline 3: Design Evaluation The utility, quality, and efficacy of a design artifact must be rigorously 

demonstrated via well-executed evaluations methods. 

Guideline 4: Research 

Contributions 

Effective design science research must provide clear and verifiable 

contributions in the areas of the design artifact, design foundations, 

and/or design methodologies. 

Guideline 5: Research Rigor Design science research relies upon the application of rigorous methods 

in both the construction and evaluation of the design artifact. 

Guideline 6: Design as a Search 

Process 

The search for an effective artifact requires utilizing available means to 

reach desired ends while satisfying laws in the problem environment. 

Guideline 7: Communication of 

Research 

Design science research must be presented effectively to both 

technology-oriented and management-oriented audiences. 
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Building and evaluating are the two main activities in a DSR information system (Venable et al., 

2012).  (Iivari, 2007) proposes a three-level epistemology for information systems: conceptual 

knowledge, descriptive knowledge, and prescriptive knowledge based on (Popper, 1978), which describes 

three worlds. Conceptual knowledge refers to concepts, constructs, conceptual frameworks, 

classifications, taxonomies, or typologies. Descriptive knowledge refers to the description of things, 

while prescriptive knowledge produces knowledge in the form of an IT artifact with a proven utility 

(Venable et al., 2012). An adaptation from (Peffers et al., 2007; Venable et al., 2012) can be seen in 

Figure 4, incorporating build-evaluate in the DSR methodology. 

 

 

The following sections introduces the artifact and the instantiation proposed in this dissertation. 

 

3.1 Artifact #1: Climate Change Vulnerability Assessment Framework 

As discussed earlier, to help build climate change resilient communities among rural farmers, the 

first step is to understand the impact of climate change on the communities. Thus, the first artifact is a 

Climate Change Vulnerability Assessment Framework (CCVAF) using IT, specifically GIS and remote 

sensing.  

The objective of any information-system-related research includes the understanding of the 

problem, then acquiring knowledge from the environment to develop an effective IT-based solution to 

Figure 4. Build-Evaluate in DSR Methodology (adapted from Peffers et al. (2007) and Venable et al. (2012)) 
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help solve it. The interaction with the people and organizations in which the research is being conducted, 

and where the IT-based solution will be implemented, is extremely important in order to keep the research 

relevant (Hevner et al., 2004). IT researchers seeking to craft relevant studies should consider focusing on 

the main concerns identified by practitioners and applying a more pragmatic tone when communicating 

its results, making the outputs of the studies of immediate and real practical value. By doing so, the 

proposed frameworks would be “intuitively meaningful to practitioners,” allowing them to plan, organize 

and justify their actions (Benbasat & Zmud, 1999). To achieve this goal, this researcher maintained a 

close interaction for several months with the THRIVE (Transforming Household Resilience in Vulnerable 

Environments) team and the Design, Monitoring and Evaluation (DME) team from World Vision, a 

global humanitarian organization partnering with children, families, and their communities to reach their 

full potential by tackling the causes of poverty and injustice1. Such a close interaction allowed the 

research including the THRIVE team and the Design, Monitoring and Evaluation (DME) Team, through 

several Zoom or Skype meetings. better understand the practitioners’ needs and processes on the 

vulnerability assessment based on the data collected. Their feedback was essential in the iterative 

development of the CCVAF, which will be discussed in Chapter 4. The framework will be evaluated 

using a case study in Western Honduras (see section 3.4).    

 

3.2 Artifact 2: Web-based App (Framework Instantiation)  

An instantiation is defined as an implemented or prototype system and can be the research 

outcome of a DSR. An instantiation can also be a test bed or serve to validate a concept through its 

implementation (Hevner & Chatterjee, 2010a; Nunamaker Jr. et al., 1990). For this dissertation, a web-

based application was developed for the THRIVE team in World Vision, focusing on Western Honduras 

data as an instantiation of the proposed CCVAF. Similarly, Information system (IS) literature and 

practitioners’ feedback were used to design the web-based applications following the DSR guidelines 

(Hevner et al., 2004). The Web-based application, named THRIVE, is a visualization and knowledge 
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platform to support decision makers in assessing climate change vulnerabilities among rural farming 

communities. Although the THRIVE app is built specifically for Western Honduras, its design is based on 

the CCVAF framework and can be easily extended to different areas around the world. The utilities of the 

THRIVE app will be qualitatively evaluated semi-structured interviews. 

3.3 Case Study in Western Honduras 

This section describes the case study background in Western Honduras. Honduras, a small low-

middle-income country with more than 60.9% of its population living in poverty and one out of five 

Hondurans from rural communities living in extreme poverty (i.e., less than US$2.00 per day) (Ben-

Davies, M.E, et al, 2013; World Bank, 2018). According to the United Nations Development Programme 

(UNDP), Honduras’ Human Development Index (HDI) has increased to 0.617, positioning the country in 

the medium human development category, but it is below average compared to other Central American 

countries and the wider Latin American and Caribbean region. Honduras has also the lowest GNI per 

capita of the region (UNDP, 2018), and experienced a major political crisis in 2009 and 2017 that 

deepened its poverty levels further. The country has been labeled as having the highest economic 

inequality in Latin America (World Bank, 2018; InSight Crime, 2018). 

According to (Kreft et al., 2016), the Global Climate Risk Index (CRI), developed by 

Germanwatch, quantifies the impacts of extreme weather events through data from the Munich RE 

NatCatSERVICE. This analysis uses both fatalities and economic losses due to climate change, 

examining absolute and relative impacts to generate an average index per country. The highest-ranked 

countries are the ones that are more impacted by climatic events. According to the 2017 report, Honduras, 

Myanmar, and Haiti are the countries with the highest CRI scores, making them the most vulnerable in 

the world (Kreft et al., 2016).  

In 2000, the IPCC published a series of scenarios, called the Special Report on Emissions 

Scenarios (SRES), to be used by climate researchers. It defined the term “scenario” to imply “projections 

of a potential future, based on a clear logic and quantified storyline”. The A2 scenario refers to a 
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“heterogenous world with continuously increasing global population and regionally oriented economic 

growth that is more fragmented and slower than other scenarios” (IPCC, 2007).  Recent studies indicate 

that Honduras has already experienced an increase in average annual temperature of about 0.75 °C. In the 

projected A2 scenario developed by IPCC, it is expected that, with emissions following the same 

increasing pattern, the average annual temperature will increase up to 1.2°C in 2030, 2.1°C in 2050 and 

4.5°C in 2100. Honduras has a rainy season from May to November, a dry period from December through 

April, and a hot period called Canicula during August. In that same A2 scenario, it is expected that 

average annual precipitation will decrease up to 0.3% by 2030, 13% by 2050, and 32% by 2100. 

Honduras’ average dryness index is 1.42, classified as a humid region, but according to the A2 scenario it 

is expected to decrease to 1.28 by 2030. With increasing demand, its water supply will suffer a decrease 

of 168% by 2030, 397% by 2050, and 2,275% by 2100. With the reduction of water availability, the main 

hydropower plant, “El Cajon”, is expected to decrease its electric generation in 22% by 2030, 39% by 

2050, and 72% by 2090. For all the above reasons, it is extremely important to strengthen Honduras’ 

climate change adaptation capacity and increase mitigation measures that may affect the agricultural 

sector, health of its population, and water sources (CEPAL y MiAmbiente, 2016).  

The case study partnered with the team for the Honduras THRIVE (Transforming Household 

Resilience in Vulnerable Environments) project by World Vision. The THRIVE project supports small 

farmers to build their resilience in climate change through three pillars: End-To-End Business Systems of 

Farming, Natural Resources Management, and Emergency and Situational Awareness. The area of 

influence of the THRIVE project includes the “Departments” (i.e., regional governments) of Intibucá, 

Lempira, La Paz, Ocotepeque, Copan, Santa Barbara and El Paraiso, and 31 municipalities (the second 

level of the national administrative division). All Departments are in Western Honduras with corn, 

sorghum, and beans as their population’s main agricultural products, with harvest times between May and 

October (Ben-Davies, M.E, et al, 2013). This study focuses on the Departments of Intibucá, Lempira, 

Ocotepeque, Copan, and Santa Barbara (Figure 6) with a total area of 17,303.13 km2 and 114 

municipalities (Table 7). 
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Table 7. Departments and Municipalities in the Study Area 

Department Municipality 

 

 

Copan 

Cabana, Concepcion, Copan Ruinas, Corquin, Cucuyagua, Dolores, Dulce Nombre, El Paraiso, 

Florida, La Jigua, La Union, Nueva Arcadia, Nueva Frontera, San Agustin, San Antonio, San 

Jeronimo, San Jose, San Juan de Opoa, San Nicolas, San Pedro, Santa Rita, Santa Rosa de Copan, 

Trinidad de Copan, Veracruz 

 

 

Intibucá 

Camasca, Colomoncagua, Concepcion, Dolores, Intibucá, Jesus de Otoro, La Esperanza, 

Magdalena, Masaguara, San Antonio, San Francisco de Opalaca, San Isidro, San Juan, San Marcos 

de Sierra, San Miguelito, Santa Lucia, Yamaranguila 

 

 

Lempira 

Belen, Candelaria, Cololaca, Erandique, Gracias, Gualcince, Guarita, La Campa, La Iguala, La 

Union, La Virtud, Las Flores, Lepaera, Mapulaca, Piraera, San Andres, San Francisco, San Juan 

Guarita, San Manuel Colohete, San Marcos de Caiquin, San Rafael, San Sebastian, Santa Cruz, 

Talgua, Tambla, Tomala, Valladolid, Virginia 

 

Ocotepeque 

Belen Gualcho, Concepcion, Dolores Merendon, Fraternidad, La Encarnacion, La Labor, Lucerna, 

Mercedes, Ocotepeque, San Fernando, San Francisco del Valle, San Jorge, San Marcos, Santa Fe, 

Sensenti, Sinuapa 

 

 

Santa Barbara 

Arada, Atima, Azacualpa, Ceguaca, Chinda, Concepcion del Norte, Concepcion del Sur, El Nispero, 

Florida, Gualala, Ilama, Las Vegas, Macuelizo, Naranjito, Nueva Frontera, Nuevo Celilac, Petoa, 

Proteccion, Quimistan, San Francisco de Ojuera, San Jose de Colinas, San Luis, San Marcos, San 

Nicolas, San Pedro Zacapa, San Vicente Centenario, Santa Barbara, Santa Rita, Trinidad 

 

 

 
Figure 5. Dissertation Study Area 
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CHAPTER 4: FRAMEWORK 

4.1 Framework Description 

This dissertation proposes a Climate Change Vulnerability Assessment Framework 

(CCVAF) (See Figure 6) to better evaluate the different indicators for vulnerability assessment. 

The framework is a Model and not only describes the general phenomena being studied but also 

allows the possibility to understand it by studying a) specific indicators and the variables needed 

to measure them, and b) how those variables can provide different results depending on specific 

circumstances.     

 

 

The framework includes four steps: 1) using a hierarchical approach to identify vulnerability 

indicators (Table 8), adapted from the research of (Banu et al., 2011; Below et al., 2012; Caceres, 2011; 

Gbetibouo et al., 2010; Hahn et al., 2009; Hirschi et al., 2011; Jaiswal et al., 2002a; Shah et al., 2013), 

including the methodology used by UNDP to measure Unsatisfied Basic Needs as developed in CEPAL 

& PNUD (1988b); 2) using GIS for data source identification and collection; 3) presenting a GIS-based 

Figure 6.  Steps for Measuring Vulnerability using the Proposed Framework 
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data analysis and modeling approach to measure the vulnerability indicators; and 4) creating an overall 

index for areas of interests, and visually displaying the indices on a web-based app. 

 

4.2 Step 1: Identifying Vulnerability Indicators 

Previous research identifies two commonly used approaches to measure vulnerability: Indicator 

Approach and the Vulnerability Variable Assessment Approach. The Indicator Approach uses a set of 

specific indicators and then calculates indices for those indicators. Meanwhile, the Vulnerability Variable 

Assessment Approach (VVAA) measures loss for specific variables related to stressors and is an 

econometric approach. But the VVAA does not fully capture vulnerability through the three determinants 

of vulnerability (Gbetibouo et al., 2010).    

In this dissertation, the framework is based on an Indicator approach. The first step is to identify 

the vulnerability indicators. The concept of climatic “vulnerability” is a multidimensional process using 

different variables and can be classified into three categories of determinants exposure, sensitivity, and 

adaptive capacity (Below et al., 2012; Gbetibouo et al., 2010; Hahn et al., 2009; Shah et al., 2013; Yohe 

& Tol, 2002). Exposure is defined as “the nature and degree to which a system is exposed to significant 

climatic variations.” It is a biophysical component, and it is inseparable from vulnerability. Sensitivity is 

defined as “the degree to which a system is affected, either adversely or beneficially, by climate-related 

stimuli.” Once sensitivities are identified, interventions can be planned as a response to specific stressors 

seeking the improvement of communities’ climate change adaptive capacity. It also allows the 

quantifiable reduction of vulnerability that enables the strengthening a community’s adaptive capacity 

(Kelly & Adger, 2000). Adaptive capacity is defined as “the ability of systems, institutions, humans, and 

other organisms to adjust to potential damage, to take advantage of opportunities, or to respond to 

consequences.” (IPCC & Edenhofer, 2014; McCarthy & IPCC, 2001). The Sensitivity of a system is the 

degree to respond to a variation to climatic changes. Through a framework, sensitivities are identified, 

and interventions can be planned as a response to specific stressors seeking the improvement of 
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communities’ adaptive capacity. A community is able to strengthen its adaptive capacity if vulnerability 

is quantifiably reduced (Kelly & Adger, 2000).    

To develop a comprehensive set of indicators, this dissertation uses a top-down hierarchical 

approach (see Table 8). The highest level is the three categories of determinants described above. We then 

identify different components for each determinant. For example, exposure includes five components 

based on the literature. They are extreme climate events; change in climate, forest fires, soil moisture and 

soil carbon. For each component, we further identify its sub-components. For example, the change in 

climate includes two sub-components as change in temperature and change in precipitation. Lastly, for 

each sub-component, we identify its indicators and related measurements and data sources. For example, 

for forest fire, the indicator is a forest fire risk that can be measured using a Fire Risk Index of an area 

using Landsat 8 imagery, elevation data, settlements in the area, and roads.   

Table 8 lists a comprehensive set of indicators for climate change vulnerability assessment. 

Depending on the area of the study, the practitioners and researchers may only select a subset of these 

indicators that are relevant to their study objectives. For example, in our case study, we did not include 

the economic capacity, financial and market access from the Adaptive Capacity determinant due to the 

COVID-19 travel restrictions. 

4.3 Step 2: GIS Data Sources and Processing 

The second step focuses on how to collect related data, and process data in a format for analysis 

modeling later. As shown in Table 8, many measurements for adaptive capacity are straightforward to 

process, while main indicators related to the exposure and sensitivity heavily rely on Geographic 

Information Systems (GIS) and remote sensing data.  
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Table 8. Vulnerability Assessment Indicators, and related measurements and data sources 

Vulnerability 

Determinant  
Component  Sub-

component  
Indicator  Unit of 

Measurement  
Data Source  Source  

Exposure  Extreme Climate 

Events  
Droughts (Water 

Scarcity)  
Frequency of Droughts  Number of Droughts  GIS/Remote Sensing Analysis  (Gbetibouo et al., 2010) 

Flood  Frequency of Flood  Number of Floods  GIS/Remote Sensing Analysis  (Gbetibouo et al., 2010) 

Change in 

Climate  
Change in 

Temperature  
Change in Temperature  Degrees Celsius 

Change  
GIS/Remote Sensing Analysis  (Gbetibouo et al., 2010) 

Change in 

Precipitation  
Change in Precipitation  mm Change  GIS/Remote Sensing Analysis  (Gbetibouo et al., 2010) 

Forest Fires  Forest Fires  Forest Fire Risk  Area in Kilometers  GIS/Remote Sensing Analysis  (Caceres, 2011; Jaiswal et al., 
2002a) 

Soil Moisture  Soil Moisture  Change in Soil Moisture  Area in Kilometers  GIS/Remote Sensing Analysis  (Hirschi et al., 2011; S. V. Kumar 
et al., 2018) 

Soil Carbon  Soil Organic 

Carbon  
Soil Organic Carbon  Area in Kilometers  GIS/Remote Sensing Analysis  (Angelopoulou et al., 2019; 

Bhunia et al., 2019; Wang et al., 
2013) 

Sensitivity  Deforestation  Change in Land 

Cover  
Change in Land Cover  Kilometers of Land 

Cover  
GIS/Remote Sensing Analysis  (Lawrence & Vandecar, 2015)  

Land 

Degradation 

Index  

Percentage of 

Land 

Degradation  

Percentage of Area with High 

Land Degradation Index  
No Units  GIS/Remote Sensing Analysis  (Gbetibouo et al., 2010) 

% Irrigated 

Land  
Percentage of 

Irrigated Land  
Number of Farms with 

Irrigation Systems  
Number of Farms  Does your farm have any type of irrigation 

system?  
(Gbetibouo et al., 2010) 

% Small-Scale 
Farming 

Operation  

   Percentage of Area with 
Higher Number of Small-

Scale Farming Operations 

Percentage  What is the area of your farm?  (Gbetibouo et al., 2010) 

Crop 

Diversification 

Index  

   Number of Crop Types Percentage  What are the crops on this farm?  

Do you rotate the crops?  

(Gbetibouo et al., 2010) 
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Adaptive 

Capacity  

Socioeconomic  Economic 
Capacity  

Number of Household 
Members  

Number of Members  How many members live in this 
household?  

(Below et al., 2012) 

Number of Households where 

the Primary Adult is Female  
Number of 

Households with 

Female Head  

Who is the head of the family? Male or 

female  
(Shah et al., 2013)  

Number of Years the Head of 

Household Attended less than 

3 Years of School  

Years  Did you go to school? If yes, what was the 

last grade you attended?  
(CEPAL & PNUD, 1988; Shah et 

al., 2013) 

Number of Heads of 

Household whose age is 

under 18 and over 45  

Years  What is the age of the head of household?  (CEPAL & PNUD, 1988) 

Number of Members in the 

Household who are 

Employed  

Number of Members  How many members of the household are 

currently employed? What is the type of 

occupation?  

(CEPAL & PNUD, 1988; Islam 

& Winkel, 2017) 

Number of Members 
Working outside the 

Community  

Number of Members  How many members worked outside the 
community?  

(Hahn et al., 2009)  

Number of Households 

Receiving Remittances on a 

Regular Basis  

Number of 

Households  
Do you regularly receive remittances?  (Mochizuki et al., 2014; Rajan & 

Bhagat, 2017)   

Dependency  Population under 14 and over 

60 Years of Age  

Ratio of Number of 

Members  
How many members are under 14 and 

over 60?  
(Below et al., 2012; Hahn et al., 

2009)  

Population with Physical or 

Mental Disability  
Ratio of Number of 

Members  
Is there a member of the household with 

physical or mental illness or disability? If 
yes, how many?  

(Shah et al., 2013)  

Number of Households with 

Orphans  
Number of Members  Are there any children over 18 from other 

families living in this house because on or 
both of their parents died or moved to 

another country?  

(Hahn et al., 2009)  

Access to Basic 

Sanitary Service  
Availability  Source of Water  Kilometers  What is the household's source of water? 

a) well b) river c) public service d) bottle 
water truck  

(Below et al., 2012; CEPAL & 

PNUD, 1988)  

Distance to the Source of 

Water  
Kilometers  How long do you walk to the source of 

water? A) 0 b) 0.5 km c) 1 km d) 1.5 km 
e) 2 km f) more than 2 km  

(Below et al., 2012; CEPAL & 

PNUD, 1988)  

Sewage 

Disposal 
System  

Type of Sewage Disposal 

system  
Type of Sewage  What is the type of sewage disposal 

system? A) toilet connected to sewer b) 
toilet drains in river c) latrine with septic 

tank d) common pit latrine e) no basic 

sanitary service or latrine  

(CEPAL & PNUD, 1988) 
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Financial 
Access  

Access to 
Credit  

Number of Households with 
Access to Credit  

Number of 
Households  

Do you have access to credit? When was 
the last time you received credit?  

(Gbetibouo et al., 2010) 

Market Access 

& Analysis  
 Distance to 

Markets  
 Distance to Nearest Market   Minutes  How far is the nearest market?   (Below et al., 2012) 

Quality of Road  Quality of Road  Paved or Unpaved  GIS Analysis  (Gbetibouo et al., 2010) 

Health  Chronic Illness  Number of Household 

Members with a Chronic 
Illness  

Number of Members  How many household members suffer 

from a chronic illness?  
(Hahn et al., 2009)  

Access to 

Health Service  
Number of Households with 

at least a Basic Health Center 
in a 5 km radius  

Number of 

Households  
GIS Analysis  (Hahn et al., 2009)  

Dengue, Zika, 

Chikungunya 
exposure  

Number of Household with 

Bed Nets  
Number of 

Households  
Do you have bed nets?  (Hahn et al., 2009)  

Areas with a High Number of 
Cases  

Area Km2  GIS Analysis  (Hahn et al., 2009)  

Number of Members who 
Experienced Dengue or 

Similar Episode in the Last 

Month  

Number of Members  How many of your household members 
suffered from Dengue, etc.?  

(Hahn et al., 2009)  

Knowledge and 
Information  

Access to 
Knowledge and 

Information  

Number of Households with 
Access to Information and 

Knowledge  

Number of 
Households  

Do you have access to a reliable system 
for climate, weather, land or market 

information?  

(L. Jones et al., 2019; Sorre et al., 
2017) 

Number of Local 

Organizations and 
Community Leaders with 

Access to Information and 

Knowledge  

Number of Local 

Organizations and 
Community Leaders  

Do you have access to a reliable system 

for climate, weather, land, or market 
information?  
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These data have been extensively used to perform complex spatial analysis to mitigate climate 

change impacts, such as identifying fire risk zones (Jaiswal et al., 2002a), measuring environmental 

degradation (Hassan et al., 2015), estimating crop productivity (Tan & Shibasaki, 2003), and developing 

climate adaptation model tools (Kunapo et al., 2016). 

Figure 7 depicts a generic data analysis process. In the next section, we elaborate how to process 

GIS and remote sensing data for spatial analysis and modeling.   

4.3.1 Data Search and Identification 

The first step of the data analysis process was to search and identify the data needed for the study. 

Based on the study area, our data search included the following data sources:   

• Sistema Nacional de Información Territorial (SINIT): this is the National System for Territorial 

Information of Honduras. Based on Table 8, the following layers were used: International Limit 

Boundary; Department Boundary Polygon (1st administrative division); Municipality Boundary 

Figure 7. Data Analysis Process 
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Polygon (2nd administrative division); Village Boundary Polygon (3rd administrative division); 

Small Villages (Point Layer); National Roads, Highways; Health centers; and Schools.   

• Forest fire hotspots data were obtained from NASA’s Fire Information for Resource Management 

System (FIRMS) which distributes near-real time active fire data within 3 hours of satellite 

observation. Two sensors were used to collect this data: NASA’s Moderate Resolution Imaging 

Spectroradiometer (MODIS), and NASA’s Visible Infrared Imaging Radiometer Suite (VIIRS) 

(NASA, 2019). Three Landsat 8 scenes from September 2019, March, and April 2020 were also 

acquired through USGS EarthExplorer.  The Census data were acquired through the National 

Statistics Institute (abbreviated as INE in Spanish).  

• USGS Landsat Level-2: This type of time-series product was developed to analyze the effects of 

climate change and will use the USGS EROS Science Processing Architecture on Demand to 

obtain the imagery as it provides bulk order options. Level-2 products include Surface 

reflectance-derived spectral indices. These indices are derived from Landsat 4-5 Thematic 

Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational 

Land Imager (OLI)/Thermal Infrared Sensors (TIRS). Some indices include the Normalized 

Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil Adjusted 

Vegetation Index (SAVI), Modified Soil Adjusted Vegetation Index (MSAVI), and Normalized 

Difference Moisture Index (NDMI) (USGS (1), 2019). 

4.3.2 Data Cleaning/Editing 

All the GIS data were processed using ESRI ArcGIS Pro, and, depending on the type of file, they 

followed a specific process using different geospatial tools. The pre-processing process may include 

enrichment, reprojection and cleaning. Several tools were used for data cleaning, including Microsoft 

Excel, Power BI, and ArcGIS Pro. 

https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms
https://www.ine.gob.hn/V3/
https://www.ine.gob.hn/V3/
https://espa.cr.usgs.gov/
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4.4 Step 3: Analysis/Modeling 

The first step in analyzing data was the creation of a database use to store geospatial data or 

geodatabase. The processing process may include data selection, filtering, data query, creation, and export 

to a different format. For raster data, it was necessary to create a mosaic to use in the data classification. 

Raster data were converted to vector and vector data were converted to raster for use in further analysis. 

Other processes used with raster data included the reclassification of data and raster algebra.  A main tool 

used for analyzing data is ESRI ModelBuilder which is a visual programming language inside ArcGIS 

Pro to build geoprocessing workflows. A model is represented as a diagram connecting processes and 

geoprocessing tools. The output of a tool becomes the input of the next process (ESRI, 2020).  Three 

main elements will be found in the models built in this dissertation and be summarized in Table 9: 

 

Table 9. ModelBuilder elements and descriptions. Adapted from (ESRI (2), 2020) 

Element Image Description 

Data Variable 

 

Data variables are model elements that store paths and other 

properties of data on disk. Common data variables include 

feature class, feature layer, raster dataset, and workspace. 

Derived or output 

data variable 

 

Derived or output data is new data created by a tool in the 

model. When a geoprocessing tool is added to a model, 

variables for the tool's output parameters are automatically 

created and connected to the tool. 

Tool 

 

Tools are geoprocessing tools added to the model. 

 

The following sections explain the data analysis and modeling followed in this dissertation.  
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4.4.1 Exposure 

The exposure determinant includes the calculation of Forest Fire Risk Zones, Soil Moisture, Soil 

Carbon, Extreme Climatic Events, and Changes in Climate. This dissertation will only focus on the 

identification of Forest Fire Risk Zones and Soil Moisture.  The following sections will expand the 

process to develop Forest Fire Risk Zones and a Soil Moisture layer. 

4.4.1.1 Forest Fire Risk Zones 

 One of the components defined in the exposure determinant is the identification of Forest Fire 

Risk Zones, which is essential for understanding the factors behind forest fires (Chuvieco & Congalton, 

1989b; Jaiswal et al., 2002a). Empirical studies provide different methodologies using remote sensing and 

GIS to identify fire hazard areas. The influence of environmental factors (e.g., landcover, land use), 

physiographic factors (e.g., elevation, slope, aspect), climatic factors (e.g., wind, rainfall, relative 

humidity, temperature), soils, water availability (Chuvieco, 1999), proximity to roads and proximity to 

settlements can determine where fires are more likely to start and propagate; they may also predict the 

intensity of forest fires (Caceres, 2011; Chuvieco, 1999, 2003; Chuvieco & Congalton, 1989a; Gai et al., 

2011; Mohammadi et al., 2014; Sağlam et al., 2008).   

A common methodology used to develop Forest Fire Risk Zones uses a model to calculate a fire 

hazard index by overlaying the spatial layers of the factors listed previously to quantify the level of risk. 

This approach uses a hierarchical scheme with some layers with higher influence weighted higher 

according to their impact on fire risk (Caceres, 2011; Chuvieco, 2003; Chuvieco & Congalton, 1989b; 

Erten & Kurgun, 2002a; Gai et al., 2011; Jaiswal et al., 2002a; Sağlam et al., 2008).   Figure 8 provides a 

flowchart of the process followed to create a Forest Fire Risk Index Layer; the next sections will provide 

an expanded description of the creation of each layer.  
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4.4.1.1.1 Fire Hotspots 

The Moderate-resolution Imaging Spectroradiometer (MODIS) is a sensor onboard orbiting 

satellites called Terra and Aqua. Both satellites are part of the National Aeronautics and Space 

Administration (NASA) Earth Observing System (EOS) mission. MODIS uses an algorithm capable of 

detecting “fire pixels,” or hotspots, containing active fire(s) when the satellite passes, and classifying 

them as missing data, cloud, non-fire, fire, or unknown. MODIS provides daily active fire data and 500m 

tile burned area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To make this data available, two systems were developed: the MODIS Rapid Response (MRR) 

system and the Fire Information for Resource Management System (FIRMS) (Davies et al., 2009; Giglio 

et al., 2016). Using the FIRMS data, an initial analysis was performed to identify the active hotspots in 

Figure 8.  Process Followed to Develop the Forest Fire Risk Index Layer 
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the area under study. A total of 33,128 hotspots for the THRIVE region were identified for the period 

between January 2012 and May 2020. During this timeframe, the months of March, April, and May have 

a higher presence of hotspots (Figure 9).   

 

 

 

 

 

 

 

 

 

 

 

The THRIVE region is composed of Copan, Intibucá, Lempira, Ocotepeque, and Santa Barbara, 

all regional Departments in western Honduras.  A dashboard was developed to help visualize the hotspot 

data (Figure 10), providing a deeper insight into the results.  Santa Barbara was the Department with the 

highest number of hotspots with 7,480, followed by Lempira with 3,315 and Copan with 2,481 during the 

same period.  Quimistan, San Luis and San Pedro Zacapa from Santa Barbara, followed by Guarita from 

Lempira, were the municipalities with a higher number of hotspots. A higher number of hotspots were 

recorded in 2013 and 2019—significantly higher than the same period in 2020, probably due to the 

country being closed because of COVID-19.   

 

 

 

Figure 9. Clock Chart Indicating that the Months with a Higher Number of Hotspots are March, April, 

and May 
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4.4.1.1.1.2 Density and Spatiotemporal Analysis 

Additional analysis was performed with the Fire Hotspots Layer. An initial density map was 

performed using a Kernel Density tool, showing the areas with higher concentration of hotspots (Figure 

11). Using the fire hotspot layer, a space time cube analysis was performed to understand if there are 

changes of the hotspots through time. The space time cube layer was created using an interval of 1 month 

and aggregated to a hexagon grid (Figure 13). 

 

  

Figure 10. Fire Hotspot Dashboard 
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Figure 11. Fire Hotspot Kernel Density Map 

Figure 13. Space Time Cube 2D Visualization in Hexagon 

Grid 

Figure 12. This Sample Shows the Results for the Up-

Trend Hexagon through Time  
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This tool allows an important visualization of the fire hotspots by identifying the up and down 

trends through time. Every hexagon provides a summary of the change through time (Figure 12).  

An emergent hotspot analysis (Figure 14) was also developed, showing several regions as 

sporadic hotspots.  Based on the statistical analysis performed by the tool, less than 90% of the areas 

surveyed have been identified as statistically significant hotspots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Emergent Hotspot Analysis within a Neighboring Distance of 1 Km  
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4.4.1.1.2 Topographic Data 

The use of topographic variables as part of a 

forest risk assessment have been widely documented 

(Caceres, 2011; Chuvieco, 1999; Chuvieco & Congalton, 

1989b; Erten & Kurgun, 2002a; Gai et al., 2011; Jaiswal 

et al., 2002a). Topography is a quantitative representation 

of an area and may include data on elevation, aspect, and 

slope (Estes et al., 2017). Understanding the elevation, 

slope and aspect may determine how a fire can behave 

(Chuvieco & Congalton, 1989b). 

Elevation can determine the type of vegetation, 

temperature, precipitation, and the wind behavior 

(Chuvieco & Congalton, 1989b; Estes et al., 2017; 

Jaiswal et al., 2002a). The elevation layer (Figure 15) 

was obtained by creating a Digital Elevation Model 

(DEM) from the 1:50,000 topographic layer obtained 

from the Honduran Geographic Institute. The highest 

elevation point was in Lempira at 2,219.6 meters above 

sea level, and the lowest was in Santa Barbara at 95.41 

meters above mean sea level. From the elevation layer it 

was possible to obtain the slope (Figure 16) and aspect 

(Figure 17) layers.  
Figure 16. Slope Map 

Figure 15. Elevation Map 
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The slope may determine the rate of fire spread 

so it is critical for this analysis. Steep slopes have higher 

preheating, an increased rate of spread (Chuvieco & 

Congalton, 1989b; Estes et al., 2017), and higher flame 

length (Estes et al., 2017). From the aspect layer, it is 

possible to determine the amount of sun exposure 

(Chuvieco, 2003). According to (Estes et al., 2017), the 

aspect of a terrain can determine not only the solar 

radiation but also the moisture availability, which has a 

direct influence on the type of vegetation. The aspect 

layer map can be seen in Figure 17, and the dashboard 

developed to help visualize the results can be seen in 

Figure 18.  Based on further analysis, the top aspects intersecting the fire hotspots were east, south, 

southeast, and northeast.   

 
Figure 18. Hotspots Aspect by Department and Year Dashboard 

Figure 17. Aspect Map 
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4.4.1.1.3 Landcover 

Generating a landcover layer may be one 

of the most challenging variables in the study 

(Chuvieco, 1999). For this study, Landsat-8 

scenes were downloaded from USGS 

EarthExplorer. Landsat-8 offers two sensors: the 

Operational Land Imager (OLI) and the Thermal 

Infrared Sensor (TIRS). Both are calibrated to 

offer a top of the atmosphere reflectance with 

better than 5% uncertainty, an absolute geodetic 

accuracy better than 65 meters, plus a 90% 

confidence and 11 bands (see Table 9) (Department of the Interior USGS, 2019; Roy et al., 2014). 

Compared to previous sensors, the OLI sensor has two additional reflective bands—the shorter wavelength 

blue band, which improves the sensitivity to chlorophyll and water, and a new shortwave infrared band 

which improves cloud detection (Roy et al., 2014). Given the study area is in a tropical region, cloud cover 

is a huge problem when searching for imagery. USGS EarthExplorer allows the possibility of searching for 

imagery with low cloud cover when a filter with less than 10% of cloud cover was selected. 

Even though this filter was selected, several scenes we reviewed contained areas with large portions 

of cloud cover. After reviewing approximately 30 scenes, three scenes were selected. All three had a 

processing correction level L1TP and are listed as follows: Scene 1 was acquired on April 09, 2020 (WRS 

Path 019, WRS Row 050); Scene 2 was acquired on March 28, 2020 (WRS Path 018, WRS Row 049); and 

Scene 3 was acquired on September 02, 2019 (WRS Path 018, WRS Row 50). 

A mosaic was created (Figure 19) using ArcGIS Prom covering an approximate area of 100,000 

KM2, with some overlap of neighboring countries Guatemala and El Salvador. 

Figure 19. Mosaic created from the 3 Landsat-8 scenes symbolized 

with Bands 5,4,3 
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A supervised classification with 1,149 

training samples was performed with an initial 

classification schema of eight classes: Water, Urban 

Area, Sand/Barren Land, Forest, Cloud Cover, Shrub, 

Burned Areas and Agriculture. After the initial 

classification result, an evaluation process was 

performed to determine if the classification was 

successful, allowing the reclassification of the areas 

identified as cloud cover and burned areas while 

correcting areas identified as an incorrect class. The 

layer was clipped using the Departments under study 

resulting in an area of 16,440.60 KM2. The final layer 

can be seen in Figure 20. The total Forest area in all 

five Departments was 10,453.05 KM2, followed by Shrub areas with 3,982. 73 KM2, Agriculture with 

1,858.18 KM2. Lempira has the largest area with Forest cover, followed by Santa Barbara. Copan has the 

largest area with Agriculture followed by Santa Barbara and Intibucá. A dashboard was developed to 

visualize the results (Figure 21).  

 
Table 10. Landsat-8 OLI and TIRS Bands (μm) (Department of the Interior USGS, 2019) 

Band Wavelength (μm) Resolution (m) 

Band 1: Coastal/Aerosol 0.435-0.451 30m 

Band 2: Blue 0.452-0.512 30m 

Band 3: Green 0.533-0.590 30m 

Band 4: Red 0.636-0.673 30m 

Band 5: NIR 0.851-0.879 30m 

Band 6: SWIR-1 1.566-1.651 30m 

Band 10: TIR-1  10.60-11.19 100m 

Band 11: TIR-2 11.50-12.51 100m 

Band 7: SWIR-2 2.107-2.294 30m 

Band 8: Pan 0.503-0.676 15m 

Band 9: Cirrus 1.363-1.384 30m 

 

Figure 20. The resulting Landcover layer obtained through 

a Supervised Classification 
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4.4.1.1.4 Settlements 

When the settlement layer obtained from the National Honduran Territorial System was clipped 

with the Departments under study, a total of 6,599 settlements were identified (Table 10).  The 

importance of identifying the settlements in the area has been previously noted (Caceres, 2011; Chuvieco, 

2003; Gai et al., 2011; Jaiswal et al., 2002a) in discussions about cultural practices as a possible risk 

factor for accidental fires.  

Table 11. Total Number of Settlements Located in the THRIVE Area 

Department 
Number of 

Settlements 
Population 2001 Population 2013 Population 2020 

Copan 1,115 267,632 371,057 412,927 

Intibucá 944 168,106 232,553 265,006 

Lempira 1,685 233,739 321,179 363,867 

Ocotepeque 585 98,330 146,430 165,482 

Santa Barbara 1,418 297,100 421,337 469,579 

Total 5747 1,064,907 1,492,556 1,676,861 

 

Figure 21. Land Cover Dashboard by Department 
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A buffer layer was created to identify the areas less than one thousand meters, between one 

thousand and two thousand meters, and areas greater than two thousand meters within settlements. This 

layer was later weighted to be used in the Risk Index calculation.  

 

4.4.1.1.5 Roads 

The identification of roads has been an essential variable in previous fire risk analysis, as roads 

can be a route for fire suppression efforts and possible fire breaks (Chuvieco & Congalton, 1989b), as 

well as identifying areas prone to accidental fires, as roads can provide access to campsites or hiking trails 

(Chuvieco & Congalton, 1989b; Jaiswal et al., 2002a). Roads also increase the risk of people improperly 

disposing of cigarette butts, which is the cause of a very high number of fires (Jaiswal et al., 2002a; 

Wohlwend, 2018). A buffer layer was created to identify the areas less than one hundred meters, between 

one hundred and two hundred meters, two hundred and three hundred meters, and areas greater than three 

hundred meters. This layer was later weighted to be used in the risk index calculation. 

 

4.4.1.2 Soil Moisture 

 Communities need to adapt and take proactive approaches on how changes in climate may affect 

their yields. The use of Remote Sensing (RS) for monitoring and assessing soil moisture using either 

naked-eye or microwave scans may provide a simple solution (Amani, 2016; Ngo Thi et al., 2019; Njoku 

& Entekhabi, 1996; Urban et al., 2018). Some studies focus on measuring specific indices, such as the 

Normalized Difference Vegetation Index (NDVI) (Amani, 2016; T. Chen et al., 2014; Singh et al., 2015b; 

Urban et al., 2018), which measures the photosynthetic value of plants; this helps identify vegetation 

stress, as there is a high correlation between droughts and NDVI (Amani, 2016; S. Chen et al., 2015; 

Rahman & Mesev, 2019).  NDVI can be calculated (USGS (2), 2019; Vermote et al., 2016) as follows:  

NDVI = (NIR – R) / (NIR + R) or 

NDVI = (Band 5 – Band 4) / (Band 5 + Band 4) 
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Other indices studied in relationship with soil moisture include the Temperature Vegetation 

Dryness Index (TVDI), which measures the correlation between forest canopy temperature and NDVI 

(Burapapol & Nagasawa, 2016), and the Land Surface Temperature (LST) index, which provides a 

relationship between the surface energy and water balance (Rozenstein et al., 2014).  The accuracy of 

these indices has increased in recent years. Landsat 8, launched in 2013, is the most recently launched 

satellite for Earth observation (Department of the Interior USGS, 2019). Before this date, the reliability of 

surface temperature data had to be verified through ancillary data, as prior missions only had a single 

thermal band (Roy et al., 2014). 

Another index for determining the vegetation water content is the Normalized Difference 

Moisture Index (NDMI), which provides a measurement of the vegetation’s water stress levels. NDMI 

can be calculated (USGS (6), 2019) as follows:  

NDMI = (NIR – SWIR) / (NIR + SWIR) or 

NDMI = (Band 5 – Band 6) / (Band 5 + Band 6) 

 To calculate NDMI, this research used the following three Landsat 8 scenes: Scene 1, acquired on 

April 09, 2020 (WRS Path 019, WRS Row 050); Scene 2, acquired on March 28, 2020 (WRS Path 018, 

WRS Row 049), and Scene 3, acquired on September 02, 2019 (WRS Path 018, WRS Row 50). 

ModelBuilder was used to create the process to calculate the NDMI layer (Figure 22) and its result can be 

seen in Figure 23. 

Figure 22. Model for Conversion of the NDMI and NDVI Models to Vector Layers 
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4.4.2 Sensitivity 

 The sensitivity of a system is referred to the degree climate may affect it either adversely or 

beneficially (IPCC & Edenhofer, 2014; McCarthy & IPCC, 2001).  The sensitivity of the THRIVE region 

was measured by identifying the areas that have suffered deforestation and identifying the areas with 

small-scale farming operation. A description of how each analysis was performed is in the following 

sections. 

Figure 23.NDMI Layer Showing Water Stress in the Region 
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4.4.2.1 Deforestation 

 The 2009 Land Cover layer was obtained from the National Territorial System (abbreviated as 

SINIT in Spanish). The 2018 Land Cover layer was obtained from the Honduran National Institute for 

Conservation and Forest Development’s (abbreviated as ICF in Spanish) Geoportal. A comparison 

between those two layers shows a decrease in forest cover in the period between 2009 and 2018. A 

dashboard was developed to show the changes in forest cover (Figure 24).  

 

The rate of deforestation was calculated by subtracting the 2009 and 2018 forest area raster 

layers.   ArcGIS ModelBuilder was used to reclassify the grid values and determine the areas that have 

seen deforestation or reforestation. The model can be seen in Figure 25, the resulting layer in Figure 26, 

and a dashboard in Figure 27. 

 

Figure 24. Forest Cover Comparison between 2009 and 2019 by Department and Municipality. 
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Figure 25. Deforestation Model to Calculate Deforestation or Reforestation 

Figure 26. Resulting Layer Showing Areas of Forest Loss or Gain. 
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When comparing the deforestation rates, all Departments experienced significant forest loss 

expect Lempira. Ocotepeque lost forest cover at a rate of 207%, Copan lost at a rate of 33%, Intibucá 

21%, and Santa Barbara 9.9% 

To weight this layer, it was necessary to identify the percentage of deforestation in comparison to 

the area of the village. Two fields were used, one which included the area of deforestation and another 

which included the village area. This process was performed using ModelBuilder and is summarized in 

Figure 28. 

 

 

 

 

The calculated field was performed through an Arcade script as follows: 

 

Figure 27. Dashboard Comparing Forest Loss and Forest Gain among Departments and Municipalities 

Figure 28. Deforestation weight model 
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if($feature.AreaKm2<=25) 

   {return 1} 

if($feature.AreaKm2>25 && $feature.AreaKm2<=50) 

   {return 2} 

if($feature.AreaKm2>50 && $feature.AreaKm2<=75) 

   {return 3} 

if($feature.AreaKm2<75) 

   {return 4} 

 

4.4.2.2 Percent Small-scale Farming Operation 

The changes in climatic patterns are having 

and will have a negative effect among subsistence 

farmers who might already be food insecure, by 

reducing their crop yields. These groups have low 

access to financial services with limited access to 

technology, making them more vulnerable to extreme 

changes (Altieri et al., 2015; Antle, 1995; FAO, 2017; 

IPCC, 2014; IPCC (4), 2007; P. Jones & Thornton, 

2003; Kang et al., 2009; Misra, 2014; Schmidhuber & 

Tubiello, 2007; UN, 2018; World Bank, 2013).  Using 

the Land Cover layer developed previously, the small-

scale farming operations were identified.  

The five Departments in the THRIVE region have approximately 1,858.20 km2, with most of the 

farmers considered small-scale farmers (Figure 29). Copan has the largest area, with the top five 

municipalities with agricultural land being Florida, Santa Rosa de Copan, San Antonio, El Paraiso, and 

Nueva Arcadia; they are followed by Santa Barbara, Quimistan, San Pedro Zacapa, Santa Barbara, San 

Marcos and Petoa. A dashboard was developed to visualize the results of this analysis (Figure 30). 

Figure 29. Agricultural land in the THRIVE region 
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To weight this layer, it was necessary to identify the percentage of the village area with agricultural land. 

To perform this calculation, the area of the village and the area of agricultural land was used. 

ModelBuilder was again used and is shown in Figure 31. 

 

 

  

 

 

 

 

 

The Arcade script used to calculate the Agricultural area is as follows: 

if($feature.PercentAgric<=25) 

  {return 1} 

if($feature.PercentAgric>25 && $feature.PercentAgric<=50) 

  {return 2} 

if($feature.PercentAgric>50 && $feature.PercentAgric<=75) 

  {return 3} 

if($feature.PercentAgric>75) 

Figure 30. Small-scale Farming Operations Dashboard 

Figure 31. Agriculture Area Weight Model 
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  {return 4} 

 

This resulted in the following layer in Figure 32: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Weighted Small-scale Farming Operations 
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4.4.3 Adaptive Capacity 

4.4.3.1 Health Access 

To visualize and analyze the access to health care, the health centers were weighted based on the 

services they offered. CESAR was weighted highest as it offers only the most basic service, and the 

regional hospital weighted lowest as it offers better and more health services (Table 11). A model was 

built in ModelBuilder and can be seen in Figure 33. 

 

Table 12. Health Services Access Weights 

Health Center Weight 

CESAR 4 

CESAMO 3 

CMI 3 

Area Hospital 2 

Regional Hospital 1 

 

  

 

 

 

 

 

 

 

 

 

 

 

Using the weight field, a Kernel Density Map (Figure 34) was created identifying the areas with 

higher health access and lower health access. Santa Barbara has the highest area with low access, 

followed by Intibucá and Lempira.  In terms of middle access, Lempira has the highest level followed by 

Figure 33. Health Centers Weight Model 
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Copan. The Department of Copan has the highest level of health care in the region given the regional 

hospital is located there. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The top municipalities with lowest health care access are Quimistan, Santa Barbara Department; 

Intibucá, Intibucá Department; and Jesus de Otoro, Intibucá Department.  The villages with higher area of 

poor health care access are San Isidro, Santa Barbara Department; Jesus de Otoro, Intibucá Department; 

San Antonio, San Juan Department. 

Figure 34. Health Service Access Kernel Density Map 
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4.4.3.2 Socioeconomic Indicators 

4.4.3.2.1 Dependency 

To calculate the Dependency Ratio, a Model was developed using ModelBuilder and can be seen 

in Figure 35.  

 

 

 

The results of this analysis can be seen in Figure 36 (below left). A hotspot analysis was 

performed to identify the most dependent and vulnerable population (Figure 36 below right).  The 

Department of Lempira was the region with highest ratio of dependency among its population, as was the 

case with some municipalities in the Department of Intibuca. The formula used to calculate the 

Dependency Ratio is as follows: 

Dependency Ratio = 100 * ((Population 0-14) + (Population 65+) + (Population with Disability)) 

(Population 15-64) 

 
Table 13.  Variables Used to Calculate the Dependency Ratio Layer 

Where:      

Variable Definition Variable Definition Variable Definition 

A0_4 Age 0 – 4   A5_9 Age 5 – 9 A10_14 Age 10 – 14 

A65_69  Age 65 – 69 A70_74 Age 70 – 74 A75_79 Age 75 – 79 

A80_84  Age 80 – 84  A85_89  Age 85 – 89 A90_94 Age 90 – 94 

A95 Age 95 + LimMovSi  Limited mobility LimBraManSi  Disability Arms and Hands 

LimVerSi  Blind LimOirSi Deaf LimHablarSi  Mute 

LimCuidSi Cannot take 

care of self 

RetMenSi Mental 

Disability 

  

 

Figure 35. Dependency Ratio Model 
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4.4.3.2.2 Access to Basic Sanitary Service 

Using the methodology in Table 3, the Access to Basic Sanitary Service was calculated through a 

model as seen in Figure 37. The total population by municipality was used to determine the percentage of 

the population with low, medium, or high access to basic sanitary services.  The results can be seen in 

Figure 38 (left).   

 

 

Figure 36. The Dependency Ratio Map (left) by Municipality. The Dependency Ratio Hot Spot Analysis Getis-Ord Gi* Map 

(right) 
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The municipalities with better access are generally larger urban areas, and the areas with lower 

access are municipalities with lower development rates and higher poverty levels. The municipalities with 

the lowest access to basic sanitary services are San Francisco Opalaca, Dolores, and San Marcos de la 

Sierra—all of them in the Department of Intibucá and San Francisco in the Department of Lempira. There 

are sixteen other municipalities in the Medium-Low Access classification. This includes Intibucá and 

Lempira, the Departments with the highest number of municipalities with low access to basic sanitary 

services. The areas with lower access can also be seen through a hotspot analysis in Figure 49 (right). The 

formula to calculate the Access to Basic Sanitary Service map is as follows: 

Figure 37. Access to Basic Sanitary Services 

Figure 38. Access to Basic Sanitary Services Map (left) by Municipality and Hot Spot Analysis Getis-Ord Gi* 

Map (right) 
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(((InsidePipes* 1) + (OutsidePipes * 1) + (PipesOutsideBuilding * 1) + (NoWater! * 5) + (Well * 4) + 

(WellPump* 2) + (River * 5) + (Lake * 5) + (WaterSalesperson * 1) + (ToiletConnSewer * 1) + (ToiletSeptic * 1) 

+ (ToiletDisRiver * 2) + (LatrineSimWell * 4) + (HydLatrine * 3) + (NoToilet * 5)) * 0.25)/Population) 

Table 14. Variables Used to Calculate the Access to Basic Sanitary Services Layer 

Where:      

Variable Definition Variable Definition Variable Definition 

TubDentro Inside pipes   TubFuera Outside pipes  TubFueraEd Pipes outside building 

NoRecAgua Does not 

receive piped-

in water 

PozoMalacate Well PozoBomba Well with pump 

Rio River Lago Lake Vendedor Salesperson 

InodAlcant Toilet 

connected to 

sewer system 

InodPzSep Toilet with 

septic tank 

InodDesRio Toilet discharges directly 

into river 

LetrPzSimp Latrine with 

simple well 

LetrCierreHid Hydraulic 

latrine  

NoTiene Doesn’t have toilet 

Poblacion Population     

 

4.4.3.2.3 Access to a House with Basic Requirements 

Using the methodology in Table 4, the Access to Basic Sanitary Service was calculated through a 

model seen in Figure 39. The total population by municipality was used to determine the percentage of 

the population with low-, medium-, or high access to a house with basic needs.  The results can be seen in 

Figure 40. The formula used to calculate the Access to a House with Basic Needs is as follows: 

(((BrickWall * 3) + (StoneWall * 3) + (CementWall * 3) + (AdobeWall * 4) + (WoodWall * 4) + (MudWall 

* 5) + (StickWall * 5) + (WasteWall * 5) + (ClayTileRoof * 4) + (AsbestosRoof * 3) + (ZincFoilRoof * 3) + 

(ConcreteRoof * 3) + (StrawRoof * 5) + (WasteWall * 5) + (AluzincRoof * 3) + (DirtFloor * 5) + (CementFloor * 

2) + (WoodFloor * 4) + (CementBrickFloor * 1) + (TerrazoFloor * 1) + (ClayFloor * 3) + (CeramicFloor * 1) + 

(WoodFloor * 4) + (Kerosene * 1) + (GasCylinder * 1) + (!Electricity * 1) + (DoesNotCook * 5)) * 0.25) / 

Population 

Table 15. Variables used to calculate the Housing with Basic Needs layer 

Where:      

Variable Definition Variable Definition Variable Definition 

LadRafon Brick wall PiedraRaj Stone wall BloqCem Cement wall 

Adobe Adobe wall Madera Wood wall Bahareque Mud wall 

Palo Stick wall MatDes Waste wall TejBarro Clay tile roof 

LamAsbesto Asbestos roof Lamzinc Zinc foil roof Concreto Concrete roof 

Paja Straw roof MatDes Waste roof LamAluzinc Aluzinc roof 

PisoTierra Dirt floor PisoCem Cement floor PisoMad Wood floor 
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PisoLadCem Cement brick 

floor 

PisoLadTerr Terrazzo floor PisoLadBarro Clay floor 

PisoCeramica Ceramic floor Lena Firewood  GasKeros Kerosene 

GasChimbo Gas cylinder Electricidad Electricity  Nococina Does not cook 

Poblacion Population      

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Access to a House with Basic Needs 

Figure 40. Access to House Results (left) and Hotspots Analysis Maps (right) 
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4.4.3.3 Economic Analysis 

  Previously, data collection in research was conducted through paper surveys collected in the field 

following its digitization into a database for further analysis. This process was error-prone and required 

several months of work from the development of the survey to the actual analysis and results. But 

technological advances provided a different and innovative way to perform data collection. Data 

collection in the field is extremely important for the success of this research, but one of the main 

constraints is the lack of connectivity in Honduran rural areas.  A socioeconomic analysis was planned to 

be conducted as part of the Vulnerability Framework, but the travel restrictions imposed due to COVID-

19 limited this component of the analysis.  

4.5 Step 4: Index Creation and Visualization 

An indicator is a widely used term and is “a function from observable variables called indicating 

variables to theoretical variables”. The use of indicators is a way to “bridge academic work and political 

needs” (Hinkel, 2011), by synthesizing, quantifying and standardizing a complex data phenomenon into a 

number with the possibility of communicating in stakeholders, decision makers or policy makers (FAO, 

2018; GIZ, 2014; Hinkel, 2011). Indicators are useful both measuring progress, monitoring trends, 

justifying funds, and communicating priorities (FAO, 2018). One example of the use of the indicator 

approach is the Sustainable Development Goals (SDGs) used to monitor progress at local, national, 

regional, and global level. The use of an indicator framework converts the SDGs into a management tool 

for countries to follow and a report card to measure progress (Sustainable Development Solutions 

Network, 2015). But the use of a Composite Index Approach allows the potential of showing a bigger 

picture when analyzing multidimensional phenomena and allows the visualization of results when 

presented as scores or rankings.  

Empirical studies argue that the use of a Composite Index Approach may not show how 

indicators are interconnected, while other studies weigh the advantage of using this approach as a way to 

avoid precision, reliability, accuracy and validity issues (USAID (2), 2014). An example of a Composite 
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Index Approach is the Multidimensional Poverty Index, which groups the Millennium Development 

Goals indicators into dimensions, and presents a deprivation criterion to measure them. The 

interconnectedness of the indicators provides a better picture of the clusters of deprivation that are present 

in communities under study (Alkire & Santos, 2010).  

This research proposes the use of the guidelines presented by ((USAID (2), 2014), which draws 

its guidelines from best practices in the composite indices literature and compares six assessments of 

Climate Change Vulnerability and Resilience Index Design: Climate Vulnerability Index (CVI), Flood 

Vulnerability Index (FVI), Livelihood Vulnerability Index (LVI), LVI-IPCC, Socio-Climatic 

Vulnerability Index (SCVI), Water Poverty Index (WPI), and Water Vulnerability Index (WVI).  The 

steps recommended provide a benchmark, and are key steps that can be easily followed when developing 

indices (USAID (2), 2014): 

1) Define the purpose and theoretical/conceptual framework: During the framing process it is essential 

to understand what the main motivation is to develop the index, who will use it, for what purposes 

will they use it, and what possible insights will occur from its use.  

2) Scope and spatial scale of analysis: Selecting the spatial extent and comparative units at the 

beginning of the study is essential. The extent can be an administrative unit, a watershed, or a city.  

3) Structural design/major components: Commonly used structured designs include a) deductive, b) 

hierarchical, or c) inductive. 

4) Indicator selection/criteria approach: This decision may depend on data availability, data quality, 

degree of salience, and degree of audience resonance. 

5) Evaluation of data quality and potential sources of error: Margins of error in data should be 

understood. Other sources of error may include measurement, coverage, and sampling errors.  

6) Data transformation: This might include data normalization or data standardization. 
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7) Data reduction and factor retention: It might be recommended to reduce the number of indicators to 

the most significant ones. Some statistical techniques might include principal component analysis 

(PCA), exploratory factor analysis, or correlation methods, among others. 

8) Weighting and aggregating methods: This process should be transparent and include clear 

documentation. 

9) Uncertainty and sensitivity analysis: This type of analysis helps with indicator selection, adding 

transparency to the process. 

10) Visualization of results: To visualize results, there can be a variety of options, including tabular 

form, spider or triangle diagrams, maps, or graphs. 

11) Validation and verification: This process requires the engagement of stakeholders and experts. In 

some cases, it requires a statistical validation. 

The creation of the index includes three steps. First, based on the indicators for each subcomponent, 

an overall index for each subcomponent is calculated.  The overall index uses 

Index = W1X1 +  + WnXn 

where: 

W1= weight factor  

X1= indicator 

The second step will determine the weight for each component, and then calculate the overall index 

for each component using normalized subcomponent values.  

Finally, an overall index to calculate vulnerability using 

VI = Wx1Is1 +  + WxnIsn 

where W can be defined by the business users based on their specific decision context. 
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The following sections illustrate the development of the Fire Risk Index and the Vulnerability Index 

using the case study data. The classes used, indicators selected, and analysis performed can be visualized 

through tabular form models, graphs, and maps.  

 

4.5.1 Fire Risk Index 

A Fire Risk Index integrates several variables: 1) topographic variables (slope, elevation, and 

aspect) 2) socioeconomic variables (settlements and roads), and 3) land cover. But through literature 

review and expert advise it was determined some variables have higher influence regarding fire risk. A 

schematic model was developed using the variables listed below (Table 15). The Fire Risk Index formula 

can be summarized as follows:  

Fire Risk Index = 1 + 75lc + 30sl + 10a + 5r + 5se + 2e  

To conduct this modeling, ArcGIS Pro ModelBuilder was used. The following sections present 

the description of the models built: 

Table 16. Fire Risk Index Model 

Classes Risk Weight References   

Land Cover Layer 75 (Chuvieco, 2003; Chuvieco & Congalton, 

1989; Erten & Kurgun, 2002; Estes et al., 

2017; Gai et al., 2011; Jaiswal et al., 2002) 

Agriculture High 2 

Shrub High 2 

Forest High 2 

Urban Area Medium 1 

Water Low 0 

Sand Low 0 

Slope Layer 30 (Chuvieco, 2003; Chuvieco & Congalton, 

1989b; Erten & Kurgun, 2002b; Estes et al., 

2017; Jaiswal et al., 2002b; Sağlam et al., 

2008) 

>39% High 20 

30-39% Medium 15 

20-29% Medium 10 

10-19% Low 5 

0-10% Low 0 

Aspect Layer 10 (Chuvieco, 2003; Chuvieco & Congalton, 

1989b; Erten & Kurgun, 2002b; Estes et al., 

2017; Jaiswal et al., 2002b; Sağlam et al., 

2008) 

East High 2 

South High 2 

Southeast High 2 

Northeast Medium 1 
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Southwest Medium 1 

West Medium 1 

North Low 0 

Northwest Low 0 

Proximity to Roads Layer 5 (Chuvieco, 2003; Chuvieco & Congalton, 

1989b; Erten & Kurgun, 2002b; Estes et al., 

2017; Jaiswal et al., 2002b; Sağlam et al., 

2008) 

< 100 m Very High 3 

100 – 200 m High 2 

200 – 300 m Medium 1 

>300 m Low 0 

Proximity to Settlements Layer 5 (Erten & Kurgun, 2002b) 

< 1000 m High 2 

1000 – 2000 m Medium 1 

>2000m Low 0 

Elevation Layer 2 (Chuvieco, 2003; Chuvieco & Congalton, 

1989b; Erten & Kurgun, 2002b; Estes et al., 

2017; Jaiswal et al., 2002b; Sağlam et al., 

2008) 

>=398 High 2 

6m – 398m Medium 1 

<=6 m Low 0 

 

4.5.1.1 Land Cover 

 A large portion of Honduran territory, including the area under study, is considered to be forest 

(Flores Rodas & Mairena, 2006). Six classes were identified, and according their fire risk they were 

weighted based on the model (Table 11) run through ModelBuilder (Figure 41).  Using the historical fire 

hotspots layer, it was possible to determine that 59% of the hotspots occurred in Forest areas, followed by 

Shrubs with 26%, and Agriculture areas with 15%. These three classes were weighted higher than the 

other classes. 

4.5.1.2 Settlements 

A multiple buffer layer was created using 1000 m, 2000 m, and 3000 m as distance parameters. 

Using the hotspots layer, it was possible to determine that 60% of hotspots occurred within 1000 m of a 

settlement, 34% occurred within 2000 m, and 6% occurred within 3000 m.  The weighting process was 

done through ModelBuilder and can be seen in Figure 42. 
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Figure 41. Land Cover Model 

Figure 42. Settlements Model 
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4.5.1.3 Elevation 

The elevation layer was developed through a Topo-to-Raster conversion process which generates 

a DEM. To perform the weighting process, it was necessary to transform the raster into a vector layer. 

This process was done through ModelBuilder and can be seen in Figure 43. The model includes adding 

the field to store the weights depending on the elevation. Based on the model on Table 15, three weights 

were assigned: 0, 1, and 2; 2 being the weight assigned to all the areas with an elevation greater than 

2,000 meters above sea level.  

4.5.1.4 Slope 

 The slope layer was generated from the DEM resulting in a raster. To weight this layer, 

conversion to a vector layer was necessary. As a polygon layer, it was now possible to select the slope 

rises and weight them accordingly, as steep slopes present a higher risk to fires. This process was 

performed using ModelBuilder and can be seen in Figure 44. 

Figure 43. Elevation Model 
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4.5.1.5 Roads 

The fire risk from the roads layer was identified by creating a multiple ring buffer 100 m, 200 m, 300 m, 

and 400 m. It was weighted using the model described previously. The process was performed using 

ModelBuilder and can be seen in Figure 45. 

 

Figure 44. Slope Model 
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Using the weights according to their class and variable, the layers were converted to rasters and 

the results can be seen below. Figure 46 illustrates the slope, elevation and aspect layers maps, and Figure 

47 shows the settlement, road, and landcover layer maps.

 

 

Figure 45. Roads Model 

Figure 46. Raster Maps for the Slope, Elevation and Aspect Layers  
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  With the new raster layer, it was possible to calculate the Fire Risk Index using the formula 

above. To perform the raster conversion, reclassification, and the raster calculation, a model was created 

in ModelBuilder as seen below in Figure 48. The reclassification processes included adding a 0 value to 

the No Data and adding the THRIVE Department layer in the extent. 

The formula used to calculate the Fire Risk is as follows: 

1 + 75 * ReclassificationLandCover + 30 * ReclassificationSlope%" + 10 * ReclassificationAspect%" + 

5 * ReclassificationRoad%" + 5 * ReclassificationSettlements%" + 2 * ReclassificationElevation" 

Figure 47. Raster Maps for Settlements, Roads and Landcover Layers 
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Table 17. Fire Risk Index Model Variable Definition 

Where:      

Variable Definition Variable Definition Variable Definition 

Reclass_Land Land Cover Reclass_Slope Slope Reclass_Aspe Aspect 

Reclass_Road Road Reclass_Sett Settlement Reclass_Elev Elevation 

 

After running the model seen in Figure 49, the resulting layer was symbolized and can be seen in 

the following map: 

Figure 48. Fire Risk Index Model 
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Figure 49. Fire Risk Map 
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The following two dashboards (Figures 50 and 51) provide some insight in the analysis results: 

 

Figure 50. Fire Risk Dashboard by Department and Municipality 

Figure 51. Fire Risk Dashboard by Municipality and Top 10 Villages 
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The largest area found to be a Medium High risk comprised 4,395.82 km2, and Medium risk 

3,273.83 km2. The Department with largest risk area was Santa Barbara with 437.60 km2. Quimistan, 

Santa Barbara was the municipality with the highest risk area followed by Intibucá, Intibucá and 

Erandique, Lempira.  

4.5.2 Vulnerability Index 

A Vulnerability Assessment Framework was proposed (Figure 6) measuring three dimensions to 

determine the Vulnerability Index (VI): Exposure, Sensitivity and Adaptive Capacity. The VI is a 

composite index allowing the determination of minimum and maximum values for each of the dimensions 

listed above, allowing the identification of areas with higher vulnerability levels. All the determinants 

have an equal weight. (Gbetibouo et al., 2010) discuss how the weights given to indicators may follow 

three methods: a) expert opinion, b) arbitrary choice, or c) statistics. In this case, expert opinion and 

judgement were used to determine the weights to be used per indicator. 

The measurements calculated previously resulted in different scales. To make a correct 

comparison between the layers, it is necessary to normalize the indices calculated previously. The Min-

Max Normalization approach was used to normalize data as per the following formula: 

 

Vulnerability Index = (Actual Value – Minimum Value) * 100 

        (Maximum value – Minimum Value) 

 

 Table 18 summarizes the formulas used to perform the normalization: 

 
Table 18. Normalization  

 Component Formula 

Exposure 

33% 

Forest Risk ((ForestRisk- 1) * 100) / (790 - 1) 

Soil Moisture ((SoilMoisture - (-0.673)) * 100) / (0.512 - (-0.673)) 

Sensitivity 

33% 

Deforestation ((Deforestation - 1) * 100) / (4 - 1) 

Small-Scale Farming ((SmallScaleFarming - 1) * 100) / (4 - 1) 

Adaptive 

Capacity 

33% 

Access to Health ((AccessHealth - 0) * 100) / (18 - 0) 

Access to House with Satisfied Basic 

Needs 

(((HouseAccess * 1000) - 697) * 100) / (975 - 697) 
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Access to Sanitary Service with 

Satisfied Basic Needs 

((SanitaryService - 0.16) * 100) / (0.57 - 0.16) 

Dependability ((Dependability-65) * 100) / (114 - 65) 

 

Using the recently calculated index, the layers were converted to raster and then reclassified to 

assign areas with no data with a value of 0. The Departments in the THRIVE region were used to an 

extent to make sure all the THRIVE region was included. The resulting layers were then used to calculate 

the vulnerability layer. This process can be seen in the model in Figure 52. The formula used to calculate 

the Vulnerability Index is as follows:  

(((FireReclassification + SoilMoistureReclassification*0.33) +((AgricultureReclassification + 

DeforestationReclassification) *0.33) + ((DependcyReclassification + SanitaryServiceReclassification + 

HouseAccessReclassification + HealthReclassification) *0.33) +0.01) *100 

 
Table 19. Vulnerability Index formula variables and definitions 

Where:      

Variable Definition Variable Definition Variable Definition 

FireReclass3 Fire Risk 

Index 

SoilMReclass3 Soil Moisture 

Index 

AgriReclass3 Agriculture Index 

DeforReclass3 Deforestation 

Index 

DependReclass3 Dependency 

Index 

HealthReclass3 Health Access 

AccessReclass3 House Access 

Index 

SaniServReclass3 Sanitary Serv 

Index 

  

 

The Department of Lempira was shown to have the highest vulnerability to climate change, 

followed closely by Copan and Santa Barbara. A dashboard was developed to summarize the findings 

from the vulnerability layer (Figure 53).  The Vulnerability Index layer can be seen in Figure 54 along 

with the Optimized HotSpot Map. 

For decision making and planning, identifying vulnerable areas is a first step. Then it becomes 

necessary to know what variables are influencing the high vulnerability of an area to target the best 

interventions.  An additional analysis was performed to include all the values from the variables used to 

create the vulnerability assessment layer. To create this new layer, ModelBuilder was used and the model 

can be seen in Figure 52. First, the layers were converted into points; the points were then intersected 



85 

 

except for the soil moisture layer. To join the soil moisture values, a spatial join was performed using a 

match option within 400 meters from the points. Once a complete set of points was performed, a new 

intersection with the Vulnerability Index layer by Village was developed.  

 

 

 

 

 

 

 

Figure 52. Vulnerability Model 
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Figure 53. Vulnerability Dashboard 

Figure 54. Vulnerability Layer Map and Optimized HotSpot Analysis 
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To visualize the interaction of the resulting variables with the Vulnerability Index, a new 

visualization was developed, and can be seen in Figure 56.

Figure 56. Vulnerability Index by Department 

Figure 55. Model to Develop the Vulnerability Index Layer with Variables in Table 
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CHAPTER 5: WEB-BASED APP 

 

5.1 Introduction 

The THRIVE Web-Based App is a GIS-based application that aims to improve the planning, 

monitoring and decision making of the THRIVE team. Additionally, the THRIVE App seeks to become a 

platform for any user who is interested in obtaining information on how Climate Change is affecting the 

region identifying forest fire risk zones, deforestation, access to health, and vulnerable areas. The App has 

additional information that were used to develop the Vulnerability Index Layer as for example the Census 

data by Department, Municipality, and the land cover. The Web App allows users to explore, visualize 

and export information using the different tools provided. 

The App was design to follow the three determinants used to calculate the Vulnerability Index: 

Exposure, Sensitivity, and Adaptive Capacity. The Exposure tab includes an Introduction Story Map, 

Hotspot Dashboard, Fire Risk Zones Dashboard, and the Soil Moisture Dashboard. The Sensitivity tab 

includes an Introduction Story Map, the forest loss and gain dashboard, the forest cover change app and 

the agriculture dashboard. The Adaptive Capacity tab includes the Introduction Story Map, the Access to 

Health dashboard, Access to Basic Housing, Access to Basic Sanitary Services dashboard and the 

Dependency Dashboard.  

The App also includes a tab to visualize the Vulnerability of the area allowing the summarization by 

Department, Municipality and Village. When the user clicks on the Web Map includes a popup appears 

identifying the level of risk for each of the variables used in the analysis. Every value is color dependent 

on the variable value following the same color schema used in the map. Every section includes dashboard 

to allow users to filter by Department, Municipality or Village depending on the availability in the layer. 

Web Apps were also developed to allow users to print, measure, draw and export the layer table. Every 

section includes an Introduction to help the user understand the methodology used in the analysis and 

every dashboard includes a How-To section to help the user navigate throughout the App.  
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The Web App was developed using ESRI ArcGIS Online especially Web App builder and Operation 

Dashboard. The tools allow the customization of the Pop Ups using Arcade and HTML. All the Web 

Maps have a customized Pop Up allowing a better understanding of the layers. 

 

5.2 Sources of Data 

The GIS data used for this analysis has different sources including the following: 

• Sistema Nacional de Información Territorial (SINIT): this is the National System for Territorial 

Information of Honduras. The layers used are as follows: 

o International Limit Boundary 

o Department Boundary Polygon (1st territorial division) 

o Municipality Boundary Polygon (2nd territorial division) 

o Village Boundary Polygon (3rd territorial division)  

o Small Villages (Point Layer) 

o National Roads, Highways 

o Health centers 

o Schools 

 

For the forest fires hotspot data, it was obtained from NASA’s Fire Information for Resource 

Management System (FIRMS) which distributes Near-Real Time active fire data within 3 hours of the 

satellite observation. Two sensors are used to collect this data NASA’s Moderate Resolution Imaging 

Spectroradiometer (MODIS) and NASA’s Visible Infrared Imaging Radiometer Suite (VIIRS) (NASA, 

2019). Three Landsat 8 scenes from September 2019, March, and April 2020 were also acquired through 

USGS EarthExplorer.  The Census data was acquired through the National Statistics Institute (INE 

Spanish abbreviation).  
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5.3 Web-Based App Introduction 

This section provides the user an Introduction to the research topic, area of influence and the 

methodology followed for each analysis performed.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4 Exposure 

This section allows the user to visualize the variables used to measure Exposure.  The 

introduction provides the user a brief explanation of what exposure is, the different analysis that were 

developed to measure exposure. The Exposure section starts by showing the Fire Hotspots data allowing 

Figure 57. Initial Screen Introduction Story Map 

Figure 58. Area of Influence Map part of the Introduction Story Map 
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the visualization through a dashboard (figure 58) with tools to filter the information by Year, Department 

and Municipality. It also includes a Web App (figure 59) with tools to print the map, export the table, 

measure, and draw. 

 

 

 

 

 

 

 

 

 

The next option allows the visualization of the Fire Risk Layer (figure 60) which identifies the 

areas with high, medium-high, medium, medium-low and low fire risk.  It also includes a Web App 

(figure 61) with tools to print the map, export the table, measure, and draw. The third option provides a 

visualization of the soil moisture (figure 62) analysis for the area.  

Figure 59. Exposure Introduction screen 
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Figure 60. Hotspot Dashboard 

Figure 61. Hotspot Web App 
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Figure 62. The Fire Risk Layer Dashboard 

 

Figure 64. Soil Moisture Dashboard 

Figure 63. Fire Risk Layer Web App 
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The dashboards also provide the users a how-to guide. This section is present in the dashboard 

which include Web Apps. It can be accessed by clicking the blue arrow in the left section as seen in figure 

63.  

  

 

 

 

Figure 65.  Side panel providing the user a how-to guide on using the dashboard. This section can 

be accessed by clicking on the blue arrow on the left 
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5.5 Sensitivity 

The sensitivity section starts with an introduction Story Map. Provides a brief definition of sensitivity and 

lists the analysis performed to measure sensitivity. An initial deforestation dashboard shows the area that 

has lost forest and the areas that has gain forest and able to filter by departments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 66. Sensitivity introduction story map 

Figure 67. Deforestation dashboard 
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5.6 Adaptive Capacity 

 As previous sections, the Adaptive Capacity starts with an introductory story map (figure 68). 

This story map provides the user a brief explanation of what adaptive capacity is and how each of the 

components were calculated.   

Figure 68. Web App allowing the users to compare the forest cover in 2009 and 2018. 

Figure 69. Small-farmer areas dashboard 



97 

 

 

 

 

 

 

 

 

 

 

 

 

  

The access to health dashboard (figure 69) allows the visualization of the areas with higher or 

lower health access. The dashboard allows the filter by department. 

 

 

 

 

 

Figure 70. Adaptive Capacity introductory story map 

Figure 71. Access to health access dashboard 
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 The access to a house with basic satisfied needs dashboard (figure 70) allows the visualization of 

all the fields used to calculate this layer.  This dashboard shows visualization of roof material, floor 

material, energy for cooking, and source of water.  The access to basic sanitary service dashboard (figure 

71) allows the visualization of the variables used to calculate this layer. The dashboard allows the filtering 

by department. 

  

Figure 72. Access to a House with Basic Needs 

Figure 73. Access to Sanitary Service 
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 The dependency dashboard (figure 72) shows the result of the analysis which identifies the 

location of dependent population. The dashboard allows the filtering by department and municipality. 

When the user clicks on the map a pop up appears providing the layer’s information for population, 

population with physical or mental disabilities.  

5.1.5 Vulnerability 

 The vulnerability dashboard is the result of the analysis performed with the exposure, sensitivity, 

and adaptive capacity layers. The final layer allows the visualization of the areas with high, medium high, 

medium, medium low and low vulnerability. It also shows the total area in km2 by level of vulnerability 

and by department. It is also possible to filter by department, municipality, and village. When the user 

clicks on the map, a popup will give the user a summary of the values by the different variables used in 

this analysis identifying the level of each variable with the message: low, medium, or high.  A web app is 

also available allowing the user to print, measure or draw areas in the map and exporting the layer table. 

 

Figure 74. Dependency dashboard 
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Figure 75. Vulnerability Dashboard and Web App 

Figure 76. Vulnerability Pop Up summarizing the variables in the layer 
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5.7 Additional Layers and solutions 

The app includes additional sections to provide the users with Census information for 

departments (figure 75) and municipalities (figure 76).  Both dashboards include a how-to guide and web 

apps with additional tools for printing and the option of exporting the layer table, among others. 

 Figure 78. Department census dashboard  

Figure 77. Municipalities census dashboard 
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 The web app also includes the land cover dashboard (figure 77) and a tool to visualize climate 

data (figure 78) including precipitation and temperature, among others.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 79. Land cover dashboard and web app 

Figure 80. Climate visualization tool 



103 

 

 And finally, the web app includes an Open Data Hub (figure 79) allowing the users to use and 

download the data, apps and dashboards developed in this research.  

5.8 Evaluation 

The evaluation of the Thrive app partnered with World Vision Honduras Project THRIVE 

(Transforming Household Resilience in Vulnerable Environments) which works in three pillars to equip 

small farmers, End-To-End Business of Farming, Natural Resources Management, and Emergency and 

Situational Awareness. The app covers the Departments of Intibucá, Lempira, Ocotepeque, Copan, and 

Santa Barbara with a total area of 17,303.13 km2 and 114 municipalities. All departments are in Western 

Honduras having corn, sorghum, and beans as their population’s main agricultural products, with harvest 

time between May and October (Ben-Davies et al., 2014). The THRIVE Web App was evaluated through 

a qualitative approach understand the utility of the app, focusing on its usefulness and ease of use. The 

qualitative method used semi-structured interviews as data collection methods and were conducted 

through Zoom and Teams.  

An initial interview was conducted with the WV Development Officer, followed by six additional 

interviews with professionals outside World Vision, one located in Honduras and the rest located in the 

Figure 81. World Vision THRIVE Open Data Hub 
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US but able to speak and read Spanish.  This initial meeting was extremely important as this person 

oversees the project’s data for monitoring and evaluation purposes. Afterwards, two focus groups of 

twelve persons each were conducted with the THRIVE team in Honduras including the THRIVE National 

Director and the WV Regional Strategy Coordinator. All the interviews were conducted through zoom. 

The semi-structured interviews were guided by the following questions:  

1. How does the THRIVE Web App improve your job performance?  

2. How can the THRIVE Web App support critical aspects of your job?  

3. How can the THRIVE Web App enhance your effort in identifying and analyzing vulnerability 

areas and understanding the different reasons for these vulnerabilities?  

4. How can your rate your experience using the THRIVE Web App?  

5. What components of the THRIVE Web App would you consider confusing?  

6. What components of the THRIVE Web App would you consider easy to use?  

After transcribing the interviews, theme identification analysis was performed identifying the 

following themes: 

5.8.1 Usefulness 

This evaluation tried to measure the Perceived Usefulness as defined by (Davis, 1989) to identify 

the “degree to which a person believes that using a particular system would enhance his or her job 

performance”. Both group of participants, professionals outside World Vision and World Vision staff, 

considered the Web-based app as innovative and useful.   

Participant 1, professional outside World Vision identified a possible user: 

“If I were a local government or authority in the region, would see this tool as extremely useful to 

identify where the population is living, under what conditions, and providing useful insights for 

decision making.” 

Participant 2, World Vision staff identified possible uses:  

“This tool will be extremely useful, for example in a project design, very soon we will start the 

process for the 2021 – 2026 strategy planning, and I believe this tool will play an important role 
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during this process. I see us using it for the climate change transverse axis in our projects, 

specifically with climate change adaptation processes.” 

Participant 3, World Vision staff mentioned:  

 “This tool will easily provide data and maps for our reports.” 

Participant 4, World Vision staff identified possible uses: 

“This tool is a clear sample of how GIS can be used in our projects not only to map points but for 

deeper analysis processes. I see us using this tool in planning processes. It will be extremely 

helpful providing data and easily accessing it through filters.” 

Participant 5, Professional outside World Vision mentioned: 

“I find this tool extremely interesting and innovative. I think this tool can be used for decision 

making among local authorities and by anyone who has access to internet. Developing this type 

of data requires a lot of work and you should consider copyright all your data and processes.” 

Participant 6, Professional outside World Vision mentioned: 

“I am not a geography professional, but I think this is a useful tool to be used to get data from the 

region under study. I believe the tools for printing and exporting the information seem to be very 

useful and I could see myself using them in the case I would need to get data from the region. In 

general, I think this is an innovative and useful tool.” 

Participant 7, Professional outside World Vision mentioned:  

“This tool provides very useful information and I find the additional tools for printing, measuring 

and the possibility of exporting the layer table as extremely useful.” 

5.8.2 Ease of Use 

This evaluation tried to measure the Perceived Ease of Use is defined by ” (Davis, 1989)  to 

identify “the degree to which a person believes that using a particular system would be free of effort” 

(Davis, 1989). In general, most of the participants agreed the tool is easy to use with some exceptions 

from professionals who mentioned they were initially not sure where to start or what to do.  

Participant 1, Professional outside World Vision mentioned: 
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“Initially I was very confused, and I didn’t know what to do. But once I got into the guide, it was 

very easy to use.” 

Participant 2, World Vision staff mentioned: 

“Something I like about this tool, is that it is very easy to use. And if needed the help sections in 

the left panels provide additional support on how to use it.”  

Participant 8, World Vision staff mentioned: 

 “I consider this tool very user-friendly.” 

Participant 7, Professional outside World Vision mentioned: 

“I find the how-to guide in the side panel, very useful and once I read it, it was very easy to use 

the tool.” 

Participant 9, Professional outside World Vision found the how-to guide useful: 

 “Initially, I didn’t know what to do or where to go. Once I saw the guide it was easy to use” 

5.8.3 Change or Edit Recommendations 

During the evaluation, one of most common themes was the recommendations from the 

participants to edit or change sections from the web-app. All the recommendations provided were used to 

improve the web-app.  

Participant 1, professional outside World Vision focused on the organization of the app: 

“I think it is a little bit disorganized, and if you could maybe organize it better maybe using the 

determinants used for the analysis. I think the Census tab seems a little bit outside the topic and I 

think should not be the first maybe change it in order.” 

Participant 2, World Vision staff identified possible additional layers to use: 

“I think this tool will be very useful, but if we could have additional information it would be 

better. We generally use the watersheds as a unit. Is there a possibility of adding the watersheds 

to the maps and make the analysis based on the watersheds? Additionally, the forest fire topic is 

extremely important, and it is recurrent more if compared to flooding for example. But the 

government does not really provide a good fire management except giving statistics of how much 
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forest cover was lost. The effects of forest loss due to fires will only sharpen in the coming years 

and I think a tool that allows us to monitor forest fire will be needed.” 

Participant 7, Professional outside World Vision recommended using other variables for health access: 

“I have seen similar analysis for health access. Have you consider also including the type of roads 

and maybe the time it could take someone to reach a health center?” 

Participant 10, World Vision staff requested a summary of the vulnerability values in the region: 

“This tool is usable and digestible, but is there a possibility of creating something like a guide that 

depending on the vulnerability values in the map and specifically the areas where World Vision is 

working, identify the situation that is causing that vulnerability, for example, if this area has high 

forest fire risk and maybe identify the factors that need to be attacked so we can take preventive 

measures?”  

Participant 11, World Vision staff requested adding the climatic stations: 

“I find the weather tool very useful and it gives a very good idea of what is happening. But I 

consider if we could also add the climatic stations managed by the project, we could have near 

real-time data.” 

Participant 12, World Vision staff requested near real-time forest fire data: 

“I think the tool is very useful and it can help us for post event situations, if we could have the 26 

climatic stations it will provide us a better picture of the current situation. Is there a possibility of 

adding near real-time forest fire data? Having fire data could help us incredibly. “ 

Participant 13, World Vision staff requested adding landslides data: 

“I find this tool very innovative and useful and saw how you included the soil moisture data. Is 

there a possibility of adding landslide vulnerability to the analysis? We could easily get this with 

precipitation data and slopes.” 

5.8.4 Future work 

 During the interview, a recurring topic was the possibility of extending this tool to include 

additional departments and the possibility to extend it to the Central American region.  
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Participant 2, World Vision staff with the possibility of creating a regional tool: 

“This type of tool can also be used by the region; it is just of obtaining the information from the 

local authorities and then update it. We should think if making a macro project but also not 

forgetting the micro as well.” 

Participant 14, World Vision staff requested adding other departments to the analysis: 

“The tool is extremely useful for my work, but I want to know if there is possibility to add El 

Paraiso to this analysis?” 

Participant 15, World Vision staff requested the possibility of making a regional tool: 

“I think this tool has a lot of potential and could bring a dialogue for a second phase.  Maybe 

create a sub-regional tool, we could start identifying the owners of the projects in each of the 

countries in the region to start working with Claudia. There should also be further discussion if 

the answers given by the tool, for example the option of identifying what is making an area 

vulnerable, as mentioned by a colleague are applicable to our reality. We should identify if the 

actions can be validated somehow.” 

Participant 16, World Vision staff, requested possible costs to update data: 

“This tool is very useful, but I want to know what the costs we would incur to be able to update 

this data and how much time it will require to be able to have this tool updated?”  
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CHAPTER 6: CONCLUSION AND FUTURE RESEARCH 

 

Climate change is expected to slow the economic growth of nations and regions (World Bank, 

2013) and is now affecting every known society.  Disadvantaged people, such as rural poor and 

smallholder producers in developing countries, are at a higher risk as the changes in climate patterns will 

impact crop yields and undermine food security, especially among subsistence farmers who generally 

produce low yields and are least able to cope with their effects (Altieri et al., 2015; Antle, 1995; FAO, 

2017; IPCC, 2014; P. Jones & Thornton, 2003; Kang et al., 2009; Misra, 2014; Schmidhuber & Tubiello, 

2007; UN, 2018; World Bank, 2013). To help build climate change resilient communities among rural 

farmers, the first step is to understand the impact of climate change on the population.  

This study proposes a Climate Change Vulnerability Assessment Framework (CCVAF) (See 

Figure 6) to better evaluate the different indicators for vulnerability assessment. The framework not only 

allows the assessment of the overall climate change vulnerability but also the understanding of how   

different vulnerability indicators would impact the overall vulnerability to support decision making in 

building climate change resilient communities. The framework was demonstrated using a case study in 

Honduras, partnering with the World Vision THRIVE team. Further, a GIS-based web application, named 

THRIVE, was designed as a visualization and knowledge platform to support decision-makers in 

assessing climate change vulnerabilities among rural farming communities. Although the THRIVE app is 

built specifically for Western Honduras, it is an instantiation of the CCVAF framework and can be easily 

extended to different areas around the world. The qualitative evaluation of the THRIVE app shows that it 

is an innovative and useful tool for vulnerability assessment.  

This dissertation makes both knowledge and practical contributions. From the knowledge perspective, 

the CCVAF provides a comprehensive set of the indicators for climate change vulnerability assessment 

focusing on small famers. Additionally, it includes related measurements and data sources for these 

indicators. The framework thus contributes to the knowledge base of the vulnerability assessment. It also 
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contributes to the design science literature by providing guidelines to design a class of climate change 

vulnerability assessment solutions. While the THRIVE app is a highly organization-specific solution 

focusing on the western Honduras, its design and the principles it is based on (i.e. the CCVAF 

framework), can be easily reused by adding any additional indicators and layers in other similar context. 

To the best of our knowledge, the CCVAF is the first generalizable artifact that can be used to build a 

group of ICT-based climate change vulnerability assessment solutions. Another knowledge contribution 

of this dissertation is its reproducibility by making the input and output data available to the research and 

practitioner community through a GeoHub. The dissertation also makes practical contributions to both the 

research and practitioner communities. Researchers and practitioners can easily follow the framework to 

consistently design a vulnerability assessment tool, starting with the set of indictors organized by the 

three-level determinants and following specific spatial data analysis and models. Such an ICT-based tool 

adds practical values to tackle climate change challenges.  

 Future Research  

Further research is needed to examine the exposure and sensitivity determinants along with 

adaptive capacity. For exposure determinant, several components should be analyzed using extreme 

climate events, change in climate and soil carbon. For the sensitivity determinant, future research should 

include the percentage of irrigated land, crop diversification and land degradation. For the adaptive 

capacity, future research should include measurements of economic capacity and access to basic sanitary 

service at a household level, financial access, market access, and improved health access. Previous 

analysis should be validated especially the land cover layer, the access to health, access to house a basic 

sanitary service. Additionally, a research plan would be developed to include the expansion of THRIVE 

app to other areas of Honduras and in the Central American region. 
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