9 research outputs found

    On modeling and mitigating new breed of dos attacks

    Get PDF
    Denial of Service (DoS) attacks pose serious threats to the Internet, exerting in tremendous impact on our daily lives that are heavily dependent on the good health of the Internet. This dissertation aims to achieve two objectives:1) to model new possibilities of the low rate DoS attacks; 2) to develop effective mitigation mechanisms to counter the threat from low rate DoS attacks. A new stealthy DDoS attack model referred to as the quiet attack is proposed in this dissertation. The attack traffic consists of TCP traffic only. Widely used botnets in today\u27s various attacks and newly introduced network feedback control are integral part of the quiet attack model. The quiet attack shows that short-lived TCP flows used as attack flows can be intentionally misused. This dissertation proposes another attack model referred to as the perfect storm which uses a combination of UDP and TCP. Better CAPTCHAs are highlighted as current defense against botnets to mitigate the quiet attack and the perfect storm. A novel time domain technique is proposed that relies on the time difference between subsequent packets of each flow to detect periodicity of the low rate DoS attack flow. An attacker can easily use different IP address spoofing techniques or botnets to launch a low rate DoS attack and fool the detection system. To mitigate such a threat, this dissertation proposes a second detection algorithm that detects the sudden increase in the traffic load of all the expired flows within a short period. In a network rate DoS attacks, it is shown that the traffic load of all the expired flows is less than certain thresholds, which are derived from real Internet traffic analysis. A novel filtering scheme is proposed to drop the low rate DoS attack packets. The simulation results confirm attack mitigation by using proposed technique. Future research directions will be briefly discussed

    Increasing the robustness of networked systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 133-143).What popular news do you recall about networked systems? You've probably heard about the several hour failure at Amazon's computing utility that knocked down many startups for several hours, or the attacks that forced the Estonian government web-sites to be inaccessible for several days, or you may have observed inexplicably slow responses or errors from your favorite web site. Needless to say, keeping networked systems robust to attacks and failures is an increasingly significant problem. Why is it hard to keep networked systems robust? We believe that uncontrollable inputs and complex dependencies are the two main reasons. The owner of a web-site has little control on when users arrive; the operator of an ISP has little say in when a fiber gets cut; and the administrator of a campus network is unlikely to know exactly which switches or file-servers may be causing a user's sluggish performance. Despite unpredictable or malicious inputs and complex dependencies we would like a network to self-manage itself, i.e., diagnose its own faults and continue to maintain good performance. This dissertation presents a generic approach to harden networked systems by distinguishing between two scenarios. For systems that need to respond rapidly to unpredictable inputs, we design online solutions that re-optimize resource allocation as inputs change. For systems that need to diagnose the root cause of a problem in the presence of complex subsystem dependencies, we devise techniques to infer these dependencies from packet traces and build functional representations that facilitate reasoning about the most likely causes for faults. We present a few solutions, as examples of this approach, that tackle an important class of network failures. Specifically, we address (1) re-routing traffic around congestion when traffic spikes or links fail in internet service provider networks, (2) protecting websites from denial of service attacks that mimic legitimate users and (3) diagnosing causes of performance problems in enterprises and campus-wide networks. Through a combination of implementations, simulations and deployments, we show that our solutions advance the state-of-the-art.by Srikanth Kandula.Ph.D

    Protection contre les attaques de déni de service par gestion dynamique de délai d'inactivité

    Get PDF
    Modélisation et protection contre le déni de service -- Modélisation et mesure de performance -- Mécanisme de protection -- Démarche du travail de recherche -- An Exhaustive of Queue Management as a DoS Counter-Measure -- Dynamic timeout strategies -- Mathematical model -- Model validation -- Perfomance evaluation

    INTRUSION DETECTION SYSTEM

    Get PDF
    An Intrusion detection system is generally considered to be any system designed to detect attempts compromise the integrity, confidentiality or availability of the protected network and associated computer systems. Intrusion Detection System (IDS) aims to detect attempted compromises by monitoring network traffic for indications that an attempted compromise is in progress, or an internal system is behaving in a manner which indicates it may already be compromised. A host based IDS (HIDS) monitors a single system for signs of compromise. The vast majority of worms and other successful cyber attacks are made possible by vulnerabilities in a small number of common operating system services. Attackers are opportunistic. They take the easiest and most convenient route and exploit the best-known flaws with the most effective and widely available attack tools. They count on organizations not fixing the problems, and they often attack indiscriminately, scanning the Internet for any vulnerable systems. The easy and destructive spread of worms, such as Blaster, Slammer, and Code Red, can be traced directly to exploitation of unpatched vulnerabilities

    How to accelerate your internet : a practical guide to bandwidth management and optimisation using open source software

    Get PDF
    xiii, 298 p. : ill. ; 24 cm.Libro ElectrónicoAccess to sufficient Internet bandwidth enables worldwide electronic collaboration, access to informational resources, rapid and effective communication, and grants membership to a global community. Therefore, bandwidth is probably the single most critical resource at the disposal of a modern organisation. The goal of this book is to provide practical information on how to gain the largest possible benefit from your connection to the Internet. By applying the monitoring and optimisation techniques discussed here, the effectiveness of your network can be significantly improved

    XXIII Congreso Argentino de Ciencias de la Computación - CACIC 2017 : Libro de actas

    Get PDF
    Trabajos presentados en el XXIII Congreso Argentino de Ciencias de la Computación (CACIC), celebrado en la ciudad de La Plata los días 9 al 13 de octubre de 2017, organizado por la Red de Universidades con Carreras en Informática (RedUNCI) y la Facultad de Informática de la Universidad Nacional de La Plata (UNLP).Red de Universidades con Carreras en Informática (RedUNCI
    corecore