
UNIVERSITE DE MONTREAL

PROTECTION CONTRE LES ATTAQUES DE DENI DE SERVICE PAR

GESTION DYNAMIQUE DU DELAI D'INACTIVITE

DANIEL NICOLAE BOTEANU

DEPARTEMENT DE GENIE INFORMATIQUE ET GENIE LOGICIEL

ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L'OBTENTION DU DIPLOME DE

MAfTRISE ES SCIENCES APPLIQUEES

(GENIE INFORMATIQUE)

MAI 2008

© Daniel Nicolae Boteanu, 2008.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-46035-1
Our file Notre reference
ISBN: 978-0-494-46035-1

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

UNIVERSITE DE MONTREAL

ECQLE PQLYTECHNIQUE DE MONTREAL

Ce memoire intitule

PROTECTION CONTRE LES ATTAQUES DE DENI DE SERVICE PAR

GESTION DYNAMIQUE DU DELAI DTNACTIVITE

presente par : BOTEANU Daniel Nicolae

en vue de l'obtention du diplome de : Maitrise es sciences appliquees

a ete dument accepte par le jury constitue de :

M. GAGNON Michel, ing., Ph.D., president

M. FERNANDEZ Jose Manuel, ing., Ph.D., membre et directeur de recherche

Mme. BELLAICHE Martine, Ph.D., membre

IV

A mon amour, Alexandra

V

REMERCIEMENTS

Plus qu'a tout le monde, je tiens a remercier Jose Fernandez, mon directeur, pour

tout le devouement dont il m'a fait preuve a plusieurs instances, pour ses conseils

autant academiques que personnels, pour les nombreuses rencontres en dehors des

heures de travail et plus generalement, pour Finitiation dans le monde de la recherche.

Les coauteurs des articles precedents, Edouard Reich, John Mullins et John McHugh,

meritent aussi ma gratitude pour leurs idees et leur aide qui m'ont aide avancer plus

rapidement dans ce projet.

Finalement, je remercie mes parents, Maria et Nicolae-Daniel, pour m'avoir envoye

sur ce chemin. Sans leur aide spirituelle et materielle, je n'aurai jamais pu vivre cette

aventure d'etudes superieures a Fetranger.

vi

RESUME

Le but d'une attaque de deni de service (DoS) est de rendre un service reseau

indisponible pour les usagers legitimes. Nous adressons le probleme des attaques de

deni de service sur les protocoles orientes connexion ou l'attaquant essaie d'epuiser les

connexions du serveur en initiant la communication avec le server et en l'abandonnant

par la suite. Ainsi, les utilisateurs legitimes ne peuvent plus initier des nouvelles

connexions avec le systeme. L'attaque la plus exploitee de cette categorie est l'attaque

SYN-Flood mais d'autres attaques qui utilisent la meme approche dans des protocoles

a etat rentrent dans la meme categorie. La strategie la plus simple et evidente pour se

proteger contre ce type de comportement malicieux est d'avoir un mecanisme de delai

d'inactivite. La methode traditionnelle est d'utiliser un delai d'inactivite fixe, mais

l'intuition est que l'utilisation d'un delai d'inactivite dynamique offre une meilleure

performance. Ceci est notre hypothese de base et la verifier a ete l'inspiration de

ce travail. Nos buts sont d'une part de developper un modele mathematique pour

pouvoir analyser le compromis entre les ressources de l'attaquant et du defenseur et

d'autre part d'offrir des mecanismes de prevention qui peuvent etre utilises contre des

attaques dans cette categorie. Nous modelisons la file des connexions du serveur en

utilisant des chaines de Markov pour etablir une relation entre la capacite du serveur,

le taux d'attaque et l'impact sur le niveau de service. Nous analysons deux methodes

d'ajustement du delai d'inactivite, threshold et linear, et nous couplons ces methodes

avec trois politiques d'assignation du delai d'inactivite aux connexions : la politique

deterministic, la politique deferred et la politique utopique Poisson.

Les resultats que nous avons obtenus confirment nos intuitions. Premierement,

le modele theorique montre que pour toutes les strategies, il existe un compromis

lineaire entre le taux d'attaque et la taille de la file du serveur cible, dans le sens ou

lorsque le premier augmente, le deuxieme doit etre augmente aussi pour maintenir

la meme qualite de service pour les utilisateurs legitimes. Cependant, le rapport qui

doit etre garde entre ces valeurs differe entre les strategies; dans ce sens, certaines

sont meilleurs que d'autres. Plus particulierement, le modele theorique indique aussi

que la strategie du delai d'inactivite dynamique linear deferred est tres similaire du

point de vue de la performance a la strategie linear Poisson, qui a son tour surpasse

Vll

toutes les autres strategies du delai d'inactivite dynamique. Les strategies du delai

d'inactivite dynamique surpassent toujours la methode classique du delai d'inactivite

fixed.

Notre modele est tres general et peut etre utilise pour decrire le comportement

de la file du serveur durant des attaques d'epuisement des connections a des niveaux

differents de la pile des protocoles TCP/IP. Nous confirmons ces resultats par des

simulations stochastiques et des experiences reseau des attaques SYN-Flood. Nous

montrons aussi comment le modele peut etre utilise pour analyser une attaque d'inon-

dation avec connections TCP ou une attaque d'inondation avec des reservations des

billets. Les strategies que nous suggerons sont robustes faces a des changements dans

le modele d'attaque et notre implementation est tres efficace et transparente par rap

port au serveur et aux applications qu'elle essaie de proteger. Les strategies pourront

done etre facilement integrees dans des systemes d'exploitation et des applications,

ou etre implementees dans des equipements reseau.

viii

ABSTRACT

The purpose of a denial-of-service (DoS) attack is to render a network service un

available for legitimate users. We address the problem of DoS attacks on connection

oriented protocols where the attacker tries to deplete the server connections by initi

ating communication with the server and then abandoning the communication. Thus,

legitimate users can no longer initiate new connections with the system. The most

exploited attack in this category is the SYN-flood attack but other attacks using the

same approach in stateful communication protocols also fall into this category. The

simplest and most obvious strategy to protect against this type of malicious behaviour

is to have a timeout mechanism in place. The traditional method is to use a fixed

timeout but the intuition is that using a dynamic timeout offers better performance.

This is our base hypothesis and verifying it was the inspiration to this work. Our goals

are to develop a mathematical model allowing us to analyse the trade-off between the

attacker and the defender resources on one hand, and to offer prevention mechanisms

that can be used to defend against this category of attacks, on the other hand. We

model the server queue of connections using Markov chains to establish a relationship

between the server capacity, the attack rate and the impact on the service level. We

analyse two methods of adjusting the timeout, threshold and linear, and we couple

them with three policies of assigning the timeout to connections: the deterministic

policy, the deferred policy and the Utopian Poisson policy.

The results we obtained confirm our intuitions. First, theoretical modelling shows

that for any given strategy there exists a linear trade-off between the attack rate

and targeted server queue size, in the sense that when the first one increases, the

second one must be increased as well to maintain the same quality of service for le

gitimate users. However, the ratio that needs to be kept between these values differs

between strategies; in that sense some are better than others. In particular, theoret

ical modelling also indicates that the linear deferred timeout strategy is very similar

in performance to the linear Poisson timeout strategy, which in turn outperforms

all the other dynamic timeout strategies. The dynamic timeout strategies always

outperform the classical fixed timeout method.

Our model is very general and can be used to describe the behaviour of the

IX

server queue during connection depletion attacks at various levels in the TCP/IP

protocol stack. We confirm the theoretical findings using stochastic simulations and

network experiments of SYN-flood attacks. We also show how the model can be used

when analysing a TCP connection establishment flood or a ticket reservation flood.

The protection strategies we suggest are robust to changes in the attack model and

our implementation is very efficient and transparent with respect to the server and

applications it tries to protect. The strategies could therefore be easily integrated

into existing Operating Systems (OS) and applications, or implemented in network

devices.

X

TABLE DES MATIERES

DEDICACE iv

REMERCIEMENTS v

RESUME vi

ABSTRACT viii

TABLE DES MATIERES x

LISTE DES TABLEAUX xiii

LISTE DES FIGURES xiv

LISTE DES ANNEXES xvi

LISTE DES SIGLES ET ABREVIATIONS xvii

DESCRIPTION DES VARIABLES UTILISEES xix

CHAPITRE 1 Introduction 1

CHAPITRE 2 Modelisation et protection contre le deni de service 5

2.1 Modelisation et mesure de performance 5

2.2 Mecanismes de protection 7

2.2.1 Protection par modification de la logique des protocoles 7

2.2.2 Protection par modification de l'implementation des protocoles 9

2.2.3 Protection par discrimination et filtrage du trafic malicieux . . 11
2.2.4 Protection par collaboration 12

CHAPITRE 3 Demarche du travail de recherche 14

xi

CHAPITRE 4 Article 1 : An Exhaustive Study of Queue Management as a DoS

Counter-Measure 17

4.1 Introduction 17

4.2 Previous work 20

4.3 Dynamic timeout strategies 25

4.3.1 Abstract protocol description 25

4.3.2 SYN-flood attack 27

4.3.3 TCP connection establishment attack 28

4.3.4 Ticket reservation flooding attack 30

4.3.5 Legitimate and malicious traffic distributions 31

4.3.6 Timeout adjustment methods 33

4.3.7 Timeout assignment policies 33

4.3.8 Performance metrics 35

4.4 Mathematical model 36

4.4.1 Fixed timeout method 36

4.4.2 Threshold timeout method 42

4.4.3 Linear timeout method 55

4.4.4 Convergence study 60

4.5 Model validation 63

4.5.1 Simulation setup 63

4.5.2 Steady-state queue occupation 64

4.5.3 Transient behaviour 66

4.6 Performance evaluation 66

4.6.1 Capacity - Attack rate trade-off 68

4.6.2 Experimental setup 68

4.6.3 Comparative results 75

4.6.4 Attack model variation 78

4.6.5 Parameter optimisation 81

4.6.6 Traffic rate variation 86

4.7 Conclusions and future work 92

CHAPITRE 5 Discussion generale et conclusion 96

REFERENCES 101

xii

ANNEXES 110

LISTE DES TABLEAUX

Tableau 4.1 Default queue size and timeout values in popular operating sys

tems and minimum attack rate that fills the queue

Tableau 4.2 Default queue size and timeout values in popular server appli

cations and minimum attack rate that fills the queue

Tableau 4.3 Summary of the timeout adjustment methods and assignment

policies studied

XIV

LISTE DES FIGURES

Figure 4.1 State diagram of the abstract protocol 26

Figure 4.2 Abstract protocol instantiation for the TCP 3-way handshake 28

Figure 4.3 Abstract protocol instantiation for TCP connections life-cycle 29

Figure 4.4 Abstract protocol instantiation for a ticket reservation attack . 31

Figure 4.5 Fixed, threshold and linear timeout adjustment methods . . . 34

Figure 4.6 Legitimate service time PDF and CDF for the fixed timeout

method 38

Figure 4.7 Malicious service time PDF and CDF for the fixed timeout

method 38

Figure 4.8 Markov chain queue representation for the fixed timeout method 40

Figure 4.9 Markov chain queue representation for the threshold Poisson

timeout strategy 43

Figure 4.10 Birth-Death chain queue representation for the threshold de

ferred timeout strategy 49

Figure 4.11 Legitimate service time PDF and CDF after transition Es —>

Es+i for the threshold deferred timeout strategy 50

Figure 4.12 Legitimate service time PDF and CDF after transition Es+2 —•

Es+i for the threshold deferred timeout strategy 51

Figure 4.13 Malicious service time PDF and CDF after transition Es —>

.Es+i for the threshold deferred timeout strategy 52

Figure 4.14 Malicious service time PDF and CDF after transition Es+2 —>

Es+i for the threshold deferred timeout strategy 53

Figure 4.15 Birth-Death chain queue representation for the linear deferred

timeout strategy 58

Figure 4.16 Theoretical and simulation steady-state queue occupation prob

abilities 65

Figure 4.17 Transient legitimate connection success rate for the fixed time

out method 67

Figure 4.18 Capacity-attack rate trade-off for the fixed timeout method . . 69

Figure 4.19 Capacity-attack rate trade-off for all timeout strategies 70

XV

Figure 4.20 Experimental lab network setup 74

Figure 4.21 Theoretical, simulation and experimental performance compar

ison 76

Figure 4.22 Simulation and experimental performance against burst attacks 79

Figure 4.23 Relationship between Poisson and burst attack parameters . . 80

Figure 4.24 Legitimate reject, expire and fail rates for the fixed timeout

method for varying timeout values 82

Figure 4.25 Legitimate reject and expire rates for the linear deferred time

out strategy for varying timeout values 84

Figure 4.26 Legitimate success rate for the linear deferred timeout strategy

for varying timeout values 85

Figure 4.27 Legitimate reject and expire rates for the threshold deferred

timeout strategy for varying timeout values 87

Figure 4.28 Legitimate success rate for the linear deferred timeout strategy

for varying timeout values 88

Figure 4.29 Legitimate success rate for the fixed timeout strategy for vary

ing traffic rates 89

Figure 4.30 Legitimate success rate for the threshold deferred timeout strat

egy for varying traffic rates 90

Figure 4.31 Legitimate success rate for the linear deferred timeout strategy

for varying traffic rates 91

xvi

LISTE DES ANNEXES

Annexe A Queue Management as a DoS counter-measure ? 110

Annexe B Implementing and Testing Dynamic Timeout Adjustment as

a DoS Counter-measure 129

LISTE DES SIGLES ET
ABREVIATIONS

= Egal par definition

ACK Acknowledgement

AP Attraction-Point

BIT Burst Interarrival Time (Temps entre les arrivees des rafale)

CDF Cumulative Distribution Function (Fonction de repartition)

cnx Connexion

DDoS Distributed Denial of Service (Deni de service distribue)

DoS Denial of Service (Deni de service)

EXP Experience

FIFO First in First Out (Premier arrive, premier sorti)

FILO First In Last Out (Premier arrive, dernier sorti)

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

IP Internet Protocol

ISP Internet Service Provider (Fournisseur de services Internet)

MOL Modified-Offered-Load

OS Operating System (Systeme d'exploitation)

OSI Open Systems Interconnection

PDF Probability Distribution Function (Densite de probability)

QG Queue Guardian

QoS Quality of Service (Qualite de service)

RFC Request For Comment

RST Reset

SIM Simulation

SIP Session Initiation Protocol

SYN Synchronization

SS Steady-State

SSL Secure Sockets Layer

xviii

TCP Transmission Control Protocol

TH Theorique

TLS Transport Layer Security

VPN Virtual Private Network (Reseau prive virtuel)

XIX

DESCRIPTION DES

VARIABLES UTILISEES

c Capacite

Ek Etat de la file avec k positions occupees

S Seuil

v Virulence de l'attaque

|i| Connexion qui occupe la position % dans la file

Ai Etat de la file a 1'arrive de la connexion %

Ti Temps d'arrive de la connexion i

Tout Delai d'inactivite (timeout)

ToJ Delai d'inactivite dans l'etat Ek

T0 Delai d'inactivite a file vide

T\ Delai d'inactivite a file pleine

t Temps moyen de service

is Temps moyen de service a seuil

t\ Temps moyen de service des connexions legitimes

t[' Temps moyen de service des connexions legitimes dans l'etat Ek

t\ ~~* Temps moyen de service des connexions legitimes dans l'etat Ek

si l'etat precedent est Eh

tm Temps moyen de service des connexions malicieuses

tm Temps moyen de service des connexions malicieuses dans

l'etat Ek

tm Temps moyen de service des connexions malicieuses dans

l'etat Ek si l'etat precedent est Eh

C(t) Fonction de repartition du temps de service

C\{t) Fonction de repartition du temps de service des connexions

legitimes

Cm(t) Fonction de repartition du temps de service des connexions ma

licieuses

G(t) Densite de probabilite du temps de service

X X

G\(t) Densite de probabilite du temps de service des connexions

legitimes

G['(t) Densite de probabilite du temps de service des connexions

legitimes dans l'etat Ek

G\ ~* 'if) Densite de probabilite du temps de service des connexions

legitimes dans l'etat Ek si l'etat precedent est Eh

Gra.it) Densite de probabilite du temps de service des connexions ma-

licieuses

Gm if) Densite de probabilite du temps de service des connexions ma-

licieuses dans l 'etat Ek

Gm (t) Densite de probabilite du temps de service des connexions ma-

licieuses dans l 'etat Ek si l 'etat precedent est Eh

A Taux d'arrive

A ^ Taux d'arrive dans l 'etat Ek

Ai Taux d'arrive des connexions legitimes

Am T a u x d 'arr ive des connexions malicieuses

fi Vitesse de service

HQ Vitesse de service avant seuil

\x\ Vitesse de service apres seuil

Us Vitesse de service des connexions a seuil

ix\i\ Vitesse de service de la connexion qui occupe la posi t ion i dans

la file

/2|j| Approx imat ion de la vitesse de service de la connexion qui oc

cupe la posi t ion % dans la file

p,\ Vitesse de service des connexions legitimes

\x\if) Vitesse de service des connexions legitimes a l'instant t

[i\s Vitesse de service des connexions legitimes a seuil

/j,c Vitesse d 'achevement des connexions legitimes

fxm Vitesse de service des connexions malicieuses

A*m(i) Vitesse de service des connexions malicieuses a l ' ins tant t

fJ>ms Vitesse de service des connexions malicieuses a, seuil

VMOLif) Vitesse de service a l ' ins tant t d 'apres l ' approximat ion M O L

//(fe) T a u x de service des connexions dans l ' e ta t E^

pj^> Approximation du taux de service des connexions dans l'etat Ek

http://Gra.it
file:///x/if

XXI

fAMOL,(t) Taux de service a l'instant dans l'etat Ek d'apres l'approxima-

tion MOL

nss Nombre des connexions qui arrivent avant que la file soit stable

™>oo(t) Nombre moyen des positions occupees dans une chaine Mt/G/oo

a l'instant t
TOiooW Nombre moyen des positions occupees par des connexions

legitimes dans une chaine Mt/G/oo a l'instant t

mmoo(t) Nombre moyen des positions occupees par des connexions mali-

cieuses dans une chaine Mt/G/oo a l'instant t

p^ Probabilite d'etre dans l'etat Ek a etat stable

pW Approximation de la probabilite d'etre dans l'etat Ek a etat

stable

p(k) (£) Probabilite d'etre dans l'etat Ek a 'instant t

p(h->k) Probabili te d 'etre dans l 'etat Ek sachant que l 'etat precedent

est Eh

Pie Probabili te d'expiration d 'une connexion legitime si elle est

rentree dans la file

Pii Probabili te d 'expiration instantanne d 'une connexion legitime

apres transi t ion

p[g Probabili te d 'expiration d 'une connexion si elle est rentree dans

la file sachant que le delai d' inactivite est T j J

p m e Probabil i te d 'expiration d 'une connexion malicieuse si elle est

rentree dans la file

p m i Probabili te d 'expiration ins tantanne d 'une connexion malicieuse

apres transi t ion

cf>(t) Probabilite d'echec de la connexion arrivee a l'instant t

4>T(t) Probabilite de rejet de la connexion arrivee a l'instant t

4>e{t) Probabilite d'expiration de la connexion arrivee a l'instant t

$ Probabilite moyenne d'echec des connexions legitimes arrivees a,

l'etat stable

$ Approximation de la probabilite moyenne d'echec des

connexions legitimes arrivees a l'etat stable

$ r Probabilite moyenne de rejet des connexions legitimes arrivees

a l'etat stable

$ r Approximation de la probability moyenne de rejet des

connexions legitimes arrivees a l'etat stable

<3>e Probabilite moyenne d'expiration des connexions legitimes ar

rivees a l'etat stable

$ e Approximation de la probabilite moyenne d'expiration des

connexions legitimes arrivees a l'etat stable

(p Pourcentage des connexions echouees

<fT Pourcentage des connexions rejetees

ipe Pourcentage des connexions expirees

B(c) Formule Erlang-B pour un serveur de capacite c

B(c) Approximation de la formule Erlang-B pour un serveur de ca

pacite c

8(t) Fonction delta de Dirac

T(z) Fonction Gamma d'Euler

r(o, z) Fonction Gamma incomplete

En(z) Fonction exponentielle integrate

M/G/c/c Chaine de Markov avec processus d'arrive de Poisson, proces

sus de service general, c positions dans la file et maximum c

connexion servies en parallel

Mt/G/c/c Chaine de Markov avec processus d'arrive de Poisson variant

dans le temps, processus de service general, c positions dans la

file et maximum c connexion servies en parallel

Mt/G/oo Chaine de Markov avec processus d'arrive de Poisson variant

dans le temps, processus de service general, sans limite des po

sitions dans la file et sans limite de connexion servies en parallel

1

CHAPITRE 1

Introduction

La securite informatique a comme but de preserver les caracteristiques suivantes

d'un systeme ou d'un service informatique : confidentialite, integrite et disponibilite.

La confidentialite signifie qu'il est possible d'utiliser le service sans que personne a

part le client et le serveur ne soit capable de savoir quelle information a ete echangee.

L'integrite signifie que chaque partie est capable de verifier que les donnees qu'elle

a regues proviennent de la bonne source et qu'aucune modification intentionnelle ou

accidentelle n'ait eu lieu. Finalement, la disponibilite signifie que les donnees que

le client demande sont presentes et les services fonctionnent dans les parametres

de qualite de service (QoS) prealablement definis. Les aspects de confidentialite et

integrite sont en partie solutionnes par l'usage de la cryptographie. Cependant, quand

le systeme que nous considerons est l'lnternet, la gestion de la confiance et des cles de

chiffrement s'avere difficile. La disponibilite est encore plus difficile a assurer a cause

de l'architecture de l'lnternet qui permet la communication entre tous les participants

sans pouvoir offrir une qualite de service autre que localement. Ceci ouvre la porte

aux attaques de deni de service (DoS) qui peuvent avoir comme but de diminuer

la disponibilite d'un service d'une entreprise, de tous les services d'une entreprise et

meme d'un pays entier.

Nous identifions trois grandes categories d'attaques de deni de service :

1. Attaques d'innondation (flooding), qui visent a saturer les canaux de commu

nication reseau.

2. Attaques qui exploitent des vulnerabilites dans l'implementation des protocoles

de communication.

3. Attaques qui exploitent des faiblesses dans la logique des protocoles de commu

nication, dues au fait que lors de la conception des protocoles, la securite n'a

pas ete le souci principal.

Le premier type d'attaque, Finondation, est difficile a combattre mais pour qu'une

attaque reussisse il faut que l'attaquant dispose d'une connexion Internet avec une

2

capacite superieure de celle de la victime. Tres souvent, l'utilisation de la technique

d'innondation du canal de communication, est utilise dans des attaques de deni de

service distributes (DDoS). Dans ce cas, l'attaquant emploie plusieurs machines et

equipements reseau, pour avoir une capacite de communication agregee qui depasse

rapidement celle de la cible, s'il s'agit d'un seul serveur attaque. Cependant, ce n'est

plus interessant pour l'attaquant d'utiliser cette methode pour rendre indisponible un

grand nombre des serveurs si une architecture distribute est adoptee par l'entreprise

ou l'organisme cible, parce que la force de l'attaque est repartie sur chaque serveur

attaque.

Le deuxieme type d'attaque, qui vise a exploiter les vulnerabilites dans l'implemen-

tation des protocoles de communication est tres facile a realiser si une telle vulnerabili

te est connue. La plupart des fois, les vulnerabilites sont des debordements de tampon,

cependant les outils et methodes de developpement sont arrives a un niveau de matu

rity qui rend plus rares les vulnerabilites d'implementation. De plus, une fois qu'une

vulnerabilite est connue, le constructeur de l'application en question publie des mises

a jour qui rendent la vulnerabilite inexploitable. La fenetre de temps d'utilisation des

attaques de ce type est done limitee.

Le troisieme type d'attaque, qui vise a exploiter les faiblesses dans la logique des

protocoles de communication vient avec un avantage pour l'attaquant : meme si une

faiblesse dans la logique d'un protocole est trouvee, il est tres probable que le protocole

ne changera pas s'il est deja adopte par la majorite des acteurs sur Internet.

Dans le reste de ce memoire nous nous interessons aux attaques de deni de service

de la troisieme categorie. La faiblesse logique que nous considerons est presente dans la

plupart des protocoles de communication orientes connexion : un client malicieux peut

simuler l'etablissement d'une connexion avec le serveur de sorte que le serveur alloue

des ressources memoire pour garder l'etat de la connexion. Parce que l'attaquant ne

doit pas etablir la connexion avec le serveur mais seulement convaincre le serveur

que la connexion est etablie ou en cours d'etablissement pour que le serveur alloue

des ressources, ce type d'attaque est tres avantageux pour l'attaquant. L'attaque la

plus connue de ce type est l'attaque SYN-Flood, ou l'attaquant envoie des messages

TCP avec le drapeau SYN ce qui declenche l'etablissement des connexions du cote

serveur. Cependant, l'analyse que nous faisons et les solutions que nous allons proposer

s'appliquent aussi aux autres protocoles oriente connexion, par exemple HTTP, FTP,

SSL/TLS, SIP, SMTP.

3

Une attaque d'epuisement des ressources memoire du serveur est relativement fa

cile a detecter, l'indicateur le plus accessible a consulter etant le nombre de connexions

etablies ou en cours d'etablissement. Si cette valeur est beaucoup plus elevee que la

valeur attendue, alors il est probable que le serveur soit sous attaque. Meme s'il est

possible de detecter une attaque, il est tres difficile, voire impossible, de discriminer

le trafic legitime du trafic malicieux avant de tenter d'etablir la connexion parce que,

comme dans le cas de l 'attaque SYN-Flood, le trafic malicieux peut copier toutes les

caracteristiques du trafic legitime. Entre autre, la distribution dans le temps des pa-

quets peut etre tres facilement copiee par une attaque et la distribution geographique

des adresses IP n'est pas une limite non plus. Un attaquant peut utiliser la technique

de IP spoofing pour envoyer des messages qui proviennent de la meme source mais

qui semblent venir des adresses distinctes. De plus, un attaquant pourrait controler

un botnet, un reseau d'ordinateurs infectes sur internet, ce qui rend toute methode de

filtrage encore plus difficile, car dans ce cas tout le trafic provient de machines avec

des vraies adresses IP et avec un comportement legitime la plupart du temps.

Les strategies de protections suggerees jusqu'a present ne sont malheureusement

pas si efficaces et faciles a deployer que prevu par leurs auteurs. Ceci est prouve par

le fait que de deni de service est toujours un probleme d'actualite. Parmi les attaques

les plus recentes, nous identifions l 'attaque de type SYN-Flood contre GoDaddy, la

plus grande compagnie d'enregistrement des noms de domaines et d'hebergement

web, qui a eu lieu en mars 2007 (Murphy, 2007). L'attaque a enregistre des taux

de 30 Mbps et a rendu le site inaccessible pendant 5 heures. En septembre 2007,

plusieurs sites dedies a la protection contre le spam ont subi des attaques de deni de

service de differents types, certains enregistrant des taux de l'ordre 10 Mbps durant

plusieurs heures (Spamnation, 2007). En octobre 2007, le site des guides financiers

pour les consommateurs MoneySavingExpert.com a ete inaccessible durant une fin

de semaine du a une attaque de deni de service (Leyden, 2007). L'attaque la plus

puissante enregistree a date est l 'attaque de deni de service contre differentes sites

web administratifs de l'Estonie arrivee en mai 2007 (Nazario, 2007). Cette attaque

qui a dure plus de deux semaines et a atteint des taux de 100 Mbps durant plusieurs

heures consecutives, a prouve que le deni de service est une arme viable dans la

guerre cybernetique. Plus recemment, en fevrier 2008, une attaque de deni de service

qui consiste a inonder les serveurs avec des demandes de pages H T T P a rendu 32 sites

web des casinos en ligne inutilisables pendant 8 jours (Adair, 2008). Cette derniere

http://MoneySavingExpert.com

4

attaque est un exemple concret de l'utilisation de la meme technique d'epuisement

des ressources contre un protocole de plus haut niveau, HTTP.

Malgre les efforts qui ont ete faits par le monde academique et l'industrie pour

resoudre le probleme du deni de service, il n'existe pas de mesure de protection efn-

cace facilement utilisable contre les attaques d'epuisement de connections. De plus, il

n'existe pas de modele theorique qui permette d'evaluer quantitativement l'impact des

attaques sur la qualite de service. L'objectif de ce memoire est d'adresser le probleme

des attaques d'epuisement de ressources en proposant un modele mathematique qui

permet d'evaluer quantitativement l'impact des attaques sur la qualite de service.

Ensuite, nous visons a proposer des strategies de gestion de la file des connexions du

serveur dans le but de la rendre plus resistante aux attaques de deni de service. Ces

strategies ne doivent pas se baser sur la discrimination du trafic legitime et malicieux

et nous devons pouvoir appliquer ces strategies facilement a tous les protocoles oriente

connexion vulnerables aux attaques d'epuisement de ressources. La performance des

strategies doit etre evaluee a l'aide du modele mathematique construit prealablement

et ensuite validee par des simulations et experimentalement.

Ce memoire suit la formule de presentation d'un memoire par articles et est orga

nise comme suit : le chapitre 2 presente une revue critique de la litterature concernant

les travaux anterieurs de modelisation, de detection et de protection contre des at

taques de deni de service. Par la suite, le chapitre 3 decrit la demarche de l'ensemble

du travail de recherche. Le chapitre 4 presente le modele mathematique, les strategies

du delai d'inactivite dynamique ainsi que les resultats, tel que soumis dans Particle An

Exhaustive Study of Queue Management as a DoS Counter-Measure a la revue Inter

national Journal of Information Security (publiee par l'editeur scientifique Springer).

Ensuite, le chapitre 5 offre une discussion des resultats obtenus, les conclusions tirees

des travaux effectuees ainsi que des directions de recherche pour des travaux futurs.

L'annexe A presente des resultats preliminaries du modele mathematique avec la po

litique d'assignation du delai d'inactivite Poisson et des resultats de simulation, tel

que publies dans les actes de la conference Information Security Conference (ISC)

en octobre 2007. L'annexe B presente les resultats experimentaux des strategies du

delai d'inactivite dynamique, tel que publies dans les actes de l'atelier ACM Qua

lity of Protection (QoP) Workshop, organise dans le cadre de la conference ACM

Communications and Computer Security Conference (CCS) en octobre 2007.

5

CHAPITRE 2

Modelisation et protection contre

le deni de service

Dans ce chapitre nous faisons un survol de litterature par rapport aux attaques de

deni de service (DoS). Premierement, nous regardons les travaux de modelisation des

attaques et la mesure de performance des serveurs sous attaque. Ensuite nous ana-

lysons les mecanismes de protection contre les attaques d'epuisement des ressources

qui ont ete proposees par le monde academique et l'industrie.

2.1 Modelisation et mesure de performance

Le premier modele mathematique qui formalise le compromis entre les ressources

de l'attaquant et celles du defendant a ete introduit par Meadows (1999, 2001). Ce

modele n'est pas sufflsant pour mesurer le degre auquel un protocole est vulnerable

parce qu'il est difficile de definir des fonctions de cout concretes pour les operations

elementaires, par exemple le refus d'un message ou le calcul d'une signature digitale.

De plus, ce modele ne considere pas les implications pour un defendant d'une qualite

de service reduite dans des situations ou le service est encore fonctionnel, durant ou

apres une attaque de deni de service.

Les chaines de Markov a temps discret sont un outil tres utilise dans la detection

des anomalies et des intrusions. Un tel modele qui prend en consideration la tolerance

du serveur face a differentes attaques a ete propose par Madan et al. (2002). Ce-

pendant, l'application du modele aux attaques d'epuisement des ressources implique

l'estimation de variables difficile a mesurer, par exemple la probability qu'une attaque

ne soit pas detectee, la probabilite qu'un systeme resiste a une attaque ou le temps

moyen d'un systeme pour devenir vulnerable.

Lui et al. (2004) proposent un modele base sur des chaines de Markov a temps

continu pour montrer que les protocoles a etat dur ont une meilleure performance

6

que les protocoles a etat mou si les conditions du reseau sont parfaitement definies.

Cependant, ce sont les protocoles a etat mou qui sont plus resistants aux attaques et

fluctuations non attendues. Le degre de durete d'un protocole est evalue par rapport a

la maniere dont le delai d'inactivite (Tout) est utilise. La plupart des protocoles orientes

connexion utilises sur Internet sont des protocoles a etat dur, qui utilisent le delai

d'inactivite seulement comme mesure de protection en cas d'echec de communication.

D'autres modeles se contentent de detecter la presence des attaques de deni de

service d'epuisement des ressources. Khan et Traore (2005) observent que le taux de

remplissage de la file des connexions est un bon indicateur pour detecter les attaques

de SYN-Flood. Wang et al. (2002) utilisent la methode change-point pour detecter un

changement brusque dans le nombre des paquets SYN qui n'ont pas de correspondent

FIN. Des travaux de recherche dans la meme direction ont ete faits par Tartakovsky

et al. (2006) pour utiliser la methode change-point avec differents algorithmes de

detection. Divakaran et al. (2006) utilisent la technique de prediction lineaire pour

detecter les attaque de SYN-Flood, en regardant la difference entre le nombre de

paquets de type SYN re<jus et le nombre de paquets SYN/ACK envoyes par le ser-

veur. L'utilisation des algorithmes de detection d'anomalies est etudiee par Siris et

Papagalou (2004) pour detecter les attaques de SYN-Flood. Finalement, differents al

gorithmes de detection ont ete implemented et testes par Beaumont-Gay (2007) pour

observer que la performance des algorithmes varie beaucoup en fonction du jeu de test

utilise. Meme s'il est important de pouvoir detecter qu'un serveur est sous attaque

pour savoir ou concentrer les efforts, la detection des attaques est loin de resoudre le

probleme de deni de service.

Mirkovic et al. (2007a, 2006) introduisent la notion de transaction comme etant

l'agregation d'un ensemble de paquets qui ont comme but une tache de haut-niveau,

par exemple, l'etablissement d'une connexion TCP ou le transfert d'une page HTML.

Une transaction est considered echouee si les parametres de qualite de service ne sont

pas satisfaits. La qualite de service globale est calculee en fonction du pourcentage de

transactions echouees. Ceci est un premier essai de definition d'une metrique de deni

de service qui prend en compte la qualite de service perc,ue par l'usager.

La plateforme d'essai DETER (Mirkovic et al, 2007b) permet de reproduire

des scenarios d'attaque et de mesurer experimentalement la performance de ser-

veurs durant les attaques. Malheureusement, il n'existe pas de modele mathematique

equivalent qui permet d'estimer la performance du serveur sachant les differents pa-

7

rametres de configuration et du trafic. Ceci est un des problemes que nous essayons

de traiter.

2.2 Mecanismes de protection

La RFC4732 (Handley et Rescorla, 2006) est une introduction aux attaques de

deni de service qui vise a offrir aux concepteurs des protocoles des patrons et des solu

tions partielles pour resoudre ce probleme. Une autre tres bonne introduction au deni

de service est le livre Internet Denial of Service : Attack and Defence Mechanisms

(Mirkovic et al, 2004) qui vise a expliquer le probleme et les actions qui peuvent etre

prisent par les administrateurs des reseaux. Mirkovic et Reiher (2004) proposent une

taxonomie des mecanismes d'attaques et de protection par rapport au deni de service

en general. La caracterisation des mecanismes de protection est faite par rapport aux

criteres suivants : le niveau d'activite (preventif ou actif), le niveau de cooperation

(autonome, cooperatif ou interdependant), le lieu de deploiement (reseau de la vic-

time, reseau intermediate ou reseau source) et la strategie de reponse (identification

de l'agent, limitation de la bande-passante, filtrage ou reconfiguration). Cette taxo

nomie s'avere tres utile pour la classification mecanismes de protection contre les

attaques de deni de service en general. Par contre, nous nous interessons seulement

aux attaques de deni de service d'epuisement des ressources. Dans ce cadre nous iden-

tifions quatre grands axes de recherche des mecanismes de protection : la modification

de la logique des protocoles, la modification de l'implementation des protocoles, la

discrimination du trafic malicieux et la protection collaborative.

2.2.1 Protection par modification de la logique des proto

coles

Parce que la vulnerabilite qui est exploitee dans les attaques d'epuisement des

connexions est la logique des protocoles, plusieurs propositions ont ete faites pour

apporter des modifications a la logique des protocoles de maniere a rendre les attaques

tres couteuses ou difficiles pour l'attaquant.

Les client puzzles (Juels et Brainard, 1999) consistent a donner au client un

probleme cryptographique a resoudre avant que le serveur alloue les ressources pour

la connexion. La supposition derriere ce mecanisme est que les clients malicieux

8

etablissent beaucoup de connexions depuis les memes machines physiques. La vitesse

de resolution des problemes cryptographiques est limitee par la puissance de calcul et

done un client malicieux aura un taux d'attaque utile tres limite. Les network puzzles

proposes par Feng et al. (2005) consistent a utiliser la meme approche que les client

puzzles. Cependant, ce mecanisme est congu pour etre deploye au niveau reseau de

la pile des protocoles du modele OSI, dans le but d'offrir un mecanisme de punition

contre tout type d'attaque d'inondation. Le principal desavantage de cette methode

est l'impact ressenti par les clients legitimes qui doivent aussi resoudre les problemes

cryptographiques. L'impact est encore plus important si la puissance de calcul est li

mitee, fait qui rend cette methode tres couteuse pour les ordinateurs et les telephones

portables.

Un autre mecanisme de protection, les SYN cookies (Bernstein, 2003; Zuquete,

2002), propose une maniere d'etablissement des connexions T C P sans garder l'etat et

sans allouer de ressources. L'approche consiste a chiffrer les parametres de connexion

et de les encoder dans les numeros de sequence du message SYN+ACK envoye au

client. Si le client repond avec le message ACK, les parametres sont recuperes du

numero de sequence et la connexion est etablie. Cette approche a le desavantage que

la taille du numero de sequence ne permet pas d'encoder toutes les options TCP. De

plus, le protocole T C P requiert la retransmission des messages qui n'ont pas eu un

accuse de reception, or cela n'est pas possible durant Fetablissement de la connexion

avec le mecanisme de SYN cookies parce qu'aucun etat n'est garde. Pour enlever les

limitations des SYN cookies, Lemon (2002) propose le mecanisme SYN cache, qui

consiste a garder l'etat durant Fetablissement des connexions mais de n'allouer que le

strict necessaire des ressources pour sauvegarder les parametres. Le options restantes

sont, similairement aux SYN cookies, encodees dans le numero de sequence TCP.

Une autre approche proposee pour proteger les serveurs web des attaques de deni

de service consiste a rediriger les clients legitimes vers un autre serveur via un message

de redirection H T T P (Xu et Lee, 2003). C'est ce deuxieme serveur qui offre le service

que les clients attendent. En partant du principe que les attaques ne sont pas ciblees

et adaptees pour une certaine victime, Al-Duwairi et Manimaran (2006) proposent

un mecanisme de protection contre les attaques de SYN-Flood qui consiste a ignorer

le premier paquet SYN provenant de chaque adresse IP. En plus d'avoir un impact

negatif sur la performance des clients, ces mesures na'ives de protection n'ont aucun

effet contre les attaques ciblees. Dans ce cas, il est probable que l 'attaquant decouvre

9

le systeme de protection et configure les parametres des attaques de sorte a contourner

les mecanismes de protection.

Plus recemment, des propositions ont ete faites par Ghavidel et Issac (2007)

pour remplacer le protocole TCP avec un protocole equivalent mais qui precede

l'etablissement de la connexion par une phase d'authentification. Encore une fois,

ce mecanisme implique une deterioration de performance pour les clients legitimes

du au calcul cryptographique et aux messages supplement aires d'authentification qui

doivent etre transmis. De plus, pour des raisons politiques, de compatibilite et du

cout eleve d'operation dans les premieres phases, la migration du protocole IP vers

IPv6 est en cours depuis 15 ans et n'est pas encore achevee. Les memes types de

problemes sont envisageables pour la migration vers le protocole TCP securise pro

pose par Ghavidel et Issac (2007) et il n'est done pas raisonnable de croire que ce

protocole soit adopte sur Internet dans le futur proche.

Nous avons vu que, generalement, les mecanismes de protection qui consistent a

apporter des modifications a la logique des protocoles ont comme principe de defense

l'introduction d'une charge que seules les clients legitimes peuvent supporter. Ceci

n'est pas encourageant parce qu'aujourd'hui la majorite des attaques de deni de ser

vice sont realisees a l'aide des botnets, des grands reseaux d'ordinateurs personnels

compromis qui sont sous le controle de l'attaquant. II est estime que le ver informa-

tique Storm a ete utilise pour la construction d'un botnet qui contient des millions

d'ordinateurs (Smith, 2008). L'utilisation d'un tel reseau pour des attaques de deni

de service contourne les mesures de protection qui visent a penaliser les clients mali-

cieux parce que chaque client qui participe a l'attaque se comporte individuellement

comme un client legitime.

2.2.2 Protection par modification de l'implementation des

protocoles

Une autre strategic de protection contre les attaques de deni de service est de

modifier l'implementation des protocoles ou d'ajuster les parametres de configuration

pour rendre le serveur plus resistant aux attaques. Les meilleures pratiques de gestion

des systemes d'exploitation modernes conseillent toujours d'augmenter la taille de la

file des connexions ouvertes TCP, comme mesure de protection contre les attaques

SYN-Flood. Cependant, dans la pratique, la taille maximale de la file est limitee par

10

la quantite de memoire disponible sur le serveur, surtout si le serveur offre plusieurs

services reseau.

Les protocoles orientes connexion implementent un mecanisme de delai d'inacti

vite des connexions, connu en anglais comme timeout. Si une reponse n'est pas regue

dans l'intervalle de temps attendu, la connexion est rejetee. Une methode de pro

tection evidente contre les attaques d'epuisement de ressources est de diminuer le

delai d'inactivite mais cette methode bloque de fagon permanente l'acces aux clients

sur un reseau avec un temps de reponse plus long que le delai d'inactivite. Dans le

systeme d'exploitation Windows Server (Microsoft TechNet, 2003), un mecanisme de

detection d'attaque est implemente. Si une attaque est detectee, un delai d'inactivite

plus restrictif est utilise durant l'attaque. Cependant, il n'est pas clair quelles sont

les valeurs des seuils qui declenchent la detection des attaques, quel delai d'inactivite

doit etre utilise durant une attaque et comment appliquer le delai d'inactivite dyna-

mique aux connexions deja presentes dans la file, pour maximiser la qualite de service

que les clients pergoivent. Si les bonnes valeurs ne sont pas choisies, cette methode

a le desavantage d'offrir la possibilite a un attaquant de declencher une attaque avec

des ressources limitees, seulement pour mettre le serveur dans un etat restrictif dans

lequel les clients plus lents sont bloques.

Une methode differente de controle du delai d'inactivite a ete proposee par Schuba

et al. (1997) sous le nom de SYNkill. Ceci consiste a ecouter sur le reseau pour detecter

les connexions ouvertes sur le serveur. Si la connexion a passe plus de temps sur le

serveur que le moniteur le permet, un paquet RST est envoye par le moniteur au

serveur pour fermer la connexion. La meme idee est citee et testee par Nakashima et

Oshima (2006) et Nakashima et Sueyoshi (2007). Cette methode a l'avantage d'etre

independante de la plateforme qu'elle doit proteger mais a le meme desavantage que

la diminution du delai d'inactivite : les clients sur un reseau lent sont toujours refuses.

II a ete suggere par Schuba et al. (1997) et Ohsita et al. (2005) d'utiliser un

mecanisme de relai TCP dans le pare-feu. C'est le pare-feu qui accepte la connexion du

client, et seulement apres que la connexion est etablie, le pare-feu ouvre une connexion

avec le serveur. Ceci a l'effet de deplacer la file sous attaque sur le pare-feu et est

implemente par les pare-feu Checkpoint (Noureldien et Osman, 2000). Cependant,

si la file du pare-feu est inondee, l'effet est plus grave parce qu'aucun des serveurs

proteges ne sera plus disponible. De plus, comme mentionne par Noureldien et Osman

(2000), une attaque de saturation de la table d'etat du pare-feu avec des paquets ACK

11

est envisageable.

Les travaux de recherche de modification des implementations des protocoles

semblent prometteurs, parce que de telles mesures sont faciles a implementer et a

deployer et elles sont independantes de la plateforme a proteger. Cependant, il ne

faut pas que des telles mesures ouvrent la porte aux autres types d'attaque ou que

les clients legitimes pergoivent un impact negatif de la qualite de service pendant le

fonctionnement sans attaque. De plus, cette approche de renforcement de securite de

la cible est compatible et complementaire avec les autres approches de protection, par

discrimination du trafic malicieux ou par protection collaborative. Les strategies de

gestion dynamique du delai d'inactivite que nous proposons se retrouvent dans cette

categoric

2.2.3 Protection par discrimination et filtrage du trafic ma

licieux

Plusieurs mecanismes de discrimination du trafic malicieux se basent sur l'analyse

statistique du trafic. Dans ce sens, Cheng et al. (2002) proposent l'utilisation d'une

methode d'analyse spectrale pour detecter les flots de donnees malicieux. Feinstein

et al. (2003) suggerent l'analyse des distributions des adresses IP source pour detecter

quelles sont les adresses IP des clients malicieux. Ayres et al. (2006) utilisent la

technique PacketScore (Kim et al, 2006) pour calculer un score et ensuite utiliser

un seuil sur le score pour decider si un paquet est malicieux ou pas. Lim et Uddin

(2005) etudient l'implementation des methodes d'analyse statistique de detection des

attaque de type SYN-Flood sur des processeurs reseaux.

D'autres methodes de discrimination visent a combattre la technique de IP spoo

fing qu'un attaquant pourrait utiliser, technique qui consiste a envoyer des paquets

IP avec des fausses informations dans le champ d'adresse de provenance. Varanasi

et al. (2004) proposent l'enregistrement des adresses IP des routeurs d'entree et de

sortie pour les paquets IP afin d'utiliser un modele de chaines de Markov cachees pour

depister le trafic IP venant des fausses adresses. La technique Hop-Count Filtering

(Jin et al., 2003) consiste a comparer le nombre de routeurs qu'un paquet de type SYN

en provenance d'une adresse IP a traverse par rapport a la meme information dans les

traces des connexions reussies. Zou et al. (2006) proposent la configuration adaptive

des parametres de la technique Hop-Count Filtering en fonction de la severite de Fat-

12

taque afin de mieux proteger un serveur contre des attaques de type SYN-Flood. Une

idee exploree par Xiao et al. (2005) est d'utiliser la technique Delay Probing Method

pour mesurer la congestion dans le reseau et decider si la reponse tardive du client

est due aux conditions du reseau ou a une attaque de SYN-Flood.

Nous avons vu differentes types de methodes de discrimination du trafic malicieux.

Ces methodes supposent que le trafic malicieux a au moins une caracteristique distinc

tive par rapport au trafic legitime. Cependant, encore une fois, l'utilisation des botnet

pour realiser les attaques de deni de service peut rendre le trafic malicieux indistin-

guable du trafic legitime, parce que les machines utilisees pour l'attaque ont toutes les

caracteristiques des machines legitimes. II est done futile d'essayer de construire un

mecanisme de protection par discrimination du trafic malicieux tant que les botnets

sont actifs sur Internet, un probleme qui est probablement plus difficile que le deni

de service.

2.2.4 Protection par collaboration

Etant donnes les effets negatifs pour les clients legitimes que les approches de pro

tection par des modifications de protocoles introduisent, et l'infaisabilite d'une mesure

de protection par discrimination du trafic malicieux devant les botnets, il a ete suggere

que seule une mesure de protection collaborative peut combattre efficacement les at

taques de deni de service. Le premier effort significatif dans ce sens est la RFC2267

(Ferguson et Senie, 1998) qui specifie que les routeurs des fournisseurs d'acces Inter

net doivent router sur Internet seulement les paquets provenant des adresses IP qui

sont censees etre derriere ces routeurs. Cette methode vise a bloquer la technique de

IP spoofing, qui permettrait a un attaquant d'envoyer des paquets SYN qui semblent

venir de fausses adresses. Une amelioration de la RFC2267 proposee par Chen et Song

(2005) consiste a implementer des mecanismes de detection des attaques de deni de

service sur les routeurs de fournisseurs d'acces Internet, pour identifier et limiter les

eventuelles attaques provenant de leurs clients.

L'architecture DefCOM (Oikonomou et al, 2006; Robinson et al, 2003; Mirkovic

et al, 2003, 2002) consiste a faire communiquer les equipements reseau sur Internet sur

un canal securise dans le but de partager l'information concernant le trafic d'attaque

et de diminuer la priorite de routage de ce trafic. Des suggestions ont ete faites par

Yang et al. (2005) pour transmettre dans l'entete de chaque paquet IP une mesure qui

13

reflete si le paquet est desire ou pas a la destination. En plus de cette mesure, Natu

et Mirkovic (2007) proposent d'utiliser la reputation des clients a long terme pour

identifier les clients legitimes. Ces deux dernieres approches sont tres couteuses en

terme des ressources mais il est envisageable de les integrer a l'architecture DefCOM

pour etre actives seulement durant une attaque.

L'architecture SOS (Keromytis et al, 2004) emploie des fonctions de hachage cryp-

tographique pour construire un reseau de routage secret relie a un pare-feu distribue.

Le desavantage principal de cette methode est Faugmentation du temps de latence

du trafic introduit a cause du routage supplement aire dans le reseau secret. Pushback

(Ioannidis et Bellovin, 2002) est un mecanisme qui permet aux routeurs d'identifier

la direction de provenance du trafic d'attaque et de demander aux routeurs en amont

de limiter ce trafic. De maniere similaire, Yau et al. (2005) suggere un mecanisme de

limitation du trafic provenant des routeurs en amont qui generent une congestion.

Zhang et Dasgupta (2003) proposent la collaboration des routeurs pres de la victime

pour marquer les paquets IP afin d'identifier les routeurs de provenance des attaques.

Cependant, ces approches ont le desavantage de penaliser les clients legitimes qui

utilisent une route commune avec l'attaquant.

Etant donne que pour des raisons politiques et sociales, la RFC2267 n'a pas encore

ete adopte a echelle mondiale malgre sa facilite d'implementation, il est peu probable

qu'une des architectures plus complexes comme DefCOM ou Pushback soit deployee

sur Internet dans le futur proche. De plus, les mecanismes de protection contre les

attaques de deni de service par collaboration sont congus principalement pour bloquer

les attaques d'inondation et sont la plupart du temps inefficaces contre les attaques

qui exploitent la logique des protocoles, realisees a partir des botnets, machines dont

le comportement est la plupart de temps legitime.

14

CHAPITRE 3

Demarche du travail de recherche

Le projet de recherche des strategies dynamiques du delai d'inactivite a commence

avec mon projet de fin d'etudes (PFE) que j'ai fait sur ce sujet, dans le cadre de mon

annee d'echange a l'Ecole Polytechnique de Montreal. Les fruits du PFE ont ete l'idee

d'utilisation d'un mecanisme dynamique de gestion du delai d'inactivite, un modele

mathematique limite pour modeliser les attaques de deni de service d'epuisement des

ressources et d'une premiere version du simulateur stochastique. Ces resultats ont

ete publiees dans un rapport technique (Boteanu et al, 2006). En retrospective, la

critique a apporter a ce modele est que seulement la politique d'assignation du delai

d'inactivite deterministic etait modelisee et les resultats sont des valeurs approxima-

tives et non pas des valeurs exactes, approximation dont la fiabilite n'avait pas ete

verifiee a l'epoque. De plus, les equations mathematiques etaient tres complexes et

pas optimisees, ce qui nous avait permis de calculer des resultats numeriques pour

des taux d'attaques de seulement 96 connexions par seconde et pour des tailles de la

file du serveur de seulement 128 connexions.

Suite a mon retour a l'Ecole Polytechnique de Montreal dans le cadre d'une

maitrise, dans un premier temps, nous avons apporte des corrections mineures au

modele mathematique. De plus, nous avons mieux formalise les politiques d'assigna

tion du delai d'inactivite que nous avons introduit : deterministic et deferred. Le

simulateur stochastique, developpe precedemment specifiquement pour ce projet, a

ete aussi ameliore et englobe maintenant 46 classes JAVA pour un total de presque

3000 lignes de code. Suite a ces ameliorations, des simulations avec un taux d'attaque

de 65536 connexions par seconde contre un serveur avec une file de 8000 connexions

ont ete possibles. De plus, nous avons explore un autre modele d'attaque que celui ou

les paquets malicieux arrivent a des intervalles selon une distribution exponentielle :

le modele d'attaque en rafale (burst), ou les paquets malicieux arrivent en rafales de

taille determined et a des intervalles de temps constants. Le simulateur a ete etendu

pour implementer ce nouveau type d'attaque et toutes les strategies ont ete testees

15

contre le nouveau type d'attaque, en rafale, pour une file de taille 128 connections.

Ces resultats ont fait l'objet de l'article publie a la conference Information Security

Conference (ISC) en octobre 2007 (Boteanu et al, 2007a), presente a l'annexe A.

L'etape suivante a ete de verifier experimentalement si les resultats obtenus a

l'aide du modele mathematique et des simulations stochastiques etaient exactes et

d'analyser le cout en terme de performance de telles mesures de protection dans un

cas reel. Dans ce but, nous avons implements les strategies de gestion dynamique

dans une application temps reel qui residait sur une composante tierce partie. Nous

avons decide de deployer cette application sur un ordinateur de bureau standard,

mais nos algorithmes et le code source pourraient facilement etre deployes sur un

processeur reseau dedie. Nous avons ensuite analyse la performance des strategies

de protection dans l'environnement experimental et nous avons compare les resultats

aux simulations stochastiques. Les deux modeles d'attaque, avec intervalles d'arrivee

selon une distribution exponentielle et avec arrivees en rafale, ont ete testees. Pour

chaque simulation et experience, nous avons effectue plusieurs essais afin d'obtenir une

valeur moyenne statistiquement significative. Pour ce, nous avons mesure et verifie

que les ecarts type etaient suffisamment petits, ce qui a toujours ete le cas. Tous

ces resultats ont ete publies dans les actes de l'atelier A CM Quality of Protection

(QoP) Workshop, organise dans le cadre de la conference ACM Communications and

Computer Security Conference (CCS) en octobre 2007, presente a l'annexe B.

Apres la realisation et la publication de ces travaux, nous avons voulu combler

une des lacunes principales : le fait que le modele mathematique offrait des resultats

seulement pour la politique deterministic, et ceci avec des erreurs importantes. Pour

cette raison, nous sommes retournes sur les concepts de modelisation et nous avons

raffine la technique de couplage du trafic legitime avec le trafic malicieux dans le

modele mathematique. De plus, suite a Panalyse detaillee de la politique designa

tion du delai d'inactivite deterministic, nous sommes arrivees a la conclusion que le

fonctionnement de cette politique depend de l'etat passe de la file. Cette politique

ne peut pas done etre resolue avec un modele de chaines de Markov autre que par

des approximations, que nous avons introduites. Nous avons aussi modelise la poli

tique deferred, qui n'avait pas ete etudiee theoriquement avant, mais cette politique

depend aussi du passe, et des approximations ont ete introduites pour resoudre le

modele mathematique. Etant donne que pour resoudre les politiques deterministic et

deferred nous avons du utiliser des approximations, nous avons defini encore une autre

16

politique d'assignation du delai d'inactivite : la politique Poissson. Cette politique

est plus facile a modeliser, et nous avons calcule les valeurs exactes des probabilites

de remplissage de la file a etat stationnaire pour cette politique. Encore une autre

amelioration a ete apportee au modele mathematique qui consiste dans l'utilisation de

la representation recursive de la formule Erlang-B et la simplification des equations,

ce qui nous a permis d'explorer theoriquement des scenarios avec des taux d'attaques

et capacites similaires a ceux des simulations et experiences, car ainsi les equations

etaient devenues suffisamment simples pour etre evaluees numeriquement de fagon

rapide sur une plus grande plage de valeurs. Parce que les resultats theoriques sont

calcules a partir de l'etat stationnaire de la chaine de Markov, nous avons analyse le

temps de convergence de la chaine theoriquement a l'aide l'adaptation de l'approxi-

mation Modiffied-Offered-Load (MOL), ainsi que par des simulations stochastiques,

afln de valider la precision de l'utilisation de resultats bases sur ces etats station-

naires. Nous avons egalement fait une analyse detaillee du choix des parametres de

configuration optimaux pour les strategies de protection pour arriver a des conseils

pratiques qui puissent etre appliques immediatement dans l'industrie. De plus, nous

avons etudie la robustesse des strategies de protection a des variations du taux du

trafic d'attaque mais aussi du taux du trafic legitime. Cette etude confirme le benefice

d'utiliser une strategic dynamique de gestion du delai d'inactivite. Finalement, pour

rendre plus facile l'implementation d'une telle strategie de protection contre une at-

taque autre que SYN-Flood, nous definissons un protocole abstrait de communica

tion qui correspond au modele mathematique deja existant. Ensuite, nous montrons

comment ce protocole peut etre instancie pour modeliser des attaques de plus haut

niveau, par exemple une attaque d'inondation avec des requetes HTTP et une attaque

d'inondation avec des demandes de reservation des places d'un evenement culturel.

Ces resultats ont ete recemment soumis a publication a la revue scientifique Inter

national Journal of Information Security (publiee par Springer) et font l'objet du

chapitre 4 de ce memoire par articles.

17

C H A P I T R E 4

Article 1: An Exhaustive Study of

Queue Management as a DoS

Counter-Measure

4.1 Introduction

Denial-of-Service (DoS) Attacks have been and continue to be one of the most insid

ious threats on networked computer systems. Over the years, crippling DoS attacks

exploiting vulnerabilities in protocols of software and achieving phenomenal results

with little or no resource investment by the attacker have become less and less com

mon. Instead, they have been replaced by flooding DoS attacks where a moderate

amount of resources are invested by the attacker in order to create a vastly superior

consumption of resources on the targeted system. Protecting against flooding DoS

attacks can be particularly difficult and frustrating. At the heart of this difficulty

is the presence of a constant compromise or trade-off between providing services to

legitimate users of network services, while keeping malicious users at bay. In partic

ular, counter-measures aimed at reducing the presence and effect of malicious users

impact negatively the Quality of Service (QoS) experienced by the legitimate users

of the system.

Very generally speaking, the research and development efforts in DoS attack pro

tection can be divided into two broad categories: a) defensive measures that try to

detect, identify and block malicious uses of the system, and b) those that try to alter

the trade-off between the resources expended by the attacker and the defender, to

the advantage of the latter. The protective counter-measures work described and

analysed in this paper belongs in the second category.

Of course, there are several different types of resources that attacker and de

fender can expend in a DoS attack. On the defender's side, inordinate consumption

18

of the memory or CPU time of the server(s) directly providing a service, or even of

those intermediate proxies and servers providing other necessary subsidiary services

(including protection), can have significant impact on QoS. On the network side,

consumption of large portions of the available channel bandwidth can have similar

quality-decreasing effects, whether it is by directly occupying bandwidth with mali

cious traffic, or by reducing the channel capacity by targeting network equipment or

in-channel protective network appliances (firewalls, proxies, etc.).

While attacks often have significant simultaneous effect on several resources types,

they are normally designed with one single target resource in mind. One of the most

infamous such resource-specific attack is the SYN-flood attack. It is without doubt

the Mother of all DoS attacks. In a nutshell, it consists in flooding the memory that

the targeted server allocates for the TCP/IP stack by forcing it to expend all of the

available slots in its TCP half-open connection table (a.k.a. TCP backlog queue),

i.e. those for which a SYN packet has been received but for which no ACK packet

has been received yet. The significance of SYN-flood attacks is first and foremost

historic, as it has traditionally been the workhorse of large-scale distributed DoS

attacks in the wild. While it is arguably not optimal for the attacker in terms of

ultimate impact on the target, one of the reasons of its success is the fact that very

few attacker resources need to be expended in order to mount a successful SYN-flood.

This is due to the fact that in most circumstances source IP addresses in the SYN

packets can be spoofed (i.e. not correspond to the originating machine); the attacker

vs. defender resource is thus very advantageous to the attacker, no matter what the

impact for the defender is. This situation is somewhat atypical and particular to SYN-

flood, which is why we introduce the notion of a more general connection depletion

attack, in which the targeted resource are slots representing "active" connections in

some abstract connection-tracking table. This general paradigm applies in principle

to several network and application layer protocols with SYN-flood just being one

example amongst many possible flooding attacks of this type. The research presented

in this paper concentrates on these connection-depletion attacks.

For QoS and network engineering reasons that predate and go beyond the need for

protection against connection-depletion DoS attacks, protocol designers and applica

tion developers have included and implemented in their design various mechanisms

for managing the queues containing information about active connections. One of the

most important and prevalent such queue management mechanisms is the assignment

19

of timeout values to individual connections, combined with a queue polling policy that

removes connection entries that have timed out.

At first, it seems intuitive that such a mechanism would provide some level of DoS

protection. Indeed, malicious connections that may have made their way to the queue

and have been abandoned there, will timeout more often that legitimate connections

attempts that make it to the queue. Thus, lowering or adaptively modifying the time

out would seem to help. In particular, having a dynamic timeout, where the timeout

is high when the server queue is empty and the timeout is low when the server queue

is full seems like a good strategy. While this is definitely not a new idea in itself

(versions of it have even been applied to the TCP/IP stack of some commodity Op

erating Systems), relatively little attention has been paid to the quantitative analysis

of how effective this intuitive idea really is against connection-depletion attacks. In

particular, there are several questions about the parameters that should be chosen

(queue sizes, timeout values) and how these queue management policies should be

implemented.

In previous work, we sought to partially address this issue by combining both

mathematical models and simulations (Boteanu et al, 2007a), with laboratory ex

periments (Boteanu et al, 2007b). With this in mind, we considered three types of

methods for adjusting timeout values: the fixed timeout method, and the threshold

and linear timeout adjustment methods. Furthermore, we considered two policies for

enforcing the timeout and removing connections from the queue, the deterministic

and the deferred timeout assignment policies.

This paper is a revised and detailed compendium of the work cited, and extends

previous results in several ways. First, we extended and improved our mathemat

ical analysis of the Markov chain models previously developed. This now allows

us to more efficiently generate theoretical predictions, for a wider range of possible

queue management parameters than previously possible. In addition, we extended the

mathematical analysis to the deterministic policy, and to a newly introduced one, the

Poisson timeout assignment policy. We also added a study of the convergence rates of

the modelled Markov chains, in order to validate the usability of the steady-state ap

proximations used throughout our analysis. Finally, our most significant contribution

concerns our study of the robustness of the various solutions considered with respect

to non-optimal choices of the parameters. In other words, we study and describe the

sensitivity of the queue management strategies to poor or suboptimal choices of the

20

timeout parameters and to varying legitimate and attack traffic rates.

The rest of this paper is organised as follows: in Section 4.2 we provide an overview

of previously related work. We then introduce the connection depletion attacks and

the dynamic timeout strategies in Section 4.3. In Section 4.4 we use Markov chains

to model the previously described attacks and protection strategies only to validate

the model by stochastic simulations in Section 4.5. With all the pieces in place, we

proceed to measuring the performance of the dynamic timeout strategies in laboratory

experiments in Section 4.6. Finally, we conclude in Section 4.7 by sum our findings

and providing directions for future work.

4.2 Previous work

In this section we provide an overview of previous work related to DoS. This topic

has been covered before in detail in several review articles and books. In terms of

generic introductions to the subject, the book Internet Denial of Service: Attack and

Defence Mechanisms (Mirkovic et al, 2004) is aimed at helping network adminis

trators understand attacks and how to act when faced with them. Even an RFC,

RFC4732 (Handley et Rescorla, 2006) has been written to provide an introduction

on DoS attacks to protocol designers. Finally, extensive taxonomies of DDoS at

tack types and counter-measures have been described by Mirkovic et Reiher (2004)

and Douligeris et Mitrokotsa (2004). We refer the reader to any of the above work

for more comprehensive reviews of the topic. The review of previous work covered

here is oriented towards the discussion of connection depletion attacks, and as such

we concentrate on efforts to model, detect and protect against them. We only cover

quickly some of the other related approaches such as collaborative defences, which

are not necessarily specific this kind of attack.

In principle, it is always possible to force the targeted server to expend all available

resources up to the point where it becomes inoperable. However, this could come at

a certain non-negligible cost for the attacker. In some cases, it is more interesting

to consider the effect on the QoS as a function of the effort spent by the attacker.

Alternatively, one can think of the required level of defence resources that must be

spent, in order to maintain a given level of QoS, when the attacker mounts an attack of

a given strength. These trade-offs between attacker vs. defender resources were first

studied and formalised by Meadows (1999, 2001). This framework is, however, not

21

sufficient for measuring the degree to which a protocol is vulnerable to DoS attacks

because of the difficulty of providing concrete cost values for elementary operations

(e.g. blocking a message, computing a digital signature).

Another model has been proposed where continuous Markov chains are used to

analyse the performance of hard-state vs. soft-state protocols (Lui et al, 2004).

A protocol is considered to keep hard-state if the timeout is only used as a fail

safe mechanism. The hard-state protocols, although better performers in perfectly

defined conditions, are more vulnerable to attacks and network fluctuations than the

soft-state protocols.

SYN-flood being the most exploited amongst connection depletion attacks, several

counter-measures have been devised to offer protection specifically to this attack.

These measures try to tip the trade-off between the attacker and defender resources

so that it is not worthwhile for attackers to try to inflict damage with this particular

attack any more. Client puzzles (Juels et Brainard, 1999) and their network layer

extension, network puzzles (Feng et al, 2005) consist in requiring the client to solve a

cryptographic puzzle before the service is offered. Apart from the challenge of making

the new protocol adopted widely, the major drawback of this method is the negative

impact that the heavy computation has on legitimate clients which is even more

substantial if the clients are mobile (laptops or mobile phones). Another approach

to solving the SYN-flood problem is to render the three-way handshake stateless

for the server, by storing state information in the TCP sequence number, method

that is referred to as SYN cookies (Bernstein, 2003; Zuquete, 2002). However, the

T C P sequence numbers do not allow for all the T C P options to be encoded and

the retransmission of unacknowledged messages, as required by the T C P protocol,

is not possible in this context. To cope with these limitations, a lighter version of

the SYN cookies, called SYN cache has been suggested (Lemon, 2002), where some

state information is kept on the server and the rest is encoded in the TCP sequence

numbers. Although this might resolve the issues of the SYN cookies, this is only gives

a small advantage to the server, because memory is still allocated for connections.

The timeout mechanism is implemented in T C P as a fail-safe measure. The intu

ition is that when using a lower timeout, the server will be more resilient to attacks

but tougher to use for slow legitimate clients. If the timeout value cannot be config

ured on the server for some reason, a method of controlling the timeout remotely by

a third-party device has been proposed (Schuba et al, 1997; Nakashima et Oshima,

22

2006; Nakashima et Sueyoshi, 2007). This device would sniffs the network and send

RST packets to the server. It has even been suggested that firewalls should be used as

TCP proxies (Schuba et al, 1997; Ohsita et al, 2005) for the purpose. From the at

tacker point of view, this is equivalent with moving the attacked queue from the server

to the firewall with the side-effect that if the firewall queue is flooded successfully,

none of the protected servers will operate anymore. In addition, this method opens

the door to a table saturation attack as identified in the TCP proxy implementation

by Checkpoint (Noureldien et Osman, 2000). Because a low timeout might have a

negative impact on slow legitimate clients, Microsoft (Microsoft TechNet, 2003) im

plemented a method where a low timeout is used only during an attack. Nevertheless,

the questions of whether lowering the timeout has an impact on legitimate clients,

how to measure this impact, what the optimal timeout values are and what is the

best method for lowering the timeout have not been answered yet. This is where we

focus our efforts.

Other counter-measures consist in trying to evade the attack traffic by imple

menting some measures that the attackers do not expect, for example intentionally

dropping the first SYN packet (Al-Duwairi et Manimaran, 2006) or redirecting legit

imate clients to a different server using a HTTP redirect message. Needless to say,

during a targeted attack these counter-measures can be very easily identified and the

attack can be configured to bypass them. In a different perspective, a secure TCP

protocol was suggested (Ghavidel et Issac, 2007) that would replace the existing TCP

protocol which would have the clients authenticate before establishing connections.

Given the necessary efforts needed for the migration of the IP protocol to IPv6, it is

not reasonable to believe that a secure TCP protocol would be adopted at large scale

in the near future.

Given that the protection against SYN-flood is such a difficult problem, some were

content with detecting such an attack in the first place. In this sense, is was shown

that the number of used slots in the queue is a good SYN-flood attack indicator (Khan

et Traore, 2005). Counting the number of SYN packets and comparing them with

absolute thresholds (Tartakovsky et al, 2006; Siris et Papagalou, 2004), the overall

number of TCP packets (Shin et al, 2005) or with the number of specific FIN (Wang

et al, 2002) or SYN/ACK packets (Divakaran et al, 2006) could also provide a

measure of the attack intensity. However, the performance of these types of detection

algorithms varies depending on the traffic parameters (Beaumont-Gay, 2007).

23

Another attack at the TCP level that captured recent attention is the low-rate

TCP-targeted attack which consists in blocking the TCP flow at specific times so that

the TCP congestion mechanism is activated (Kuzmanovic et Knightly, 2003; Yang

et al, 2004; Shevtekar et al, 2005; Dong et al, 2006). Another low rate attack type

has been suggested for servers handling connections in a serial fashion, which consists

in sending packets at specific times to prevent legitimate connections from entering

the queue (Macia-Fernandez et al, 2007). These low-rate attack types are somewhat

similar to the resonance effect that we will describe in Section 4.6.4. The attack

we deal with is different however, because in our case the server is able to handle

connections in a parallel fashion and the attack does not rely on blocking network

traffic.

A complete different protection approach to modifying the trade-offs consists in

discriminating in some manner the attack traffic and filtering it entirely. First, be

cause most of the SYN-flood attacks make use of spoofed IP addresses, various meth

ods have been developed to detect the use of this technique, for example the recording

of the entry and exit edge routers addresses (Varanasi et al, 2004) or the Hop-Count

Filtering (Jin et al, 2003; Zou et al, 2006). Other counter-measures rely on statistical

methods to detect unusual traffic profiles, based on source address distribution (Fe-

instein et al, 2003), TCP packets arrival times (Cheng et al, 2002), or specific TCP

packets relative frequency (e.g. SYN vs. FIN) (Kim et al, 2006; Ayres et al, 2006).

Propositions have been made for implementing such statistical detection mechanisms

on network processors (Lim et Uddin, 2005). Also, a method for determining whether

the server did not receive the ACK response packet due to network congestion was

suggested by probing the network and analysing the delay in the response (Xiao

et al, 2005). Another suggestion has been made where edge-routers would observe

the number of incomplete handshakes and block the sources that generate too many

of them (Bellaiche et Gregoire, 2007). It is important to note that all the counter-

measures that employ traffic discrimination rely on the fact that the malicious traffic

has at least one distinctive characteristic from the legitimate traffic. Unfortunately,

attackers nowadays make use of botnets, large networks of controlled machines on the

Internet, in order to launch the attacks. In this scenario, it is futile to try to discrim

inate the traffic because the malicious machines can easily mimic the behaviour of

legitimate machines.

Finally, it has been suggested that due to the distributed architecture of the In-

24

ternet, only distributed counter-measures could offer global protection against DDoS

attacks. The first effort in this direction is the RFC2267 (Ferguson et Senie, 1998)

which specifies that ISP should filter all outgoing traffic with addresses not within

their network, measure that would block the IP spoofing technique. Going a step fur

ther in this direction, it is thought that the ISP should implement more sophisticated

detection and filtering mechanisms on their routers to block attacks coming from their

network (Chen et Song, 2005). DefCOM (Mirkovic et al, 2002, 2003; Robinson et al,

2003; Oikonomou et al, 2006) is an overlay mesh proposition in which network equip

ments on the Internet communicate on a secure channel with the purpose of sharing

attack information and lowering attack traffic priority. Other suggestions have been

made (Yang et al, 2005) where the target would send feedback to the routers (called

capabilities), on whether certain flows are to be given priority. Attack traffic would

still get through, but not having obtained associated capabilities, would be be routed

with lower priority. The use of capabilities along with long-term client reputation

can be then used for distinguishing between legitimate and malicious clients (Natu et

Mirkovic, 2007). The SOS architecture (Keromytis et al, 2004) consists in building a

secret routing network using cryptographic hash functions but this has the drawback

of a significant latency increase. Other methods which have to be deployed on routers

consist in identifying from which upstream routers does the attack traffic come from,

and blocking or limiting these routers (Ioannidis et Bellovin, 2002; Zhang et Dasgupta,

2003; Yau et al, 2005). Another method requiring edge router collaboration consists

in having the entry routers send ARP requests to clients initiating communications

in order to prevent IP spoofing (Chouman et al, 2005). Unfortunately, seen that for

political and social reasons, the RFC2267 has not yet been adopted world-wide in

spite of its simplicity, it is very unlikely that other more complex architectures like

DefCOM or SOS are to be deployed on the Internet in the near future. Furthermore,

the collaborative protection measures to date have focused on blocking bandwidth

consumption flooding attacks and are most of the times inefficient against connection

depletion attacks.

In summary, we have seen that there are several types of counter-measures aimed

at solving connection-depletion attacks. However, these solutions are aimed at dealing

with one particular attack in this category which in most cases is the SYN-flood

attack. Unfortunately, these SYN-flood specific solutions might not work on higher

level flooding attacks. This is particularly worrying, as in recent DoS attacks, SYN-

25

flood accounted for a relatively low percentage of the attack footprint (Nazario, 2007).

In particular, a recent case documents the relatively new use of flooding attacks

at higher levels of the protocol stack (Adair, 2008), in this case HTTP. Hence the

development of analysis tools and defensive approaches against generic connection

depletion attacks is needed.

Modifying the logic of the existing protocols or replacing them with new, more

secure ones does not seem to be a feasible option because of the huge migration

effort involved. Also, in theory, collaborative counter-measures seem to be very ef

ficient against bandwidth flooding attacks but their wide adoption is questionable

for non-technical, social and political reasons. If the malicious traffic has distinc

tive characteristics from the legitimate traffic, it can can be detected and filtered.

However, in practice, the traffic filtering techniques can be evaded when attacks are

generated by using botnets. It seems that one of the few options left is thus to mod

ify the internal implementation and parametrisation of protocols and applications on

the targeted servers, so that they can be made more resilient to attacks. This last

method is of particular interest because it is complementary to the use of other fil

tering or collaborative upstream protection mechanisms that might offer some level

of protection.

4.3 Dynamic timeout strategies

In this section we define what attack types we are trying to protect the server from,

and describe the dynamic timeout strategies that might protect against them. In

order to provide a solution as general as possible, we first define an abstract protocol

that we will use for modelling and analysis and show how real-life protocols like TCP

can be instantiated from this abstract protocol to model attacks like SYN-flood or

TCP connection establishment flooding.

4.3.1 Abstract protocol description

Let us consider an abstract protocol defined as usual by a finite state machine, where

the following events generate transitions between the protocol states:

• connection arrival, an entry event for every connection, meaning that the server

received a connection request; If the server has enough resources, it will accept

26

the connection by generating a connection acceptance event internally and then

proceeding with serving the connection. Otherwise, a connection rejection event

is generated.

• connection rejection, an exit event, meaning that due to insufficient resources,

the server dropped the connection upon arrival. No further tracking is made of

the connection.

• connection completion, an exit event, meaning that the client received the re

quired service and that the connection was "closed" gracefully.

• connection expiration, an exit event, meaning that the server tried to offer the

required service but the client did not respond in a timely manner and hence

the connection was dropped. No further tracking is made of the connection.

The protocol state diagram illustrating possible states: connection arrived, connection

rejected, connection accepted, connection expired and connection completed as well

as the above-mentioned events generating transitions between the states is shown in

in Figure 4.1.

Connection arrival Connection acceptance Connection completion

Figure 4.1 State diagram of the abstract protocol

Let us now consider under which circumstances these events can occur, in the

context of legitimate and malicious of the protocol (e.g. for mounting flooding at

tacks). The connection arrival event occurs when either a legitimate or a malicious

27

connection arrives, i.e. connection arrival = legitimate connection arrival V mali

cious connection arrival. A connection is considered served if it was accepted by the

server and it completed or expired. Hence, connection service = connection comple

tion V connection expiration. Again, we make a distinction between the legitimate

and malicious service events, i.e. connection service = legitimate connection service V

malicious connection service. A connection is successful only if the connection com

pletion event is generated. Otherwise, the connection is considered to have failed, i.e.

connection failure = connection rejection V connection expiration.

Usually, the service time is mostly due to the messages travelling back and forward

between the server and the client, on the Internet. The only significant resource that

the server uses is memory, and this, in order to keep track of the connection states. In

this scenario, the connections can and will be served independently and in a parallel

fashion. This might not be the case, however, when the considered server is a heavily

used router with limited bandwidth or a web server with very slow disk speed. In

the latter case, the connections would be served serially and/or influence each others

service times.

4.3.2 SYN-flood attack

We now instantiate the abstract protocol model described earlier for the transport

level protocol TCP, to capture the behaviour of the SYN-flood attack. The connection

arrival event corresponds to SYN messages being received by the server. If the server

backlog queue is full, the connection is rejected, which corresponds to the connection

rejection event. If the backlog is not full, the server adds the connection to the

backlog by generating the connection acceptance event internally. Then, the server

proceeds to service by sending the SYN-ACK message to the client. If the client

replies with an ACK message in a timely manner, the TCP handshake is successful,

which corresponds to the connection completion event in the abstract protocol model.

However, if the client does not respond with an ACK message, the server repeats the

SYN-ACK message several times and then drops the connection by generating a

connection expiration event internally. Figure 4.2 illustrates a possible sequencing of

messages that would trigger the different events at the server.

One of the reasons SYN-flood is so attractive to attackers is because the default

queue size c and timeout Tout values in modern OS are very permissive. Constructors,

28

Client Server

Connection arrival

) Connection acceptance

Connection completion

SXN

Connection arrival

j Connection rejection
(queue full)

^ J 2 V
Connection arrival

) Connection acceptance

) Connection expiration
(timeout)

Figure 4.2 Abstract protocol instantiation for the TCP 3-way handshake

however, often suggest tweaking these parameters to harden the OS. The minimum

SYN packets arrival rate Am that an attacker would have to generate to completely fill

the queue of a server configured with the default parameters is illustrated in Table 4.1

(note that cnx=connections).

4.3.3 T C P connection establishment attack

Similarly to the previous section, we instantiate the abstract protocol model for a

generic application level protocol that uses TCP as a transport layer. We do this

in order to capture the behaviour of an attack that would try to flood the TCP

established-connection queue. In real life, this upper-level protocol could be HTTP,

Table 4.1 Default queue size c and timeout Tout values in popular operating systems
and minimum attack rate Am that fills the server queue

OS
Windows 2003
Linux 2.6
HP-UX 11.00
Solaris 10

c [cnx]
1000
1024
500
128

Tont N
45

180
75

180

Am [cnx/s]
22.2

5.7
6.7
0.7

29

SSH or any other connection-oriented protocol. The connection arrival event corre

sponds to the successful establishment of the TCP connection, due to the three-way

handshake. If the server does not have enough application-level working threads to

serve the connection, the connection rejection event is generated, usually by sending

a RST message to the client. If the connection is accepted, the server starts a working

thread and serves the client with the information required. At the end, the client can

generate a connection complete event at the server side by closing the TCP connec

tion gracefully. If on the contrary, the client does not respond to the ACK messages

that the server sends, the server generates an connection expiration event internally

and drops the connection. A possible sequencing of messages that would generate the

above described events is illustrated in Figure 4.3.

Client Server Client Server

DATA)

Connection arrival
Connection acceptance

Connection completion

Connection arrival
j Connection rejection

(queue full)

DATA

Connection arrival
Connection acceptance

J Connection expiration
(timeout)

Figure 4.3 Abstract protocol instantiation for TCP connections life-cycle

Table 4.2 illustrates the default queue size c and the timeout Tout values in some

of the commonly used server applications on the Internet as well as the minimum

malicious arrival rate Am that an attacker has to generate to completely fill the server

queue. The timeout values indicated in Table 4.2 are enforced at the application

level but depending on the OS that is being used, lower timeout values could also

be enforced at the transport level. Furthermore, an attacker could try to hold the

30

application level connection by sending keep-alive messages regularly, depending on

the protocol that is being attacked.

Let us compare the amount of memory used by the connection queue during

the SYN-flood and the TCP connection establishment flooding. Each used slot in

the SYN-flood attack protocol model, corresponding to a half-open TCP connection,

requires roughly 100 bytes. On the other hand, each slot in the TCP connection

establishment flooding protocol model, corresponding to a successfully completed

TCP connection, requires between 1.5 kB and 16 kB at the TCP level, depending on

the TCP implementation and configuration. More memory may be allocated at the

application level protocol that is flooded.

4.3.4 Ticket reservation flooding attack

We take the previous examples of resource exhaustion attacks one step further and

we illustrate how the same model can be instantiated to capture the behaviour of the

server during a higher-level attack, in this case against a ticket reservation application

on the Internet. As we did in the previous section, we illustrate a possible sequencing

of messages that could generate the events considered in the abstract protocol in

Figure 4.4. In this case, the connection arrival event corresponds to a client deciding

to buy a ticket by clicking on the buy button. If there are places still available for the

selected date and event, a place is temporarily reserved for the client, by generating

the connection acceptance event internally. A web page is then sent to the client

inviting it to complete the payment. If the payment is completed in a timely manner,

the connection completion event is generated and the reserved place is permanently

assigned to the client. However, the reservation is only held by the application for

a limited amount of time, usually several minutes. If the client does not complete

the payment during this interval of time, a connection expiration event is generated

Table 4.2 Default queue size c and timeout Tout values used in some popular server
applications and minimum attack rate Am that fills the server queue

Application/Protocol
Apache 2.0 / HTTP
IIS 6.0 / HTTP
IIS 6.0 / FTP
Cisco SIP Proxy 2.0 / SIP

c [cnx
150

8000
100000

20

^out S

300
120
120

0.005

Am [cnx/s]
0.5

66.7
833.3

4000.0

31

and the temporary reservation is discarded, making the place available to other users.

For example, if for a specific event there are 10000 available places (c) and each user

is allowed 5 minutes (Tout) to complete the payment, a malicious user generating 34

reservation requests per second (Am) would block all the 10000 places, for as long as

it would want.

Client Server Client Server

-i&77>

Vcket. •Pbp Connection arrival

J Connection acceptance

to*****
Php

HTTP

n'ck^pT^

Connection
completion

no mo^P
laces

Connection arrival

J Connection rejection
(queue full)

-522? lea

Connection arrival

) Connection acceptance

& & &

) Connection expiration
(timeout)

Figure 4.4 Abstract protocol instantiation for a ticket reservation attack

4.3.5 Legitimate and malicious traffic distributions

In this section, we discuss the assumptions and simplifications that we make on

the distribution of arrival times of protocol transition events, i.e. the legitimate and

malicious traffic distributions.

Legitimate traffic. We will consider that all legitimate incoming connections are

generated by a Poisson process, i.e. the inter-arrival times are independent of each

other and exponentially distributed. This assumption is made by other DoS related

research (Mirkovic et al, 2006; Cheng et al, 2002) and is justified by the fact that

connection arrivals, just like telephone calls, are triggered by humans acting indepen-

32

dently. We are aware of the day of week and time of day legitimate traffic variations.

However, we make the simplification that the legitimate traffic rate, Aj, is constant

within the time scale of queue management attack counter-measures. We will, how

ever, analyse the sensitivity of the attack counter-measures to traffic rate variations

in Section 4.6.6.

In most cases, the serving speed of legitimate connections, //i, depends only of

network transit times but in some cases user interaction is also a factor. It has been

shown that because of the network queueing algorithms, all the IP packet traffic tends

toward a Poisson process as the load increases (Cao et al, 2001). We will make the

supposition that the network is heavily used and hence connections completion events

are generated at exponentially distributed intervals of time from the corresponding

connections arrival events, with speed //c.

Malicious traffic. While we model legitimate arrivals as a Poisson process, this is

not general for attack traffic as the attacker is free to use whatever strategy it wants.

In order to be able to build a simpler model that we could analyse mathematically,

in part of our work, we make the simplification that the malicious arrival traffic is

also generated by a Poisson process, with rate constant in time, Am. In Section 4.6.4

we analyse the robustness of this model by stochastic simulation and laboratory

experiments for attacks with a different traffic distribution, where packets arrive in

bursts of various sizes and at various intervals of time. Moreover, the malicious traffic

might or might not be distinguishable from the legitimate traffic. For our measures,

and without loss of generality, we consider that the malicious and legitimate traffic

are indistinguishable. If a distinction between the two could be made, a filtering

counter-measure might then be used to prevent all or some of the malicious traffic

from reaching the server. Our method is complimentary to such a technique and can

be used to handle all the residual attack traffic, unfiltered by upstream defences.

Concerning the malicious traffic service speed, //m, the strategy of the attacker is

to exhaust the server resources using the smallest effort possible. This is achieved

by generating the connection arrival events and then abandoning the communication

without any notice to the server. Malicious connections will eventually all expire and

generate connection expiration events at Tout intervals of time from the connection

arrival events.

33

4.3.6 Timeout adjustment methods

Apart from increasing the queue size which is limited by the available memory, the

only parameter than can be adjusted at the server side, is the timeout that a connec

tion is granted before expiring when the client does not respond. Ideally, we would

like to adjust the timeout on a per-connection basis, by setting a very low, restrictive

timeout to malicious connections and a very high, permissive timeout to legitimate

connections. Unfortunately, as discussed earlier, the server is unable to distinguish

between legitimate and malicious connections. With this in mind, the most obvious

indicator that can be used for adjusting the timeout is the number of connections in

the queue. Therefore, the timeout adjustment methods that we analyse are:

A. The traditional fixed timeout method, where the timeout Tout is constant, re

gardless of the queue occupation. This is the classical method that is widely

used in network equipments and protocol implementations.

B. The threshold method, where the timeout alternates between two fixed val

ues, T0 and Ti, as the number of connections in the queue crosses a predefined

threshold. This adjustment method is not new and is already implemented in

the TCP stack of some OS, e.g. Microsoft Windows Server 2003 (Microsoft Tech-

Net, 2003).

C. The linear method, a straightforward generalisation of the former that we in

troduced in (Boteanu et al, 2007a), where the timeout value is determined

according to a linear function depending on the number of connections in the

queue, with two predefined empty-queue T0 and full-queue Ti timeout values.

Figure 4.5 illustrates how the timeout varies as a function of the queue occupation

for the fixed and dynamic methods.

4.3.7 Timeout assignment policies

We established in the previous section that the server is going to adjust the tolerated

timeout value according to the queue occupation. However, we still have to define

how these timeout changes are going to affect connections. The question that we

need to answer is what happens to a connection if the timeout tolerated by the server

changes while the connection is in the queue. To address this issue, we introduce two

policies for assigning the timeout values to connections:

34

i

Constant
timeout

T
im

eo
ut

Fixed timeout
L

Empty Full
Queue state

Threshold timeout
n

Empty-queue
timeout

+->
3
O
<u

s
Full-queue

timeout
Threshold "
Queue state

Linear timeout
a

Empty-queue
timeout

1
s

Full-queue
timeout !

Empty Full "
Queue state

Figure 4.5 Fixed, threshold and linear timeout adjustment methods

I. The deterministic policy, where connections are assigned an expiration time

at the moment where they enter the queue. If by the expiration time the

connection has not left the queue, it is dropped. Because for each connection

the past (queue occupation at arrival) is taken into account, this policy is not

memory less.

II. The deferred policy, where connections are dropped only if they have been in

the queue longer than the current timeout. When the server transitions from

a permissive state, with a high timeout, to a more restrictive state, with low

timeout, it abruptly drops the tolerated time to complete to the low timeout

value. This causes the oldest connection in the queue, that would expire under

the new low timeout value, to be dropped instantly. We call this particular

behaviour the abrupt-tolerance-drop effect. However, if the server transitions to

the same state but from a state with the same low timeout or from a state with

a lower timeout, no connection is dropped instantly after the transition because

the server is at least as permissive as it was in the previous state. Clearly, the

behaviour of the server depends on the previous state and thus does not behave

as a memory less process.

The deterministic and deferred policies take the timeout into account at the con

nection arrival and at the connection expiration, respectively. These policies could

easily be implemented in an OS TCP/IP stack or on network hardware. However,

they have the disadvantage that they are not memoryless, which makes them difficult

to evaluate mathematically. For this reason, we introduce in this paper a third policy,

35

who behaves in a memoryless fashion:

III. The Poisson policy, where connections are always dropped at the same rate,

that depends on the queue occupation. This corresponds to a Poisson process

because the history of the previous server states has no influence on the drop

rate.

Intuitively, the Poisson policy would correspond to the server using "relativistic"

clock speeds in each state for keeping track of the connection ages. For example, let

us suppose that each connection is always allowed the same amount of time before

expiring, say 1,000 seconds. In a particular state where the tolerated timeout value is

Tout, the speed of the server clock would be such that these 1,000 seconds would pass

in exactly Tout seconds of "queue time". In another state with T'0Xlt < Toui tolerated

timeout, these same 1,000 seconds would pass "quicker", i.e. in Tout "queue time"

seconds. Although this policy satisfies the memoryless property, it does not have a

straight-forward implementation, as opposed to the deterministic and the deferred

policies.

When coupling a timeout adjustment method with a timeout assignment policy we

obtain a timeout strategy. Note that for the fixed timeout method, all the assignment

policies have the same effect, because the timeout never changes.

4.3.8 Performance metrics

We are now interested in defining the performance metrics that will allow us to eval

uate the QoS perceived by the clients when using the dynamic timeout strategies.

Depending on the communication type that is taking place between the client and

the server, several measures can be considered, for example the delay, jitter and per

centage of lost packets as well as the duration of transactions (Mirkovic et al, 2006).

However, in our case the connections are handled in parallel and in an independent

fashion, the service time being due solely to the round-trip time (RTT). Hence, from a

client perspective, the only significant measure for an individual connection is whether

it completed of whether it failed, regardless if that was by expiration or rejection.

Ideally, we would like to measure the transient probability 4>(t) that the connection

arriving at time t at the queue fails, which is defined as the probability for the

connection to be rejected (t>T(t) or to expire (f>e(t), i.e. </>(£) = 4>v(t) + (/>e{t), since these

are disjoint events. Let us note with nss the number of connections that arrive before

36

the queue is stable. Because the transient behaviour of the queue is difficult to predict

when evaluating the dynamic timeout strategies analytically, we measure the average

connection fail probability $ for all connections i that arrive when the queue is stable,

i.e. i > nss.

^j _ i=nSB+l

n - {nss + 1)

where Tj is the arrival time of the ith connection. In order for this value to be an

accurate estimation of the probability of a connection failing, the queue must become

stable rapidly, an assumption that we explore in more detail in in Section 4.5.3.

On the other hand, when evaluating the performance of the timeout strategies

using stochastic simulations and network experiments, we measure the percentage

(p of legitimate connections that fail during the attack and average this value over

several runs.

Finally, although the average fail probability <& and the percentage of failed con

nections <p are the natural measures to take because of their straight-forward decom

position into the expired and rejected components (i.e. $ = $ e + $ r ; ip = ipe + ipr),

when comparing the performance of different strategies, we will look at the comple

mentary measures, 1 — $ and 1 — ip, which represent the average success probability

and the percentage of successful connections, respectively.

4.4 Mathematical model

In order to evaluate the previously defined performance metrics we model the queue

of a server implementing the abstract protocol as a Birth-Death Markov chain with

c states. Each state Ek represents that there are k connections in the queue. Let us

analyse the timeout strategies in the light of the Markov chain model.

4.4.1 Fixed timeout method

The connection arrival rate is the same for all states Ek, i.e. A(fe) = A. As discussed

earlier, we suppose that both legitimate and malicious arrivals are generated by in

dependent Poisson processes. Hence, the overall arrival rate A is equal to the sum

(4.1)

37

of the legitimate and malicious arrival rates, Ai and Am, respectively. Being the sum

of two Poisson processes, the overall arrival process is a Poisson process as well, and

does not depend on the server state:

A« = A = ^ + Am. (4.2)

The speed with which a legitimate client would accept the service offered by the

server and generate a legitimate connection completion event is /ic. However, these

type of responses that would arrive after the timeout elapses are ignored by the

server with legitimate connection expiration events being generated instead, when

the timeout elapses. Therefore, the probability distribution function (PDF) of the

legitimate connection service time Gi(t) has the form of an exponential distributions

for t smaller than the timeout Tout followed by a Dirac delta function 5(t) in Tout.

The weight of the Dirac delta p\e is so that the CDF of the service time is 1 after Tout

and represents the probability that a legitimate connection expires after entering the

queue. The expiration has to arrive after the timeout, which causes the Dirac delta

to be placed infmitesimally close to Tout, in J ^ t :

{ ace-1^ t < Tout
+ S(t-T+JPle (4.3)

0 otherwise
where

/•oo

pie= / nce~tllcdt = e-T°^c (4.4)
J T0ut

The mean service time for legitimate connections is:

h 4 / tGi(t)dt = -— (4.5)
JO flc

In order to exhaust the server resources, malicious clients never generate connec

tion completion events. All the malicious connections that get accepted in the queue

leave the queue at timeout by expiring, i.e. tm = Tout.

Knowing the mean service time of both legitimate and malicious connections, we

calculate the overall mean service time. During an interval of time At, out of the

XAt connections that arrive at the server, only a number a are accepted. These are

38

PDF

a

X>

p

CDF

Time Time

Figure 4.6 Legitimate service time PDF and CDF for the fixed timeout method

a

X)
p

PDF

1

CDF

Time Time

Figure 4.7 Malicious service time PDF and CDF for the fixed timeout method

39

the connections that will make a difference for the overall mean service time during

At. Out of the a connections, a\ are legitimate and am are malicious. The proportion

of legitimate and malicious connections that are accepted is equal to the proportion

of legitimate and malicious connections that arrive at the queue, due to the arrivals

being Poisson processes, i.e. a/ = a\\/\ ; am = aAm/A.

The mean service time t during the interval At is equal to the average of the

legitimate and malicious service times weighted by the number of legitimate and

malicious connections that enter the queue during this interval.

r . OJI am Mti + \mtm . .
t-t\ K m — = . , . (4.6)

a a X\ + Am

The mean connection service speed (p = 1/i) is equivalent to the mean service

rate for an individual slot:

^ A 1 (l - e - ^ ^) / A (c + r o u t A m { • ' >

The load of an individual slot p, defined as the arrival rate divided by the slot

individual service rate, i.e. p = X/p, becomes:

p = Ai(l - e-™)/nc + ToutAm (4.8)

Because in the state Ek there are k slots that are occupied and all k connections

in these slots are served independently in a parallel fashion, the overall service rate

p^ in this state is equal to the mean connection service speed p multiplied by the

number of connection in the queue k:

p{k) = kp (4.9)

The model we obtain is known as M/G/c/c in Queue Theory and is illustrated

in Figure 4.8. It is a Birth-Death Markov chain with Poisson process distribution

arrivals (M), general distribution departures (G), capacity c and c slots that allow

for connections to be served in parallel. This is a classical model for which the steady-

state probability of the server to be in state Ek, meaning that k slots in the queue

40

are in use p^, is known:

i=0 A* (*+l)
(4.10)

with

p(o) =
1

c fc-1 , (i)

En
fc=0 i=0

(4.11)

.(*+i)
K

When the server achieves steady state, it means that the probabilities that various

server states are repeated will remain constant.

A (0) A (1) A (2) A (3) A (c-l)

dOCi' ID
.(!) .(2) ,(3) ,(4) Ad

flK ^ flx Hy ' fji

Figure 4.8 Markov chain queue representation for the fixed timeout method

The steady-state probability that a server queue with c slots is full is known as

the Erlang B loss function:

n
B(c) i=0 V (i+l)

c fc-1
(4.12)

k=0 i=0 /xv

Note that in our case, the probability of the server being in state Ec is equivalent

to a server with c slots being full (p^ = B(c)) but the probability of the server

being in state E^ is not equivalent to a server with k slots being full (p^ ^ B(k)).

The previous equation can be expressed in a simpler recursive form (Jagerman et al,

41

1997):

B(c)-1 = J^B(c-ly' + l • B{ti)-* = 1 (4.13)

We can now express (4.10) and (4.11), which are computational expensive to

evaluate as a function of (4.12):

P(k) = c-7^' (4-14)
c l \W

B(c)
• l

11 „(m)
i=k

Because the timeout is fixed, the arrival rate does not depend on the state k and

the service rate depends linearly on the state k, as described in (4.9). We can thus

solve the recurrence in (4.13):

B(c)_, _ f !r(^M (415)

where T(a,z) is the upper incomplete gamma function, i.e. T(a,z) = f°° ta~1e~tdt.

We insert (4.15) in (4.14) and obtain:

y ePT(c + l,p) K '

After steady state is achieved, the probability p^ that the queue reaches the

state Ek in the future remains constant and is described by (4.16). Because the

arrivals follow a Poisson process and are thus independent, the average probability

of connections that arrive at the queue after the steady state is achieved to find the

queue in state Ek is equal to the steady-state probability of the queue being in state

Ek- Finding the queue in state Ec is equivalent to the connection being rejected.

Hence, the average probability of a connection that arrived after after steady state to

be rejected <E>r is equal to the probability of the queue being full at steady state:

$ r = p(c) (4.17)

Similarly, the probability of a connection that arrived after the steady state is

achieved to expire $ e is equal to the steady state probability that the queue is not

42

full and the connection is accepted (1 — p^) multiplied by the probability that a

legitimate connection that entered the queue would expire p\e:

$e = (l-p^)ple (4.18)

As described earlier, the only significant performance measure is the probability

that a legitimate connection that arrived after the steady state is achieved fails (<&),

which is equal to the probability that the connection that arrived after the steady

state is rejected ($r) plus the probability the connection that arrived after the steady

state expires ($e)-

„c
$ = $r + $ e = P - (1 - e-Tout^c) + e - T o u t „ c / 4 1 9 N

ecr(c+l,p)

where p, the load of an individual slot is given by (4.8).

4.4.2 Threshold timeout method

The threshold timeout method is an extension of the fixed timeout method. Instead

of using a fixed timeout value, two timeout values are used. Initially, when the queue

is empty a high timeout value T0 is used. Whenever the queue occupation is greater

than a certain threshold S, a lower timeout value T\ is used.

(k) (T0 k<S / ^
T0

(S = { (4.20)
I Ti otherwise

The way a connection will be assigned a timeout value varies with respect to the

policy that is used.

Threshold Poisson timeout strategy

Although the Poisson policy does not have a straight-forward implementation, we

choose to analyse it because of its modelling simplicity. The results obtained in this

section will be a first step to analysing the more complex deterministic and deferred

policies. When enforcing the Poisson policy, the service rates in the states E\ to E$

are the same as those of a server with a fixed timeout method and with a timeout

value of T0. The service rates in the states E$+i to Ec are the same as those of a

43

server with a fixed timeout method but with a timeout value of Ti

M
(k)

= <
tik) k<S

fi\ otherwise
= <

k/J-0 k < S

k/j,i otherwise
(4.21)

where //0 and Hi, the mean service speeds before and after the queue reaches the

threshold are as described in (4.7) for timeout values of T0 and Ti, respectively:

Mo =
Ai + AE

^{l-e-^/nc + ToK
(4.22)

Mi =
Ai + Ar

A l (i - e - T 1 M c) / ^ c + r1A r
(4.23)

Arrival rates do not depend on the state E^ the server is in and are the same as

in (4.2):

\W = A = A, + A: 1 - r A m
(4.24)

Figure 4.9 illustrates the model we obtained. This is a Birth-Death Markov chain

with server state dependent service rates.

A(0) A d) A(S-1) ^(5) ^(5+1) A(c-1)

<0£-30£
Mo Mo

. . , (5+1) (5+2)
Mo Mi Mi

Figure 4.9 Markov chain queue representation for the threshold Poisson timeout strat
egy. Service transitions from states E$+i to Ec are illustrated with thicker lines
because in these states the service rates are higher due to the shorter timeout

We apply the same reasoning described in (4.13) and (4.14) for calculating the

steady-state probabilities. As one would have expected, the average probability of a

legitimate connection arriving after the steady state is achieved to be rejected <&r is

44

equal the probability of the queue being full at steady-state, just like in the case of

the fixed timeout method:

$ r = p{c) (4.25)

However, the average probability of a legitimate connection that arrives after

the steady state is achieved to expire depends not only on the queue occupation

distribution at steady-state but also on the transitions that the queue will make after

the connection arrived. Because we are not able to evaluate these transitions, we will

make the approximation that at steady-state the queue transitions that occur during

the service time of connections place the queue is states with similar timeout values.

Hence, according to this approximation which we refer to as the steady-state (SS)

approximation, the average probability of a legitimate connection to expire depends

only on the queue occupation distribution at steady-state:

$e = f / t f (4-26)
k=0

where p^k\ the probability that the server is in state Ek at steady state is:

117^+1)
P(fc) = r U „ (4-27)

j=0 i=0 ^

and p[e , the probability that a legitimate connection that enters the queue expires

under the timeout T0
(J is evaluated similarly to (4.4):

(k) }e~T^ k<S t x

Pie = { _ (4-28)
e Tl/ic otherwise

Note that we did not use the Erlang B loss function for expressing the steady-state

probabilities as we previously did in in Section 4.4.1 in (4.14). Because the service rate

described in (4.21) changes at the threshold state Es, the recursive representation of

the Erlang B loss function is no longer easy to solve. We did however use the recursive

45

representation when computing the steady-state probabilities numerically.

Once again the only significant performance measure is the approximative prob

ability that a legitimate connection arriving after the steady state fails ($) which

is equal to the probability that the connection is rejected ($r) plus the approxima

tive probability the connection expires ($e)> f° r connections arriving after the steady

state.

= P(0)T^+^(0)e"To ' 'cE^+^0)e"Tl/ic E I T T W (4-29)

with

^ = " ^ 1 — (4-30)

2-^ Jchib 2^i tok^o+
kki^^

and no and /ii, the service speeds before and after the threshold as described in (4.22)

and (4.23), respectively.

Although the performance of the Poisson policy is relatively easy to compute by

simply extending the fixed timeout method, it is difficult to implement this policy

in a queueing system. However, the results obtained in this section will prove to be

useful when compared to those of the deferred policy, which we expect to be very

similar.

Threshold deterministic timeout strategy

The deterministic policy consists in assigning a timeout right when the connection

enters the queue. For example, if the server is in state E^ and a connection is accepted

in the queue, the server passes in state E^+\. The connection is thus assigned a

timeout of ?oUt
+ . If the connection does not complete before the assigned timeout,

it is dropped by the server. Because the deterministic policy consists in using for

each connection a timeout based on the past state of the server, when the connection

arrived, it breaks the memoryless property of the system. In this section we try

however to make several approximations that allow us to use the same model we built

earlier in order to get an insight into the performance of the deterministic policy for

46

a threshold timeout method.

Consider the server queue having each slot numbered, from 0 to c. When a

connection arrives it is placed on the slot with the lowest id number. Let us suppose

there are n connections in the queue, making slots 0 to n to be occupied. When a

connection being served on slot k leaves the queue, connections on slots k + 1 to n

translate on position to the left, thus leaving no empty slots in the middle of the

queue. This is without loss of generality because the connection positions in the

queue are merely labels, all connections being served in parallel and independently.

With this in mind, the overall service rate when the server is in state Ek is the sum

of the service speeds of each connection:

//(fc)=//|1|+Af|2| + -+^ | fc | (4.31)

where n\i\, the service speed of the connection that occupies slot i in the queue depends

on the past state of the server when this connection arrived A^:

V\i\ = <
a0 Au\ < Es

^ " (4.32)
Hi otherwise

Evaluating (4.32) requires being able to tell what was the state of the server when

each of the connections currently present in the queue arrived. Clearly this is not

a memoryless model. To get past this lack of information we make the very coarse

approximation that the connection on slot i arrived when the server was in state Ei-i

and has thus been assigned the timeout value T0„t.

V\i
A*o i < S /

(4.33)
/xi otherwise

Intuitively, the approximation would hold only if the queue acted like a First In, Last

Out (FILO) queue, meaning that only the connection placed last in the queue would

expire or complete. Hence, we refer to this approximation as the FILO queue ap

proximation. This is obviously not the normal behaviour of a server and we will

measure the error generated by this approximation in Section 4.6.3. By inserting

47

(4.33) into (4.31) we obtain the approximative service rate when server is in state Ek:

fx{k) =/2|i| +/i|2| + ... + p>\k\ = Af
0min(A;, S) + ^(k - min(k, S))

kun k < S
P (4.34)

S/J,Q + (k — S)/J,I otherwise

We can now calculate the approximative steady-state queue occupation distribu

tion similarly to 4.27:

fc-i ui) n //(*+!)

**' = ̂ ^ r <435)

j = 0 i=0 ^

Just as we used the steady-state queue occupation probabilities to evaluate the

performance of the Poisson policy, so can we use the steady-state queue occupation

approximative probabilities to evaluate the performance of the deterministic policy.

The average probability for a legitimate connection arrived after the steady state is

achieved to be rejected is the steady-state probability that the queue being full:

$ r = p(c) (4.36)

The average probability for a legitimate connection arrived after the steady state is

achieved to expire is the steady-state probability of the queue being in a non blocking

state (Ek; k < c) multiplied by the probability of a legitimate connection arrived in

state Ek to expire:

*e = | > (f c) p L f c) (4-37)
fc=0

48

A legitimate connection fails either if it is rejected or if it expires:

"1 T 1 /Q\ _7n// \—^ ^

where

p(o) = * (4>39)

£ *ss+
fc5+1 (^ J?+1 5/io+(i-^iJ

Threshold deferred timeout strategy

When enforcing the deferred policy, the timeout is not assigned to a connection when

it arrives at the server. Instead, the arrival time is recorded and if at any point the

arrival time of a connection plus the current timeout is greater than the current time,

the connection is dropped from the queue. If more than one connection satisfy this

condition, only the oldest one will be dropped. Afterwards, the current timeout is

re-evaluated based on the new server state and the process continues.

As opposed to the deterministic policy, the deferred policy does not have a strong

dependence of the past. The connections expire regardless of the queue occupation

when they arrived. When the server is in state Ek,k < S the connections are served

with mean service speed JIQ. Otherwise, the connections are served with mean service

speed Hi. However, there is an exception to this rule. When the server transitions

from state Eg to state Es+\, the timeout is suddenly lowered from To to T\ which may

cause several connections to have an age greater than what the server tolerates under

the new, shorter timeout T\. We call this the abrupt-tolerance-drop effect. Thus, if

a connection is older than the short timeout Ti but is younger that the long timeout

T0 then this connection gets dropped instantly when the server transitions from E$

to Es+i. We required the connection to be younger that the long timeout T0 because

otherwise the connection would have had to expire before the transition. Hence, the

service rates in the states E\ to Eg are the same as those of a server with a fixed

49

timeout method and with a timeout value of To. The service rate at threshold (us),

when the server is in state Es+i, is something that we need to investigate. The service

rates in the states Es+2 to Ec are the same as those of a server with a fixed timeout

method but with a timeout value of 7\. The model is illustrated in Figure 4.10.

M (*) -

kfiQ k < S

(S+l)ns k = S + l

kfii otherwise

(4.40)

A (0) A (D

c&
Mo (1) Mo

(2)

^(S-1) A (5) A (5+l) A(c-1)

Figure 4.10 Birth-Death chain queue representation for the threshold deferred timeout
strategy. Service transitions from states Es+2 to Ec are illustrated with thicker lines
because in these cases the service rates are higher due to the shorter timeout. The
service transition from the state Es+i is illustrated with a dashed line because it is
not memoryless

We now look at the connection service speed /is which applies when the server is

in state Es+i-

Legitimate connections. If previous to being in state E$+i the server was in state

Eg then the abrupt-tolerance-drop effect that we discussed earlier occurs. Therefore,

the probability distribution function (PDF) of the legitimate connection service time

has the form of a Dirac delta in 0+ followed by an exponential distributions for t

smaller than Ti followed and another Dirac delta in T*. The first Dirac delta has

weight pa which represents the probability that a connection is older than T\ but

younger than T0, making the connection expire after the transition. The expiration

arrives instantly after the transition, which causes the Dirac delta to be placed on

the positive side of the axis, infinitesimally close to 0. The weight of the second

Dirac delta {p\e) is so that the CDF of the service time is 1 after Ti and represents

50

the probability that a legitimate connection would not expire instantly but would

however expire under timeout Tx. Once again, the Dirac delta is placed at value

infinitesimally greater than 7\ signifying that the connection will expire after the

timeout. Figure 4.11 illustrates the service time PDF and CDF.

G^s+1\t) = S(t-0+)pli + S(t-T1
+)ple +

lice-^ t<Tt

0 otherwise
(4.41)

Because the service rate follows a Poisson process distribution and is thus mem-

oryless, the conditional probability that a connection is older than the timeout Ti

knowing that the connection is still in the queue, i.e. is younger than T0, is evaluated

as:

Pa
Tp-T,

To

and pie satisfies the condition that the service time CDF is 1 in Ti:

Pie 1 - [' G\S-S+1\t)dt = e
Jo

- 0-T^C _ To-Ti
To

(4.42)

(4.43)

-8
P

PDF

X)

o

CDF

PK

Time Time

Figure 4.11 Legitimate service time PDF and CDF after transition Es —> Es+\ for
the threshold deferred timeout strategy

51

The mean service time for legitimate connections is :

t (S->S+1) A
1 — tG (S-S+l) (t)dt

l - e - ^ ^ T ^ - T o)

He To
(4.44)

If previously to being in state Es+i the server was in state Eg+2 then the abrupt-

tolerance-drop effect does not occur. The service time PDF and CDF are illustrated in

Figure 4.12. Similar to the fixed timeout method, the mean service time for legitimate

connections is:

t
(S+2^S+1)

t (S+2) 1 - e~Tl^

He
(4.45)

PDF

o

CDF

Time Time

Figure 4.12 Legitimate service time PDF and CDF after transition Es+2
the threshold deferred timeout strategy

Es+i for

Finally, the legitimate connection service speed in state Es+i is equal to the

average between the legitimate connection service speed when the previous state was

Eg and that when the previous state was £'5+2 weighted by the probabilities of the

server previously being in states Es and Es+2, p(s~~*s+1^ and p(s+2->s+i) ̂ respectively.

His p(S—S+l) _|_ p(S+2^S+l)
(4.46)

The difficulty of solving (4.46) comes from evaluating the probabilities p(s~*s+1)

52

and p(s+2-+s+1)t "We leave this problem aside for now as we will later solve it by

introducing an approximation.

Malicious connections. Let us apply the same reasoning we used for the legiti

mate connections for evaluating the malicious connection service speed in state Es+i-

Figure 4.13 illustrates the service time PDF and CDF when the previous was E$, the

PDF being defined by:

G^s+1\t) = S(t - 0+)pmi + 5{t - n)p» (4.47)

with

Pn
T o - 7 i

To

and with pm e so that the CDF of the service time is 1 in ft:

Pme = 1 f1G^s^(t)dt = ^
Jo i o

(4.48)

(4.49)

l

& Pme
a o -a

Pr
ob

ab
ili

ty

3

k

k

i V

PDF

£•

O

To Tx
Time

CDF

Time

Figure 4.13 Malicious service time PDF and CDF after transition Eg —> E$+i for the
threshold deferred timeout strategy

53

The mean service time for malicious connections becomes:

m)2

Jo Io
(4.50)

Just as in the case of the legitimate connections, if previously to being in state

Es+i the server was in state Es+2 then the abrupt-tolerance-drop effect does not

occur. We illustrate the service time PDF and CDF in Figure 4.14. The malicious

service time in this case is simply Ti. Overall, the malicious connection service speed

in state Es+i is :

Mms —
p\

.(S-+S+1) /A^S+l) , n(S+2^S+l)]/t + p^ >A\
p(S—S+l) + p(S+2-S+l)

(4.51)

PI

o

PDF

Time

•8
p

CDF

Time

Figure 4.14 Malicious service time PDF and CDF after transition Es+2
the threshold deferred timeout strategy

Es+i for

We can now combine the legitimate and malicious mean service times in state Es+\

in order to express the overall mean service time in state E$+i, as we did in (4.6):

ts =
mS

Ai + Am
(4.52)

The service rate depends on the previous server state. In order to evaluate (4.52)

we require the probabilities that the server was previously is in states Es and Es+2,

54

respectively. We conclude that when in state E$+i, the server is not memory less. The

recursion between the transient state of the chain and the service rate in state Es+i

is not trivial to express due to the complex nature of our model, let alone to solve.

We are left with no choice but to make the following approximation: when the server

transitions between states E$+i and Eg, the previous state of the server was Es- The

approximation seems natural in the sense that if a transition Es —» Es+i occurs, it is

probable that a transition Es+i —» Es occurs right after due to a connection expiring

because of the abrupt-tolerance-drop effect. However, if after a transition Es —> E$+i

no connections expire and a new connection arrives placing the server in state Es+2,

the server has escaped the attraction point at Es+i and the queue will probably fill

up some more, making transitions Es+2 —> Es+i less probable. We will refer to this

approximation in the future as the Attraction Point (AP) approximation. With this

in mind, the estimated legitimate and malicious service speeds at threshold become:

1
Vis =

TQHC

(5^+1) T Q (1 _ e-ToMc) + T^iT, - T0)
(4.53)

/^mS — (S—S+l)
t

To

(Ti)s
(4.54)

Having approximative values for the service speed at threshold us we can now

calculate the approximative steady-state queue occupation distribution similarly to

the Poisson policy, as described in (4.27):

P (*) -

fe-i

n
i=0

A(0

» (*+l)

c i - i wi) En-
= <

k\f4

p(o)_xs+i

j=0 t=0 A*' i+l)

(s + iMns

k-S-1 I k\f4fiSfit

k<S

k = S+l

otherwise

(4.55)

55

where

P(0) = ^ : (4.56)
y . Xk XS+1 y ^ Afc

and

T0fj,c\ , .

^S ~ XM1 - e - ^ c) + X.ToficiT, - To) + A ^ T ? l " '

Although by having the approximative steady-state queue occupation probabili

ties we could apply the same SS approximation that we used for the Poisson policy

in (4.26), we choose not to follow this path. Trying to evaluate the performance of

the deferred policy in this way means using both the AP and the SS approximation,

which would only amplify the errors. However, (4.55) is useful because it allows us

measure the resemblance of the steady-state queue occupation probabilities obtained

when using the deferred policy with those obtained when using the Poisson policy,

which we suspect to be very similar.

4.4.3 Linear timeout method

The linear timeout method is a straight-forward extension of the threshold timeout

method, where instead of lowering the timeout when the queue occupation is greater

than a certain threshold, the timeout is lowered with a small increment every time

a connection enters the queue. When a connection departs the queue, the timeout

is increased with the same small increment. When the queue is empty, an initial

timeout value T0 is used. When the queue is full, the timeout becomes T\. The

dynamic timeout in (4.20) becomes:

(fc) _ fc(Ti - Tp)
1 out — J o H (4.58)

Let us now analyse the policies for assigning the dynamic timeout to connections.

56

Linear Poisson timeout strategy

The Poisson policy for assigning timeouts is very similar to that of the threshold

method, except that for the linear method the timeout in different for every state.

The same reasoning used in Section 4.4.2 applies for evaluating the performance of

the linear Poisson strategy. However, because the timeout is different in every state,

we cannot group the terms of the performance equation together as we did in (4.29):

$ = $r + $, e
C / , /„ _T>(*0,

^nr(1"^"")+^,0+
+p(«» £ ,-•&. n fA ' (1 - e 'T°S ' ") + l*>An) (4.59)

fe=0 i = l v ^ C

with

P{0) = i u / ^ r- (4-60)

fc=0 i=l V ^c

Linear deterministic timeout strategy

When analysing the threshold deterministic strategy we established that the service

rate is history dependent. The same is the case with the linear deterministic strategy.

The overall service rate when the server is in state E\. is:

/̂ (fc) = ^|i|+A«|2| + - + i"|fe| (4.61)

The service speed of the connection that occupies slot i in the queue (^\i\) depends

on the server state when the connection arrived at the queue (A\i\). Without loss of

generality, if A\n = Ej-i, the service speed of the connection on slot i is described by:

l(j+Am(T0 + (r1-r0)^

The approximation that we made in Section 4.4.2 , supposing that the queue

57

acts like a FILO queue (A\i\ = £^_i), meaning that the connection on slot i ar

rived when the server was in state Ei-i makes more sense in the case of the linear

method. Because the timeout gets gradually decreased when the queue is filled, the

last connection that entered the queue is presented with the lowest timeout and it is

probable that it leaves the queue first, by expiring. According to this approximation,

the service rate of the connection on slot i becomes:

Ai + Am

Ai(l - e-To-(Ti-T0)-Hc\ f A
-^ L + Am T0 + Ti - T0 -

We obtain the approximative service rate when server is in state E^.

k

^ " ' = $ > | i | (4.64)

The approximative steady-state queue occupation distribution is evaluated simi

larly to 4.27:

fc-i

p{k) = ru n (465)

2^11 0+1)
j=0 i=0 ^

We use the estimation in (4.65) to calculate the performance of the server by

evaluating the steady-state reject and expire probabilities:

$ r = p{k) (4.66)

*e = i> f c)pL f c) (4-67)
fc=0

The average fail probability for legitimate connections arriving at the queue after

58

the steady state is achieved is:

l> = $ r + <le = p (0)

with

Ac

C I

i=l j=l

+ ? (0 , E T
g ^outMc^fc

fc=0 IIE^I
i=l j=l

\ k

i=l j=l

(4.68)

(4.69)

and fi\j\, the service speed of the connection on slot j as described in (4.63).

Linear deferred timeout strategy

When enforcing the deferred policy, the abrupt-tolerance-drop effect occurs in all

states Ei to Ec, the service rates in these states depending on the previous state of

the server. In state Ec however, the only possible previous state is Ec-\. The model

is illustrated in Figure 4.15.

V (fe) _

((fe-i—fe) (k-i->k) + (fc+i—fc) (fc+i—fc)

p(k-l^k) _|_p(fc+l^/c)

H'
(fe-i-^fe)

k < c

k = c

(4.70)

^ (c -2) ^ (c -1)

Figure 4.15 Birth-Death chain queue representation for the linear deferred timeout
strategy. The dashed lines represent transition whose rates are past dependent

We extend the use of the AP approximation that we made for the threshold

59

deferred timeout strategy by considering that whenever a transition Ek+i —>• Ek

occurs, meaning that a connection left the queue, if the connection expired than this

happened because of the abrupt-tolerance-drop effect due to the server previously

being in state Ek- We employ the same reasoning for coupling the legitimate and

malicious service rates as we did for the fixed timeout in Section 4.4.1 and we obtain

the approximative individual service rate in state Ek+i".

where

T(k)n
(k^k+l) _ J- out Pc / ^ „2)

T(*) (i _ Jk)\ , T(k+1) (T(k+1) _ T(k)\
J ou t \ l P\e J ~t~-tout re Mout -'outJ

and

<k)

2 ^rk+l) = , : o u \ 2 (4-73)
/ r (fc+i)V
I-'out I

and

pW = e-r0
(
u

f c
tVc (4 J 4)

We use the approximative values for the service rates to calculate the approxi

mative steady-state queue occupation distribution similarly to the Poisson policy, as

described in (4.27):

k~l \(i)

**' = ̂ r ^ r (475)

j=0 i=0 ^

60

where

£<*> = ^ - 1 V c A / (A 1 T 0 t 1) (l - e - ^ V)

+A,!z£t-
1)

/ie (TJS - T ^) + Am̂ c (TJS)") (4.76)

+
2 '

Once again, we choose not to use the SS approximation to estimate the perfor

mance of the deferred policy but plan to make use of (4.75) to show the resemblance

of the linear Poisson and linear deferred strategies.

4.4.4 Convergence study

In order for the steady-state based results to be valid, the convergence of the system

toward the steady-state should not be very long when compared to the timeout values.

We analyse theoretically the convergence speed of the fixed timeout method using the

Modified-Offered-Load (MOL) approximation introduced by Jagerman (1975).

The MOL approximation was initially designed in order to evaluate the transient

behaviour of a Mt/G/c/c queue, where the arrivals follow a Poisson process, but

with mean rate varying in time. The approximation consists in coupling results from

an Mt/G/oo queue with an Mt/G/c/c one. The Mt/G/oo queue differs from the

Mt/G/c/c queue in the fact that it has an infinite number of slots, that are served

independently by the server in a parallel fashion. The mean number of occupied slots

in an Mt/G/oo queue at time t is:

rric ,(*) = f [i-c(t- u)]\(u)du (4.77)
J—oo

where C(t) is the service time CDF and X(t) is the arrival rate at time t.

We adapt the MOL approximation for our purposes by considering that there is

no activity before time t = 0. Furthermore, we need to consider both the legitimate

and malicious arrival and service processes. Hence, we consider that after time t = 0,

both the legitimate and the malicious traffic start, with the constant rates X\ and Am,

respectively.

AiW
Ai t > 0 ,

(4.78)
0 otherwise

61

Am(«) = {
Am t>0

0 otherwise
(4.79)

When considering the fixed timeout method, the legitimate and malicious service

time CDF are described by:

d(t) = [Gx{u)du =
Jo

0 £ < 0

l_e-tMc 0 < i < T o u t

1 Tout < t

(4.80)

Cm(t)±JtGm(u)du=r 0 t<Tout

Tout < t
(4.81)

The mean number of occupied slots by legitimate connections in an infinite queue
m\oo(t) a n d the mean number of occupied slots by malicious connections in an infinite

queue mmoo(t) for time t greater than 0 are defined as:

mioo(t) =

mr

r* f Ax(i -
/ [1 - Ci(t - u)]\i(u)du = {

J-oo [Al(l -

,(*) = / [l-Cm{t-u)]\m{u)du=\

-t^c
)/»C t<Tc out

e-Ton^y^ Tout<t
(4.82)

t <TC out txm/fic

^ o u t A m / / i c ^out < t

(4.83)

The MOL approximation consists in substituting the load X/fj, by the mean num

ber of occupied slots m^t) in the infinite queue (Massey et Whitt, 1994). Because

we are dealing with two types of arrival and service rates, legitimate and malicious,

we substitute the time dependent service rates //i(t) and fJ,m{t) with the normalized

rates A]/mi0O(t) and Xm/mmoo(t), respectively. Then, we apply the same reasoning

for coupling the legitimate and malicious service rates as we did in (4.7) and obtain

62

the time dependant connection service speed according to the MOL approximation:

Ai + Am
t < Tout

Tout 5: t

u\ _ J Ai(l - e ^ c) / / / c + t\m (A 8 / n

/XMOL(*) - <; Ai + Am i4-8 4)

Al(i-e-ToutMc)//,c + r o u t A E

In state Ek, the overall service rate is thus:

/*MOL(*) = ^ M O L (*) (4.85)

When applying the approximation to the fixed timeout method, (4.13) and (4.14)

become time dependent:

B^t)-1 = ̂ ^ - B (c - l ^ + l ; 5(0,*) = 1 (4.86)

P{k)(t) = c _ , ^ (4.87)

i=k MMOLW

We analyse (4.85), (4.86) and (4.87) and notice that the only time-dependent

parameter is the service speed //MOL(*)- However, according to (4.84) the service speed

only varies before the first timeout elapses, i.e. t < Tout. Hence, according to the

MOL approximation, when using the fixed timeout method, the queue achieves steady

state after an interval of time equal to the timeout Tout. Although we do not show

the mathematical proof, the same conclusion can be drawn for the dynamic timeout

strategies: the queue achieves steady state at most after an interval of time equal

to the longest timeout, To- In order to be effective, attacks usually last much longer

than the timeout. Hence, we conclude that the steady-state performance measures

we established previously are relevant and can be used as accurate approximations of

performance. We will confirm these theoretical results by stochastic simulations in

Section 4.5.3.

In Section 4.4 we studied several timeout strategies. Due to the non-memoryless

property of most of these strategies, we introduced various approximations that al

lowed us to estimate the steady-state distribution of the queue and the performance of

63

the server when employing each of these strategies. We present a summary of the the

oretical results obtained for the various timeout adjustment methods and assignment

policies studied, as well as the approximations used in Table 4.3.

4.5 Model validation

In order to validate the correctness of the mathematical models established ear

lier, and to evaluate the impact of the approximations used to cope with the non-

memoryless behaviour of the different strategies, we ran stochastic simulations for

various traffic rates and queue sizes.

4.5.1 Simulation setup

For simulation purposes, we implemented the dynamic timeout strategies in a home

made stochastic simulator. Before running each simulation, the legitimate arrivals

times and times to complete are generated according to Poisson processes. The ma

licious arrivals times are generated according to either a Poisson process or a burst

attack model, which we describe in more detail in Section 4.6.4. These occurrences

are saved to a file so that simulation of the various timeout strategies in identical con

ditions is possible. At time t = 0 of each simulation, the server queue is empty. This

is when both the legitimate and malicious traffic start. The simulation is run during

a period of time ten times longer than the timeout, in the case of the fixed timeout

method, and ten times longer than the empty-queue T0 timeout, in the case of the

dynamic timeout methods. After the simulation is complete, the connections that

Table 4.3 Summary of the theoretical results on timeout adjustment methods and
assignment policies with their corresponding mathematical equation indexes. MOL
is the Modified Offered Load approximation, FILO is the First-In-Last-Out queue
approximation, AP is the Attraction Point approximation and SS is the Steady-State
approximation

Method type Fixed Dynamic
Method Fixed Threshold Linear
Policy n/a Poisson Deterministic Deferred Poisson Deterministid Deferred

Transient state[MOL (4.87)
Steady-state exact (4.16) exact (4.27)
Performance exact (4.19) SS (4.29)

FILO (4.35) AP (4.55) exact (4.27)
FILO (4.38) SS (4.59)

FILO (4.65)
FILO (4.68)

U.P (4.75)

64

are still in the queue and have not yet expired or completed are discarded. Finally,

the transient state behaviour as well as the overall performance is gathered from the

simulation logs.

4.5.2 Steady-state queue occupation

In the theoretical model, the legitimate connection success rate is calculated based

on the steady-state server occupation probabilities. However, in Section 4.4 we made

several approximations in order to adapt the Markov chain model to the deterministic

and deferred timeout assignment policies. Before comparing the performance of the

strategies, we need to assess the errors generated by these approximations. Further

more, we have no simulation or experimental equivalent of the Poisson assignment

policy and our mathematical model does not allow us to compute the performance of

the deferred assignment policy. We hope that by comparing the steady-state queue

occupation, not only will we validate the approximations made earlier but we will

also establish similarities between some of the assignment policies.

In Figure 4.16, we illustrate the theoretical and simulation queue occupation prob

ability distributions at the steady state; for the simulations, this is computed as the

average of queue occupations over the whole simulation. We draw several conclu

sions from these results. First, the fixed method queue occupation simulation results

match very closely the theoretical results. Second, the theoretical threshold Poisson,

theoretical threshold deferred and simulation threshold deferred distributions show

a similar spike around the threshold at state .E32. However, the value of the spike

is around 0.9 for the theoretical threshold deferred strategy, 0.5 for the theoretical

threshold Poisson strategy and 0.4 for the simulation threshold deferred strategy.

Third, the theoretical linear Poisson, theoretical linear deferred and simulation linear

deferred distributions show a normal distribution-like shape, with height of around

0.2 and centered in state E58, Eeo and E60, respectively. Finally, the theoretical and

simulation distributions of the deterministic policy show the same shape, that of a

flattened normal distribution for the threshold deterministic strategies and similar to

an exponential with high values at full-queue for the linear deterministic strategies.

However, in spite of having similar shapes, the distributions centers are misplaced

by 7 slots in the case of the linear deterministic strategies and do not have equal

standard deviations in the case of the threshold deterministic strategies.

65

TH Fixed
—-—— TH Threshold Deterministic
—^— TH Threshold Poisson

24 32 40 48 56 64

Server State

Figure 4.16 Theoretical (solid lines) and simulation (dashed lines) steady-state queue
occupation probabilities, for timeout 75 s, empty-queue timeout 75 s, full-queue time
out 1 s, legitimate arrival rate 10 cnx/s, malicious arrival rate 10 cnx/s, legitimate
complete rate 1 cnx/s, capacity 64 cnx, threshold at 32 and various timeout strategies.
The probability of the server being is states E^, k < 24 is practically null and is not
represented in the figure. The occupation probabilities are defined only for integer
values of the server states; however in the figure lines used in order to help the reader
observe the tendency of each strategy. The queue occupation for the simulation fixed
method matches perfectly the queue occupation for the theoretical fixed method. The
theoretical threshold Poisson, theoretical threshold deferred and simulation thresh
old deferred strategy occupations as well as their linear counterparts are very similar.
The theoretical and simulation deterministic queue occupation functions are similarly
shaped but are translated with up to 7 slots

66

We conclude that the Poisson assignment policy occupation results are similar to

the deferred assignment policy occupation results, which should translate to similar

performances for the theoretical Poisson strategies and the simulation and experimen

tal deferred strategies. Also, the theoretical deterministic queue occupation results

match the simulation queue occupation results only roughly. This will translate to

noticeable performance differences between the theoretical and simulation / experi

mental results for these strategies.

4.5.3 Transient behaviour

We compare the evolution in time of the legitimate connection success rate observed

in five simulations with theoretical results computed using the MOL approximation

described in Section 4.4.4. According to the MOL approximation, the legitimate con

nection success rate should vary from time 0 s during a period equal to the timeout.

After the timeout, the steady-state should be reached. The MOL approximation re

sults and simulation results are illustrated in Figure 4.17. Although simulations show

an erratic behaviour when looked at individually, the average of the five simulation

runs resembles the MOL approximation prediction. Moreover, in average the steady-

state is reached sooner than expected by around 33%. Because the convergence occurs

so quickly both in theory and simulations, we conclude that steady-state performance

measures are relevant to the overall evaluation of the timeout strategies.

4.6 Performance evaluation

Having validated the correctness of the mathematical model, we now proceed to eval

uating the performance of the various timeout strategies. To this end, we will compare

theoretical and simulation results of attacks against the abstract protocol considered

in Section 4.3.1, together with laboratory experiments of SYN-flood attacks as de

scribed in (Boteanu et al, 2007b). However, because measuring the performance of

the timeout strategies in different environments (legitimate and malicious traffic rate

and queue size), we will establish a trade-off between the malicious arrival rate and

server capacity.

67

8

s

a
s

100% -,

80%

60%

40%

20%

0%

200

Figure 4.17 Theoretical MOL approximation (solid line) and simulation (dotted lines)
transient legitimate connection success rate for the fixed timeout method, for timeout
75 s, legitimate arrival rate 1 cnx/s, malicious arrival rate 1 cnx/s, legitimate complete
rate 1 cnx/s and capacity 64 cnx . The dashed line at time 75 s represents that time at
which the queue should reach the steady-state, according to the MOL approximation.
The red line illustrates the average success rate over the five runs. In simulations,
the average success rate converges to the steady-state value quicker than expected,
at time 50 s instead of 75 s as predicted by the MOL approximation

68

4.6.1 Capacity - Attack rate trade-off

We are interested in how the trade-off between the attack rate and server capacity

varies for the same legitimate connection success probability, or equivalently for the

same connection fail probability. Even though the fully expanded expressions of

(4.19), (4.29), (4.38), (4.59) and (4.68) are quite complex, what lies beneath it is a

trade-off between these quantities that is essentially linear for the same connection

complete probability, as we have verified with several numerical calculations.

Let us define the virulence v of an attack as the attack rate Am divided by the

queue size c. Intuitively, this value corresponds to the frequency (times per second)

with which an attack could fill up the queue, or equivalently the number of full queues

per second that the attack could saturate. We are interested in knowing whether the

performance varies or remains constant for a particular attack virulence. To answer

this question, we illustrate in Figure 4.18 the performance of the fixed timeout method

for various attack rates and queue capacities. The figure can be compared to a spiral

staircase where the red solid lines represent the steps. The steps go down from the

capacity y-axis to the attack rate £-axis while turning with 90 degrees. By definition,

on each of these steps, the virulence is constant and is represented by the angle of

the step projection line in the xy-plane with the capacity y-axis. The question now

becomes whether the performance remains constant or not on each of these steps.

We observe that on each step the performance is indeed constant as the capacity and

attack rate increase, except for maybe very low capacity and attack rate values.

To get a better picture of the linear trade-off, we pick one of the vertical cut planes,

at virulence v = 0.25 s_1, and observe the performance of all strategies as the capacity

and attack rate increase, in Figure 4.19. At the leftmost point of the Figure 4.19 the

capacity is 0 connections which explains the null performance of all the strategies.

Aside from this point, the performance of all strategies remains essentially constant

as the attack rate and the queue size increase. The horizontal characteristic of these

performance lines, for all virulence values, illustrates the linear trade-off between the

capacity and attack rate of all the strategies.

4.6.2 Experimental setup

For the experimental performance evaluation, we choose to implement the scenario

of a SYN-flood attack, where the TCP stack of the server is flooded with malicious

69

64 Attack rate [cnx/V

Figure 4.18 Capacity-attack rate trade-off for the fixed timeout method, for timeout
75 s, legitimate arrival rate 0.1 cnx/s and legitimate complete rate 1 cnx/s. On
the x-axis, the attack rate varies from 0 cnx/s to 64 cnx/s while on the y-axis, the
capacity varies from 0 cnx to 1024 cnx. The z-axis illustrates the legitimate connection
success rate. The angular axis in the xy-plane, illustrated by a green arc in the figure,
represents the virulence (attack rate divided by capacity). The red planes represent
vertical cuts through the solid at constant virulence

70

100%

32 64 96 128 160

Capacity [cnxj
192 224 256

Figure 4.19 Capacity vs. attack rate trade-off at constant virulence 0.25 s_1, time
out 10 s, empty-queue timeout 75 s, full-queue timeout 1 s, legitimate arrival
rate 0.1 cnx/s, legitimate complete rate 1 cnx/s, capacity varying from 0 to 256
cnx and attack rate and varying from 0 cnx/s to 64 cnx/s.

71

SYN messages. The five components of our experimental setup are the following:

1. The attack traffic generator, generating illegitimate SYN packets on the net

work.

2. The legitimate traffic generator, attempting to establish fully fledged TCP con

nections.

3. The server, whose TCP stack half-open connection queue is being flooded.

4. The Queue Guardian (QG), a separate application whose role is to protect the

server queue.

5. The network, on which both kinds of traffic travel.

Attack Traffic Generator

For this component, we used the IXIA 400T, a special purpose traffic generator chas

sis, built for performance and conformance testing of network applications. The model

we used has four separate Ethernet ports, capable of generating traffic up to 1 Gbps

each.

In order to generate the malicious traffic we used the IxExplorer application that

runs on the IXIA hardware. Since neither the hardware nor the software can natively

generate Poisson traffic, this type of attack was synthesised by cyclically sequencing

255 different modes, each mode consisting in sending one single SYN packet. For

each attack rate, pauses between modes were statically set to random values follow

ing an exponential distribution. We performed a Kolmogorov-Smirnov test on the

inter-arrival times of the IxExplorer-generated traffic measured on the server. The

maximum difference between the theoretical exponential and the observed CDF was

as low as 0.12 for an attack of 1000 packets/s, which confirms that the traffic follows

the Poisson process model closely.

Legitimate Traffic Generator

We used a home-made C++ application to generate the legitimate traffic necessary

for successful TCP handshake. Both the SYN and ACK messages were sent with

exponentially distributed inter-arrival times. Contrary to TCP stack implementations

in standard OS, this test application will not send a SYN retry message if there

72

is no response from the server. This was a deliberate choice meant to keep the

connection attempt rate constant and independent of the connection complete rate.

For performance measuring purposes, all the legitimate SYN messages came from

the same IP address. This address is discriminated only when counting the total

number of legitimate connection attempts. After a T C P handshake is completed, the

application will send a RST message in order to free the connection on the server

side. We deployed the legitimate traffic generator on a dedicated machine running

Gentoo Linux, with 2 GB of memory.

The server whose TCP stack is flooded is also a Gentoo Linux, with 2 GB of

memory, which allowed us to experiment with queue sizes up to 16384.

Queue Guardian (QG)

Rather than modifying the TCP stack kernel code, which is neither easy nor practical

in real-life deployments, we chose to implement the dynamic timeout strategies on a

separate application, in a manner transparent to the server and the legitimate clients.

The QG has four different roles:

1. It maintains an up-to-date mirror of the server queue. This is achieved by

sniffing the network connection and interpreting packets being send and received

by the server. We used the l i b p c a p library to sniff all IP packets on the network.

2. It drops connections from the mirror queue, according to the chosen dynamic

timeout method and timeout assignation policy.

3. It forces the server queue to drop the same connections that were dropped from

the mirror queue. This is achieved by sending RST packets to the server. The

IP and T C P headers are spoofed so that the message appears to come from the

original client. In order to send the spoofed RST packets at high speeds, this

role was implemented using raw sockets.

4. It regularly logs the state of the queue as well as the number of different types

of packets sniffed on the network. This log is used later for evaluating the

performance of the timeout strategy under test.

For the deterministic policy, we used a priority queue implemented as a red-black

tree to store the connections, ordered by their expiration time. When all legitimate

73

connections get served, the complexity of the algorithm is O (log cNm

+ cNi), where c is the size of the server queue and Nm and Ni are the number of

SYN-ACK responses sent to malicious and legitimate SYN packets, respectively. For

the deferred policy, only the oldest connection in the queue needs to be analysed:

if it is present in the queue for longer than the current timeout, it will be dropped

from the queue. Hence, a single FIFO ring-buffer can be used to implement this

policy. When all legitimate connections get served, the complexity of the algorithm

is 0(Nm + cNi). In practice, however, the legitimate connections are almost always

at the end of the queue so only Nm + Ni atomic operations need to be performed.

Finally, for performance reasons, we chose to implement each of these four roles in

separate threads in the QG application. The QG is run on a separate machine, based

on a Intel Core 2 Duo processor at 2.16 GHz.

Network Setup

A 16-port gigabit switch (Linksys SRV-2016) was used to connected all these com

ponents together. The legitimate traffic generator machine, the server and the IXIA

traffic generator were each connected to a separate port on the switch. For sniffing

purposes, the QG machine was connected on a switch port setup to mirror the server

port. For sending RST packets, a separate card on the QG machine was connected

to another network port on the switch. Other deployment schemes are possible as

well and are discussed in (Boteanu et al, 2007b). Figure 4.20 illustrates the network

connections between the components we have used.

Testing Methodology

In all the experiments we ran, the following steps were followed in sequence:

1. The server queue size was configured with the value required for testing.

2. The server timeout was configured to be at least as long as the longest timeout

on the QG. This way, all the connections drops are triggered by the QG.

3. The legitimate connection traffic generator was started with the connection

arrival and connection completion rates required for testing.

4. The QG was configured with the required parameters and started.

74

%h
SYN,

ACK

SYN-ACK.

SYN

Legitimate
Traffic

Generator

IXIA

b I"
^

SYN-ACK

v;

Server

ACK

"% rOn
">a

Switch

Queue Guardian

Figure 4.20 Experimental lab network setup

75

5. The attack traffic parameters were configured in IxExplorer.

6. The attack was started and the experiment was run during a period of time ten

times longer than the longest timeout on the QG.

7. The connection success rate was computed based on the QG's log.

Connection completion events correspond to ACK messages being sent to the server.

Legitimate connection arrival events correspond to SYN messages being sent from

the legitimate IP address. The connection success rate was computed as the ratio be

tween number of connections that completed and the number of legitimate connection

attempts during the attack.

4.6.3 Comparative results

We measure the performance of the two dynamic timeout methods, threshold and

linear, along with the fixed timeout method for comparison purposes using the the

oretical model, simulations and experiments. For the dynamic methods, we theo

retically evaluated the Poisson and deterministic assignment policies and measured

deterministic and deferred assignment policies by simulations and experiments. The

attack traffic was generated having the exponentially distributed malicious connec

tions inter-arrival times. We tested the attacks against a small queue size of 128 cnx

and a more reasonable queue size of 1024 cnx and explored virulences from 0.015 s_1

to 8 s_1. The corresponding attack speeds varied from 2 cnx/s to 1024 cnx/s when

testing against a queue size of 128 cnx, and from 32 cnx/s to 8192 cnx/s when testing

against a queue size of 1024 cnx. The legitimate connection attempt rate was 10 cnx/s

and the mean RTT time for the legitimate traffic was 200 ms (as observed experimen

tally in (Shakkottai et aL, 2004)). The fixed timeout strategy used a timeout value of

10 s and the dynamic timeout strategies used empty- and full-queue timeout values

of 10 s and 200 ms, respectively. Results for the tests against a queue size of 1024 are

shown in Figure 4.21.

Overall, the experimental results are very similar to the simulation results, and

this for both queue sized considered. The average difference between the simulation

and experimental results is 2%. The greatest discrepancy (17%) was measured for the

linear deterministic strategy faced with an attack of virulence 8 s"1 against a queue

size of 1024. The standard deviation for both simulation and experimental results

76

100% jt/ffiffrrrmffffirrw

u
y
S
so
«

1
5
S

a

80%

60%

40%

20%

0%

•TH Fixed
• TH Threshold Deteminisitc
• TH Threshold Poisson
• TH Linear Deteminisitc

•»•• EXP Fixed
•if EXP Threshold Deterministic
•••• EXP Threshold Deferred
•*•• EXP Linear Deterministic
. » . . EXP Linear Deferred

SIM Fixed
SIM Threshold Deterministic
SIM Threshold Deferred
SIM Linear Deterministic
SIM Linear Deferred

0.015625 0.03125 0.0625 0.125 0.25 0.5

Virulence [s~'J

Figure 4.21 Theoretical (TH), simulation (SIM) and experimental (EXP) performance
comparison at steady-state, for timeout 10 s, empty-queue timeout 10 s, full-queue
timeout 0.2 s, legitimate arrival rate 10 cnx/s, malicious complete rate 5 cnx/s, ca
pacity 1024 cnx, threshold at 512 and malicious attack rate varying from 16 cnx/s
to 8192 cnx/s. The theoretical values are illustrated by solid lines, the simulation
values by dashed lines and the experimental values by dotted lines. Theoretical, sim
ulation and experimental values for a strategy are represented with the same colour,
except for the theoretical Poisson assignment policies which are equivalent to the
simulation and experimental deferred assignment policies

77

was always lower than 3%. Theoretical results are also very similar to experimental

and simulation results except for the deterministic assignment policy. The fixed and

linear Poisson strategy theoretical results match closely the fixed and linear deferred

simulation and experimental results, as expected from the similar steady-state server

occupation distributions. The threshold Poisson theoretical results are also close to

the threshold deferred simulation experiments results, the greatest discrepancy (7%)

begin measured for virulences between 0.5 s_1 and 1 s_1. The theoretical results

for the threshold deterministic strategy follow the same behaviour as its simulation

and experimental counterparts, with differences of up to 22% being measured for

virulences of 0.1 s_1 and 8 s_1. Finally, the theoretical linear deterministic does not

match its simulation and experimental counterparts for other than low virulences.

We consider the theoretical results obtained for the deterministic policy unreliable

and do not use them when evaluating this strategy. The error is caused by the FILO

approximation which has a greater impact on the linear method than on the threshold

method. The threshold method is less sensitive to the steady-state server occupation

probability distribution than the linear method, because the threshold method only

depends on the CDF value at the threshold state Es- What specific slots are occupied

at the left and at the right of the threshold state do not influence by any means the

value of the timeout, which makes the threshold method easier to approximate.

As anticipated from previous work, results for low and high virulences are not

interesting. For low virulence values (< 0.05 s -1) the attack is not strong enough to

degrade QoS at the the server, even when using the fixed timeout strategy. For very

high virulence values (> 8 s_1) the attack is so strong that none of the dynamic time

out strategies can maintain a connection success rate greater than 50%. In between

these values, in what we call the window of interest, several interesting conclusions

can be drawn about the relative performance of the various strategies.

First, the dynamic timeout strategies perform better (or no worse) than the fixed

timeout strategy. We measured differences of up to 85% between the linear deferred

strategy and the fixed timeout strategy, and up to 50% between the threshold de

terministic and the fixed timeout strategy around virulences of 1 s_1. Second, the

deferred policy always performs better than the deterministic policy. Differences up

to 30% can be observed between the deferred and the deterministic policies around

virulences of 2 s_1. This is due to the fact that the deferred policy is more reactive,

deciding whether a connection should expire or not based on the current status of the

78

queue, as opposed to the status of the queue at the time of the connection arrival in

the case of the deterministic policy. Third, the linear method performs better than

the threshold method except when it is used with the deterministic policy and for

virulence values greater than I s - 1 . The threshold method generally displays an over-

protective behaviour, which has the effect of correcting some of the delayed reactivity

of the deterministic policy for medium and high virulences.

4.6.4 Attack model variation

In order to study the generality of the previous results with respect to different attack

types we also used a deterministic process to generate bursts attacks. In the burst

attack model, the illegitimate connection requests arrive in (almost) instantaneous

bursts of a fixed number of attempts, with burst spaced at a fixed burst interarrival

time (BIT). A virulence of 0.5 s_1 was chosen, which corresponds to attack rates of

64 cnx/s and 512 cnx/s when testing against queue sizes of 128 cnx and 1024 cnx,

respectively. The average connection success rates over 9 experimental and simulation

runs for the queue of size 1024 cnx are illustrated in Figure 4.22. The vertical black

line at BIT = 0.015625 s in Figure 4.22 represents that the packet inter-arrival time

is the same as the mean packet inter-arrival time in the Poisson experiments at

virulence 0.5 s_1, marked by the vertical black line in Figure 4.21. The violet vertical

line at BIT = 2 s in Figure 4.22 marks the point where one single burst would fill

up an empty queue entirely. Figure 4.23 offers a three-dimensional illustration of the

correspondence between the Poisson attack and the burst attack figures.

Two "phases" can be observed when analysing the burst attack results. The

"liquid phase", at the leftmost part of the figures, with BIT < 2 s, corresponds to

attack traffic bursts smaller than the queue size. The "solid", rightmost phase, for

BIT > 2 s, corresponds to attack traffic bursts greater than the queue size. The

resonance effect is created at BIT = 2 s, corresponding to bursts of the same size as

the server queue. In simulations, the fixed timeout strategy performance is practically

null at this value. This is due to the fact that the simulated attack and legitimate

traffic start at the same time and the attack burst instantly fills up the entire queue.

During a period of 10 s, equal to the timeout value, the queue is full and no legitimate

connection attempts can be processed. After this period, exactly after the malicious

connections are dropped from the queue, the following burst arrives and fills up all the

79

100%

80%

60%

40%

20% JL
•' i \

i \
i i
i \

•»•• EXP Fixed
•A" EXP Threshold Deterministic
•*••• EXP Threshold Deferred
•*••• EXP Linear Deterministic
• »•• EXP Linear Deferred

/ \
V

\
I 1
f \

\/
0%

0.0156 0.0313 0.0625 0.125 0.25

SIM Fixed
• *~ SIM Threshold Deterministic
• *- SIM Threshold Deferred
• • - SIM Linear Deterministic
• ° - SIM Linear Deferred

0.5 16 32 64

Burst Interarrival Time [s]

Figure 4.22 Legitimate connection complete rate for various strategies against burst
attacks, with fixed queue size of 128 cnx, legitimate arrival rate 100 cnx/s, legiti
mate complete rate 5 cnx/s, empty- and full-queue timeout values 10 s and 0.2 s,
respectively, virulence 0.5 s_ 1 for various burst inter-arrival times (x-axis), over 9
experimental and simulation runs

80

Si
2
?
u
as
on

s

A

&

^
\e>

0.5 s 1

£

2 s => burst size = queue size

Virulence [s~l]

Figure 4.23 Relationship between Poisson attack parameters of Figure 4.21 repre
sented here on the xz-plane, and burst attack parameters from Figure 4.22, yz-plane

queue once again. This happens when the burst traffic is perfectly synchronized with

the queue timeout, as is the case with the simulator. In experiments, however, we do

not observe the same behaviour.First of all, the legitimate traffic and the malicious

traffic are not synchronised. By the time the first attack burst arrives, around three

slots in the queue are already used by legitimate connection, so three of the attack

packets are discarded by the server. During a period of 10 s, only the number of slots

used by legitimate connection at the time the first burst arrived will be available.

However, because there are only 10 legitimate connection attempts per second, and

because the legitimate connections complete rather quickly (5 every second), the few

free slots in the server queue are enough for a large percentage of legitimate connection

to complete. Furthermore, in experiments, the burst are never instantaneous due to

packet transmission times and eventual collisions in the Ethernet network. This allows

for legitimate connection to infiltrate the burst and thus reduce the burst efficiency for

the attacker. Due to the above mentioned factors, we can say that the network acts

as a "low-pass filter" thus greatly diminishing the resonance effect. In simulations,

the fixed timeout strategy is influenced by the resonance effect with "harmonics"

at BIT = 2~fc s, for k = {0..5}. In experiments, however, the resonance effect is

81

absorbed by the network. The only two strategies that seem to be slightly affected

by the resonance effect in experiments, are the linear deterministic and the threshold

deferred timeout strategies, and this only for the harmonic at BIT = 1 s.

Is it important to note that the deferred policy, which performs better than the

deterministic one, is also more robust and consistent, having lower standard deviation

values. The fixed timeout strategy, on the other hand, is the most unstable, both

in simulation and in experiments, with maximum standard deviation values of over

10%.

4.6.5 Parameter optimisation

No matter what timeout method is used, the choice of the timeout parameters can

influence the performance. For this reason, it is logical that we try to understand how

these values should be chosen and how much can be gained from a careful choice of

these values. Therefore, in this section we analyse the two dynamic timeout methods

when coupled with the deferred policy as well as the fixed timeout method, for com

parison sake. We explore various configuration values using stochastic simulations to

get an insight on the optimal timeout parameters.

When employing the fixed timeout method, the only parameter to configure at the

server-side is the timeout (Tout). For very low Tout values, the legitimate connection

reject rate is practically null. The server is throwing the connections out of the

queue so quickly that the queue never gets the chance to fill. On the other hand,

the legitimate connection expire rate is very high, because connections have very

little time to complete before the server declares them as expired. For very high

Tout values, the effect is inverted, where the legitimate connection expire rate is null

and the legitimate connection reject rate is high. This happens because connections

have a very long time to complete and thus almost never expire. However, because

connections are allowed to stay a long time in the queue, the queue easily fills and

most of the connections arriving at the queue are rejected. The optimal Tout value

is somewhere in-between, where the sum of the expire and reject rates is minimum,

and depends on the legitimate and malicious traffic rates as well as the server queue

size. Although we offer no analytical expression for the optimal Tout value, it can be

computed numerically from (4.19). The behaviour of the fixed timeout method when

varying the timeout is illustrated in Figure 4.24.

82

100%

0.001 0.004 0.016 0.063 0.25 1

Timeout [s]

16 64 256

Figure 4.24 Legitimate connection reject (<£>r), expire (ipe) and fail (99) rates for the
fixed timeout method, for capacity 32 cnx, legitimate arrival rate 10 cnx/s, malicious
arrival rate 256 cnx/s, legitimate complete rate 5 cnx/s and timeout varying from
2~10 s to 210 s. For very low timeout values, the expire probability is high, whereas
for very high timeout values the reject probability is high. The optimal timeout value
^out i s 0-13 s and the success rate 1 — ip for this timeout is 40%

83

When using the threshold and linear timeout adjustment methods, the parameters

that can be configured at the server-side are the initial, empty-queue, timeout T0, the

full-queue timeout T\ and, only for the threshold method, the threshold S. For

the sake of comparison, in our case, we set the threshold at half the size of the

queue (S = c/2) and compare the two dynamic timeout strategies when varying the

two timeout values, T0 and 1\. The behaviour of the linear method, illustrated in

Figure 4.25, presents similar characteristics to that of the fixed method. When low

values are used for both To and Ti, the reject rate is low but the expire rate is high.

When high values are used for both To and Ti, the expire rate is low but the reject

rate is high. The special case where T0 and T\ are equal is equivalent to the fixed

timeout method and can be observed in the plane described by the z-axis and the

first diagonal of zy-plane. The case where the T\ is higher than the T0 is not valid

as we required the timeout the be lowered as the queue fills. This corresponds to

the blank portion in Figure 4.25. However, the case where T0 is high and T\ is low

does not have any equivalent when using the fixed method. Interestingly, in these

conditions, the reject rate is very low and the expire rate is lower than its maximum.

This can be explained as follows: As the queue fills, the timeout is decreased, which

makes it more unlikely for the queue to get filled entirely. Hence, new connections are

almost always accepted in the queue which makes the reject probability low. On the

other hand, the timeout is not low all the time, only when the queue holds a lot of

connections. The rest of the time, the timeout is high enough so that some legitimate

connections that entered the queue complete, hence the expire rate is relatively low

as well. The legitimate connection success probability for the linear deferred strategy

is illustrated in Figure 4.26. Although the maximum performance that the linear

deferred strategy can offer for this particular traffic rates and queue size is not much

higher than that of the fixed strategy, the former is much more robust to parameter

configuration. The greatest advantage of the linear deferred strategy over the fixed

strategy is that not only do high To and low T\ values provide the best performance

under attack, these same values are optimal in non-attack scenarios This is something

that we verified empirically for various traffic rates and queue sizes.

The behaviour of the threshold deferred strategy illustrated in Figures 4.27 is

somewhat similar to that of the linear deferred strategy in the sense that low To and

T\ values as well as high To and T\ values provide bad performance but high T0 and

low T\ values are a good compromise between the reject and expire rates. However,

84

Figure 4.25 Legitimate connection reject (blue surface) and expire (green surface)
rates for the linear deferred timeout strategy, for capacity 32 cnx, legitimate arrival
rate 10 cnx/s, malicious arrival rate 256 cnx/s, legitimate complete rate 5 cnx/s and
empty- and full-queue timeout varying from 2~10 s to 210 s. The reject and expire
rates of the fixed timeout method illustrated in Figure 4.24 are a specific case of this
figure, observed in the plane defined by the z-axis and the diagonal of the xy-plane

85

40% \

20% v

0%*<

Tx

)10 2
.-10

Figure 4.26 Legitimate connection success rate for the linear deferred timeout strategy,
for capacity 32 cnx, legitimate arrival rate 10 cnx/s, malicious arrival rate 256 cnx/s,
legitimate complete rate 5 cnx/s and T0 and 7\ varying from 2~10 s to 210 s. Low T0

and Ti values and high T0 and T\ values offer bad performance, painted with red on
the figure. The best performance painted with blue on the figure, with success rates
of up to 43%, is obtain for high T0 values and low 7\ values

86

when looking and the overall performance of this strategy in Figure 4.28 we observe

that high T0 and low Ti values do not offer optimal performance, as it was the case

with the linear deferred strategy. On the contrary, the maximum performance is equal

to that of the fixed strategy and is obtained regardless of T0, for a Ti value equal to

the optimal Tout values for the fixed strategy. This can be explained by the fact that

when the server is under attack and the threshold is crossed, the timeout T\ is used.

Therefore, the optimal Ti in this specific conditions is the same as the optimal Tout

for the fixed strategy in the exact same conditions. Although this sounds somewhat

disappointing, there are two advantages that the threshold method has over the fixed

method. First, after the attack stops, the threshold method uses T0 as the timeout

value which performs good in these conditions. On the other hand, the fixed method

would keep using the same unnecessarily restrictive timeout, something that is not

optimal any more in non-attack conditions. Second, a plateau is observed for high

T0 and low Ti values, similar to that of the of the linear deferred strategy, with the

exception that the performance is not optimal for these values. In most of the times, it

is impossible to compute the optimal timeout value for the fixed method, so reaching

the plateau could be, although not optimal, good enough performance.

4.6.6 Traffic rate variation

Having analysed what the performance impact of varying the timeout parameters is,

we now proceed to measuring the sensitivity of the timeout counter-measures when

varying the legitimate and malicious traffic rates, using stochastic simulations.

First, for the fixed timeout method, we observe that the success rate is 100% when

both the legitimate and malicious traffic rates are very low. As the legitimate traffic

rate increases, the performance continues to be high, up to the point where the queue

is saturated, as illustrated in Figure 4.29. In our case, this happens for a legitimate

arrival rate around 128 cnx/s. However, when the malicious traffic rate reaches as

low as 8 cnx/s, the performance drops under 50% regardless of the legitimate traffic

rate. Note that the traffic rates exhausting all the resources are low because, for this

analysis and without loss of generality (due to the results of Section 4.6.1), we chose

a relatively small queue size, of only 32 cnx.

We analyse the threshold deferred strategy in the same traffic conditions used

previously for the fixed method. In this case, however, we choose to use very high To

87

Figure 4.27 Legitimate connection reject (blue surface) and expire (green surface)
rates for the threshold deferred timeout strategy, for capacity 32 cnx, legitimate arrival
rate 10 cnx/s, malicious arrival rate 256 cnx/s, legitimate complete rate 5 cnx/s and
To and T\ varying from 2~10 s to 210 s.

88

40%t

T,

)10 2
10

Figure 4.28 Legitimate connection success rate for the threshold deferred timeout
strategy, for capacity 32 cnx, legitimate arrival rate 10 cnx/s, malicious arrival
rate 256 cnx/s, legitimate complete rate 5 cnx/s and T0 and T\ varying from 2~10 s
to 210 s. Similar to the linear method, low T0 and T\ values and high T0 and T\ values
offer bad performance, painted with red on the figure. The best performance painted
with blue on the figure, with success rate of 40%, is obtain for Ti=0.13 s. The plateau
for high T0 and low 7\ has success rate of 25%

89

ioo%r

50%

0% <

2 io 2 io

Figure 4.29 Legitimate connection success rate for the fixed timeout strategy, for
capacity 32 cnx, legitimate complete rate 5 cnx/s, timeout 10 s and legitimate and
malicious arrival rates varying from 2° cnx/s to 210 cnx/s

90

and very low 7\ timeout values, which we previously established to be non-optimal

but good overall configuration parameters. The results illustrated in Figure 4.30

show that the threshold deferred strategy maintains a performance level above 50%

for attacks up to 64 cnx/s. However, when there is very little attack traffic but the

legitimate traffic rate is very high, in our case 1024 cnx/s, the threshold deferred

strategy performs worst than the fixed method. This is due to the fact that very high

T0 and very low T\ are not optimal timeout values for the threshold deferred strategy.

In this particular case, the legitimate traffic rate is so high that the server reaches

the threshold state and uses the very low timeout on legitimate connections, which

causes more damage than a higher timeout would.

Figure 4.30 Legitimate connection success rate for the threshold deferred timeout
strategy, for capacity 32 cnx, legitimate complete rate 5 cnx/s, TQ = 2~10 s, T\ = 210 s
and legitimate and malicious arrival rates varying from 2° cnx/s to 210 cnx/s

Finally, we analyse the linear deferred strategy with the same very high To and very

low Ti timeout values. As opposed to the threshold deferred strategy, the T0 and T\

91

values chosen are now optimal. The performance of the linear deferred strategy under

varying traffic rates is illustrated in Figure 4.31. The linear deferred strategy does not

exhibit the same low performance effect for high legitimate and low malicious traffic

rates. On the contrary, the linear deferred strategy outperforms the fixed method

and the threshold deferred strategy for all traffic rates. Moreover, a performance

increase of up to 14% when compared to the fixed method is measured, when the

legitimate traffic is high (128 cnx/s) and the malicious traffic is low (1 cnx/s), precisely

those rates for which the threshold deferred strategy displayed significantly decreased

performance.

Figure 4.31 Legitimate connection success rate for the linear deferred timeout strategy,
for capacity 32 cnx, legitimate complete rate 5 cnx/s, To = 2~10 s, 7\ = 210 s and
legitimate and malicious arrival rates varying from 2° cnx/s to 210 cnx/s

92

4.7 Conclusions and future work

In this paper, we have studied the performance of different queue management strate

gies against DoS attack that try to exhaust the server connection tracking resources.

We modelled the server queue as a Birth-Death Markov chain and analysed in this

model three methods of adjusting the timeout value based on the queue occupation:

the fixed, the threshold and the linear methods. The last two methods are dynamic

timeout methods and the different policies that can be enforced for deciding whether

a connection expired or not are the deterministic and the deferred policies. For

modelling convenience, we also introduced the Poisson policy which we use as an in

termediate step for obtaining theoretical results about the deterministic and deferred

policies. The deterministic and deferred policies perform non-memoryless operations,

which we approximated to memoryless so that we can get an insight on the perfor

mance of these policies within our model. Furthermore, we tested the performance

of all three timeout adjustment methods with the deterministic and deferred policies

both in stochastic simulations and in laboratory SYN-flood experiments.

Under the simplifying hypothesis that the traffic seen by the server arrives with

exponentially distributed inter-arrival times, we confirmed the consistency of the the

oretical results when compared to simulation and experimental results. The Poisson

policy generated very similar results to the deferred policy both when comparing the

theoretical and simulation steady-state queue occupation probabilities and when com

paring the theoretical, simulation and experimental overall connection success rate.

This is interesting because the Poisson policy is very intuitive to model where as the

deferred policy is easily and efficiently implementable in real-life queue management

mechanisms.

Overall, the theoretical results matched the simulation and experimental results

very closely except for the deterministic policy. On one hand, the threshold deter

ministic theoretical results followed the trend of the simulation and experimental

results but with relatively high errors. On the other hand, the linear deterministic

theoretical results did not match the simulation and experimental results for other

than low virulence values. This is clearly due to the FILO approximation which has

a lower impact on the threshold method than on the linear. The threshold method

only changes the timeout between two values which makes it less dependent on the

queue occupation and thus easier to approximate.

93

In order to validate the robustness of our mathematical model in the light of

attacks other than the simplistic Poisson model, we evaluated the performance of the

different timeout strategies when the malicious connections arrive in deterministic

bursts of various sizes and at various intervals of time, by using stochastic simulations

and in-laboratory SYN-flood attacks. Whether with respect to the Poisson or the

burst attack models, we can draw several conclusions related to the performance of

the different timeout strategies which are consistent for simulations, experiments and

theoretical results:

I. Capacity vs. attack rate trade-off. There exists a linear trade-off between

the server resources (number of slots available in the queue) and the attacker

resources (malicious connection arrival rate). For this reason, we denned the

virulence of an attack, as the attack rate divided by the server capacity. At

constant virulence, as the attack rate and queue size increase, the performance

of all strategies remains constant (at different values for each strategy).

II. Fixed vs. dynamic timeout methods. Using a dynamic timeout strategy is

always a good idea. The only exception is the threshold deterministic strategy

that is overprotective when faced with low virulence attacks.

III. Threshold vs. linear methods. The linear timeout adjustment method per

forms better than the threshold timeout adjustment method. The sole exception

occurs when coupling the methods with the less efficient deterministic policy

for medium to high virulences. In this case, the overprotective behaviour of the

threshold method compensates the low reactivity of the deterministic policy.

IV. Deterministic vs. deferred policies. The deferred policy always performs

better than the deterministic policy when protecting against Poisson process

attacks. Moreover, the deferred policy has a lower computational overhead

than its deterministic counterpart.

V. Resonance effect. In simulations, we observed a resonance effect for burst

attacks with burst interarrival times (BIT) and virulences such that a single

burst fills the queue entirely. At these values, the fixed timeout strategy and

the dynamic timeout strategies with the deferred policy show a significant per

formance decrease. However, this effect was not visible in experiments due to

the low-pass filter behaviour of the network that absorbed the resonance effect.

94

VI. Timeout optimisation. High empty-queue and low full-queue timeout val

ues are optimal values for the linear deferred strategy, regardless of the legiti

mate traffic rate, queue size and malicious traffic type and rate. For all other

strategies, there exist no universally good values to use in all conditions, ex

cept maybe for the threshold deferred strategy where high empty-queue timeout

and low full-queue timeout offer non-optimal but reasonable performance when

compared with the fixed timeout method.

In essence, all of the relevant findings can be summarised into one single recom

mendation for protocol designers and system administrators managing the configura

tion of connection table management in servers and network hardware.

Overall Recommendation: We suggest always using the linear deferred timeout strat

egy with a high empty-queue timeout value (T0 ^ 210 s) and a low full-queue

timeout value (Ti ~ 2 - 1 0 s). These settings will provide the best overall rate of

successful connections in all conditions.

It is important to note that the difference in performance between this optimal

strategy and optimal parameter choices, and other possible combinations is only sig

nificant within the so-called window of interest, which ranges between virulence values

of 0.05 and 8 s_1. Outside of this approximately 2 orders of magnitude range, the

recommendation above is still valid, but is not very useful because all strategies will

perform equally well or equally badly. Nonetheless, since the implementation over

head of such strategies with respect to the others is only linear in the queue size, it

pays to always use them, even if it is unsure whether the residual traffic rate generated

by unfiltered or undectetable connections, will be within this window of interest. And

even in the case where the attack will be more virulent than 8 s_1, then the linear

tradeoff we have described above indicates that the same quality of service can be

maintained by matching the attack rate with a like increase in the size of the queue,

which in most protocols and applications will normally be a cheap thing to do, and

hence a good defensive choice.

We hope to further confirm and enhance our findings in future work by comparing

the linear deferred strategy with high empty-queue and low full-queue timeout values

with a similar, yet simpler approach, where the queue would act as a ring buffer. This

is based on the intution that the linear deferred strategy with an infinite empty-queue

95

timeout T0 and very small, tending to zero, full-queue timeout Ti, will essentially

behave as such a ring buffer. On the other hand, an implemenation of a ring buffer-

based queue strategy will be more lightweight and result in a lower overhead. This

hypothesis needs to be confirmed in simulation and tested experimentally.

On the mathematical modelling side, we would like to improve the approximations

we made in order to more precisely evaluate the deterministic and deferred timeout

assignment policies. On the experimental side, it would important to explore the

effect on the performance of dynamic timeout strategies of using different network

topologies; for example, this might (or might not) affect the presence and strength of

such phenomena as the resonance effect.

Finally, while we measured experimentally the performance of the dynamic time

out strategies only for the SYN-fiood attack, in sections 4.3.3 and 4.3.4 we showed

how our abstract protocol can be instantiated to reflect the queue behaviour at higher

protocol levels. Hence, this work can be easily generalised to devise dynamic time

out implementations for common connection oriented protocols. However, one of

the immediate difficulties of doing so is that the standards for most relevant pro

tocols (e.g. HTTP vl . l (Fielding et al, 1999), TLS vl . l (Dierks et Rescorla, 2006)

and FTP (Postel et Reynolds, 1985)) do not define connection timeout mechanisms.

Nonetheless, the applications that implement these protocols do include such timeout

mechanisms, and as such the results obtained here can be applied to make them more

resilient to the corresponding version of connection depletion attacks. Verifying this

intuition for such protocol implementations would greatly increase the applicability

and relevance of not only the results described here, but also of the modelling and

experimental techniques introduced. It is for that reason, the object of ongoing work

by our research group.

Acknowledgements: We would like to thank Fabian Monrose for providing some

useful feedback on potential applications of our work to other types of protocols. We

would also like to thank and acknowledge the co-authors of the previous versions of

this work, John Mullins, John McHugh and Edouard Reich, who have accompanied

us in the initial phases of this endeavour.

96

CHAPITRE 5

Discussion generate et conclusion

Dans ce memoire nous nous sommes interesses a la performance d'un serveur dont

un service oriente connexion est sous attaque de deni de service d'epuisement de

ressources. Contrairement aux autres approches qui ont ete explorees dans le passe,

notre solution ne se base pas sur la discrimination du trafic legitime et malicieux. De

plus, la solution que nous proposons ne consiste pas a modifier la logique du protocole

mais simplement de gerer de facon dynamique l'expiration des connexions dans la file

du serveur.

Nous avons modelise la file des connexions etablies ou en cours d'etablissement du

serveur a l'aide des chaines de Markov. Ce type de chaine a ete utilise dans le passe

pour mesurer la performance des equipements reseau. Nous avons adapte le modele

mathematique afin de modeliser, en plus du trafic legitime, le trafic malicieux. Suite

a l'analyse du modele mathematique, nous avons confirme qu'augmenter la taille de

la file des connexions permet au serveur d'etre plus resistant aux attaques. De plus,

le parametre evident qui peut etre optimise du cote serveur pour rendre le serveur

plus resistant aux attaques de deni de service est le delai d'inactivite.

En plus de la strategie par defaut qui consiste a garder le delai d'inactivite fixe,

nous avons modelise deux methodes reactives qui diminuent la valeur du delai d'in

activite au fur et a mesure que la file de connexions se remplit : la methode threshold

et la methode linear. Si la methode threshold est deja implemented par certains so

lutions de protection, la methode linear a ete introduite par nous. Face a un delai

d'inactivite dynamique il existe plusieurs politiques que le serveur peut adopter pour

assigner le delai d'inactivite aux connexions dans la file. A notre connaissance, nous

sommes les premiers a avoir decrit formellement et analyse les politiques determinis

tic et deferred qui sont envisageables d'etre integrees dans des implementations des

mecanismes de gestion de la file de connexions. Pour des fins de simplicite, nous avons

aussi introduit et modelise la politique Poisson, qui par contre n'est pas facilement

utilisable en pratique.

97

Pour confirmer la validite du modele theorique, nous avons developpe un simula-

teur stochastique a base d'evenements qui nous est propre et nous avons implements

les methodes du delai d'inactivite dynamique ainsi que la strategie du delai d'in

activite fixe, pour des fins de comparaison. Nous avons teste les politiques d e s i

gnation du delai d'inactivite deterministic et deferred. Afm de montrer la generality

du modele et des strategies du delai d'inactivite dynamique, nous avons reproduit

experimentalement une attaque de type SYN-Flood. Pour toutes les experiences et

simulations, nous avons effectue plusieurs essais arm d'obtenir la valeur moyenne de

la performance des strategies mais aussi l'ecart type de ces valeurs. Les strategies de

protection ont ete implementees dans un composant reseau proche du serveur.

Suite a l'analyse des resultats obtenus a l'aide du modele theorique, par simu

lation stochastique et experimentalement, nous confirmons la validite du modele

mathematique. De plus, nous observons que la politique theorique Poisson a un ef-

fet tres similaire a la politique pratique deferred. Cependant, les approximations que

nous avons considerees pour calculer theoriquement la performance de la politique

deterministic introduisent des erreurs trop importantes par rapport aux resultats de

simulations et experimentaux, qui rendent les resultats theoriques de la politique

deterministic inutilisables.

En ce qui concerne la performance des differentes strategies du delai d'inactivite

dynamique, les conclusions que nous tirons sont les suivantes :

Compromis capacite - taux d'attaque. L'intuition du compromis lineaire entre

la taille de la file des connexions du serveur et le taux d'arrivee des connexions

malicieuses est confirmee. Ceci se traduit par le fait que pour offrir la meme

qualite de service face a une attaque avec un taux d'arrivee deux fois plus

rapide, le serveur doit etre dimensionne pour avoir une file de taille deux fois

plus grande. Pour cette raison, nous avons introduit la virulence d'une attaque

comme etant le taux d'arrivee des connexions malicieuses divise par la taille de

la file.

Les methodes dynamiques versus la methode fixed. Les methodes dynamiques

de gestion du delai d'inactivite offrent toujours une meilleure performance que

la methode fixed. La seule exception est la methode threshold pour des attaques

peu virulentes ou dans des cas ou le taux du trafic legitime est tres eleve, du

a un phenomene de type Flash Crowd, par exemple. En plus de la meilleure

performance, les resultats des methodes dynamiques sont plus stables statisti-

98

quement, dans le sens que la performance est moins variable (ecart type plus

petit) que celle de la methode fixed, dans les memes conditions.

La methode linear versus la methode threshold. La methode d'ajustement du

delai d'inactivite linear est plus performante que la methode threshold. La seule

exception arrive quand les deux methodes sont couplees avec la politique d e

signation du delai d'inactivite moins performante, deterministic, pour des at-

taques tres virulentes. Ceci s'explique par le fait que le caractere surprotecteur

de la methode threshold compense la reactivite reduite de la politique determi

nistic.

La politique deferred versus la politique deterministic. La politique d e s i

gnation du delai d'inactivite deferred est plus reactive que la politique determi

nistic parce qu'elle decide si une connexion doit expirer ou pas en fonction de

l'etat actuel de la file et non pas de l'etat de la file au moment de l'arrivee de

la connexion. Pour cette raison, la politique deferred offre une meilleure perfor

mance que la politique deterministic, et ce quelque soit la methode utilisee.

L'effet de resonance. Dans les simulations stochastiques, nous avons observe un

effet de resonance pour les attaques en rafale, quand une seule rafale remplit

entierement la file. La performance des strategies a base de la politique deferred

ainsi que la methode fixed est diminuee dans ce cas specifique. Cependant, l'effet

de resonance n'est pas observe dans les experiences a cause de l'effet de filtre

passe-bas du reseau.

Optimisation des parametres. Seule la strategic linear deferred presente des va-

leurs du delai d'inactivite a file vide (T0) et a file pleine (Ti) qui sont optimales

pour tous les scenarios. Ces valeurs, T0 tres grand (ft 210) et 7\ tres petit

(ft 2 - 1 0), montrent la robustesse de cette strategie par rapport aux variations

du taux de trafic legitime et malicieux. Pour ces memes valeurs, la strategie

threshold deferred offre une performance non-optimale mais qui pourrait etre

un bon compromis par rapport a la methode fixed.

Nous identifions dans la suite des limitations de notre approche et des directions

de recherche pour des travaux futurs. Notre modele theorique est construit sur la

supposition que le trafic d'attaque suit la distribution d'un processus de Poisson. Un

attaquant a interet a generer ce type de trafic pour ne pas se faire detecter par des

mesures d'analyse statistique. De plus, l'architecture et le mode de fonctionnement de

99

l'lnternet transforment la distribution dans le temps du trafic IP regu par une victime

potentielle vers une distribution de processus de Poisson. Cependant, si l'attaque est

realisee sur d'autres protocoles de plus haut niveau et avec un taux d'arrivee plus

petit, il peut etre interessant pour l'attaquant de generer du trafic dont la distribution

est differente de celle d'un processus de Poisson. Pour cette raison nous considerons

comme travail futur de recherche la modelisation mathematique d'autres distributions

d'attaque.

L'approximation que nous avons faite pour calculer theoriquement la performance

de la politique d'assignation du delai d'inactivite deterministic introduit des erreurs

trop importantes et rend inutilisables les resultats theoriques. Nous visons a proposer

des meilleures approximations pour cette politique dans des travaux futurs.

La politique d'assignation du delai d'inactivite Poisson que nous avons modelisee

theoriquement offre des resultats theoriques tres bons, similaires aux resultats obtenus

par simulation stochastique est experimentalement avec la politique deferred. Nous

avons modelise mathematiquement cette politique a cause de sa simplicite, mais il

n'est pas evident quel serait l'algorithme correspondant a cette politique qui pourrait

etre implemente dans une strategic du delai d'inactivite dynamique dans la pratique.

Comme travail futur, il serait interessant de trouver un algorithme decrivant la po

litique Poisson, de l'implementer et de tester l'impact de l'effet de resonance face a

cette politique. Nous soupgonnons que cette politique serais plus robuste que la poli

tique deferred, qui offre des performances similaires, a cause du fait que les connexions

ne sont pas jetees instantanement apres transitions de la file, comme c'est le cas avec

la politique deferred. De plus, nous soupgonnons que la strategic linear deferred confi-

guree avec un delai d'inactivite a file vide tres grand et avec un delai d'inactivite a

file pleine tres grand serait equivalente a une technique de gestion de la file comme

une structure de donnees de type tampon circulaire (ring buffer). La confirmation de

cette intuition permettrait de batir un modele mathematique plus simple pour cette

strategic qui se traduirait par une estimation numerique de performance plus rapide

et plus precise.

L'architecture que nous avons choisie pour la realisation des mesures experiment ales

des strategies du delai d'inactivite dynamique contre une attaque de type SYN-Flood

nous a limite a des vitesses d'attaque de l'ordre de 8 Mbps. Cette limitation est due

a l'utilisation du meme canal de communication pour le controle de la file du ser-

veur, via l'envoie des paquets RST, que pour le transport des messages des clients.

100

Les solutions que nous proposons pour combler ce probleme sont soit d'utiliser une

connexion reseau dediee au controle de la file des connexions du serveur, soit de

deployer l'application de protection sur le serveur a proteger.

Finalement, nous avons considere le cas ou l'attaquant depense toutes ses res-

sources pour attaquer le serveur a un seul niveau du modele OSI. Si dans les experiences

nous avons choisi de illustrer les strategies de protections face a l'attaque SYN-Flood

qui vise le protocole de communication au niveau transport, TCP, dans le modele

mathematique et les simulations stochastiques nous avons fait des abstractions qui

permettent d'appliquer les resultats et conclusions a d'autres protocoles orientees

connexion. De plus, nous montrons comment capturer le comportement d'une at-

taque d'inondation avec des requetes HTTP ou encore d'une attaque de reservation

des places pour un evenement, en identifiant les evenements qui generent des tran

sitions dans le modele abstrait. Notre intuition est que les attaques qui visent les

protocoles de plus haut niveau sont plus avantageuses pour l'attaquant non seule-

ment parce que cette approche est peu etudiee et que la plupart des methodes de

protection de plus bas niveau ne sont pas applicables mais aussi parce que le com-

promis entre les ressources de l'attaquant et du defenseur est plus favorable pour

l'attaquant dans ce cas. Des travaux de recherche futurs pourront confirmer cette

intuition et montrer le niveau d'attaque optimal pour l'attaquant ce qui permettrait

a un defenseur de savoir comment et ou concentrer les efforts.

Pour conclure, nous rappelons que les attaques de deni de service par epuisement

des ressources sont un outil tres puissant qui permet de bloquer completement ou

partiellement l'acces des clients legitimes a des ressources specifiques sur Internet.

Ce travail presente une modelisation des attaques d'epuisement des ressources, et

plus important, des methodes pratiques pour combattre ces types d'attaques. Pour

les administrateurs des systemes, ce travail permet de savoir comment configurer

les mecanismes de protection deja en place pour avoir une meilleure protection et

comment dimensionner les serveurs pour garantir une certaine qualite de service.

Pour les concepteurs des systemes d'exploitation, des equipements reseau et des so

lutions de protection materielles et logicielles, ce travail presente des strategies de

gestion du delai d'inactivite qui offrent une tres bonne protection contre les at

taques d'epuisement des ressources mais qui s'implementent facilement, qui n'in-

duisent pas beaucoup de temps de calcul supplement aire et qui sont complement aires

avec d'autres techniques de defense.

101

References

ADAIR, S. (2008). Gambling websites under attack. http://www.shadowserver.

org/wiki/pmwiki.php?n=Calendar.20080218.

AL-DUWAIRI, B. et MANIMARAN, G. (2006). Intentional dropping : a novel

scheme for SYN flooding mitigation. INFOCOM 2006 : Proceedings of the 25th

Annual Joint Conference of the IEEE Computer and Communications Societies.

IEEE Computer Society, 1-5.

AYRES, P. E., SUN, H., CHAO, H. J. et LAU, W. C. (2006). ALPi: A DDoS defense

system for high-speed networks. IEEE Journal on Selected Areas in Communica

tions, 24, 1864-1876.

BEAUMONT-GAY, M. (2007). A comparison of SYN flood detection algorithms.

ICIMP 2007 : Proceedings of the Second International Conference on Internet Mea

surement and Protection. IEEE Computer Society.

BELLAICHE, M. et GREGOIRE, J.-C. (2007). SYN flooding attack detection by

TCP handshake behaviour observation. MonAM 2007 : Proceedings of the IEEE

Workshop on Monitoring, Attack Detection and Mitigation.

BERNSTEIN, D. J. (2003). SYN cookies, h t tp : / / c r .yp . to / syncookies .h tml .

BOTEANU, D., FERNANDEZ, J. M., MCHUGH, J. et MULLINS, J. (2007a). Queue

management as a DoS counter-measure ? ISC 2007: Proceedings of the Information

Security Conference. 263-280.

BOTEANU, D., FERNANDEZ, J. M. et MULLINS, J. (2006). On the efficiency of

timeout-based DoS attack protections. Rapport technique, Ecole Polytechnique de

Montreal.

BOTEANU, D., REICH, E., FERNANDEZ, J. M. et MCHUGH, J. (2007b). Imple

menting and testing dynamic timeout adjustment as a DoS counter-measure. QoP

'07 : Proceedings of the ACM Workshop on Quality of Protection [held in conjunc

tion with ACM Communications and Computer Security Conference (CCS)]. ACM,

34-39.

http://www.shadowserver
http://cr.yp.to/syncookies.html

102

CAO, J., CLEVELAND, W. S., LIN, D. et SUN, D. X. (2001). On the nonstationarity

of Internet traffic. ACM SIGMETRICS Performance Evaluation Review, 29, 102-

112.

CHEN, S. et SONG, Q. (2005). Perimeter-based defense against high bandwidth

DDoS attacks. IEEE Transactions on Parallel and Distributed Systems, JL6, 526-

537.

CHENG, C.-M., KUNG, H. et TAN, K.-S. (2002). Use of spectral analysis in defense

against DoS attacks. GLOBEGOM '02 : Proceedinds of the Global Telecommuni

cations Conference. IEEE Computer Society, vol. 3, 2143-2148.

CHOUMAN, M., SAFA, H. et ARTAIL, H. (2005). Novel defense mechanism against

SYN flooding attacks in IP networks. Proceedings of the Canadian Conference on

Electrical and Computer Engineering.

DIERKS, T. et RESCORLA, E. (2006). RFC4346 : The transport layer security

(TLS) protocol. Version 1.1. h t tp : / /www.ie t f .o rg / r fc / r fc4346. tx t .

DIVAKARAN, D. M., MURTHY, H. A. et GONSALVES, T. A. (2006). Detection

of SYN flooding attacks using linear prediction analysis. ICON '06 : Proceedings

of the 14th IEEE International Conference on Networks. IEEE Computer Society,

vol. 1.

DONG, K., YANG, S. et WANG, S. (2006). Analysis of low-rate TCP DoS attack

against FAST TCP. ISDA '06 : Proceedings of the Sixth International Conference

on Intelligent Systems Design and Applications. IEEE Computer Society.

DOULIGERIS, C. et MITROKOTSA, A. (2004). DDoS attacks and defense mecha

nisms : classification and state-of-the-art. Computer Networks, 44, 643-666.

FEINSTEIN, L., SCHNACKENBERG, D., BALUPARI, R. et KINDRED, D. (2003).

Statistical approaches to DDoS attack detection and response. DISCEX-III: Pro

ceedings of the 3rd DARPA Information Survivability Conference and Exposition.

IEEE Computer Society, 303-314.

FENG, W. C , KAISER, E. et LUU, A. (2005). Design and implementation of network

puzzles. INFOCOM 2005 : Proceedings of the 24th Annual Joint Conference of the

IEEE Computer and Communications Societies. IEEE Computer Society.

http://www.ietf.org/rfc/rfc4346.txt

103

FERGUSON, P. et SENIE, D. (1998). RFC2267 - Network Ingress Filtering :

Defeating Denial of Service attacks which employ IP source address spoofing,

h t tp : / /www.ie t f .o rg / r fc / r fc2267. tx t .

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER, L., LEACH,

P. et BERNERS-LEE, T. (1999). RFC2616 : Hypertext Transfer Protocol -

HTTP/1.1, h t t p : //www. i e t f . org/rf c/rf c2616. tx t .

GHAVIDEL, A. Z. et ISSAC, B. (2007). Secure transport protocols for DDoS attack

resistant communication. SCOReD 2007 : Proceedings of the 5th Student Confe

rence on Research and Development.

HANDLEY, M. et RESCORLA, E. (2006). RFC4732 - Internet Denial-of-Service

considerations, h t t p : //www. i e t f . org/rf c/rf c4732. tx t .

IOANNIDIS, J. et BELLOVIN, S. M. (2002). Implementing Pushback : Router-based

defense against DDoS attacks. NDSS '02 : Proceedings of Network and Distributed

System Security Symposium. The Internet Society.

JAGERMAN, D. L. (1975). Nonstationary blocking in telephone traffic. Bell System

Technical Journal, 54, 625-661.

JAGERMAN, D. L., MELAMED, B. et WILLINGER, W. (1997). Stochastic mode

ling of traffic processes. Frontiers in queueing : models and applications in science

and engineering.

JIN, C., WANG, H. et SHIN, K. G. (2003). Hop-count filtering : an effective defense

against spoofed DDoS traffic. CCS '03 : Proceedings of the 10th ACM conference

on Computer and Communications Security. ACM, 30-41.

JUELS, A. et BRAINARD, J. (1999). Client puzzles : A cryptographic defense against

connection depletion attacks. NDSS '99 : Proceedings of the Network and Distri

buted System Security Symposium. 151-165.

KEROMYTIS, A. D., MISRA, V. et RUBENSTEIN, D. (2004). SOS : an architecture

for mitigating DDoS attacks. IEEE Journal on Selected Areas in Communications,

22, 176-188.

http://www.ietf.org/rfc/rfc2267.txt

104

KHAN, S. et TRAORE, I. (2005). Queue-based analysis of DoS attacks. Proceedings

of the IEEE Workshop on Information Assurance and Security. IEEE Computer

Society, 266-273.

KIM, Y , LAU, W. C , CHUAH, M. C. et CHAO, H. J. (2006). PacketScore : A

statistics-based packet filtering scheme against distributed Denial-of-Service at

tacks. IEEE Transactions on Dependable and Secure Computing, 03, 141-155.

KUZMANOVIC, A. et KNIGHTLY, E. W. (2003). Low-rate TCP-targeted Denial of

Service attacks : the shrew vs. the mice and elephants. SIGCOMM '03 : Proceedings

of the Conference on Applications, technologies, architectures, and protocols for

computer communications.

LEMON, J. (2002). Resisting SYN flood DoS attacks with a SYN cache. BSDC'02 :

Proceedings of the BSD Conference. USENIX Association.

LEYDEN, J. (2007). Consumer revenge site returns after DDoS attack. http://www.

theregister.co.uk/2007/10/29/moneysavingexpert_ddos/.

LIM, B. et UDDIN, M. S. (2005). Statistical-based SYN-flooding detection using pro

grammable network processor. ICITA '05 : Proceedings of the Third International

Conference on Information Technology and Applications. IEEE Computer Society,

465-470.

LUI, J. C. S., MISRA, V. et RUBENSTEIN, D. (2004). On the robustness of soft

state protocols. ICNP '04 •' Proceedings of the 12th IEEE International Conference

on Network Protocols. IEEE Computer Society, 50-60.

MACIA-FERNANDEZ, G., DiAZ-VERDEJO, J. E. et GARCiA-TEODORO, P.

(2007). Evaluation of a low-rate DoS attack against iterative servers. Computer

Networks, 51, 1013-1030.

MADAN, B. B., GOSEVA-POPSTOJANOVA, K., VAIDYANATHAN, K. et TRI-

VEDI, K. S. (2002). Modeling and quantification of security attributes of software

systems. DNS 2002 : Proceedings of the International Conference on Dependable

Systems and Networks. IEEE Computer Society, 505-514.

http://www
http://theregister.co.uk/2007/10/29/moneysavingexpert_ddos/

105

MASSEY, W. A. et WHITT, W. (1994). An analysis of the Modified Offered-Load

approximation for the nonstationary Erlang loss mode. The Annals of Applied

Probability, 4, 1145-1160.

MEADOWS, C. (1999). A formal framework and evaluation method for network

Denial of Service. CSFW '99 : Proceedings of the 12th IEEE Workshop on Computer

Security Foundations. IEEE Computer Society, 4.

MEADOWS, C. (2001). A cost-based framework for analysis of Denial of Service in

networks. Journal of Computer Security, 9, 143-164.

MICROSOFT TECHNET (2003). Security considerations for network attacks.

ht tp: / /www.microsoft .com/technet/securi ty/ topics/networksecuri ty/

secdeny.mspx.

MIRKOVIC, J., DIETRICH, S., DITTRICH, D. et REIHER, P. (2004). Internet

Denial of Service : Attack and defense mechanisms. Prentice Hall PTR.

MIRKOVIC, J., HUSSAIN, A., WILSON, B., FAHMY, S., REIHER, P., THOMAS,

R., YAO, W.-M. et SCHWAB, S. (2007a). Towards user-centric metrics for Denial-

of-Service measurement. ExpCS '07: Proceedings of the Workshop on Experimental

Computer Science. ACM.

MIRKOVIC, J., PRIER, G. et REIHER, P. L. (2002). Attacking DDoS at the source.

ICNP '02 : Proceedings of the 10th IEEE International Conference on Network

Protocols. IEEE Computer Society, 312-321.

MIRKOVIC, J. et REIHER, P. (2004). A taxonomy of DDoS attack and DDoS

defense mechanisms. SIGCOMM Computer Communication Review, 34, 39-53.

MIRKOVIC, J., REIHER, P., FAHMY, S., THOMAS, R., HUSSAIN, A., SCHWAB,

S. et KO, C. (2006). Measuring Denial of Service. QoP '06 : Proceedings of the

2nd ACM Workshop on Quality of Protection. ACM, 53-58.

MIRKOVIC, J., ROBINSON, M. et REIHER, P. (2003). Alliance formation for DDoS

defense. NSPW '03 : Proceedings of the Workshop on New Security Paradigms.

ACM, 11-18.

http://www.microsoft.com/technet/security/topics/networksecurity/

106

MIRKOVIC, J., WEI, S., HUSSAIN, A., WILSON, B., THOMAS, R., SCHWAB, S.,

FAHMY, S., CHERTOV, R. et REIHER, P. (2007b). DDoS benchmarks and expe

rimenter's workbench for the DETER testbed. TRIDENTCOM 2007 : Proceedings

of the 3rd International Conference on Testbeds and Research Infrastructure for the

Development of Networks and Communities. IEEE Computer Society.

MURPHY, K. (2007). Godaddy whacked by DDoS attack, http:/ /www.cbronline.

com/article_news.asp?guid=D137B95B-B05A-4838-A584-CDlDD71DDE26.

NAKASHIMA, T. et OSHIMA, S. (2006). A detective method for SYN flood attacks.

ICICIC '06 : Proceedings of the First International Conference on Innovative Com

puting, Information and Control. IEEE Computer Society, 48-51.

NAKASHIMA, T. et SUEYOSHI, T. (2007). Performance estimation of TCP under

SYN flood attacks. CISIS 2007 : Proceedings of the First International Conference

on Complex, Intelligent and Software Intensive Systems. IEEE Computer Society,

92-99.

NATU, M. et MIRKOVIC, J. (2007). Fine-grained capabilities for flooding DDoS

defense using client reputations. LSAD 2007 : Proceedings of the ACM SIGCOMM

Workshop on Large-Scale Attack and Defense.

NAZARIO, J. (2007). Estonian DDoS attacks - a summary to date. h t t p : / / a s e r t .

arbornetworks.com/2007/05/estonian-ddos-attacks-a-summary-to-date.

NOURELDIEN, N. A. et OSMAN, I. M. (2000). A stateful inspection module archi

tecture. Proceedings of IEEE TEN CON 2000 Conference. IEEE Computer Society,

vol. 2, 259-265.

OHSITA, Y., ATA, S. et MURATA, M. (2005). Deployable overlay network for de

fense against distributed SYN flood attacks. ICCCN 2005 : Proceedings of the

14th International Conference on Computer Communications and Networks. IEEE

Computer Society, 407-412.

OIKONOMOU, G., MIRKOVIC, J., REIHER, P. et ROBINSON, M. (2006). A

framework for a collaborative DDoS defense. ACS AC '06 : Proceedings of the 22nd

Annual Computer Security Applications Conference on Annual Computer Security

Applications Conference. IEEE Computer Society, 33-42.

http://www.cbr
http://asert
http://arbornetworks.com/2007/05/estonian-ddos-attacks-a-summary-to-date

107

POSTEL, J. et REYNOLDS, J. (1985). RFC959 : File transfer protocol (FTP).

h t t p : / / t o o l s . i e t f . o r g / h t m l / r f c 9 5 9 .

ROBINSON, M, MIRKOVIC, J., MICHEL, S., SCHNAIDER, M. et REIHER, P.

(2003). DefCOM : defensive cooperative overlay mesh. DISCEX-III: Proceedings of

the 3rd DARPA Information Survivability Conference and Exposition. IEEE Com

puter Society, vol. 2, 101-102.

SCHUBA, C. L., KRSUL, I. V., KUHN, M. G., SPAFFORD, E. H., SUNDARAM,

A. et ZAMBONI, D. (1997). Analysis of a Denial of Service attack on TCP. SP

'97 : Proceedings of the 1997 IEEE Symposium on Security and Privacy. IEEE

Computer Society, 208.

SHAKKOTTAI, S., SRIKANT, R., BROWNLEE, N., BROIDO, A. et CLAFFY, K.

(2004). The RTT distribution of TCP flows in the Internet and its impact on TCP-

based flow control. Rapport technique, Cooperative Association for Internet Data

Analysis (CAIDA).

SHEVTEKAR, A., ANANTHARAM, K. et ANSARI, N. (2005). Low rate TCP

Denial-of-Service attack detection at edge routers. IEEE Communications Letters,

9, 363-365.

SHIN, S., KIM, K. et JANG, J. (2005). D-SAT : detecting SYN flooding attack by

two-stage statistical approach. Proceedings of the Symposium on Applications and

the Internet.

SIRIS, V. A. et PAPAGALOU, F. (2004). Application of anomaly detection algo

rithms for detecting SYN flooding attacks. GLOBECOMM '04 : Proceedings of the

Global Telecommunications Conference. IEEE Computer Society.

SMITH, B. (2008). A storm (worm) is brewing. Computer, 41, 20-22.

SPAMNATION (2007). 419eater DDoS'd? http://www.spamnation.info/blog/

archives/2007/09/419eater_ddosd.html.

TARTAKOVSKY, A. G., ROZOVSKII, B. L., BLAZZEK, R. B. et KIM, H. (2006).

A novel approach to detection of intrusions in computer networks via adaptive se

quential and batch-sequential change-point detection methods. IEEE Transactions

on Signal Processing, 54, 3372-3382.

http://tools.ietf.org/html/rfc959
http://www.spamnation.info/blog/

108

VARANASI, R., PHOHA, V. V. et JOSHI, S. (2004). IP-traceback based attacker

tracking : A probabilistic technique for detecting Internet attacks using the concept

of Hidden Markov Models. Proceedings of the 5th IEEE Information Assurance

Workshop, US Military Academy of West Point. IEEE Computer Society.

WANG, H., ZHANG, D. et SHIN, K. G. (2002). Detecting SYN flooding attack.

NFOCOM 2002 : Proceedings of the Twenty-First Annual Joint Conference of the

IEEE Computer and Communications Societies. IEEE Computer Society, 1530-

1539.

XIAO, B., CHEN, W., HE, Y. et SHA, E. H. M. (2005). An active detecting method

against SYN flooding attack. ICPADS '05 : Proceedings of the 11th International

Conference on Parallel and Distributed Systems. IEEE Computer Society, 709-715.

XU, J. et LEE, W. (2003). Sustaining availability of web services under Distributed

Denial of Service attacks. IEEE Transactions on Computers, 52, 195-208.

YANG, G., GERLA, M. et SANADIDI, M. Y. (2004). Defense against low-rate TCP-

targeted Denial-of-Service attacks. ISCC '04 •' Proceedings of the Ninth Interna

tional Symposium on Computers and Communications. IEEE Computer Society,

345-350.

YANG, X., WETHERALL, D. et ANDERSON, T. (2005). A DoS-limiting network

architecture. A CM SIGCOMM Computer Communication Review, 35, 241-252.

YAU, D. K. Y., LUI, J. C. S., LIANG, F. et YAM, Y. (2005). Defending against dis

tributed Denial-of-Service attacks with max-min fair server-centric router throttles.

IEEE/ACM Transactions on Networking, 13, 29-42.

ZHANG, S. et DASGUPTA, P. (2003). Denying Denial-of-Service attacks : A router

based solution. ICDCS 2003 : Proceedings of the 23 IEEE International Conference

on Distributed Computing Systems. IEEE Computer Society.

ZOU, C. C , DUFFIELD, N., TOWSLEY, D. et GONG, W. (2006). Adaptive defense

against various network attacks. IEEE Journal on Selected Areas in Communica

tions, 24, 1877-1888.

109

ZUQUETE, A. (2002). Improving the functionality of SYN cookies. Proceedings

of the IFIP TC6/TC11 Sixth Joint Working Conference on Communications and

Multimedia Security. Kluwer Academic Publishers, 57-77.

110

ANNEXE A

Queue Management as a DoS

counter-measure ?

[PAGE BLANCHE INTENTIONNELLE]

Queue Management as a DoS counter-measure?

Daniel Boteanu1 , Jose M. Fernandez1 , John McHugh2 , John Mullins1

Ecole Polytechnique de Montreal
2 Dalhousie University

Abstract. In this paper, we study the performance of timeout-based
queue management practices in the context of flood denial-of-service
(DoS) attacks on connection-oriented protocols, where server resources
are depleted by uncompleted illegitimate requests generated by the at
tacker. This includes both crippling DoS attacks where services become
unavailable and Quality of Service (QoS) degradation attacks. While
these queue management strategies were not initially designed for DoS
attack protection purposes, they do have the desirable side-effect or pro
viding some protection against them, since illegitimate requests time out
more often than legitimate ones. While this fact is intuitive and well-
known, very few quantitative results have been published on the potential
impact on DoS-attack resilience of various queue management strategies
and the associated configuration parameters. We report on the relative
performance of various queue strategies under a varying range of attack
rates and parameter configurations. We hope that such results will pro
vide usable configuration guidelines for end-server or network appliance
queue hardening. The use of such optimisation techniques is comple
mentary to the upstream deployment of other types of DoS-protection
counter measures, and will probably prove most useful in scenarios where
some residual attack traffic still bypasses them.

Keywords: Denial of service attack, degradation of service attack, queue
management, timeout, dynamic timeout.

1 Introduction

A denial-of-service (DoS) network at tack occurs when the victim receives a ma
licious s tream of packets tha t prevent the legitimate communication from taking
place. DoS flood at tacks consist in sending the victim (typically a server) a higher
volume of traffic t han it can handle. This can be achieved either by saturat ing the
server's network connection or by using weaknesses in the communication proto
cols tha t typically allow the attacker to generate high server resource usage for a
limited attacker effort. Distributed denial-of-service (DDoS) at tacks are simply
DoS attacks performed by multiple agents, most frequently simultaneously. In
this paper we direct our at tent ion towards the resource exhaustion at tacks on
connection oriented protocols. Although the studied-to-death SYN-flood at tack
fits well into this category, we use it merely as an example to explain our ap
proach. As we will discuss, it is our hope tha t our approach could potentially
be applied to other TCP-based at tacks (e.g. ACK flood) or higher-level at tacks

against Web servers (straight HTTP or via SSL), FTP servers, VPN gateways,
mail servers, or even DoS protection mechanisms in upstream network appli
ances.

The impact of a DoS attack on a particular system will vary depending on
the protocols and applications involved. Furthermore, an attack can have mea
surable impact on the Quality of Service (QoS) of a system even when the server
resources are not completely exhausted [21], such as in the case of Degradation
of Service attacks [19]. While degrading QoS or even rendering a service unavail
able might be possible, this always comes at a cost for the attacker. For a given
service level or attack impact, there is a direct relationship between the resources
expended by the attacker and the target. These tradeoffs have been discussed
for crippling DoS attacks [16,17], but these formalisms cannot be easily applied
to QoS degradation attacks. While some experimental testbeds have been pro
posed to try to measure these tradeoffs [2], there are in fact very few quantitative
results (modelling or experimental) concerning degradation of service attacks.

Various methods and appliances for protecting against DoS attacks have been
suggested, for example Cisco Guard XT, Captus IPS, COSSACK, DefCOM,
D-WARD, MANAnet Shield, Mazu Enforcer, NetBouncer, Peakflow, Proof of
Work, Pushback, Secure Overlay Services, Traceback and others (see [19,20]
for complete surveys on the topic). These can be viewed as first- and second-
line defences, where first-line defences use traffic profiling or anomaly detection
mechanisms and filter it accordingly [8,25,22], and second-line defences consist
in modifying TCP/IP protocols to positively affect the resource tradeoff in favour
of the defender [3,28,10,12,7].

Nonetheless, it is possible for sophisticated attacks to evade both types of
defences. Thus, a considerable amount of residual attack traffic could still evade
both network- and host-based defences and reach the end server OS and applica
tion connection queues. When all traffic-discriminating counter-measures have
been bypassed, legitimate and residual attack traffic is indistinguishable. For
tunately, certain features of the end server can mitigate the impact of residual
traffic, even in those conditions. These features therefore constitute a last line
of defence. Queue management algorithms that were initially designed to min
imise the impact of network traffic loss or high latency fall into that category.
One of the most common such features is the attribution of timeout periods to
all incoming connections. Protocols that implement this feature and that do not
necessarily require explicit messages to close a connection are called soft protocols
and they perform better than their counterpart hard protocols in unexpected net
work conditions like DoS attacks [14]. In practice, the timeouts can be adjusted
dynamically according to administrator-configurable thresholds on resource us
age levels, as has been suggested and implemented in network appliances [10]
and OS [18] for the specific purpose of improving resiliency against DoS attacks.
When these thresholds are reached, the server is placed in a "protective" state,
which in principle has the effect of favouring fast legitimate connections over
attack connections.

Unfortunately, it is not clear at all what the "optimal" threshold values are,
as there is no quantitative method for estimating the parameters that minimise
the effects of DoS attacks while maintaining equivalent levels of QoS. In the rest
of this paper, we try to address this gap. One of the reasons we are interested
in this is because such features are very general and already in place at the
various network and application layers. Note also that maximising their effec
tiveness as DoS protections is complementary and in principle compatible with
the deployment and use of other upstream defences.

In the next section we propose a stochastic modelling tool for DoS at
tacks, based on Markov chains. Using this model, we analyse three different
timeout-based protection strategies in Sect. 3. We provide in Sect. 4 the experi
mental results obtained by simulating these strategies according to two different
implementations. Finally, we conclude and give directions for future work in
Sect. 5.

2 Modelling Servers under DoS Attack with Markov
Chains

Markov chains are a stochastic modelling tool that describe the states and dy
namics of a system at successive times. They are said to be memoryless if the
probability of transition between any two states is independent of the previous
states. The stochastic process generating state transition events is thus said to
be markovian, which is equivalent to saying that they are distributed in time
according to a Poisson distribution. Markov chains can also be used to model
systems in which this is not the case, i.e. those where state transitions probabil
ities will depend on past history. In instances where the key parameters such as
rate of arrivals and departures are known, the model can be "solved". First, this
means that given state probabilities at given time, predictions can be made about
state probabilities at a later time. We can also compute steady-state probabilities,
which correspond to the likelihood of the various states at the equilibrium of the
system.

Markov chains are suitable for modelling network performance and have been
used in that purpose for many years. In particular, Markov Chains have also
been used as modelling tool in network security. Baras [1] suggests detecting
route falsification attacks in mobile ad-hoc networks (MANET) using a Hidden
Markov Model (HMM). More recent studies [27] show that using edge sampling
techniques along with HMM can be used to reconstruct a network attack path.
HMMs can also be used in Intrusion Detection Systems [11,15], the transitions
between each state in the Markov model being generated by intrusion, detection
and recovery events. Finally, Khan et al. [13] have successfully used Markov Chain
modelling of queues to design DoS traffic detection strategies. In our case, we
will use Markov chains to model the performance of servers under DoS attacks.

2.1 Description of the model

Typical Markov chain models used in network performance have each state char
acterised by the number of connections in the system. A maximum number of
connections c can be served at the same time. Connections arrive with rate A
and are served with rate p,. In our case, each state in the chain is characterised
by two values: Ni and Nm, the number of connections used by legitimate users
and malicious users, respectively. A maximum number of both legitimate and
malicious connection c can be served in the same time. All connection requests
that arrive when the server is in a saturated state (JVj + Nm = c) will be re
jected. Transitions between states occur with different rates for the legitimate
and malicious connection requests: A; and pn for the arrivals and servings of
legitimate connections and Am and fj,m for the arrivals and servings of malicious
connections. The chain has a triangular form where states on the upper line
represent that no malicious connections are present in the system and states on
the diagonal represent that only malicious connections are present in the system
(see Fig. 6 in the appendix). The following events generate transitions between
states:

— connection arrived: the server received a connection request from a client. It
occurs at a rate A;

— connection completed: the connection was either elevated to a higher-level
protocol, or the client was served with the required information and the
connection was closed successfully. It occurs at a rate [i\\

— connection rejected: the server was not able to serve the connection because
no more connections channels were available (queue full). It occurs at a rate
4>r;

— connection expired: the server tried to serve the connection but the commu
nication timed out and the connection was dropped. It occurs at a rate (f)e;
and

— connection failed: the connection was either rejected or it expired. It occurs
at a rate <fr = </y + 4>e.

In the particular case of a SYN-flood attack, Ni will actually represent the
number of legitimate connections (and Nm the number of malicious ones) that
are half-open. The connection arrived and connection completed events repre
sent a SYN message and the corresponding ACK message being received by the
server, respectively. In the case of an SSL connection depletion attack, Ni and
Nm represent the number of legitimate and malicious completed TCP connec
tions, respectively, that have not yet established a secure channel and for which
the negotiation phase is still in progress. The connection arrived events repre
sent the Client hello message being received by the server and the connection
completed events represent the corresponding Finished message being sent by
the server. It is even possible to consider a nested model, each level representing
a different layer in the protocol stack.

How realistic is this model regarding legitimate arrival and service rates? It
is known that user sessions initiations resemble phone calls [23] and thus have

a Poisson arrival process with exponential inter-arrival times. We will make the
supposition that all incoming connections follow this pattern, assumption that
is used in other DoS related research [21,5]. In most cases, serving rates depend
only of network transit times but in some cases user interaction is also a factor.
It has been shown that because of the network queueing algorithms, all the
IP packet traffic tends toward a Poisson process as the load increases [4]. For
modelling purposes, we will make the supposition that the network is heavily
used and therefore that legitimate service rate follows a Poisson process model.
According to our assumption, connections completed events are generated at
exponential intervals of time from the connection arrived events, if the timeout
has not elapsed. Otherwise, connection expired events are generated at timeout
intervals from the connection arrived events.

The rate at which connection completed messages are generated by the legit
imate clients is /xc. Only messages that arrive to the server before their timeout
elapses will generate connection completed events; we thus have that in > /ic. All
the other will be ignored by the server and connection expired events are gener
ated when the timeout elapses. Therefore, the Probability Distribution Function
(PDF) of the legitimate connection service time Gi(t) will have the form of
an exponential distribution for t smaller than the timeout tout, followed by an
appropriately weighted delta Dirac function at tout

Gt(t) =

\fj,ce
 tfXc

\S(t- toxlt)pexpi
re o

t < ^out

t = tout

otherwise
(1)

y 0 otherwise

where

/•OO

Pexpire = / flce'^dt = e " W c . (2)
' ' t o u t

The mean service time and the service rate for legitimate connections are

t, 4 / tGt(t)dt = — ; * 4 i = ^ _ (3)
Jo Mc ti 1-e * ° « ^

While we model legitimate packet arrivals as a Poisson process this is not
general for attack traffic as the attacker is free to use whatever strategy he or she
wants. Even though there is no proof that this is optimal, the attacker might want
to mimic the legitimate arrivals process in order to thwart certain time analysis
detection methods. In any case, we will assume that the residual attack traffic,
unfiltered by upstream defence mechanisms is distributed according to a Poisson
distribution, because otherwise it could have been potentially discriminated by
such techniques. We make this assumption in order to be able to construct a
simple enough mathematical model that we can numerically resolve. However,
we will later explore in Sect. 4 attacks for which this is not true.

Concerning the malicious packet service process, the strategy of the attacker
is to exhaust the server resources using the smallest effort possible. This is

achieved by generating the connection arrived events and then abandoning the
communication without any notice to the server. Malicious connections will even
tually all expire and generate connection expired events at tout intervals of time
from the connection arrived events. The malicious connection service rate is in
this case pm = l/tout.

Although the triangular DoS Markov chain model that we presented describes
the states in which the server will be during an attack, these states are not
directly visible because individual connections can not be labelled as legitimate
or malicious. For this reason, we will analyse the visible Markov chain that has
c + 1 states, each state being characterised by the number of connections N used
by both legitimate and malicious users. The probability that the visible Markov
chain is in a state N is the sum of all probabilities that the hidden Markov chain
is in state (NhNm) with Nt + Nm = N.

The visible connection arrival process is the sum of two Poisson processes
with rates A/ and Am and thus also a Poisson process with rate A = A/ + Xm. In
a Markov chain model the load is defined as the ratio between the arrival and
service rates. In our case, we distinguish the load generated by the legitimate
users pi = \i/m, and the load generated by malicious users pm = Am/ 'pm. The
overall load p cannot be computed directly because the service processes are
not memoryless. Our goal is to compute the overall load by approximating the
overall mean service time t. We consider i to be constant in time and equal to
the average of the mean legitimate service time ti and mean malicious service
time tm weighted by the legitimate load and the malicious load, respectively:

* = - ^ L - t | + - ^ - « o u t (4)
Pi + Pm Pl+ Pm

The approximative mean service rate in the visible chain is:

tl~ i~ \mtf + Xin2
m

We can now calculate an approximative overall load generated by both legitimate
and malicious users as p = A//L With this approximation we can compute the
steady-state probability that the system is in the state k using Erlang's loss
formula:

i=0

2.2 Approximate solutions to the model

Because the connections are served independently, the only significant perfor
mance measure is the probability <f> that a legitimate connection will fail, which
is equal to the probability that the connection will be rejected <f>r plus the prob
ability the connection will expire (f>e, i.e. 0 = <\>r + <j>e.

The blocking probability is by definition the probability that the system is
saturated, i.e. that the queue is full. A connection is rejected if the server is
saturated when the connection arrived event is generated. The probability that
a connection is rejected (f)r is thus equal to the probability that the server is in
state c at that moment. If the system were at equilibrium, this will be exactly
the steady-state probability pc. If we assume that the system will never be far
from equilibrium, we can approximate it as such, i.e. </>r & pc.

A connection expires with the probability Expire if the server is not saturated
when the connection arrived event is generated. The connection expire proba
bility can also be approximated with the steady-state probabilities as follows:

c - l

PkPexpire \ ')

k=Q

In this model, the resources that the attacker spends to achieve a negative
impact on the service level are proportional to the residual malicious connections
arrival rate Am; the actual malicious traffic arrival rate at the upstream defences
might be significantly higher. The resources that the server spends to achieve
the required service level is represented by the capacity c of the queue. We are
interested in how the tradeoff between the attacker and server resources varies
for the same legitimate connection fail probability </>, or equivalently for the same
connection complete probability l — (j). Even though the fully expanded expression
of 4> is quite complex, what lies beneath it is a tradeoff between these quantities
that is essentially linear for the same connection complete probability, as we
have verified with several numerical calculations. Fig. 1(a) illustrates the contour
curves for the connection complete probability, for different values of attack
rates and server capacities. Note that they are essentially straight, indicating
that an increase in attack rate by the attacker can be efficiently matched by a
corresponding linear increase in queue capacity by the defender, while keeping
the same quality of service; this confirms previously known intuition by experts
in the network security field.

Although the residual traffic rates represented might seem ridiculously small,
this traffic would have already been severely filtered by other upstream defences,
if such were present. Thus, in order to get this small amount of residual traffic
through, the attacker might have had to generate large amounts of traffic at
the perimeter, resulting in a high resource cost. See Table 1 in the Appendix
for default configuration parameters of different implementations of connection-
oriented protocols.

Given a certain attack rate Xm and server capacity c, the parameter that
can be optimised by the defender is the timeout. As Fig. 1(b) shows, the two
components of the legitimate connections reject probability 4>, <j)e and 4>r, change
in opposite directions as we vary the timeout: 4>e decreases exponentially with
the timeout, while <f>r increases. When no attack is present 0 r is null for A/ < /x/c;
it has the limit A; — mc for infinite timeout when A; > inc. When an attack is
present, <f>r has the limit A/ when timeout is infinite. For a specific attack rate and
capacity there is an optimal timeout value that can be calculated numerically.

(a)

Fig . 1. (a) Steady-state legitimate connection complete probabilities for various queue
capacities c (x-axis) and attack rates Am (y-axis), at fixed legitimate arrival rate A; = 10
cnx/s, mean service time ti = 1 s, and timeout tout = 75 s. For each pair (x,y), the
corresponding connection complete probability is indicated as a gray-scale value for
the corresponding rectangular region of the graph. Better quality of service (i.e. higher
probability, lighter shades) are achieved with bigger queues and lower attack rates.
The contour curves connect points (x, y) with the same connection complete probabil
ities (same colour), and are approximately represented by straight lines in the figure,
(b) Variation of the steady-state reject, expire and fail probabilities, 4>r, 4>e, and <f>,
respectively, as a function of the timeout value tout-

3 Dynamic Timeout Management Strategies

We will now analyse two queue management strategies tha t consist in dynam
ically adjusting the timeout. This is, of course, in contrast with the s tandard
strategy of having a fixed, non-adaptive connection t imeout value. Ideally we
would want to make this adjustment by looking at the triangular Markov chain
and choosing a timeout according to the number of legitimate and malicious
connections in the server. Unfortunately, this model is not visible because the
server is unable to distinguish if a connection request is legitimate or malicious.
Therefore, the only information available to adjust the t imeout is the total num
ber of connections used. While the threshold prevention strategy is already im
plemented in Microsoft Windows Server 2003 and some security appliances, the
second strategy, linear timeout prevention, is a concept tha t we introduce. Fig. 7
in the appendix illustrates how they fit in the taxonomy of DDoS defence of [20].

There are for each of these strategies, two alternate methods for deciding how
to flush out t imed out connections: deterministic and deferred. The deterministic
method consists in tagging each connection with a pre-determined expiry t ime
upon its arrival. The expiry time is simply the arrival t ime plus the timeout value
at the moment of arrival. To take into account the fact tha t the reality of the
system might have changed drastically since the arrival of a connection, another

approach seems more suitable: to defer the assignment of an expiry time, such
that if the timeout decreases after its arrival, the connection is checked against
the new timeout value. Thus at any given time, connections are flushed if the
time elapsed since their arrival is bigger than the current timeout value. We refer
to this method as the deferred method. In the rest of this section, we instantiate
the general Markov models of Sect. 2 and compute steady-state probabilities for
the deterministic method only. We will nonetheless present simulation results
for both in Sect. 4.

3.1 Threshold-based timeout adjustment strategy

This consists in using a normal, long timeout to at first. If the number of connec
tions used in the server is greater then a certain threshold S, a shorter, attack
timeout t\ will be used. The timeout used will depend at all times on the state
k in which the server is:

t(*0 =Uo k<S ^
1 t\ otherwise

The probability that an individual connection will expire Expire •> the legiti
mate service rate //; and the approximative overall service rate /} described in (2),
(3) and (5) all become state dependent:

(fc) / X (fe) . 1 \
„ (*) _ „ - t<*l / ic . „ (*) = /*<= • f.(fc) - M ' ^m^Xm^l +XlVrn)
^expire e ' ^l _Ak) ' M (fc)

(9)
We use the same principle as before to calculate the probability that the

server is in a specific state k using Erlang's loss formula:

3=0 P »=0 \ j=0 P /

Similar to the case where no timeout adjustment is made, the significant per
formance measure <f> representing the legitimate connection fail event probability
is calculated as:

c - l

<t> = (f>r + <t>e = Pc + X ^ P e x p i r e (U)
fc=0

The tradeoff between the attacker and server resources is still linear but more
favourable for the server than with a fixed timeout. Fig. 2 illustrates this tradeoff
for numerical values of the rates (Aj and ///), timeouts (to and ti) and threshold
S similar to what we can find in Microsoft and McAfee products that use this
strategy in a real-life scenario.

Capacity [cnx]

(a)

Capacity [cnx]

(b)

Fig. 2. Steady-state legitimate connection complete probabilities for various queue
capacities c (x-axis) and attack rates Am (y-axis), at fixed legitimate arrival rate A; = 10
cnx/s, mean service time U = 1 s, and timeout values to = 75 s, ti = 1 s for (a) a single
threshold at S — c/2, and (b) linear adjustment. Connection complete probabilities for
each combination (x, y) of queue size and attack rate is represented by gray-scaling the
corresponding rectangular region.

3.2 Linear t i m e o u t a d j u s t m e n t s t r a t e g y

This strategy differs from the threshold-based one in the way the timeout is
decreased. Instead of suddenly decreasing the timeout when the server s ta te
reaches a certain threshold, this strategy gradually decreases the t imeout as
the number of connections in the server increases. When no connection is used
(i.e. the server is in the state 0) an empty-queue long timeout to is used; when
all connections are used (i.e. the server is in the state c), a full-queue shorter
t imeout t\ is used; and otherwise, a linear interpolation of the two values is used
in all other server states. Thus, (8) becomes t^t = to + (t\ — to)k/c.

The same definitions in (9) tha t describe the individual connection expire

event probability Expire' * n e legitimate service rate /x; and the approxima

tive overall service rate p,^ can be inserted in the Erlang loss formula (10) to

calculate the legitimate connection fail event probability:

c - 1

4> = 4>T + 4>e Pc + ^2pkP, (fc)
expire

(12)
fc=0

Once again, we are interested in the tradeoff between the attacker and server
resources. Analysis of the two protection strategies show tha t for the same values
of systems parameters and traffic (within the range explored), the linear t imeout
protection strategy could perform bet ter than the threshold t imeout protection
strategy. These results are illustrated in Fig. 2(b). Finally, it is important to note
tha t while the linear t imeout adjustment strategy is slightly more complex than

the threshold-based one, the computational overhead for a server implementing
it is negligible.

4 Experimental Results and Interpretation

We implemented these two strategies, in both their deterministic and deferred
variants, and measured their performance using a home-made traffic simula
tor. We also implemented and measured the performance of the standard fixed-
timeout strategy, for comparison. The legitimate and residual malicious connec
tion requests were generated using Poisson processes. The connection complete
events for legitimate connections were also generated using a Poisson process.
The residual attack traffic was generated in two different ways: a) a Poisson pro
cess, in order to validate the theoretical model, and b) a deterministic process
with bursts of instantaneous traffic at regular time intervals; the volume of each
burst adjusted such that the averaged traffic rate would always remain the same.

In the first case, we conducted simulations with parameters equivalent to
those of a hardened Web server under attack. The queue capacity was set to a
more realistic 8000 cnx and shorter timeout values were used: tout = 10 s, i0 =
10 s, t\ — 0.2 s. The range of attack rates explored went from a modest 128 cnx/s
to a very respectable 65536 cnx/s, equivalent to a 26 Mbps (!) residual attack
bandwidth. For all strategies, nine different input data sets were used (except
for the linear deferred, where only one simulation was run). The averaged results
are shown in Fig. 3 and they give a clear picture of the relative performance of
the various methods we have discussed here; the maximum standard deviation
for performance in all runs was 0.023.

In order to better understand these results, it is useful to define the notion
of relative attack virulence as the ratio between the rate of attack Xm and the
queue size c. Intuitively, it corresponds to how many queues per second the at
tack could fill up, if there was no timeout and no legitimate traffic. In fact, our
first observation is that virulence is indeed the most important parameter affect
ing completion probabilities. We have confirmed this by running simulations at
various combinations of attack rate and queue size, and have observed the same
linearity between them as we have described in Sect. 3 for the theoretical model
(see Fig. 4 in the appendix for more details).

As can be seen, at low virulence (< 0.05 s_ 1) the QoS degradation is negligi
ble, and at very high virulence (> 16 s_ 1) the degradation is equally unaccept
able for all strategies. In between these values, which constitutes the "window
of interest" of these results, several conclusions can be drawn with respect to
the relative performance of these strategies that confirm the theoretical predic
tions of Sect. 3. First, both timeout adjustment strategies are much better than
those with a fixed timeout. Second, linear adjustment performs slightly better
than the threshold-based timeout adjustment. In particular, the differences in
performance can be as high as 20%, for virulence around 2 s. This corresponds
to a relatively high residual attack rate of 16,000 cnx/s (6.5 Mbps) at which all
strategies would notice a significant decrease in QoS (at least 30% legitimate con-

100% »

"•-Threshold Determi nistic

-•"Linear Deterministic

™*~ Threshold Deferred

-^-Linear Deferred

-S*-Fixed Timeout

0.015625 0.0625 0.25 1 4 16

Attack / Capacity [s~1]

Fig. 3 . Legitimate connection complete rate (y-axis) for various strategies, with fixed
queue size c = 8000, legitimate traffic rate A;=100 cnx/s, mean service time ti = 0.2 s,
and timeout values to=W s and ti=0.2 s, for various relative virulence (ic-axis).

nections lost), except the linear deferred strategy where QoS degradation would
be very small (a few percent). Finally, let us emphasise that these conclusions
are quite general. We ran a separate set of simulations with values typical of an
unprotected T C P stack in an unhardened OS. For the same relative virulence,
the QoS degradation results obtained are very similar, hence re-confirming the
relative performance of the various strategies.

In the second case, we explored the performance of these strategies against
attack traffic not generated according to a Poisson process, something we could
not do with our theoretical model. The results of these simulations are shown
in Fig. 4, where we show the performance of the strategies for a fixed attack
rate and various burst inter-arrival times. First, we notice that a Poisson attack
strategy is not always optimal for the attacker, as a significant degradation of
QoS happens at an inter-arrival rate of 2 s (identified with a vertical line in
Fig. 4). This value is particularly significant as at this virulence level the queue
is completely filled with attack traffic at every burst, and the only time that
legitimate traffic can be serviced is after some of these packets have timed out
and before the next burst. This is akin to a "resonance effect" where the attack
characteristics are matched to those of the queue. This is optimal to the attacker,
first because higher inter-arrival times results in bursts that are oversized and
waste attack packets, and in addition result in an increased time window in
which legitimate packets can be serviced. Consequently, QoS levels re-establish

—•—Threshold Deterministic

—•—Linear Deterministic

~#™Threshold Deferred

-^ -L inear Deferred

-3K-Fixed Timeout

Burst interval [s]

Fig. 4. Legitimate connection complete rate (y-axis) for various strategies, with fixed
queue size c = 128 cnx, legitimate traffic rate A/=10 cnx/s, mean service time U = 1 s,
timeout values to=75 s and t i = l s, and attack rate Am = 64 cnx/s, for Poisson attacks
(far left) and various burst inter-arrival times (a;-axis).

themselves linearly with respect to inter-arrival times. Second, if inter-arrival
time is decreased, burst volume also decreases thus leaving space in the queue
for legitimate requests arriving before the next burst to be serviced.

Nonetheless, the relative performance of the queue management strategies is
the same as in the Poisson attack case. The only notable deviation is that the
linear deterministic adjustment strategy is more robust to the queue resonance
effect described above. Its performance is better than the linear deferred method
(and all others) at all inter-arrival time settings, except for low-volume, frequent
bursts.

5 Conclusions and Future Work

In this paper we made an effort to understand the effectiveness of queue man
agement strategies against DoS attacks. We first constructed a Markov model
describing the behaviour of a server under DoS attack that tries to exhaust the
available connection slots in the queue. This model has allowed us to gain in
tuition on the likely tradeoffs between the various parameters that characterise
a system under attack (traffic and service rates, queue size, etc.). Of particular
interest, but relatively unexplored, is the possibility of optimising queue man
agement parameters such as timeout and queue capacity with the respect to an

expected residual attack rate and QoS requirement. There are however a few
limitations to this model that should be the object of further research. First, we
have used the steady-state approximations, thus assuming equilibrium, which
is not accurate in the case of high residual traffic rates. Second, we have not
described in this paper the model for analysing the deferred method of policing
timeout connections out of the queue.

Nonetheless, from the analysis of the model in combination with the simu
lation results (which include non-Poisson residual traffic distributions), several
interesting conclusions can be drawn that should be of immediate application for
those vendors and system administrators that are incorporating or using such
types of strategies in OS and applications in host servers or in anti-DoS network
appliances:

1. The tradeoff between residual attack rate and queue capacity is indeed lin
ear for almost all strategies and scenarios. This confirms previously known
empirical evidence.

2. Dynamically adjusting timeout is always a good idea, except for coarse
threshold-based adjustments that are overprotective in the case of light resid
ual attack traffic.

3. Fine-grained linear timeout adjustments always outperforms fixed timeout
and threshold-based adjustments, and is significantly better for moderate
attack traffic rates.

4. The deterministic method of policing connections out of the queue is more
robust to attack parameter optimisation (the "resonance effect") and has
lower CPU overhead. However, the deferred method performs better against
Poisson attacks, at the cost of a CPU overhead linear in the size of the queue.

We hope to further confirm these findings in future work by a) exploring a
wider range of attack strategies and queue management algorithms and parame
ters in simulation, and b) conducting actual experiments in laboratory networks
pitting various attacks against implementations of these strategies in different
OS and applications. In these experiments we hope to test in conditions be
yond some of the modelling assumptions made, such as Poission service rates for
legimitate connections. In particular, we are aware that RTT distributions tend
to be heavy-tailed [26], and we hope to test our results such conditions which
are probably more realistic for normal network conditions.

Finally, while the work shown here is only applicable as-is to SYN-flood at
tacks it has the potential to be applied to other types of connection depletion
attacks for TCP or other higher level protocols. One of the immediate difficul
ties of generalising this work, is that the standards for most relevant protocols
(e.g. HTTP vl . l [9], TLS v l . l [6] and FTP [24]) do not define connection timeout
mechanisms. Nonetheless, several applications that implement these protocols do
include such timeout mechanisms (see Table 1 in the Appendix), and as such
some of the results obtained might be applied to make them more resilient to
the corresponding version of connection depletion attacks. Verifying this intu
ition for such protocol implementations is the object of ongoing research by our
group.

125

References

1. J. Baras. Modeling and simulation of telecommunication networks for control and
management. In Proc. Winter Simulation Conf., 2003.

2. T. Benzel, R. Braden, D. Kim, C. Neuman, A. D. Joseph, and K. Sklower. Experi
ence with DETER: A testbed for security research. In Proc. Int. Conf. on Testbeds
& Research Infrastructures for the DEvelopment of NeTworks & COMmunities
(TRIDENTCOM 2006), 2006.

3. D. Bernstein. SYN cookies, h t t p : / / c r . yp . t o / syncook ie s .h tml , 2003.
4. J. Cao, W. Cleveland, D. Lin, and D. Sun. Internet traffic tends toward Poisson

and independent as the load increases. In D. Denison, M. Hansen, C. Holmes,
B. Mallick, and B. Yu, editors, Nonlinear estimation and Classification, volume
171 of Lecture Notes in Statistics, pages 83-110. Springer-Verlag, 2003.

5. C.-M. Cheng, H. Kung, and K.-S. Tan. Use of spectral analysis in defense against
DoS attacks. In Proc. IEEE Global Telecommunications Conf. (GLOBECOM),
volume 3, pages 2143-2148, 2002.

6. T. Dierks and E. Rescorla. The transport layer security (TLS) protocol. Version
1.1. h t t p : / / t o o l s . i e t f . o r g / h t m l / r f c 4 3 4 6 , Apr. 2006. RFC 4346.

7. W. Feng, E. Kaiser, and A. Luu. Design and implementation of network puzzles.
In Proc. Annual Joint Conf. of IEEE Computer and Communications Societies
(INFOCOM), volume 4, pages 2372-2382, 2005.

8. P. Ferguson and D. Senie. Network ingress filtering: Defeating denial of service
attacks which employ IP source address spoofing, h t t p : / / t o o l s . i e t f . o r g / h t m l /
rf c2267, Jan. 1998. RFC 2267.

9. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext transfer protocol - HTTP/1.1, h t t p : / / t o o l s . i e t f . o r g / h t m l /
rf c2616#section-8, June 1999. RFC 2616.

10. F. Gong. Deciphering detection techniques: Part III denial of service detec
tion, http://www.mcafee.com/us/local_content/white_papers/wp_ddt_dos.
pdf, Jan. 2003. McAfee Network Security Technologies Group.

11. X. Hoang and J. Hu. An efficient hidden Markov model training scheme for
anomaly intrusion detection of server applications based on system calls. In Proc.
IEEE Int. Conf. on Networks (ICON), volume 2, pages 470-474. IEEE Computer
Society Press, 2004.

12. A. Juels and J. Brainard. Client puzzles: A cryptographic defense against con
nection depletion. In Proc. Network and Distributed System Security Symposium
(NDSS), 1999.

13. S. Khan and I. Traore. Queue-based analysis of DoS attacks. In Proc. IEEE Work,
on Information Assurance and Security (WIAS), pages 266-273, 2005.

14. J. C. Lui, V. Misra, and D. Rubenstein. On the robustness of soft state protocols.
In Proc. IEEE Int. Conf. on Network Protocols (ICNP), pages 50-60, 2004.

15. B. Madan, K. Goseva-Popstojanova, K. Vaidyanathan, and K. Trivedi. Modeling
and quantification of security attributes of software systems. In Proc. Int. Conf.
on Dependable Systems and Networks (DSN), pages 505-514, 2002.

16. C. Meadows. A formal framework and evaluation method for network denial of
service. In Proc. IEEE Computer Security Foundations Work., 1999.

17. C. Meadows. A cost-based framework for analysis of denial of service networks.
Journal of Computer Security, 9(1/2):143-164, 2001.

18. Microsoft Corporation. Security considerations for network attacks, http://www.
microsoft .com/technet /securi ty/ topics/networksecuri ty/secdeny.mspx.

http://cr.yp.to/syncookies.html
http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/
http://tools.ietf.org/html/
http://www.mcafee.com/us/local_content/white_papers/wp_ddt_dos
http://www
http://microsoft.com/technet/security/topics/networksecurity/secdeny.mspx

19. J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher. Internet Denial of Service:
Attack and Defense Mechanisms. Prentice Hall PTR, Dec. 2004.

20. J. Mirkovic and P. Reiher. A taxonomy of DDoS attack and DDoS defense mech
anisms. SIGCOMM Comput. Commun. Rev., 34(2):39-53, 2004.

21. J. Mirkovic, P. Reiher, S. Fahmy, R. Thomas, A. Hussain, S. Schwab, and C. Ko.
Measuring denial of service. In Proc. ACM Work, on Quality of Protection (QoP),
pages 53-58. ACM Press, 2006.

22. J. Mirkovic, M. Robinson, and P. Reiher. Alliance formation for DDoS defense. In
Proc. New Security Paradigms Work. (NSPW), pages 11-18. ACM SIGSAC, 2003.

23. C. Nuzman, I. Saniee, W. Sweldens, and A. Weiss. A compound model for TCP
connection arrivals for LAN and WAN applications. Comput. Networks, 40(3):319-
337, 2002.

24. J. Postel and J. Reynolds. File transfer protocol (FTP), h t t p : / / t o o l s . i e t f . o r g /
html/rf c959, Oct. 1985. RFC 959.

25. M. Robinson, J. Mirkovic, S. Michel, M. Schnaider, and P. Reiher. DefCOM:
defensive cooperative overlay mesh. In Proc. DARPA Information Survivability
Conf. and Exposition, volume 2, pages 101-102, 2003.

26. S. Shakkottai, R. Srikant, N. Brownlee, A. Broido, and K. Claffy. The RTT dis
tribution of TCP flows in the Internet and its impact on TCP-based flow control.
Technical report, Cooperative Association for Internet Data Analysis (CAIDA),
Feb. 2004.

27. R. Varanasi, V. Phoha, and S. Joshi. IP-traceback based attacker tracking: A
probabilistic technique for detecting Internet attacks using the concept of hidden
markov models. In Proc. IEEE Information Assurance Work. IEEE Computer
Society Press, 2004.

28. A. Zuquete. Improving the functionality of SYN cookies. In Proc. IFIP TC6/TC11
Joint Working Conf. on Communications and Multimedia Security, pages 57-77,
2002.

A Additional Tables &; Figures

Protocol

TCP

HTTP/1.1

Server
Linux 2.6.20

Solaris 9
Windows 2003

Apache 2.0
IIS 6.0

Queue size c [cnx]
1024
1024
1000
150

8000

Timeout tout [s]
180
60
21
300
120

Attack rate Am [cnx/s]
5.7
17.1
47.6
0.5
66.7

Table 1. Minimal attack rate exhausting all the connections of a server configured by
default

Mean results of the legitimate connection completion rates when using the
fixed-threshold and the linear t imeout protection strategies are presented in
Fig. 5. The s tandard deviation was smaller than 1 0 - 2 for all scenarios and strate
gies tested.

http://tools.ietf.org/

Legit, rate A;
[cnx/s]
128

16384

No protection

9.08%
9.01%

Threshold det.

66.22%
64.08%

Threshold def.

85.86%
62.43%

Linear det.

59.63%
64.93%

Linear def

92.40%
87.25%

Table 2. Simulation results showing connection success rate for all strategies and dif
ferent legitimate connection request rates, Am=10000 cnx/s, mean service time ^=0.2
s, and timeout values io=10 s and i i=0.2 s

128 256 384 512 M0 768 896 1024

Capacity [cnx]

(a)

128 256 384 512 640 768 896

Capacity [cnx]

(b)

256 384 512 640 768

Capacity [cnx]

128 256 384 512 640 768 896

Capacity [cnx]

(c) (d)

Fig . 5. Simulation results showing legitimate connection complete frequencies for var
ious queue capacities and attack rates, A;=10 cnx/s, /x;=l cnx/s, to=75 s and ii = 1
s, for the single threshold, (a) and (b), and linear strategies, (c) and (d), using the
deterministic and deferred methods, respectively.

Fig . 6. Triangular DoS Markov chain model

DDoS Defense Mechanisms

Classification by
activity level

Preventive

Classification by
prevention goal

Attack prevention

Classification by
secured target

System Security

Protocl Security

DoS prevention

Classification by
prevention method

Resource Accounting

Resource Multiplication

Classification by
detection strategy

- • Pattern

Anomaly

Hybrid

Third-party

Resource
Accounting

Classification by

- •

- •

- •

Agent identification

Rate-limiting

Filtering

^•™™

Classification by
location

Intermediate network

Source network

Classification by
cooperation degree

Cooperative

Interdependent

F ig . 7. Taxonomy of distributed denial-of-service defence mechanisms. The properties

of the two protection strategies we analyse are highlighted.

ANNEXE B

Implementing and Testing

Dynamic Timeout Adjustment as

DoS Counter-measure

[PAGE BLANCHE INTENTIONNELLE]

Implementing and Testing Dynamic Timeout Adjustment
as a DoS Counter-measure

Daniel Boteanu Edouard Reich John McHugh
Jose M. Fernandez Dalhousie University

Ecole Polytechnique de Montreal mchugh@CS.dal.ca
{daniel.boteanu|jose.fernandez}@polymtl.ca

ABSTRACT
In this paper we experimentally analyse various dynamic
timeout adjustment strategies in server queues as poten
tial counter-measures against degradation of service attacks.
Previous theoretical work studied the relative performance
of bo th coarse-grained threshold-based timeout and fine
grained adjusment strategies where the timeout value is ad
justed as the number of connections in the queue varies. In
addition, two methods for removing timed-out connections
were explored: the deterministic method where the expiry
t ime is determined at connection arrival depending on the
timeout value at tha t moment, and the deferred method
where connections are continuously polled and flushed when
the time-in-queue is larger than the current t imeout value.

We report on experiments performed on a lab network
where these strategies were tested against various configu
ration and attack parameters. The experimental results con
firm the conclusions previously obtained from mathematical
modelling and simulation, i.e. t ha t a) finer-grained dynamic
adjustment performs bet ter t han coarse-grained or no ad
justment , and b) t ha t the deferred method performs bet ter
than the deterministic one. Furthermore, our implementa
tion of these counter-measures is very efficient and transpar
ent with respect to the servers and applications it tries to
protect. I t could therefore be easily integrated into existing
OS and applications or implemented in separate network de
vices, either on dedicated machines or network appliances.

Categories and Subject Descriptors
G.2.0 [C o m p u t e r - C o m m u n i c a t i o n N e t w o r k s] : General—
Security and protection

General Terms
Experimentation, Measurement, Performance, Security

Keywords
Denial of Service, Degradation of Service, SYN flood

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QoP'07, October 29,2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-885-5/07/0011 ...$5.00.

1. INTRODUCTION
Denial-of-service attacks have been plaguing the Internet

for more than a decade. They have been a topic of much
research for almost as long. Much has been done and wri t ten
about modelling them and about potential counter-measures
against them (see [1, 2] for complete surveys on the topic).

The amount of effort or resources expended by the at
tacker (whether bandwidth, expendable source IP addresses
or even individual botnet machines) to at tack a single tar
get, is in most cases negligible compared to the amount of
resources the defender would have to spend to maintain an
equivalent availability of service. Previous work [3, 4] has
tried to discuss and formalise such tradeoffs, and several
counter-measures based on protocol modifications have been
proposed to t ry to t ip these tradeoffs in favour of the defend
ers. However, it is commonly assumed amongst security ex
perts tha t with the current availability of botnets from which
to launch these attacks, there is little one can do to prevent
a single target from becoming completely flooded and hence
unavailable: the tradeoffs are just hopeless. Nonetheless, in
the context of large-scale orchestrated DoS campaigns such
as the recent one in Estonia (see [5] for a very informative
and quanti tat ive technical summary) , potentially involving
hundreds or even thousands of targets , such tradeoffs might
not be so advantageous to an attacker with finite resources.
In addition, it is not only necessary to understand the trade
offs in the context of crippling DoS attacks, where the target
is reduced to 0% availability, bu t also the tradeoff between
resources expended to degrade to or maintain an equiva
lent quality of service (QoS). In other words, these resource
tradeoffs must also be understood in the context of Degrada
tion of Service at tacks [6, 1], where the objective is not nec
essarily to make a target completely unavailable bu t ra ther
substantially decrease its QoS.

In previous work [7], we have explored these tradeoffs be
tween timeout adjustment counter-measures and flooding
attacks on connection-oriented protocols, the quintessencial
example of which is the SYN-flood attack on TCP. The main
interest of such counter-measures is tha t they can in princi
ple be implemented in a t ransparent fashion by simple con
figuration adjustments, -without extra hardware or software,
and are complementary to the many other SYN-flood protec
tion measures t ha t have been developed and commercialised.

We describe in the next section the various counter-meas
ures we studied and the at tack models against which we
evaluated their QoS maintenance performance. We report
on the lab experiments we have performed in Sect. 3, describ
ing laboratory setup, implementation details and testing and

mailto:mchugh@CS.dal.ca

measurement methodologies. We describe the experimental
results and compare them with the theoretical results pre
viously obtained in Sect. 4. We discuss the limitations and
practical applicability of our work in Sect. 5, and summarise
our findings and conclude in Sect. 6.

2. PREVIOUS WORK
In these attacks, the defender resources being expended

are available slots in a pending connection queue, while
the attacker resources are numbers of connection attempts
(e.g. SYN packets sent, in the case of SYN flood). The mea
sure of QoS is the percentage of legitimate connection at
tempt requests that get serviced by the target. In [7] we con
sidered the relative performance of various queue manage
ment strategies with respect to maintaining this QoS mea
sure. In particular, since illegitimate connection that make
it to the queue never get completed (e.g. because the cor
responding ACK packets are never sent by the attacker), it
would seem intuitive that lowering the timeout values when
the queue is under attack would result in more illegitimate
request being flushed out than legitimate ones. On the other
hand, increasing it again when the queue empties out would
prevent unadvertently flushing out legitimate connections
when no longer under attack. With this in mind, we consid
ered three types of strategies for adjusting timeout values:

A. The traditional fixed timeout strategy, where the time
out is always the same, regardless of queue occupation.

B. The threshold strategy where the timeout changes be
tween two fixed values, as the number of connections in
the queue crosses a pre-defined threshold. This coarse-
grain adjusment method is not new and is already im
plemented in the TCP stack of some operating systems
(OS), e.g. Microsoft Windows Server 2003 [8].

C The linear method, a straightforward generalisation
of the former, where the timeout value is determined
according to a linear function depending on the num
ber of connections in the queue, with two pre-defined
empty- and full-queue timeout values.

Furthermore, we considered two timeout enforcement meth
ods for flushing connections from the queue when the time
out is dynamically adjusted:

1. The deterministic method, where the expiry time for
each connection is deterministically set when the con
nection arrives in the queue.

2. The deferred method, where connections in the queue
are continuously polled, and flushed if they have been
in the queue longer that the current timeout value.

Finally, two attack models were considered:

I. the Poisson attack model, a simpler albeit not very
realistic model, where the interarrival times of illegiti
mate connection attemps follow an exponential (i.e. a
Poisson model) distribution.

II. the burst attack model, where illegitimate connection
requests arrive in (almost) instantaneous bursts of a
fixed number of attempts, with burst spaced at a fixed
burst interrarival time (BIT).

Using Markov chain-based queue models (in the case of
Poisson attacks) and a custom-built event-driven simulator
(for both types of attacks), we were able to verify that:

i. For all strategies and methods, the tradeoff between at
tack rate (connection attempts per second) and server
queue size is essentially linear. Because of this tradeoff,
the only parameter that significantly influences QoS
degradation, for a fixed strategy and method, is the
ratio between attack rate and queue size, which we
called the relative attack virulence.1

ii. Fine-grained timeout adjustment (linear) always out
performs coarse-grained (threshold) adjustment, and
the latter outperforms the fixed timeout strategy.

iii. The deferred method generally performs better than
the deterministic one, except for the case of the linear
deferred which performs worse than the linear deter
ministic method for burst attacks.

iv. In the case of burst attacks, some strategies and meth
ods are quite sensitive to attack parameter optimisa
tions. In particular, the lowest QoS for each defensive
strategy is achieved when the BIT is set such that the
queue is filled with a single burst. We called this phe
nomenon the queue resonance effect.

These results, if confirmed in real-life settings, would be
of high practical interest. They would indicate how sim
ple choices in queue management algorithms could result
in dramatic improvements in resilience against QoS degra
dation attacks. Of course, this is only true for attack vir
ulences that are not too low or not too high, i.e. attacks
whose virulence is within the window of interest, since for
attacks outside this window the QoS degradation is equally
negligible or overwhelming, for all strategies. Therefore, we
enunciate the following hypothesis based on the theoretical
evidence of [7]:

Main Hypothesis. Within the window of interest (attack
virulences between 1/8 and 8 s _ 1) , finer-grained time
out adjustment strategies using the deferred method
will always perform better against SYN-flood attacks
than those using coarser-grained adjustment or the de
terministic method.

Until we can verify this hypothesis for real-life networks,
we have to content ourselves with gathering supporting ev
idence from testing on laboratory networks. The setup and
methodology we used to do so in the case of SYN-flood at
tacks is described in the next section.

3. EXPERIMENTAL SETUP AND TESTING
METHODOLOGY

The five components of our experimental setup are the
following:

1. The attack traffic generator, generating illegitimate
SYN packets on the network.

2. The legitimate traffic generator, attempting to estab
lish fully fledged TCP connections.

'intutively, the attack virulence indicates how many times
per s the attack could fill the queue, if there were no legiti
mate requests and a very low timeout value.

132

3. The server, whose T C P stack half-open connection
queue is being flooded.

4. The Queue Guardian (QG), a separate application whose
role is to protect the server queue.

5. The network, on which bo th kinds of traffic travel.

3.1 Attack Traffic Generator
For this component, we used the IXIA 400T, a special

purpose traffic generator chassis, built for performance and
conformance test ing of network applications. T h e model we
used has four separate Ethernet ports , capable of generating
traffic up to 1 Gbps each.

In order to generate the two types of malicious traffic we
wanted to test (Poisson and burs t) , we used the IxExplorer
application tha t runs on the IXIA hardware. Since neither
the hardware nor the software can natively generate Poisson
traffic, this type of at tack was synthesised by cyclically se
quencing 255 different modes, each mode consisting in send
ing one single SYN packet. For each attack rate, pauses be
tween modes were statically set to random values following
an exponential distribution. We performed a Kolmogorov-
Smirnov test on the inter-arrival times of the IxExplorer-
generated traffic measured on the server. The maximum
difference between the theoretical exponential and the ob
served cumulative distribution functions (CDF) was as low
as 0.12 for an at tack of 1000 packets/s , which confirms tha t
the traffic follows the Poisson process model closely.

For burst traffic, we ran experiments with different BIT
values, where the number of packets in a burst was chosen
so tha t overall a t tack ra te remained the same for all ex
periments. IxExplorer allowed us to generate burst at tack
traffic using only one mode, the burst mode, for BIT < 8s.
For burst at tacks with BIT > 8s, several modes were se
quenced, each mode sending an entire burst followed by one
or several "pause" modes. In the first case, we were able to
script several experiments a t various BIT values, one after
the other. A pause at least as long as the server's largest
t imeout value was inserted between attacks in order to pre
vent the experiments results from being contaminated by
previous ones.

3.2 Legitimate Traffic Generator
We used a home-made C + + application to generate the

legitimate traffic necessary for successful T C P handshake.
Both the SYN and ACK messages were sent with exponen
tially distributed inter-arrival times. Contrary to T C P stack
implementations in s tandard OS, this test application will
not send a SYN retry message if there is no response from
the server. This was a deliberate choice meant to keep the
connection a t t empt ra te constant and independent of the
connections complete rate . For performance measuring pur
poses, all the legitimate SYN messages came from the same
IP address. This address is discriminated only when count
ing the total number of legitimate connection a t tempts . Af
ter a T C P handshake is completed, the application will send
a RST message in order to free the connection on the server
side. We deployed the legitimate traffic generator on a dedi
cated machine running Gentoo Linux, with 2 GB of memory.

The server whose T C P stack is flooded is also a Gentoo
Linux, with 2 GB of memory, which allowed us to experi
ment with queue sizes up to 16384.

3.3 Queue Guardian (QG)
Rather than modifying the T C P stack kernel code, which

is neither easy nor practical in real-life deployments, we
chose to implement the dynamic t imeout strategies on a sep
arate application, in a manner t ransparent to the server and
the legitimate clients. The QG has four different roles:

1. It maintains an up-to-date mirror of the server queue.
This is achieved by sniffing the network connection and
interpreting packets being send and received by the
server. We used the l i b p c a p library to sniff all IP
packets on the network.

2. It drops connections from the mirror queue, according
to the chosen timeout adjustment strategy and con
nection expulsion method.

3. I t forces the server queue to drop the same connec
tions tha t were dropped from the mirror queue. This
is achieved by sending RST packets to the server. The
IP and T C P headers are spoofed so t ha t the message
appears to come from the original client. In order to
send the spoofed RST packets at high speeds, this role
was implemented using raw sockets.

4. It regularly logs the s tate of the queue, as well as the
number of different types of packets sniffed on the net
work. This log is used later for evaluating the perfor
mance of the timeout strategy under test.

For the deterministic method, we used a priority queue
implemented as a red-black tree to store the connections, or
dered by their expiration time. When all legitimate connec
tions get served, the complexity of the algorithm is 0 (log cNm

+ cNi), where c is the size of the server queue and Nm and
Ni are the number of SYN-ACK responses sent to malicious
and legitimate SYN packets, respectively. In the deferred
method, only the oldest connection in the queue needs to
be analysed: if it is present in the queue for longer than the
current t imeout, it will be dropped from the queue. Hence,
a single FIFO ring-buffer can be used to implement this
method. When all legitimate connections get served the
complexity of the algorithm is 0(Nm + cA^). In practice,
however, the legitimate connections are almost always at
the end of the queue so only Nm + JVj atomic operations
need to be performed. Finally, and for performance reasons,
we chose to implement each of these four roles in a separate
thread in the QG application. The QG is run on a separate
machine, based on a Intel Core 2 Duo processor a t 2.16 GHz.

3.4 Network Setup
A 16-port gigabit switch (Linksys SRV-2016) was used t o

connected all these components together. The legitimate
traffic generator machine, the server and the IXIA traffic
generator were each connected to a separate port on the
switch. For sniffing purposes, the QG machine was con
nected on a switch por t setup to mirror the server port . For
sending RST packets, a separate card on the QG machine
was connected t o another network port on the switch. Other
deployment schemes are possible as well and we will discuss
them in Sect. 5. Fig. 1 illustrates the network connections
between the components we have used.

3.5 Testing Methodology
In all the experiments we ran, the following steps were

followed in sequence:

Queue Guardian

Figure 1: Experimental lab network setup

1. The server queue size was configured with the value
required for testing.

2. The server timeout was configured to be at least as
long as the longest timeout on the QG. This way, all
the connections drops were triggered by the QG.

3. The legitimate connection traffic generator was started
with the connection arrival and connection completion
rates required for testing.

4. The QG was configured with the required parameters
and started.

5. The attack traffic parameters were configured in IxEx-
plorer.

6. The attack was started and the experiment was run
during a period of time ten times longer than the longest
timeout on the QG.

7. The connection success rate was computed based on
the QG's log.

Connection completions correspond to ACK messages being
sent to the server. Legitimate connection attempts corre
spond to SYN messages being sent from the legitimate IP
address. The connection success rate was computed as the
ratio between the connections completed and the legitimate
connection attempts during the attack.

4. RESULTS AND ANALYSIS
We measured the performance of the two dynamic timeout

strategies, threshold and linear, along with the fixed timeout
strategy for comparison purposes. For the dynamic strate
gies, we tested both the deterministic and deferred methods
of assigning timeouts to connections. We compare these re
sults with those obtained in a previously built home-made
traffic simulator (described in [7]) that implements these
strategies. The attack traffic was generated using both mod
els described above. In both cases we tested the attacks

- E x p . Thre&hold^Determiniatn
—Exp. Linear Deterministic
- E x p . Threshold Deferred
HExpJLinear Deferred

- E x p . Fixed Timeout
* Sim. Threshold Deterministic
- Sim. Linear Deterministic
-- Sim. Threshold Deferred
•- Sim. Linear Deferred

Sim. Fixed Timeout

0.0156 0.0313 0.0625 0.1250 0.2500 0.5000 1.0000 2.0000 4.0000 8.0000

Virulence [s'1]

Figure 2: Legitimate connection complete rate (y-
axis) for various strategies, with fixed queue size
c = 128, legitimate traffic rate 100 packets/s, mean
service time 0.2 s, initial and final timeout values 10
s and 0.2 s, respectively, for various Poisson attack
virulences (x-axis).

against a small queue size of 128 and a more reasonable
queue size of 1024.

4.1 Poisson attacks
In the case of Poisson attacks, we explored virulences from

0.015 to 8 s"1. The corresponding attack speeds varied from
2 to 1024 packets/s when testing against a queue size of 128,
and from 32 to 8192 packets/s when testing against a queue
size of 1024. The legitimate connection attempt rate was 10
packets/s and the mean RTT time for the legitimate traffic
was 200 ms (as observed experimentallly in [9]). The fixed
timeout strategy used a timeout value of 10 s and the dy
namic timeout strategies used empty- and full-queue timeout
values of 10 s and 200 ms, respectively. Results for the tests
against a queue size of 128 are shown in Fig. 2.

Overall, the experimental results are very similar to the
simulation results. The average difference between the sim
ulation and experimental results is 2%. The greatest dis
crepancy (17%) was measured for the linear deterministic
strategy faced with an attack of virulence 8 s _ 1 against a
queue size of 1024.

As anticipated from the simulations, results for low and
high virulences are not interesting. For low virulence values
(< 0.05s-1) the attack is not strong enough to degrade QoS
at the the server, even when using the fixed timeout strat
egy. For very high virulence values (> 8s - 1) the attack is
so strong that none of the dynamic timeout strategies can
maintain a connection success rate greater than 50%. In be
tween these values, the window of interest, several conclu
sions can be drawn that confirm previous theoretical results.

First, the dynamic timeout strategies perform better or
equivalent than the fixed timeout strategy. We measured
differences of up to 85% between the linear deferred strat
egy and the fixed timeout strategy, and up to 50% between
the threshold deterministic and the fixed timeout strategy
around virulences of 1 s _ 1 . Second, the deferred technique
always performs better than the deterministic technique.
Differences up to 30% can be observed between the deferred
and the deterministic techniques around virulences of 2 s_ 1 .
This is due to the fact that the deferred technique is more
reactive, deciding whether a connection should expire or not
based on the current status of the queue, as opposed to the

« A

0.5 s-

2 s => burst size = queue size

Virulence

F i g u r e 4: R e l a t i o n s h i p b e t w e e n P o i s s o n a t tack pa
r a m e t e r s of F ig . 2 r e p r e s e n t e d here on t h e zz -p lane ,
and burs t a t tack p a r a m e t e r s from Fig . 3 , yz -p lane .

s ta tus of the queue at the time of the connection arrival in
the case of the deterministic technique. Third, the linear
t imeout strategy performs bet ter than the threshold time
out strategy with the exception of the deterministic tech
nique for virulence values greater t han I s - 1 . The threshold
strategy has an overprotective behaviour when faced to an
attack, and this seems to correct some of the delayed reac
tivity of the deterministic technique for medium and high
virulence values.

4.2 Burst attacks
In order to s tudy the generality of these results with re

spect to different at tack types we also used a deterministic
process to generate bursts attacks. A virulence of 0.5 s ^ 1

was chosen, which corresponds to at tack rates of 64 and 512
packets/s when testing against queue sizes of 128 and 1024,
respectively. The average connection success rates over 9 ex
perimental runs and their corresponding s tandard deviation
for the queue of size 128 are illustrated in Fig. 3. The verti
cal black line a t BIT = 0.015625 s in Fig. 3 represents t ha t
the packet inter-arrival t ime is the same as the mean packet
inter-arrival t ime in the Poisson experiments a t virulence
0.5 s _ 1 , marked by the vertical black line in Fig. 2. The
dashed black vertical line at BIT = 2s in Fig. 3 marks the
point where one single burst would fill up an empty queue
entirely. Fig. 4 offers a three-dimensional illustration of the
correspondence between the Poisson and the burst figures.

Two "phases" can be observed when analysing the burst
at tack results. The "liquid phase", a t the leftmost par t of
the figures, with BIT < 2s, corresponds to at tack traffic
bursts smaller t han the queue size. The "solid", rightmost
phase, for BIT > 2s, corresponds to at tack traffic bursts
greater t han the queue size. The resonance effect is created
at BIT = 2s, corresponding to bursts of the same size as
the server queue. In simulations, the fixed t imeout strategy
performance is practically null at this value. This is due
to the fact t ha t the simulated at tack and legitimate traffic
start a t the same t ime and the at tack burst instantly fills
up the entire queue. During a period of 10 s, equal to the
t imeout value, the queue is full and no legitimate connec
tion a t tempts can be processed. After this period, exactly
after the malicious connections are dropped from the queue,

the following burst arrives and fills up all the queue once
again. This happens when the burst traffic is perfectly syn
chronized with the queue timeout, as is the case with the
simulator. In experiments, however, we do not observe the
same behaviour.

First of all, the legitimate traffic and the malicious traf
fic are not synchronised. By the t ime the first a t tack burst
arrives, around three slots in the queue are already used by
legitimate connection a t tempts , so three of the at tack pack
ets are discarded by the server. During a period of 10 s,
only the number of slots used by legitimate connection at
tempts a t the t ime the first burst arrived will be available.
However, because there are only 10 legitimate connection at
tempts per second, and because the legitimate connections
complete rather quickly (5 every second), the few free slots
in the server queue are enough for a large percentage of legit
imate connection a t tempts to complete. Furthermore, in ex
periments, the burst are never instantaneous due to packet
transmission times and eventual collisions in the Ethernet
network. This allows for legitimate connection a t tempts to
infiltrate the burst and thus reduce the burst efficiency for
the attacker. Due to the above mentioned factors, we can
say tha t the network acts as a "low-pass filter" thus greatly
diminishing the resonance effect. In simulations, the fixed
timeout strategy is influenced by the resonance effect with
"harmonics" a t BIT = 2~ks, for k — {0..5}. In experiments,
however, the resonance effect is absorbed by the network.
The only two strategies t ha t seem to be slightly affected by
the resonance effect in experiments, are the linear determin
istic and the threshold deferred t imeout strategies, and this
only for the harmonic a t BIT = I s .

Is it important to note tha t the deferred method, which
performs bet ter t han the deterministic one, is also more ro
bust and consistent, having lower s tandard deviation values.
The fixed t imeout strategy, on the other hand, is the most
unstable, bo th in simulation and in experiments, with max
imum standard deviation values of over 10%.

5. LIMITATIONS AND FUTURE WORK
Although the dynamic timeout strategy implementations

have a low CPU overhead, there are two limitations t ha t pre
vented us from testing higher at tack rates and queue sizes.

The first limitation is due to the network architecture
we implemented. The malicious SYN packets and the QG-
generated RST packets are sent through the same switch and
thus, at high at tack rates, some RST packets are dropped
by the switch due to Ethernet collisions. This creates a
cumulative difference in the size and content of the mirror
queue compared to the server queue. For example, an aver
age of 0.3% of the resets sent by the QG are dropped by the
switch for an at tack rate of 8192 packets/s , which is equiv
alent to 6.65 Mbps. For at tack rates higher than 8 Mbps
the RST packet loss is so significant tha t the QG's mirror
queue is completely corrupt in a mat te r of seconds. This
limitation can be overcome by using a different network ar
chitecture, where the QG would be deployed either directly
on the server or on a network appliance directly connected
to the server, while still preserving the transparency to bo th
the server application and OS and the legitimate clients.

The second limitation is due to C P U consumption on the
QG machine. When using the deterministic technique to
protect a queue size of 1024 with 10 legitimate connection
a t t empts per second against an at tack of 6.65 Mbps, the

0.015625 0.03125
Burst inter-arrival time [s]

Figure 3: Legitimate connection complete rate and standard deviation (y-axis) for various strategies, with
fixed queue size c = 128, legitimate traffic rate 100 packets/s, mean service time 0.2 s, initial and final timeout
values 10 s and 0.2 s, respectively, virulence 0.5 s~l for various burst inter-arrival times (x-axis), over 9 runs.

average CPU usage was of 9%. The deferred technique con
sumed in average 8% of the CPU, for the same attack pa
rameters. Most of this CPU time is spent in kernel mode,
handling the sending and sniffing of IP packets. We ignored
the previous architectural limitation of RST packets loss and
managed to reach attack rates as high as 300 Mbps for the
deterministic method and 62 Mbps for the deferred method,
compiled in debug mode, before the approaching 100% CPU
usage, and hence starting to miss some of the packets that
traverse the network. It is our belief that a more powerful
machine should be able to handle up to gigabit attack traffic.

6. CONCLUSIONS
In this paper, we tested the hypothesis that within the

window of interest (attack virulences within 1/8 and 8 s _ 1) ,
finer-grained timeout adjustments strategies using the de
ferred method perform better than ones using coarser-grained
adjustment or the deterministic method. We implemented
both a fine-grained, linear and a coarse-grained, threshold
dynamic timeout adjustment strategy in their deterministic
and deferred variants. The performance measures obtained
in these laboratory experiments for the different strategies
against Poisson attack traffic was consistent with the per
formance measures against Burst traffic. First, that using
a dynamic timeout strategy is always a good idea. Second,
that the deferred method performs better than the deter
ministic technique, and has slightly lower CPU usage, due
to having a lower algorithmic complexity. Third, the lin
ear, fine-grained timeout adjustment strategy performs bet
ter than the threshold, coarse-grained timeout adjustment
strategy when in their deferred implementation. Finally, the
resonance effect that we expected when testing against burst
attack traffic is very limited in experiments, due to network
delays created by network equipment buffers, Ethernet col
lisions and non-instantaneous packet send times.

7. REFERENCES
[1] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher.

Internet Denial of Service: Attack and Defense
Mechanisms. Prentice Hall PTR, December 2004.

[2] J. Mirkovic and P. Reiher. A taxonomy of DDoS attack
and DDoS defense mechanisms. SIGCOMM Comput.
Commun. Rev., 34(2):39-53, 2004.

[3] C. Meadows. A formal framework and evaluation
method for network denial of service. In Proc.
Computer Security Foundations Workshop (CSFW),
pages 4-13, 1999.

[4] C. Meadows. A cost-based framework for analysis of
denial of service networks. J. Corap. Security,
9(1/2):143-164, 2001.

[5] Jose Nazario. Estonian DDoS attacks - a summary to
date, http://asert.arbornetworks.com/2007/05/
estonian-ddos-attacks-a-summary-to-date,
February 2007.

[6] J. Mirkovic, P. Reiher, S. Fahmy, R. Thomas,
A. Hussain, S. Schwab, and C. Ko. Measuring denial of
service. In Proc.ACM Workshop on Quality of
Protection (QoP), pages 53-58, 2006.

[7] Daniel Boteanu, Jose M. Fernandez, John McHugh,
and John Mullins. Queue management as a DoS
counter-measure? In Proc. Information Security
Conference (ISC), 2007. To appear.

[8] Microsoft Corporation. Security considerations for
network attacks, http://www.microsoft.com/technet
/security/topics/networksecurity/secdeny.mspx.

[9] Srinivas Shakkottai, R. Srikant, Nevil Brownlee, Andre
Broido, and K.C. Claffy. The RTT distribution of TCP
flows in the internet and its impact on TCP-based flow
control. Technical report, Cooperative Association for
Internet Data Analysis (CAIDA), February 2004.

http://asert.arbornetworks.com/2007/05/
http://www.microsoft.com/technet

