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RESUME 

Le but d'une attaque de deni de service (DoS) est de rendre un service reseau 

indisponible pour les usagers legitimes. Nous adressons le probleme des attaques de 

deni de service sur les protocoles orientes connexion ou l'attaquant essaie d'epuiser les 

connexions du serveur en initiant la communication avec le server et en l'abandonnant 

par la suite. Ainsi, les utilisateurs legitimes ne peuvent plus initier des nouvelles 

connexions avec le systeme. L'attaque la plus exploitee de cette categorie est l'attaque 

SYN-Flood mais d'autres attaques qui utilisent la meme approche dans des protocoles 

a etat rentrent dans la meme categorie. La strategie la plus simple et evidente pour se 

proteger contre ce type de comportement malicieux est d'avoir un mecanisme de delai 

d'inactivite. La methode traditionnelle est d'utiliser un delai d'inactivite fixe, mais 

l'intuition est que l'utilisation d'un delai d'inactivite dynamique offre une meilleure 

performance. Ceci est notre hypothese de base et la verifier a ete l'inspiration de 

ce travail. Nos buts sont d'une part de developper un modele mathematique pour 

pouvoir analyser le compromis entre les ressources de l'attaquant et du defenseur et 

d'autre part d'offrir des mecanismes de prevention qui peuvent etre utilises contre des 

attaques dans cette categorie. Nous modelisons la file des connexions du serveur en 

utilisant des chaines de Markov pour etablir une relation entre la capacite du serveur, 

le taux d'attaque et l'impact sur le niveau de service. Nous analysons deux methodes 

d'ajustement du delai d'inactivite, threshold et linear, et nous couplons ces methodes 

avec trois politiques d'assignation du delai d'inactivite aux connexions : la politique 

deterministic, la politique deferred et la politique utopique Poisson. 

Les resultats que nous avons obtenus confirment nos intuitions. Premierement, 

le modele theorique montre que pour toutes les strategies, il existe un compromis 

lineaire entre le taux d'attaque et la taille de la file du serveur cible, dans le sens ou 

lorsque le premier augmente, le deuxieme doit etre augmente aussi pour maintenir 

la meme qualite de service pour les utilisateurs legitimes. Cependant, le rapport qui 

doit etre garde entre ces valeurs differe entre les strategies; dans ce sens, certaines 

sont meilleurs que d'autres. Plus particulierement, le modele theorique indique aussi 

que la strategie du delai d'inactivite dynamique linear deferred est tres similaire du 

point de vue de la performance a la strategie linear Poisson, qui a son tour surpasse 
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toutes les autres strategies du delai d'inactivite dynamique. Les strategies du delai 

d'inactivite dynamique surpassent toujours la methode classique du delai d'inactivite 

fixed. 

Notre modele est tres general et peut etre utilise pour decrire le comportement 

de la file du serveur durant des attaques d'epuisement des connections a des niveaux 

differents de la pile des protocoles TCP/IP. Nous confirmons ces resultats par des 

simulations stochastiques et des experiences reseau des attaques SYN-Flood. Nous 

montrons aussi comment le modele peut etre utilise pour analyser une attaque d'inon-

dation avec connections TCP ou une attaque d'inondation avec des reservations des 

billets. Les strategies que nous suggerons sont robustes faces a des changements dans 

le modele d'attaque et notre implementation est tres efficace et transparente par rap

port au serveur et aux applications qu'elle essaie de proteger. Les strategies pourront 

done etre facilement integrees dans des systemes d'exploitation et des applications, 

ou etre implementees dans des equipements reseau. 
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ABSTRACT 

The purpose of a denial-of-service (DoS) attack is to render a network service un

available for legitimate users. We address the problem of DoS attacks on connection 

oriented protocols where the attacker tries to deplete the server connections by initi

ating communication with the server and then abandoning the communication. Thus, 

legitimate users can no longer initiate new connections with the system. The most 

exploited attack in this category is the SYN-flood attack but other attacks using the 

same approach in stateful communication protocols also fall into this category. The 

simplest and most obvious strategy to protect against this type of malicious behaviour 

is to have a timeout mechanism in place. The traditional method is to use a fixed 

timeout but the intuition is that using a dynamic timeout offers better performance. 

This is our base hypothesis and verifying it was the inspiration to this work. Our goals 

are to develop a mathematical model allowing us to analyse the trade-off between the 

attacker and the defender resources on one hand, and to offer prevention mechanisms 

that can be used to defend against this category of attacks, on the other hand. We 

model the server queue of connections using Markov chains to establish a relationship 

between the server capacity, the attack rate and the impact on the service level. We 

analyse two methods of adjusting the timeout, threshold and linear, and we couple 

them with three policies of assigning the timeout to connections: the deterministic 

policy, the deferred policy and the Utopian Poisson policy. 

The results we obtained confirm our intuitions. First, theoretical modelling shows 

that for any given strategy there exists a linear trade-off between the attack rate 

and targeted server queue size, in the sense that when the first one increases, the 

second one must be increased as well to maintain the same quality of service for le

gitimate users. However, the ratio that needs to be kept between these values differs 

between strategies; in that sense some are better than others. In particular, theoret

ical modelling also indicates that the linear deferred timeout strategy is very similar 

in performance to the linear Poisson timeout strategy, which in turn outperforms 

all the other dynamic timeout strategies. The dynamic timeout strategies always 

outperform the classical fixed timeout method. 

Our model is very general and can be used to describe the behaviour of the 
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server queue during connection depletion attacks at various levels in the TCP/IP 

protocol stack. We confirm the theoretical findings using stochastic simulations and 

network experiments of SYN-flood attacks. We also show how the model can be used 

when analysing a TCP connection establishment flood or a ticket reservation flood. 

The protection strategies we suggest are robust to changes in the attack model and 

our implementation is very efficient and transparent with respect to the server and 

applications it tries to protect. The strategies could therefore be easily integrated 

into existing Operating Systems (OS) and applications, or implemented in network 

devices. 
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CHAPITRE 1 

Introduction 

La securite informatique a comme but de preserver les caracteristiques suivantes 

d'un systeme ou d'un service informatique : confidentialite, integrite et disponibilite. 

La confidentialite signifie qu'il est possible d'utiliser le service sans que personne a 

part le client et le serveur ne soit capable de savoir quelle information a ete echangee. 

L'integrite signifie que chaque partie est capable de verifier que les donnees qu'elle 

a regues proviennent de la bonne source et qu'aucune modification intentionnelle ou 

accidentelle n'ait eu lieu. Finalement, la disponibilite signifie que les donnees que 

le client demande sont presentes et les services fonctionnent dans les parametres 

de qualite de service (QoS) prealablement definis. Les aspects de confidentialite et 

integrite sont en partie solutionnes par l'usage de la cryptographie. Cependant, quand 

le systeme que nous considerons est l'lnternet, la gestion de la confiance et des cles de 

chiffrement s'avere difficile. La disponibilite est encore plus difficile a assurer a cause 

de l'architecture de l'lnternet qui permet la communication entre tous les participants 

sans pouvoir offrir une qualite de service autre que localement. Ceci ouvre la porte 

aux attaques de deni de service (DoS) qui peuvent avoir comme but de diminuer 

la disponibilite d'un service d'une entreprise, de tous les services d'une entreprise et 

meme d'un pays entier. 

Nous identifions trois grandes categories d'attaques de deni de service : 

1. Attaques d'innondation (flooding), qui visent a saturer les canaux de commu

nication reseau. 

2. Attaques qui exploitent des vulnerabilites dans l'implementation des protocoles 

de communication. 

3. Attaques qui exploitent des faiblesses dans la logique des protocoles de commu

nication, dues au fait que lors de la conception des protocoles, la securite n'a 

pas ete le souci principal. 

Le premier type d'attaque, Finondation, est difficile a combattre mais pour qu'une 

attaque reussisse il faut que l'attaquant dispose d'une connexion Internet avec une 
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capacite superieure de celle de la victime. Tres souvent, l'utilisation de la technique 

d'innondation du canal de communication, est utilise dans des attaques de deni de 

service distributes (DDoS). Dans ce cas, l'attaquant emploie plusieurs machines et 

equipements reseau, pour avoir une capacite de communication agregee qui depasse 

rapidement celle de la cible, s'il s'agit d'un seul serveur attaque. Cependant, ce n'est 

plus interessant pour l'attaquant d'utiliser cette methode pour rendre indisponible un 

grand nombre des serveurs si une architecture distribute est adoptee par l'entreprise 

ou l'organisme cible, parce que la force de l'attaque est repartie sur chaque serveur 

attaque. 

Le deuxieme type d'attaque, qui vise a exploiter les vulnerabilites dans l'implemen-

tation des protocoles de communication est tres facile a realiser si une telle vulnerabili

te est connue. La plupart des fois, les vulnerabilites sont des debordements de tampon, 

cependant les outils et methodes de developpement sont arrives a un niveau de matu

rity qui rend plus rares les vulnerabilites d'implementation. De plus, une fois qu'une 

vulnerabilite est connue, le constructeur de l'application en question publie des mises 

a jour qui rendent la vulnerabilite inexploitable. La fenetre de temps d'utilisation des 

attaques de ce type est done limitee. 

Le troisieme type d'attaque, qui vise a exploiter les faiblesses dans la logique des 

protocoles de communication vient avec un avantage pour l'attaquant : meme si une 

faiblesse dans la logique d'un protocole est trouvee, il est tres probable que le protocole 

ne changera pas s'il est deja adopte par la majorite des acteurs sur Internet. 

Dans le reste de ce memoire nous nous interessons aux attaques de deni de service 

de la troisieme categorie. La faiblesse logique que nous considerons est presente dans la 

plupart des protocoles de communication orientes connexion : un client malicieux peut 

simuler l'etablissement d'une connexion avec le serveur de sorte que le serveur alloue 

des ressources memoire pour garder l'etat de la connexion. Parce que l'attaquant ne 

doit pas etablir la connexion avec le serveur mais seulement convaincre le serveur 

que la connexion est etablie ou en cours d'etablissement pour que le serveur alloue 

des ressources, ce type d'attaque est tres avantageux pour l'attaquant. L'attaque la 

plus connue de ce type est l'attaque SYN-Flood, ou l'attaquant envoie des messages 

TCP avec le drapeau SYN ce qui declenche l'etablissement des connexions du cote 

serveur. Cependant, l'analyse que nous faisons et les solutions que nous allons proposer 

s'appliquent aussi aux autres protocoles oriente connexion, par exemple HTTP, FTP, 

SSL/TLS, SIP, SMTP. 
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Une attaque d'epuisement des ressources memoire du serveur est relativement fa

cile a detecter, l'indicateur le plus accessible a consulter etant le nombre de connexions 

etablies ou en cours d'etablissement. Si cette valeur est beaucoup plus elevee que la 

valeur attendue, alors il est probable que le serveur soit sous attaque. Meme s'il est 

possible de detecter une attaque, il est tres difficile, voire impossible, de discriminer 

le trafic legitime du trafic malicieux avant de tenter d'etablir la connexion parce que, 

comme dans le cas de l 'attaque SYN-Flood, le trafic malicieux peut copier toutes les 

caracteristiques du trafic legitime. Entre autre, la distribution dans le temps des pa-

quets peut etre tres facilement copiee par une attaque et la distribution geographique 

des adresses IP n'est pas une limite non plus. Un attaquant peut utiliser la technique 

de IP spoofing pour envoyer des messages qui proviennent de la meme source mais 

qui semblent venir des adresses distinctes. De plus, un attaquant pourrait controler 

un botnet, un reseau d'ordinateurs infectes sur internet, ce qui rend toute methode de 

filtrage encore plus difficile, car dans ce cas tout le trafic provient de machines avec 

des vraies adresses IP et avec un comportement legitime la plupart du temps. 

Les strategies de protections suggerees jusqu'a present ne sont malheureusement 

pas si efficaces et faciles a deployer que prevu par leurs auteurs. Ceci est prouve par 

le fait que de deni de service est toujours un probleme d'actualite. Parmi les attaques 

les plus recentes, nous identifions l 'attaque de type SYN-Flood contre GoDaddy, la 

plus grande compagnie d'enregistrement des noms de domaines et d'hebergement 

web, qui a eu lieu en mars 2007 (Murphy, 2007). L'attaque a enregistre des taux 

de 30 Mbps et a rendu le site inaccessible pendant 5 heures. En septembre 2007, 

plusieurs sites dedies a la protection contre le spam ont subi des attaques de deni de 

service de differents types, certains enregistrant des taux de l'ordre 10 Mbps durant 

plusieurs heures (Spamnation, 2007). En octobre 2007, le site des guides financiers 

pour les consommateurs MoneySavingExpert.com a ete inaccessible durant une fin 

de semaine du a une attaque de deni de service (Leyden, 2007). L'attaque la plus 

puissante enregistree a date est l 'attaque de deni de service contre differentes sites 

web administratifs de l'Estonie arrivee en mai 2007 (Nazario, 2007). Cette attaque 

qui a dure plus de deux semaines et a atteint des taux de 100 Mbps durant plusieurs 

heures consecutives, a prouve que le deni de service est une arme viable dans la 

guerre cybernetique. Plus recemment, en fevrier 2008, une attaque de deni de service 

qui consiste a inonder les serveurs avec des demandes de pages H T T P a rendu 32 sites 

web des casinos en ligne inutilisables pendant 8 jours (Adair, 2008). Cette derniere 

http://MoneySavingExpert.com
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attaque est un exemple concret de l'utilisation de la meme technique d'epuisement 

des ressources contre un protocole de plus haut niveau, HTTP. 

Malgre les efforts qui ont ete faits par le monde academique et l'industrie pour 

resoudre le probleme du deni de service, il n'existe pas de mesure de protection efn-

cace facilement utilisable contre les attaques d'epuisement de connections. De plus, il 

n'existe pas de modele theorique qui permette d'evaluer quantitativement l'impact des 

attaques sur la qualite de service. L'objectif de ce memoire est d'adresser le probleme 

des attaques d'epuisement de ressources en proposant un modele mathematique qui 

permet d'evaluer quantitativement l'impact des attaques sur la qualite de service. 

Ensuite, nous visons a proposer des strategies de gestion de la file des connexions du 

serveur dans le but de la rendre plus resistante aux attaques de deni de service. Ces 

strategies ne doivent pas se baser sur la discrimination du trafic legitime et malicieux 

et nous devons pouvoir appliquer ces strategies facilement a tous les protocoles oriente 

connexion vulnerables aux attaques d'epuisement de ressources. La performance des 

strategies doit etre evaluee a l'aide du modele mathematique construit prealablement 

et ensuite validee par des simulations et experimentalement. 

Ce memoire suit la formule de presentation d'un memoire par articles et est orga

nise comme suit : le chapitre 2 presente une revue critique de la litterature concernant 

les travaux anterieurs de modelisation, de detection et de protection contre des at

taques de deni de service. Par la suite, le chapitre 3 decrit la demarche de l'ensemble 

du travail de recherche. Le chapitre 4 presente le modele mathematique, les strategies 

du delai d'inactivite dynamique ainsi que les resultats, tel que soumis dans Particle An 

Exhaustive Study of Queue Management as a DoS Counter-Measure a la revue Inter

national Journal of Information Security (publiee par l'editeur scientifique Springer). 

Ensuite, le chapitre 5 offre une discussion des resultats obtenus, les conclusions tirees 

des travaux effectuees ainsi que des directions de recherche pour des travaux futurs. 

L'annexe A presente des resultats preliminaries du modele mathematique avec la po

litique d'assignation du delai d'inactivite Poisson et des resultats de simulation, tel 

que publies dans les actes de la conference Information Security Conference (ISC) 

en octobre 2007. L'annexe B presente les resultats experimentaux des strategies du 

delai d'inactivite dynamique, tel que publies dans les actes de l'atelier ACM Qua

lity of Protection (QoP) Workshop, organise dans le cadre de la conference ACM 

Communications and Computer Security Conference (CCS) en octobre 2007. 
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CHAPITRE 2 

Modelisation et protection contre 

le deni de service 

Dans ce chapitre nous faisons un survol de litterature par rapport aux attaques de 

deni de service (DoS). Premierement, nous regardons les travaux de modelisation des 

attaques et la mesure de performance des serveurs sous attaque. Ensuite nous ana-

lysons les mecanismes de protection contre les attaques d'epuisement des ressources 

qui ont ete proposees par le monde academique et l'industrie. 

2.1 Modelisation et mesure de performance 

Le premier modele mathematique qui formalise le compromis entre les ressources 

de l'attaquant et celles du defendant a ete introduit par Meadows (1999, 2001). Ce 

modele n'est pas sufflsant pour mesurer le degre auquel un protocole est vulnerable 

parce qu'il est difficile de definir des fonctions de cout concretes pour les operations 

elementaires, par exemple le refus d'un message ou le calcul d'une signature digitale. 

De plus, ce modele ne considere pas les implications pour un defendant d'une qualite 

de service reduite dans des situations ou le service est encore fonctionnel, durant ou 

apres une attaque de deni de service. 

Les chaines de Markov a temps discret sont un outil tres utilise dans la detection 

des anomalies et des intrusions. Un tel modele qui prend en consideration la tolerance 

du serveur face a differentes attaques a ete propose par Madan et al. (2002). Ce-

pendant, l'application du modele aux attaques d'epuisement des ressources implique 

l'estimation de variables difficile a mesurer, par exemple la probability qu'une attaque 

ne soit pas detectee, la probabilite qu'un systeme resiste a une attaque ou le temps 

moyen d'un systeme pour devenir vulnerable. 

Lui et al. (2004) proposent un modele base sur des chaines de Markov a temps 

continu pour montrer que les protocoles a etat dur ont une meilleure performance 
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que les protocoles a etat mou si les conditions du reseau sont parfaitement definies. 

Cependant, ce sont les protocoles a etat mou qui sont plus resistants aux attaques et 

fluctuations non attendues. Le degre de durete d'un protocole est evalue par rapport a 

la maniere dont le delai d'inactivite (Tout) est utilise. La plupart des protocoles orientes 

connexion utilises sur Internet sont des protocoles a etat dur, qui utilisent le delai 

d'inactivite seulement comme mesure de protection en cas d'echec de communication. 

D'autres modeles se contentent de detecter la presence des attaques de deni de 

service d'epuisement des ressources. Khan et Traore (2005) observent que le taux de 

remplissage de la file des connexions est un bon indicateur pour detecter les attaques 

de SYN-Flood. Wang et al. (2002) utilisent la methode change-point pour detecter un 

changement brusque dans le nombre des paquets SYN qui n'ont pas de correspondent 

FIN. Des travaux de recherche dans la meme direction ont ete faits par Tartakovsky 

et al. (2006) pour utiliser la methode change-point avec differents algorithmes de 

detection. Divakaran et al. (2006) utilisent la technique de prediction lineaire pour 

detecter les attaque de SYN-Flood, en regardant la difference entre le nombre de 

paquets de type SYN re<jus et le nombre de paquets SYN/ACK envoyes par le ser-

veur. L'utilisation des algorithmes de detection d'anomalies est etudiee par Siris et 

Papagalou (2004) pour detecter les attaques de SYN-Flood. Finalement, differents al

gorithmes de detection ont ete implemented et testes par Beaumont-Gay (2007) pour 

observer que la performance des algorithmes varie beaucoup en fonction du jeu de test 

utilise. Meme s'il est important de pouvoir detecter qu'un serveur est sous attaque 

pour savoir ou concentrer les efforts, la detection des attaques est loin de resoudre le 

probleme de deni de service. 

Mirkovic et al. (2007a, 2006) introduisent la notion de transaction comme etant 

l'agregation d'un ensemble de paquets qui ont comme but une tache de haut-niveau, 

par exemple, l'etablissement d'une connexion TCP ou le transfert d'une page HTML. 

Une transaction est considered echouee si les parametres de qualite de service ne sont 

pas satisfaits. La qualite de service globale est calculee en fonction du pourcentage de 

transactions echouees. Ceci est un premier essai de definition d'une metrique de deni 

de service qui prend en compte la qualite de service perc,ue par l'usager. 

La plateforme d'essai DETER (Mirkovic et al, 2007b) permet de reproduire 

des scenarios d'attaque et de mesurer experimentalement la performance de ser-

veurs durant les attaques. Malheureusement, il n'existe pas de modele mathematique 

equivalent qui permet d'estimer la performance du serveur sachant les differents pa-
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rametres de configuration et du trafic. Ceci est un des problemes que nous essayons 

de traiter. 

2.2 Mecanismes de protection 

La RFC4732 (Handley et Rescorla, 2006) est une introduction aux attaques de 

deni de service qui vise a offrir aux concepteurs des protocoles des patrons et des solu

tions partielles pour resoudre ce probleme. Une autre tres bonne introduction au deni 

de service est le livre Internet Denial of Service : Attack and Defence Mechanisms 

(Mirkovic et al, 2004) qui vise a expliquer le probleme et les actions qui peuvent etre 

prisent par les administrateurs des reseaux. Mirkovic et Reiher (2004) proposent une 

taxonomie des mecanismes d'attaques et de protection par rapport au deni de service 

en general. La caracterisation des mecanismes de protection est faite par rapport aux 

criteres suivants : le niveau d'activite (preventif ou actif), le niveau de cooperation 

(autonome, cooperatif ou interdependant), le lieu de deploiement (reseau de la vic-

time, reseau intermediate ou reseau source) et la strategie de reponse (identification 

de l'agent, limitation de la bande-passante, filtrage ou reconfiguration). Cette taxo

nomie s'avere tres utile pour la classification mecanismes de protection contre les 

attaques de deni de service en general. Par contre, nous nous interessons seulement 

aux attaques de deni de service d'epuisement des ressources. Dans ce cadre nous iden-

tifions quatre grands axes de recherche des mecanismes de protection : la modification 

de la logique des protocoles, la modification de l'implementation des protocoles, la 

discrimination du trafic malicieux et la protection collaborative. 

2.2.1 Protection par modification de la logique des proto

coles 

Parce que la vulnerabilite qui est exploitee dans les attaques d'epuisement des 

connexions est la logique des protocoles, plusieurs propositions ont ete faites pour 

apporter des modifications a la logique des protocoles de maniere a rendre les attaques 

tres couteuses ou difficiles pour l'attaquant. 

Les client puzzles (Juels et Brainard, 1999) consistent a donner au client un 

probleme cryptographique a resoudre avant que le serveur alloue les ressources pour 

la connexion. La supposition derriere ce mecanisme est que les clients malicieux 
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etablissent beaucoup de connexions depuis les memes machines physiques. La vitesse 

de resolution des problemes cryptographiques est limitee par la puissance de calcul et 

done un client malicieux aura un taux d'attaque utile tres limite. Les network puzzles 

proposes par Feng et al. (2005) consistent a utiliser la meme approche que les client 

puzzles. Cependant, ce mecanisme est congu pour etre deploye au niveau reseau de 

la pile des protocoles du modele OSI, dans le but d'offrir un mecanisme de punition 

contre tout type d'attaque d'inondation. Le principal desavantage de cette methode 

est l'impact ressenti par les clients legitimes qui doivent aussi resoudre les problemes 

cryptographiques. L'impact est encore plus important si la puissance de calcul est li

mitee, fait qui rend cette methode tres couteuse pour les ordinateurs et les telephones 

portables. 

Un autre mecanisme de protection, les SYN cookies (Bernstein, 2003; Zuquete, 

2002), propose une maniere d'etablissement des connexions T C P sans garder l'etat et 

sans allouer de ressources. L'approche consiste a chiffrer les parametres de connexion 

et de les encoder dans les numeros de sequence du message SYN+ACK envoye au 

client. Si le client repond avec le message ACK, les parametres sont recuperes du 

numero de sequence et la connexion est etablie. Cette approche a le desavantage que 

la taille du numero de sequence ne permet pas d'encoder toutes les options TCP. De 

plus, le protocole T C P requiert la retransmission des messages qui n'ont pas eu un 

accuse de reception, or cela n'est pas possible durant Fetablissement de la connexion 

avec le mecanisme de SYN cookies parce qu'aucun etat n'est garde. Pour enlever les 

limitations des SYN cookies, Lemon (2002) propose le mecanisme SYN cache, qui 

consiste a garder l'etat durant Fetablissement des connexions mais de n'allouer que le 

strict necessaire des ressources pour sauvegarder les parametres. Le options restantes 

sont, similairement aux SYN cookies, encodees dans le numero de sequence TCP. 

Une autre approche proposee pour proteger les serveurs web des attaques de deni 

de service consiste a rediriger les clients legitimes vers un autre serveur via un message 

de redirection H T T P (Xu et Lee, 2003). C'est ce deuxieme serveur qui offre le service 

que les clients attendent. En partant du principe que les attaques ne sont pas ciblees 

et adaptees pour une certaine victime, Al-Duwairi et Manimaran (2006) proposent 

un mecanisme de protection contre les attaques de SYN-Flood qui consiste a ignorer 

le premier paquet SYN provenant de chaque adresse IP. En plus d'avoir un impact 

negatif sur la performance des clients, ces mesures na'ives de protection n'ont aucun 

effet contre les attaques ciblees. Dans ce cas, il est probable que l 'attaquant decouvre 
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le systeme de protection et configure les parametres des attaques de sorte a contourner 

les mecanismes de protection. 

Plus recemment, des propositions ont ete faites par Ghavidel et Issac (2007) 

pour remplacer le protocole TCP avec un protocole equivalent mais qui precede 

l'etablissement de la connexion par une phase d'authentification. Encore une fois, 

ce mecanisme implique une deterioration de performance pour les clients legitimes 

du au calcul cryptographique et aux messages supplement aires d'authentification qui 

doivent etre transmis. De plus, pour des raisons politiques, de compatibilite et du 

cout eleve d'operation dans les premieres phases, la migration du protocole IP vers 

IPv6 est en cours depuis 15 ans et n'est pas encore achevee. Les memes types de 

problemes sont envisageables pour la migration vers le protocole TCP securise pro

pose par Ghavidel et Issac (2007) et il n'est done pas raisonnable de croire que ce 

protocole soit adopte sur Internet dans le futur proche. 

Nous avons vu que, generalement, les mecanismes de protection qui consistent a 

apporter des modifications a la logique des protocoles ont comme principe de defense 

l'introduction d'une charge que seules les clients legitimes peuvent supporter. Ceci 

n'est pas encourageant parce qu'aujourd'hui la majorite des attaques de deni de ser

vice sont realisees a l'aide des botnets, des grands reseaux d'ordinateurs personnels 

compromis qui sont sous le controle de l'attaquant. II est estime que le ver informa-

tique Storm a ete utilise pour la construction d'un botnet qui contient des millions 

d'ordinateurs (Smith, 2008). L'utilisation d'un tel reseau pour des attaques de deni 

de service contourne les mesures de protection qui visent a penaliser les clients mali-

cieux parce que chaque client qui participe a l'attaque se comporte individuellement 

comme un client legitime. 

2.2.2 Protection par modification de l'implementation des 

protocoles 

Une autre strategic de protection contre les attaques de deni de service est de 

modifier l'implementation des protocoles ou d'ajuster les parametres de configuration 

pour rendre le serveur plus resistant aux attaques. Les meilleures pratiques de gestion 

des systemes d'exploitation modernes conseillent toujours d'augmenter la taille de la 

file des connexions ouvertes TCP, comme mesure de protection contre les attaques 

SYN-Flood. Cependant, dans la pratique, la taille maximale de la file est limitee par 
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la quantite de memoire disponible sur le serveur, surtout si le serveur offre plusieurs 

services reseau. 

Les protocoles orientes connexion implementent un mecanisme de delai d'inacti

vite des connexions, connu en anglais comme timeout. Si une reponse n'est pas regue 

dans l'intervalle de temps attendu, la connexion est rejetee. Une methode de pro

tection evidente contre les attaques d'epuisement de ressources est de diminuer le 

delai d'inactivite mais cette methode bloque de fagon permanente l'acces aux clients 

sur un reseau avec un temps de reponse plus long que le delai d'inactivite. Dans le 

systeme d'exploitation Windows Server (Microsoft TechNet, 2003), un mecanisme de 

detection d'attaque est implemente. Si une attaque est detectee, un delai d'inactivite 

plus restrictif est utilise durant l'attaque. Cependant, il n'est pas clair quelles sont 

les valeurs des seuils qui declenchent la detection des attaques, quel delai d'inactivite 

doit etre utilise durant une attaque et comment appliquer le delai d'inactivite dyna-

mique aux connexions deja presentes dans la file, pour maximiser la qualite de service 

que les clients pergoivent. Si les bonnes valeurs ne sont pas choisies, cette methode 

a le desavantage d'offrir la possibilite a un attaquant de declencher une attaque avec 

des ressources limitees, seulement pour mettre le serveur dans un etat restrictif dans 

lequel les clients plus lents sont bloques. 

Une methode differente de controle du delai d'inactivite a ete proposee par Schuba 

et al. (1997) sous le nom de SYNkill. Ceci consiste a ecouter sur le reseau pour detecter 

les connexions ouvertes sur le serveur. Si la connexion a passe plus de temps sur le 

serveur que le moniteur le permet, un paquet RST est envoye par le moniteur au 

serveur pour fermer la connexion. La meme idee est citee et testee par Nakashima et 

Oshima (2006) et Nakashima et Sueyoshi (2007). Cette methode a l'avantage d'etre 

independante de la plateforme qu'elle doit proteger mais a le meme desavantage que 

la diminution du delai d'inactivite : les clients sur un reseau lent sont toujours refuses. 

II a ete suggere par Schuba et al. (1997) et Ohsita et al. (2005) d'utiliser un 

mecanisme de relai TCP dans le pare-feu. C'est le pare-feu qui accepte la connexion du 

client, et seulement apres que la connexion est etablie, le pare-feu ouvre une connexion 

avec le serveur. Ceci a l'effet de deplacer la file sous attaque sur le pare-feu et est 

implemente par les pare-feu Checkpoint (Noureldien et Osman, 2000). Cependant, 

si la file du pare-feu est inondee, l'effet est plus grave parce qu'aucun des serveurs 

proteges ne sera plus disponible. De plus, comme mentionne par Noureldien et Osman 

(2000), une attaque de saturation de la table d'etat du pare-feu avec des paquets ACK 
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est envisageable. 

Les travaux de recherche de modification des implementations des protocoles 

semblent prometteurs, parce que de telles mesures sont faciles a implementer et a 

deployer et elles sont independantes de la plateforme a proteger. Cependant, il ne 

faut pas que des telles mesures ouvrent la porte aux autres types d'attaque ou que 

les clients legitimes pergoivent un impact negatif de la qualite de service pendant le 

fonctionnement sans attaque. De plus, cette approche de renforcement de securite de 

la cible est compatible et complementaire avec les autres approches de protection, par 

discrimination du trafic malicieux ou par protection collaborative. Les strategies de 

gestion dynamique du delai d'inactivite que nous proposons se retrouvent dans cette 

categoric 

2.2.3 Protection par discrimination et filtrage du trafic ma

licieux 

Plusieurs mecanismes de discrimination du trafic malicieux se basent sur l'analyse 

statistique du trafic. Dans ce sens, Cheng et al. (2002) proposent l'utilisation d'une 

methode d'analyse spectrale pour detecter les flots de donnees malicieux. Feinstein 

et al. (2003) suggerent l'analyse des distributions des adresses IP source pour detecter 

quelles sont les adresses IP des clients malicieux. Ayres et al. (2006) utilisent la 

technique PacketScore (Kim et al, 2006) pour calculer un score et ensuite utiliser 

un seuil sur le score pour decider si un paquet est malicieux ou pas. Lim et Uddin 

(2005) etudient l'implementation des methodes d'analyse statistique de detection des 

attaque de type SYN-Flood sur des processeurs reseaux. 

D'autres methodes de discrimination visent a combattre la technique de IP spoo

fing qu'un attaquant pourrait utiliser, technique qui consiste a envoyer des paquets 

IP avec des fausses informations dans le champ d'adresse de provenance. Varanasi 

et al. (2004) proposent l'enregistrement des adresses IP des routeurs d'entree et de 

sortie pour les paquets IP afin d'utiliser un modele de chaines de Markov cachees pour 

depister le trafic IP venant des fausses adresses. La technique Hop-Count Filtering 

(Jin et al., 2003) consiste a comparer le nombre de routeurs qu'un paquet de type SYN 

en provenance d'une adresse IP a traverse par rapport a la meme information dans les 

traces des connexions reussies. Zou et al. (2006) proposent la configuration adaptive 

des parametres de la technique Hop-Count Filtering en fonction de la severite de Fat-
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taque afin de mieux proteger un serveur contre des attaques de type SYN-Flood. Une 

idee exploree par Xiao et al. (2005) est d'utiliser la technique Delay Probing Method 

pour mesurer la congestion dans le reseau et decider si la reponse tardive du client 

est due aux conditions du reseau ou a une attaque de SYN-Flood. 

Nous avons vu differentes types de methodes de discrimination du trafic malicieux. 

Ces methodes supposent que le trafic malicieux a au moins une caracteristique distinc

tive par rapport au trafic legitime. Cependant, encore une fois, l'utilisation des botnet 

pour realiser les attaques de deni de service peut rendre le trafic malicieux indistin-

guable du trafic legitime, parce que les machines utilisees pour l'attaque ont toutes les 

caracteristiques des machines legitimes. II est done futile d'essayer de construire un 

mecanisme de protection par discrimination du trafic malicieux tant que les botnets 

sont actifs sur Internet, un probleme qui est probablement plus difficile que le deni 

de service. 

2.2.4 Protection par collaboration 

Etant donnes les effets negatifs pour les clients legitimes que les approches de pro

tection par des modifications de protocoles introduisent, et l'infaisabilite d'une mesure 

de protection par discrimination du trafic malicieux devant les botnets, il a ete suggere 

que seule une mesure de protection collaborative peut combattre efficacement les at

taques de deni de service. Le premier effort significatif dans ce sens est la RFC2267 

(Ferguson et Senie, 1998) qui specifie que les routeurs des fournisseurs d'acces Inter

net doivent router sur Internet seulement les paquets provenant des adresses IP qui 

sont censees etre derriere ces routeurs. Cette methode vise a bloquer la technique de 

IP spoofing, qui permettrait a un attaquant d'envoyer des paquets SYN qui semblent 

venir de fausses adresses. Une amelioration de la RFC2267 proposee par Chen et Song 

(2005) consiste a implementer des mecanismes de detection des attaques de deni de 

service sur les routeurs de fournisseurs d'acces Internet, pour identifier et limiter les 

eventuelles attaques provenant de leurs clients. 

L'architecture DefCOM (Oikonomou et al, 2006; Robinson et al, 2003; Mirkovic 

et al, 2003, 2002) consiste a faire communiquer les equipements reseau sur Internet sur 

un canal securise dans le but de partager l'information concernant le trafic d'attaque 

et de diminuer la priorite de routage de ce trafic. Des suggestions ont ete faites par 

Yang et al. (2005) pour transmettre dans l'entete de chaque paquet IP une mesure qui 
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reflete si le paquet est desire ou pas a la destination. En plus de cette mesure, Natu 

et Mirkovic (2007) proposent d'utiliser la reputation des clients a long terme pour 

identifier les clients legitimes. Ces deux dernieres approches sont tres couteuses en 

terme des ressources mais il est envisageable de les integrer a l'architecture DefCOM 

pour etre actives seulement durant une attaque. 

L'architecture SOS (Keromytis et al, 2004) emploie des fonctions de hachage cryp-

tographique pour construire un reseau de routage secret relie a un pare-feu distribue. 

Le desavantage principal de cette methode est Faugmentation du temps de latence 

du trafic introduit a cause du routage supplement aire dans le reseau secret. Pushback 

(Ioannidis et Bellovin, 2002) est un mecanisme qui permet aux routeurs d'identifier 

la direction de provenance du trafic d'attaque et de demander aux routeurs en amont 

de limiter ce trafic. De maniere similaire, Yau et al. (2005) suggere un mecanisme de 

limitation du trafic provenant des routeurs en amont qui generent une congestion. 

Zhang et Dasgupta (2003) proposent la collaboration des routeurs pres de la victime 

pour marquer les paquets IP afin d'identifier les routeurs de provenance des attaques. 

Cependant, ces approches ont le desavantage de penaliser les clients legitimes qui 

utilisent une route commune avec l'attaquant. 

Etant donne que pour des raisons politiques et sociales, la RFC2267 n'a pas encore 

ete adopte a echelle mondiale malgre sa facilite d'implementation, il est peu probable 

qu'une des architectures plus complexes comme DefCOM ou Pushback soit deployee 

sur Internet dans le futur proche. De plus, les mecanismes de protection contre les 

attaques de deni de service par collaboration sont congus principalement pour bloquer 

les attaques d'inondation et sont la plupart du temps inefficaces contre les attaques 

qui exploitent la logique des protocoles, realisees a partir des botnets, machines dont 

le comportement est la plupart de temps legitime. 
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CHAPITRE 3 

Demarche du travail de recherche 

Le projet de recherche des strategies dynamiques du delai d'inactivite a commence 

avec mon projet de fin d'etudes (PFE) que j'ai fait sur ce sujet, dans le cadre de mon 

annee d'echange a l'Ecole Polytechnique de Montreal. Les fruits du PFE ont ete l'idee 

d'utilisation d'un mecanisme dynamique de gestion du delai d'inactivite, un modele 

mathematique limite pour modeliser les attaques de deni de service d'epuisement des 

ressources et d'une premiere version du simulateur stochastique. Ces resultats ont 

ete publiees dans un rapport technique (Boteanu et al, 2006). En retrospective, la 

critique a apporter a ce modele est que seulement la politique d'assignation du delai 

d'inactivite deterministic etait modelisee et les resultats sont des valeurs approxima-

tives et non pas des valeurs exactes, approximation dont la fiabilite n'avait pas ete 

verifiee a l'epoque. De plus, les equations mathematiques etaient tres complexes et 

pas optimisees, ce qui nous avait permis de calculer des resultats numeriques pour 

des taux d'attaques de seulement 96 connexions par seconde et pour des tailles de la 

file du serveur de seulement 128 connexions. 

Suite a mon retour a l'Ecole Polytechnique de Montreal dans le cadre d'une 

maitrise, dans un premier temps, nous avons apporte des corrections mineures au 

modele mathematique. De plus, nous avons mieux formalise les politiques d'assigna

tion du delai d'inactivite que nous avons introduit : deterministic et deferred. Le 

simulateur stochastique, developpe precedemment specifiquement pour ce projet, a 

ete aussi ameliore et englobe maintenant 46 classes JAVA pour un total de presque 

3000 lignes de code. Suite a ces ameliorations, des simulations avec un taux d'attaque 

de 65536 connexions par seconde contre un serveur avec une file de 8000 connexions 

ont ete possibles. De plus, nous avons explore un autre modele d'attaque que celui ou 

les paquets malicieux arrivent a des intervalles selon une distribution exponentielle : 

le modele d'attaque en rafale (burst), ou les paquets malicieux arrivent en rafales de 

taille determined et a des intervalles de temps constants. Le simulateur a ete etendu 

pour implementer ce nouveau type d'attaque et toutes les strategies ont ete testees 
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contre le nouveau type d'attaque, en rafale, pour une file de taille 128 connections. 

Ces resultats ont fait l'objet de l'article publie a la conference Information Security 

Conference (ISC) en octobre 2007 (Boteanu et al, 2007a), presente a l'annexe A. 

L'etape suivante a ete de verifier experimentalement si les resultats obtenus a 

l'aide du modele mathematique et des simulations stochastiques etaient exactes et 

d'analyser le cout en terme de performance de telles mesures de protection dans un 

cas reel. Dans ce but, nous avons implements les strategies de gestion dynamique 

dans une application temps reel qui residait sur une composante tierce partie. Nous 

avons decide de deployer cette application sur un ordinateur de bureau standard, 

mais nos algorithmes et le code source pourraient facilement etre deployes sur un 

processeur reseau dedie. Nous avons ensuite analyse la performance des strategies 

de protection dans l'environnement experimental et nous avons compare les resultats 

aux simulations stochastiques. Les deux modeles d'attaque, avec intervalles d'arrivee 

selon une distribution exponentielle et avec arrivees en rafale, ont ete testees. Pour 

chaque simulation et experience, nous avons effectue plusieurs essais afin d'obtenir une 

valeur moyenne statistiquement significative. Pour ce, nous avons mesure et verifie 

que les ecarts type etaient suffisamment petits, ce qui a toujours ete le cas. Tous 

ces resultats ont ete publies dans les actes de l'atelier A CM Quality of Protection 

(QoP) Workshop, organise dans le cadre de la conference ACM Communications and 

Computer Security Conference (CCS) en octobre 2007, presente a l'annexe B. 

Apres la realisation et la publication de ces travaux, nous avons voulu combler 

une des lacunes principales : le fait que le modele mathematique offrait des resultats 

seulement pour la politique deterministic, et ceci avec des erreurs importantes. Pour 

cette raison, nous sommes retournes sur les concepts de modelisation et nous avons 

raffine la technique de couplage du trafic legitime avec le trafic malicieux dans le 

modele mathematique. De plus, suite a Panalyse detaillee de la politique designa

tion du delai d'inactivite deterministic, nous sommes arrivees a la conclusion que le 

fonctionnement de cette politique depend de l'etat passe de la file. Cette politique 

ne peut pas done etre resolue avec un modele de chaines de Markov autre que par 

des approximations, que nous avons introduites. Nous avons aussi modelise la poli

tique deferred, qui n'avait pas ete etudiee theoriquement avant, mais cette politique 

depend aussi du passe, et des approximations ont ete introduites pour resoudre le 

modele mathematique. Etant donne que pour resoudre les politiques deterministic et 

deferred nous avons du utiliser des approximations, nous avons defini encore une autre 
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politique d'assignation du delai d'inactivite : la politique Poissson. Cette politique 

est plus facile a modeliser, et nous avons calcule les valeurs exactes des probabilites 

de remplissage de la file a etat stationnaire pour cette politique. Encore une autre 

amelioration a ete apportee au modele mathematique qui consiste dans l'utilisation de 

la representation recursive de la formule Erlang-B et la simplification des equations, 

ce qui nous a permis d'explorer theoriquement des scenarios avec des taux d'attaques 

et capacites similaires a ceux des simulations et experiences, car ainsi les equations 

etaient devenues suffisamment simples pour etre evaluees numeriquement de fagon 

rapide sur une plus grande plage de valeurs. Parce que les resultats theoriques sont 

calcules a partir de l'etat stationnaire de la chaine de Markov, nous avons analyse le 

temps de convergence de la chaine theoriquement a l'aide l'adaptation de l'approxi-

mation Modiffied-Offered-Load (MOL), ainsi que par des simulations stochastiques, 

afln de valider la precision de l'utilisation de resultats bases sur ces etats station-

naires. Nous avons egalement fait une analyse detaillee du choix des parametres de 

configuration optimaux pour les strategies de protection pour arriver a des conseils 

pratiques qui puissent etre appliques immediatement dans l'industrie. De plus, nous 

avons etudie la robustesse des strategies de protection a des variations du taux du 

trafic d'attaque mais aussi du taux du trafic legitime. Cette etude confirme le benefice 

d'utiliser une strategic dynamique de gestion du delai d'inactivite. Finalement, pour 

rendre plus facile l'implementation d'une telle strategie de protection contre une at-

taque autre que SYN-Flood, nous definissons un protocole abstrait de communica

tion qui correspond au modele mathematique deja existant. Ensuite, nous montrons 

comment ce protocole peut etre instancie pour modeliser des attaques de plus haut 

niveau, par exemple une attaque d'inondation avec des requetes HTTP et une attaque 

d'inondation avec des demandes de reservation des places d'un evenement culturel. 

Ces resultats ont ete recemment soumis a publication a la revue scientifique Inter

national Journal of Information Security (publiee par Springer) et font l'objet du 

chapitre 4 de ce memoire par articles. 
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C H A P I T R E 4 

Article 1: An Exhaustive Study of 

Queue Management as a DoS 

Counter-Measure 

4.1 Introduction 

Denial-of-Service (DoS) Attacks have been and continue to be one of the most insid

ious threats on networked computer systems. Over the years, crippling DoS attacks 

exploiting vulnerabilities in protocols of software and achieving phenomenal results 

with little or no resource investment by the attacker have become less and less com

mon. Instead, they have been replaced by flooding DoS attacks where a moderate 

amount of resources are invested by the attacker in order to create a vastly superior 

consumption of resources on the targeted system. Protecting against flooding DoS 

attacks can be particularly difficult and frustrating. At the heart of this difficulty 

is the presence of a constant compromise or trade-off between providing services to 

legitimate users of network services, while keeping malicious users at bay. In partic

ular, counter-measures aimed at reducing the presence and effect of malicious users 

impact negatively the Quality of Service (QoS) experienced by the legitimate users 

of the system. 

Very generally speaking, the research and development efforts in DoS attack pro

tection can be divided into two broad categories: a) defensive measures that try to 

detect, identify and block malicious uses of the system, and b) those that try to alter 

the trade-off between the resources expended by the attacker and the defender, to 

the advantage of the latter. The protective counter-measures work described and 

analysed in this paper belongs in the second category. 

Of course, there are several different types of resources that attacker and de

fender can expend in a DoS attack. On the defender's side, inordinate consumption 
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of the memory or CPU time of the server(s) directly providing a service, or even of 

those intermediate proxies and servers providing other necessary subsidiary services 

(including protection), can have significant impact on QoS. On the network side, 

consumption of large portions of the available channel bandwidth can have similar 

quality-decreasing effects, whether it is by directly occupying bandwidth with mali

cious traffic, or by reducing the channel capacity by targeting network equipment or 

in-channel protective network appliances (firewalls, proxies, etc.). 

While attacks often have significant simultaneous effect on several resources types, 

they are normally designed with one single target resource in mind. One of the most 

infamous such resource-specific attack is the SYN-flood attack. It is without doubt 

the Mother of all DoS attacks. In a nutshell, it consists in flooding the memory that 

the targeted server allocates for the TCP/IP stack by forcing it to expend all of the 

available slots in its TCP half-open connection table (a.k.a. TCP backlog queue), 

i.e. those for which a SYN packet has been received but for which no ACK packet 

has been received yet. The significance of SYN-flood attacks is first and foremost 

historic, as it has traditionally been the workhorse of large-scale distributed DoS 

attacks in the wild. While it is arguably not optimal for the attacker in terms of 

ultimate impact on the target, one of the reasons of its success is the fact that very 

few attacker resources need to be expended in order to mount a successful SYN-flood. 

This is due to the fact that in most circumstances source IP addresses in the SYN 

packets can be spoofed (i.e. not correspond to the originating machine); the attacker 

vs. defender resource is thus very advantageous to the attacker, no matter what the 

impact for the defender is. This situation is somewhat atypical and particular to SYN-

flood, which is why we introduce the notion of a more general connection depletion 

attack, in which the targeted resource are slots representing "active" connections in 

some abstract connection-tracking table. This general paradigm applies in principle 

to several network and application layer protocols with SYN-flood just being one 

example amongst many possible flooding attacks of this type. The research presented 

in this paper concentrates on these connection-depletion attacks. 

For QoS and network engineering reasons that predate and go beyond the need for 

protection against connection-depletion DoS attacks, protocol designers and applica

tion developers have included and implemented in their design various mechanisms 

for managing the queues containing information about active connections. One of the 

most important and prevalent such queue management mechanisms is the assignment 
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of timeout values to individual connections, combined with a queue polling policy that 

removes connection entries that have timed out. 

At first, it seems intuitive that such a mechanism would provide some level of DoS 

protection. Indeed, malicious connections that may have made their way to the queue 

and have been abandoned there, will timeout more often that legitimate connections 

attempts that make it to the queue. Thus, lowering or adaptively modifying the time

out would seem to help. In particular, having a dynamic timeout, where the timeout 

is high when the server queue is empty and the timeout is low when the server queue 

is full seems like a good strategy. While this is definitely not a new idea in itself 

(versions of it have even been applied to the TCP/IP stack of some commodity Op

erating Systems), relatively little attention has been paid to the quantitative analysis 

of how effective this intuitive idea really is against connection-depletion attacks. In 

particular, there are several questions about the parameters that should be chosen 

(queue sizes, timeout values) and how these queue management policies should be 

implemented. 

In previous work, we sought to partially address this issue by combining both 

mathematical models and simulations (Boteanu et al, 2007a), with laboratory ex

periments (Boteanu et al, 2007b). With this in mind, we considered three types of 

methods for adjusting timeout values: the fixed timeout method, and the threshold 

and linear timeout adjustment methods. Furthermore, we considered two policies for 

enforcing the timeout and removing connections from the queue, the deterministic 

and the deferred timeout assignment policies. 

This paper is a revised and detailed compendium of the work cited, and extends 

previous results in several ways. First, we extended and improved our mathemat

ical analysis of the Markov chain models previously developed. This now allows 

us to more efficiently generate theoretical predictions, for a wider range of possible 

queue management parameters than previously possible. In addition, we extended the 

mathematical analysis to the deterministic policy, and to a newly introduced one, the 

Poisson timeout assignment policy. We also added a study of the convergence rates of 

the modelled Markov chains, in order to validate the usability of the steady-state ap

proximations used throughout our analysis. Finally, our most significant contribution 

concerns our study of the robustness of the various solutions considered with respect 

to non-optimal choices of the parameters. In other words, we study and describe the 

sensitivity of the queue management strategies to poor or suboptimal choices of the 
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timeout parameters and to varying legitimate and attack traffic rates. 

The rest of this paper is organised as follows: in Section 4.2 we provide an overview 

of previously related work. We then introduce the connection depletion attacks and 

the dynamic timeout strategies in Section 4.3. In Section 4.4 we use Markov chains 

to model the previously described attacks and protection strategies only to validate 

the model by stochastic simulations in Section 4.5. With all the pieces in place, we 

proceed to measuring the performance of the dynamic timeout strategies in laboratory 

experiments in Section 4.6. Finally, we conclude in Section 4.7 by sum our findings 

and providing directions for future work. 

4.2 Previous work 

In this section we provide an overview of previous work related to DoS. This topic 

has been covered before in detail in several review articles and books. In terms of 

generic introductions to the subject, the book Internet Denial of Service: Attack and 

Defence Mechanisms (Mirkovic et al, 2004) is aimed at helping network adminis

trators understand attacks and how to act when faced with them. Even an RFC, 

RFC4732 (Handley et Rescorla, 2006) has been written to provide an introduction 

on DoS attacks to protocol designers. Finally, extensive taxonomies of DDoS at

tack types and counter-measures have been described by Mirkovic et Reiher (2004) 

and Douligeris et Mitrokotsa (2004). We refer the reader to any of the above work 

for more comprehensive reviews of the topic. The review of previous work covered 

here is oriented towards the discussion of connection depletion attacks, and as such 

we concentrate on efforts to model, detect and protect against them. We only cover 

quickly some of the other related approaches such as collaborative defences, which 

are not necessarily specific this kind of attack. 

In principle, it is always possible to force the targeted server to expend all available 

resources up to the point where it becomes inoperable. However, this could come at 

a certain non-negligible cost for the attacker. In some cases, it is more interesting 

to consider the effect on the QoS as a function of the effort spent by the attacker. 

Alternatively, one can think of the required level of defence resources that must be 

spent, in order to maintain a given level of QoS, when the attacker mounts an attack of 

a given strength. These trade-offs between attacker vs. defender resources were first 

studied and formalised by Meadows (1999, 2001). This framework is, however, not 
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sufficient for measuring the degree to which a protocol is vulnerable to DoS attacks 

because of the difficulty of providing concrete cost values for elementary operations 

(e.g. blocking a message, computing a digital signature). 

Another model has been proposed where continuous Markov chains are used to 

analyse the performance of hard-state vs. soft-state protocols (Lui et al, 2004). 

A protocol is considered to keep hard-state if the timeout is only used as a fail

safe mechanism. The hard-state protocols, although better performers in perfectly 

defined conditions, are more vulnerable to attacks and network fluctuations than the 

soft-state protocols. 

SYN-flood being the most exploited amongst connection depletion attacks, several 

counter-measures have been devised to offer protection specifically to this attack. 

These measures try to tip the trade-off between the attacker and defender resources 

so that it is not worthwhile for attackers to try to inflict damage with this particular 

attack any more. Client puzzles (Juels et Brainard, 1999) and their network layer 

extension, network puzzles (Feng et al, 2005) consist in requiring the client to solve a 

cryptographic puzzle before the service is offered. Apart from the challenge of making 

the new protocol adopted widely, the major drawback of this method is the negative 

impact that the heavy computation has on legitimate clients which is even more 

substantial if the clients are mobile (laptops or mobile phones). Another approach 

to solving the SYN-flood problem is to render the three-way handshake stateless 

for the server, by storing state information in the TCP sequence number, method 

that is referred to as SYN cookies (Bernstein, 2003; Zuquete, 2002). However, the 

T C P sequence numbers do not allow for all the T C P options to be encoded and 

the retransmission of unacknowledged messages, as required by the T C P protocol, 

is not possible in this context. To cope with these limitations, a lighter version of 

the SYN cookies, called SYN cache has been suggested (Lemon, 2002), where some 

state information is kept on the server and the rest is encoded in the TCP sequence 

numbers. Although this might resolve the issues of the SYN cookies, this is only gives 

a small advantage to the server, because memory is still allocated for connections. 

The timeout mechanism is implemented in T C P as a fail-safe measure. The intu

ition is that when using a lower timeout, the server will be more resilient to attacks 

but tougher to use for slow legitimate clients. If the timeout value cannot be config

ured on the server for some reason, a method of controlling the timeout remotely by 

a third-party device has been proposed (Schuba et al, 1997; Nakashima et Oshima, 
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2006; Nakashima et Sueyoshi, 2007). This device would sniffs the network and send 

RST packets to the server. It has even been suggested that firewalls should be used as 

TCP proxies (Schuba et al, 1997; Ohsita et al, 2005) for the purpose. From the at

tacker point of view, this is equivalent with moving the attacked queue from the server 

to the firewall with the side-effect that if the firewall queue is flooded successfully, 

none of the protected servers will operate anymore. In addition, this method opens 

the door to a table saturation attack as identified in the TCP proxy implementation 

by Checkpoint (Noureldien et Osman, 2000). Because a low timeout might have a 

negative impact on slow legitimate clients, Microsoft (Microsoft TechNet, 2003) im

plemented a method where a low timeout is used only during an attack. Nevertheless, 

the questions of whether lowering the timeout has an impact on legitimate clients, 

how to measure this impact, what the optimal timeout values are and what is the 

best method for lowering the timeout have not been answered yet. This is where we 

focus our efforts. 

Other counter-measures consist in trying to evade the attack traffic by imple

menting some measures that the attackers do not expect, for example intentionally 

dropping the first SYN packet (Al-Duwairi et Manimaran, 2006) or redirecting legit

imate clients to a different server using a HTTP redirect message. Needless to say, 

during a targeted attack these counter-measures can be very easily identified and the 

attack can be configured to bypass them. In a different perspective, a secure TCP 

protocol was suggested (Ghavidel et Issac, 2007) that would replace the existing TCP 

protocol which would have the clients authenticate before establishing connections. 

Given the necessary efforts needed for the migration of the IP protocol to IPv6, it is 

not reasonable to believe that a secure TCP protocol would be adopted at large scale 

in the near future. 

Given that the protection against SYN-flood is such a difficult problem, some were 

content with detecting such an attack in the first place. In this sense, is was shown 

that the number of used slots in the queue is a good SYN-flood attack indicator (Khan 

et Traore, 2005). Counting the number of SYN packets and comparing them with 

absolute thresholds (Tartakovsky et al, 2006; Siris et Papagalou, 2004), the overall 

number of TCP packets (Shin et al, 2005) or with the number of specific FIN (Wang 

et al, 2002) or SYN/ACK packets (Divakaran et al, 2006) could also provide a 

measure of the attack intensity. However, the performance of these types of detection 

algorithms varies depending on the traffic parameters (Beaumont-Gay, 2007). 



23 

Another attack at the TCP level that captured recent attention is the low-rate 

TCP-targeted attack which consists in blocking the TCP flow at specific times so that 

the TCP congestion mechanism is activated (Kuzmanovic et Knightly, 2003; Yang 

et al, 2004; Shevtekar et al, 2005; Dong et al, 2006). Another low rate attack type 

has been suggested for servers handling connections in a serial fashion, which consists 

in sending packets at specific times to prevent legitimate connections from entering 

the queue (Macia-Fernandez et al, 2007). These low-rate attack types are somewhat 

similar to the resonance effect that we will describe in Section 4.6.4. The attack 

we deal with is different however, because in our case the server is able to handle 

connections in a parallel fashion and the attack does not rely on blocking network 

traffic. 

A complete different protection approach to modifying the trade-offs consists in 

discriminating in some manner the attack traffic and filtering it entirely. First, be

cause most of the SYN-flood attacks make use of spoofed IP addresses, various meth

ods have been developed to detect the use of this technique, for example the recording 

of the entry and exit edge routers addresses (Varanasi et al, 2004) or the Hop-Count 

Filtering (Jin et al, 2003; Zou et al, 2006). Other counter-measures rely on statistical 

methods to detect unusual traffic profiles, based on source address distribution (Fe-

instein et al, 2003), TCP packets arrival times (Cheng et al, 2002), or specific TCP 

packets relative frequency (e.g. SYN vs. FIN) (Kim et al, 2006; Ayres et al, 2006). 

Propositions have been made for implementing such statistical detection mechanisms 

on network processors (Lim et Uddin, 2005). Also, a method for determining whether 

the server did not receive the ACK response packet due to network congestion was 

suggested by probing the network and analysing the delay in the response (Xiao 

et al, 2005). Another suggestion has been made where edge-routers would observe 

the number of incomplete handshakes and block the sources that generate too many 

of them (Bellaiche et Gregoire, 2007). It is important to note that all the counter-

measures that employ traffic discrimination rely on the fact that the malicious traffic 

has at least one distinctive characteristic from the legitimate traffic. Unfortunately, 

attackers nowadays make use of botnets, large networks of controlled machines on the 

Internet, in order to launch the attacks. In this scenario, it is futile to try to discrim

inate the traffic because the malicious machines can easily mimic the behaviour of 

legitimate machines. 

Finally, it has been suggested that due to the distributed architecture of the In-
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ternet, only distributed counter-measures could offer global protection against DDoS 

attacks. The first effort in this direction is the RFC2267 (Ferguson et Senie, 1998) 

which specifies that ISP should filter all outgoing traffic with addresses not within 

their network, measure that would block the IP spoofing technique. Going a step fur

ther in this direction, it is thought that the ISP should implement more sophisticated 

detection and filtering mechanisms on their routers to block attacks coming from their 

network (Chen et Song, 2005). DefCOM (Mirkovic et al, 2002, 2003; Robinson et al, 

2003; Oikonomou et al, 2006) is an overlay mesh proposition in which network equip

ments on the Internet communicate on a secure channel with the purpose of sharing 

attack information and lowering attack traffic priority. Other suggestions have been 

made (Yang et al, 2005) where the target would send feedback to the routers (called 

capabilities), on whether certain flows are to be given priority. Attack traffic would 

still get through, but not having obtained associated capabilities, would be be routed 

with lower priority. The use of capabilities along with long-term client reputation 

can be then used for distinguishing between legitimate and malicious clients (Natu et 

Mirkovic, 2007). The SOS architecture (Keromytis et al, 2004) consists in building a 

secret routing network using cryptographic hash functions but this has the drawback 

of a significant latency increase. Other methods which have to be deployed on routers 

consist in identifying from which upstream routers does the attack traffic come from, 

and blocking or limiting these routers (Ioannidis et Bellovin, 2002; Zhang et Dasgupta, 

2003; Yau et al, 2005). Another method requiring edge router collaboration consists 

in having the entry routers send ARP requests to clients initiating communications 

in order to prevent IP spoofing (Chouman et al, 2005). Unfortunately, seen that for 

political and social reasons, the RFC2267 has not yet been adopted world-wide in 

spite of its simplicity, it is very unlikely that other more complex architectures like 

DefCOM or SOS are to be deployed on the Internet in the near future. Furthermore, 

the collaborative protection measures to date have focused on blocking bandwidth 

consumption flooding attacks and are most of the times inefficient against connection 

depletion attacks. 

In summary, we have seen that there are several types of counter-measures aimed 

at solving connection-depletion attacks. However, these solutions are aimed at dealing 

with one particular attack in this category which in most cases is the SYN-flood 

attack. Unfortunately, these SYN-flood specific solutions might not work on higher 

level flooding attacks. This is particularly worrying, as in recent DoS attacks, SYN-
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flood accounted for a relatively low percentage of the attack footprint (Nazario, 2007). 

In particular, a recent case documents the relatively new use of flooding attacks 

at higher levels of the protocol stack (Adair, 2008), in this case HTTP. Hence the 

development of analysis tools and defensive approaches against generic connection 

depletion attacks is needed. 

Modifying the logic of the existing protocols or replacing them with new, more 

secure ones does not seem to be a feasible option because of the huge migration 

effort involved. Also, in theory, collaborative counter-measures seem to be very ef

ficient against bandwidth flooding attacks but their wide adoption is questionable 

for non-technical, social and political reasons. If the malicious traffic has distinc

tive characteristics from the legitimate traffic, it can can be detected and filtered. 

However, in practice, the traffic filtering techniques can be evaded when attacks are 

generated by using botnets. It seems that one of the few options left is thus to mod

ify the internal implementation and parametrisation of protocols and applications on 

the targeted servers, so that they can be made more resilient to attacks. This last 

method is of particular interest because it is complementary to the use of other fil

tering or collaborative upstream protection mechanisms that might offer some level 

of protection. 

4.3 Dynamic timeout strategies 

In this section we define what attack types we are trying to protect the server from, 

and describe the dynamic timeout strategies that might protect against them. In 

order to provide a solution as general as possible, we first define an abstract protocol 

that we will use for modelling and analysis and show how real-life protocols like TCP 

can be instantiated from this abstract protocol to model attacks like SYN-flood or 

TCP connection establishment flooding. 

4.3.1 Abstract protocol description 

Let us consider an abstract protocol defined as usual by a finite state machine, where 

the following events generate transitions between the protocol states: 

• connection arrival, an entry event for every connection, meaning that the server 

received a connection request; If the server has enough resources, it will accept 
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the connection by generating a connection acceptance event internally and then 

proceeding with serving the connection. Otherwise, a connection rejection event 

is generated. 

• connection rejection, an exit event, meaning that due to insufficient resources, 

the server dropped the connection upon arrival. No further tracking is made of 

the connection. 

• connection completion, an exit event, meaning that the client received the re

quired service and that the connection was "closed" gracefully. 

• connection expiration, an exit event, meaning that the server tried to offer the 

required service but the client did not respond in a timely manner and hence 

the connection was dropped. No further tracking is made of the connection. 

The protocol state diagram illustrating possible states: connection arrived, connection 

rejected, connection accepted, connection expired and connection completed as well 

as the above-mentioned events generating transitions between the states is shown in 

in Figure 4.1. 

Connection arrival Connection acceptance Connection completion 

Figure 4.1 State diagram of the abstract protocol 

Let us now consider under which circumstances these events can occur, in the 

context of legitimate and malicious of the protocol (e.g. for mounting flooding at

tacks). The connection arrival event occurs when either a legitimate or a malicious 
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connection arrives, i.e. connection arrival = legitimate connection arrival V mali

cious connection arrival. A connection is considered served if it was accepted by the 

server and it completed or expired. Hence, connection service = connection comple

tion V connection expiration. Again, we make a distinction between the legitimate 

and malicious service events, i.e. connection service = legitimate connection service V 

malicious connection service. A connection is successful only if the connection com

pletion event is generated. Otherwise, the connection is considered to have failed, i.e. 

connection failure = connection rejection V connection expiration. 

Usually, the service time is mostly due to the messages travelling back and forward 

between the server and the client, on the Internet. The only significant resource that 

the server uses is memory, and this, in order to keep track of the connection states. In 

this scenario, the connections can and will be served independently and in a parallel 

fashion. This might not be the case, however, when the considered server is a heavily 

used router with limited bandwidth or a web server with very slow disk speed. In 

the latter case, the connections would be served serially and/or influence each others 

service times. 

4.3.2 SYN-flood attack 

We now instantiate the abstract protocol model described earlier for the transport 

level protocol TCP, to capture the behaviour of the SYN-flood attack. The connection 

arrival event corresponds to SYN messages being received by the server. If the server 

backlog queue is full, the connection is rejected, which corresponds to the connection 

rejection event. If the backlog is not full, the server adds the connection to the 

backlog by generating the connection acceptance event internally. Then, the server 

proceeds to service by sending the SYN-ACK message to the client. If the client 

replies with an ACK message in a timely manner, the TCP handshake is successful, 

which corresponds to the connection completion event in the abstract protocol model. 

However, if the client does not respond with an ACK message, the server repeats the 

SYN-ACK message several times and then drops the connection by generating a 

connection expiration event internally. Figure 4.2 illustrates a possible sequencing of 

messages that would trigger the different events at the server. 

One of the reasons SYN-flood is so attractive to attackers is because the default 

queue size c and timeout Tout values in modern OS are very permissive. Constructors, 
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) Connection acceptance 

Connection completion 
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Connection arrival 
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(queue full) 
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Figure 4.2 Abstract protocol instantiation for the TCP 3-way handshake 

however, often suggest tweaking these parameters to harden the OS. The minimum 

SYN packets arrival rate Am that an attacker would have to generate to completely fill 

the queue of a server configured with the default parameters is illustrated in Table 4.1 

(note that cnx=connections). 

4.3.3 T C P connection establishment attack 

Similarly to the previous section, we instantiate the abstract protocol model for a 

generic application level protocol that uses TCP as a transport layer. We do this 

in order to capture the behaviour of an attack that would try to flood the TCP 

established-connection queue. In real life, this upper-level protocol could be HTTP, 

Table 4.1 Default queue size c and timeout Tout values in popular operating systems 
and minimum attack rate Am that fills the server queue 

OS 
Windows 2003 
Linux 2.6 
HP-UX 11.00 
Solaris 10 

c [cnx] 
1000 
1024 
500 
128 

Tont N 
45 

180 
75 

180 

Am [cnx/s] 
22.2 

5.7 
6.7 
0.7 
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SSH or any other connection-oriented protocol. The connection arrival event corre

sponds to the successful establishment of the TCP connection, due to the three-way 

handshake. If the server does not have enough application-level working threads to 

serve the connection, the connection rejection event is generated, usually by sending 

a RST message to the client. If the connection is accepted, the server starts a working 

thread and serves the client with the information required. At the end, the client can 

generate a connection complete event at the server side by closing the TCP connec

tion gracefully. If on the contrary, the client does not respond to the ACK messages 

that the server sends, the server generates an connection expiration event internally 

and drops the connection. A possible sequencing of messages that would generate the 

above described events is illustrated in Figure 4.3. 

Client Server Client Server 

DATA ) 

Connection arrival 
Connection acceptance 

Connection completion 

Connection arrival 
j Connection rejection 

(queue full) 

DATA 

Connection arrival 
Connection acceptance 

J Connection expiration 
(timeout) 

Figure 4.3 Abstract protocol instantiation for TCP connections life-cycle 

Table 4.2 illustrates the default queue size c and the timeout Tout values in some 

of the commonly used server applications on the Internet as well as the minimum 

malicious arrival rate Am that an attacker has to generate to completely fill the server 

queue. The timeout values indicated in Table 4.2 are enforced at the application 

level but depending on the OS that is being used, lower timeout values could also 

be enforced at the transport level. Furthermore, an attacker could try to hold the 
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application level connection by sending keep-alive messages regularly, depending on 

the protocol that is being attacked. 

Let us compare the amount of memory used by the connection queue during 

the SYN-flood and the TCP connection establishment flooding. Each used slot in 

the SYN-flood attack protocol model, corresponding to a half-open TCP connection, 

requires roughly 100 bytes. On the other hand, each slot in the TCP connection 

establishment flooding protocol model, corresponding to a successfully completed 

TCP connection, requires between 1.5 kB and 16 kB at the TCP level, depending on 

the TCP implementation and configuration. More memory may be allocated at the 

application level protocol that is flooded. 

4.3.4 Ticket reservation flooding attack 

We take the previous examples of resource exhaustion attacks one step further and 

we illustrate how the same model can be instantiated to capture the behaviour of the 

server during a higher-level attack, in this case against a ticket reservation application 

on the Internet. As we did in the previous section, we illustrate a possible sequencing 

of messages that could generate the events considered in the abstract protocol in 

Figure 4.4. In this case, the connection arrival event corresponds to a client deciding 

to buy a ticket by clicking on the buy button. If there are places still available for the 

selected date and event, a place is temporarily reserved for the client, by generating 

the connection acceptance event internally. A web page is then sent to the client 

inviting it to complete the payment. If the payment is completed in a timely manner, 

the connection completion event is generated and the reserved place is permanently 

assigned to the client. However, the reservation is only held by the application for 

a limited amount of time, usually several minutes. If the client does not complete 

the payment during this interval of time, a connection expiration event is generated 

Table 4.2 Default queue size c and timeout Tout values used in some popular server 
applications and minimum attack rate Am that fills the server queue 

Application/Protocol 
Apache 2.0 / HTTP 
IIS 6.0 / HTTP 
IIS 6.0 / FTP 
Cisco SIP Proxy 2.0 / SIP 

c [cnx 
150 

8000 
100000 

20 

^out S 

300 
120 
120 

0.005 

Am [cnx/s] 
0.5 

66.7 
833.3 

4000.0 
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and the temporary reservation is discarded, making the place available to other users. 

For example, if for a specific event there are 10000 available places (c) and each user 

is allowed 5 minutes (Tout) to complete the payment, a malicious user generating 34 

reservation requests per second (Am) would block all the 10000 places, for as long as 

it would want. 

Client Server Client Server 

-i&77> 

Vcket. •Pbp Connection arrival 

J Connection acceptance 

to***** 
Php 

HTTP 

n'ck^pT^ 

Connection 
completion 

no mo^P 
laces 

Connection arrival 

J Connection rejection 
(queue full) 

-522? lea 

Connection arrival 

) Connection acceptance 

& & & 

) Connection expiration 
(timeout) 

Figure 4.4 Abstract protocol instantiation for a ticket reservation attack 

4.3.5 Legitimate and malicious traffic distributions 

In this section, we discuss the assumptions and simplifications that we make on 

the distribution of arrival times of protocol transition events, i.e. the legitimate and 

malicious traffic distributions. 

Legitimate traffic. We will consider that all legitimate incoming connections are 

generated by a Poisson process, i.e. the inter-arrival times are independent of each 

other and exponentially distributed. This assumption is made by other DoS related 

research (Mirkovic et al, 2006; Cheng et al, 2002) and is justified by the fact that 

connection arrivals, just like telephone calls, are triggered by humans acting indepen-
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dently. We are aware of the day of week and time of day legitimate traffic variations. 

However, we make the simplification that the legitimate traffic rate, Aj, is constant 

within the time scale of queue management attack counter-measures. We will, how

ever, analyse the sensitivity of the attack counter-measures to traffic rate variations 

in Section 4.6.6. 

In most cases, the serving speed of legitimate connections, //i, depends only of 

network transit times but in some cases user interaction is also a factor. It has been 

shown that because of the network queueing algorithms, all the IP packet traffic tends 

toward a Poisson process as the load increases (Cao et al, 2001). We will make the 

supposition that the network is heavily used and hence connections completion events 

are generated at exponentially distributed intervals of time from the corresponding 

connections arrival events, with speed //c. 

Malicious traffic. While we model legitimate arrivals as a Poisson process, this is 

not general for attack traffic as the attacker is free to use whatever strategy it wants. 

In order to be able to build a simpler model that we could analyse mathematically, 

in part of our work, we make the simplification that the malicious arrival traffic is 

also generated by a Poisson process, with rate constant in time, Am. In Section 4.6.4 

we analyse the robustness of this model by stochastic simulation and laboratory 

experiments for attacks with a different traffic distribution, where packets arrive in 

bursts of various sizes and at various intervals of time. Moreover, the malicious traffic 

might or might not be distinguishable from the legitimate traffic. For our measures, 

and without loss of generality, we consider that the malicious and legitimate traffic 

are indistinguishable. If a distinction between the two could be made, a filtering 

counter-measure might then be used to prevent all or some of the malicious traffic 

from reaching the server. Our method is complimentary to such a technique and can 

be used to handle all the residual attack traffic, unfiltered by upstream defences. 

Concerning the malicious traffic service speed, //m, the strategy of the attacker is 

to exhaust the server resources using the smallest effort possible. This is achieved 

by generating the connection arrival events and then abandoning the communication 

without any notice to the server. Malicious connections will eventually all expire and 

generate connection expiration events at Tout intervals of time from the connection 

arrival events. 
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4.3.6 Timeout adjustment methods 

Apart from increasing the queue size which is limited by the available memory, the 

only parameter than can be adjusted at the server side, is the timeout that a connec

tion is granted before expiring when the client does not respond. Ideally, we would 

like to adjust the timeout on a per-connection basis, by setting a very low, restrictive 

timeout to malicious connections and a very high, permissive timeout to legitimate 

connections. Unfortunately, as discussed earlier, the server is unable to distinguish 

between legitimate and malicious connections. With this in mind, the most obvious 

indicator that can be used for adjusting the timeout is the number of connections in 

the queue. Therefore, the timeout adjustment methods that we analyse are: 

A. The traditional fixed timeout method, where the timeout Tout is constant, re

gardless of the queue occupation. This is the classical method that is widely 

used in network equipments and protocol implementations. 

B. The threshold method, where the timeout alternates between two fixed val

ues, T0 and Ti, as the number of connections in the queue crosses a predefined 

threshold. This adjustment method is not new and is already implemented in 

the TCP stack of some OS, e.g. Microsoft Windows Server 2003 (Microsoft Tech-

Net, 2003). 

C. The linear method, a straightforward generalisation of the former that we in

troduced in (Boteanu et al, 2007a), where the timeout value is determined 

according to a linear function depending on the number of connections in the 

queue, with two predefined empty-queue T0 and full-queue Ti timeout values. 

Figure 4.5 illustrates how the timeout varies as a function of the queue occupation 

for the fixed and dynamic methods. 

4.3.7 Timeout assignment policies 

We established in the previous section that the server is going to adjust the tolerated 

timeout value according to the queue occupation. However, we still have to define 

how these timeout changes are going to affect connections. The question that we 

need to answer is what happens to a connection if the timeout tolerated by the server 

changes while the connection is in the queue. To address this issue, we introduce two 

policies for assigning the timeout values to connections: 
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Figure 4.5 Fixed, threshold and linear timeout adjustment methods 

I. The deterministic policy, where connections are assigned an expiration time 

at the moment where they enter the queue. If by the expiration time the 

connection has not left the queue, it is dropped. Because for each connection 

the past (queue occupation at arrival) is taken into account, this policy is not 

memory less. 

II. The deferred policy, where connections are dropped only if they have been in 

the queue longer than the current timeout. When the server transitions from 

a permissive state, with a high timeout, to a more restrictive state, with low 

timeout, it abruptly drops the tolerated time to complete to the low timeout 

value. This causes the oldest connection in the queue, that would expire under 

the new low timeout value, to be dropped instantly. We call this particular 

behaviour the abrupt-tolerance-drop effect. However, if the server transitions to 

the same state but from a state with the same low timeout or from a state with 

a lower timeout, no connection is dropped instantly after the transition because 

the server is at least as permissive as it was in the previous state. Clearly, the 

behaviour of the server depends on the previous state and thus does not behave 

as a memory less process. 

The deterministic and deferred policies take the timeout into account at the con

nection arrival and at the connection expiration, respectively. These policies could 

easily be implemented in an OS TCP/IP stack or on network hardware. However, 

they have the disadvantage that they are not memoryless, which makes them difficult 

to evaluate mathematically. For this reason, we introduce in this paper a third policy, 
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who behaves in a memoryless fashion: 

III. The Poisson policy, where connections are always dropped at the same rate, 

that depends on the queue occupation. This corresponds to a Poisson process 

because the history of the previous server states has no influence on the drop 

rate. 

Intuitively, the Poisson policy would correspond to the server using "relativistic" 

clock speeds in each state for keeping track of the connection ages. For example, let 

us suppose that each connection is always allowed the same amount of time before 

expiring, say 1,000 seconds. In a particular state where the tolerated timeout value is 

Tout, the speed of the server clock would be such that these 1,000 seconds would pass 

in exactly Tout seconds of "queue time". In another state with T'0Xlt < Toui tolerated 

timeout, these same 1,000 seconds would pass "quicker", i.e. in Tout "queue time" 

seconds. Although this policy satisfies the memoryless property, it does not have a 

straight-forward implementation, as opposed to the deterministic and the deferred 

policies. 

When coupling a timeout adjustment method with a timeout assignment policy we 

obtain a timeout strategy. Note that for the fixed timeout method, all the assignment 

policies have the same effect, because the timeout never changes. 

4.3.8 Performance metrics 

We are now interested in defining the performance metrics that will allow us to eval

uate the QoS perceived by the clients when using the dynamic timeout strategies. 

Depending on the communication type that is taking place between the client and 

the server, several measures can be considered, for example the delay, jitter and per

centage of lost packets as well as the duration of transactions (Mirkovic et al, 2006). 

However, in our case the connections are handled in parallel and in an independent 

fashion, the service time being due solely to the round-trip time (RTT). Hence, from a 

client perspective, the only significant measure for an individual connection is whether 

it completed of whether it failed, regardless if that was by expiration or rejection. 

Ideally, we would like to measure the transient probability 4>(t) that the connection 

arriving at time t at the queue fails, which is defined as the probability for the 

connection to be rejected (t>T(t) or to expire (f>e(t), i.e. </>(£) = 4>v(t) + (/>e{t), since these 

are disjoint events. Let us note with nss the number of connections that arrive before 
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the queue is stable. Because the transient behaviour of the queue is difficult to predict 

when evaluating the dynamic timeout strategies analytically, we measure the average 

connection fail probability $ for all connections i that arrive when the queue is stable, 

i.e. i > nss. 

^j _ i=nSB+l 

n - {nss + 1) 

where Tj is the arrival time of the ith connection. In order for this value to be an 

accurate estimation of the probability of a connection failing, the queue must become 

stable rapidly, an assumption that we explore in more detail in in Section 4.5.3. 

On the other hand, when evaluating the performance of the timeout strategies 

using stochastic simulations and network experiments, we measure the percentage 

(p of legitimate connections that fail during the attack and average this value over 

several runs. 

Finally, although the average fail probability <& and the percentage of failed con

nections <p are the natural measures to take because of their straight-forward decom

position into the expired and rejected components (i.e. $ = $ e + $ r ; ip = ipe + ipr), 

when comparing the performance of different strategies, we will look at the comple

mentary measures, 1 — $ and 1 — ip, which represent the average success probability 

and the percentage of successful connections, respectively. 

4.4 Mathematical model 

In order to evaluate the previously defined performance metrics we model the queue 

of a server implementing the abstract protocol as a Birth-Death Markov chain with 

c states. Each state Ek represents that there are k connections in the queue. Let us 

analyse the timeout strategies in the light of the Markov chain model. 

4.4.1 Fixed timeout method 

The connection arrival rate is the same for all states Ek, i.e. A(fe) = A. As discussed 

earlier, we suppose that both legitimate and malicious arrivals are generated by in

dependent Poisson processes. Hence, the overall arrival rate A is equal to the sum 

(4.1) 
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of the legitimate and malicious arrival rates, Ai and Am, respectively. Being the sum 

of two Poisson processes, the overall arrival process is a Poisson process as well, and 

does not depend on the server state: 

A« = A = ^ + Am. (4.2) 

The speed with which a legitimate client would accept the service offered by the 

server and generate a legitimate connection completion event is /ic. However, these 

type of responses that would arrive after the timeout elapses are ignored by the 

server with legitimate connection expiration events being generated instead, when 

the timeout elapses. Therefore, the probability distribution function (PDF) of the 

legitimate connection service time Gi(t) has the form of an exponential distributions 

for t smaller than the timeout Tout followed by a Dirac delta function 5(t) in Tout. 

The weight of the Dirac delta p\e is so that the CDF of the service time is 1 after Tout 

and represents the probability that a legitimate connection expires after entering the 

queue. The expiration has to arrive after the timeout, which causes the Dirac delta 

to be placed infmitesimally close to Tout, in J ^ t : 

{ ace-1^ t < Tout 
+ S(t-T+JPle (4.3) 

0 otherwise 
where 

/•oo 

pie= / nce~tllcdt = e-T°^c (4.4) 
J T0ut 

The mean service time for legitimate connections is: 

h 4 / tGi(t)dt = -— (4.5) 
JO flc 

In order to exhaust the server resources, malicious clients never generate connec

tion completion events. All the malicious connections that get accepted in the queue 

leave the queue at timeout by expiring, i.e. tm = Tout. 

Knowing the mean service time of both legitimate and malicious connections, we 

calculate the overall mean service time. During an interval of time At, out of the 

XAt connections that arrive at the server, only a number a are accepted. These are 
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Figure 4.7 Malicious service time PDF and CDF for the fixed timeout method 
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the connections that will make a difference for the overall mean service time during 

At. Out of the a connections, a\ are legitimate and am are malicious. The proportion 

of legitimate and malicious connections that are accepted is equal to the proportion 

of legitimate and malicious connections that arrive at the queue, due to the arrivals 

being Poisson processes, i.e. a/ = a\\/\ ; am = aAm/A. 

The mean service time t during the interval At is equal to the average of the 

legitimate and malicious service times weighted by the number of legitimate and 

malicious connections that enter the queue during this interval. 

r . OJI am Mti + \mtm . . 
t-t\ K m — = . , . (4.6) 

a a X\ + Am 

The mean connection service speed (p = 1/i) is equivalent to the mean service 

rate for an individual slot: 

^ A 1 ( l - e - ^ ^ ) / A ( c + r o u t A m { • ' > 

The load of an individual slot p, defined as the arrival rate divided by the slot 

individual service rate, i.e. p = X/p, becomes: 

p = Ai(l - e-™)/nc + ToutAm (4.8) 

Because in the state Ek there are k slots that are occupied and all k connections 

in these slots are served independently in a parallel fashion, the overall service rate 

p^ in this state is equal to the mean connection service speed p multiplied by the 

number of connection in the queue k: 

p{k) = kp (4.9) 

The model we obtain is known as M/G/c/c in Queue Theory and is illustrated 

in Figure 4.8. It is a Birth-Death Markov chain with Poisson process distribution 

arrivals (M), general distribution departures (G), capacity c and c slots that allow 

for connections to be served in parallel. This is a classical model for which the steady-

state probability of the server to be in state Ek, meaning that k slots in the queue 
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are in use p^, is known: 

i=0 A* (*+l) 
(4.10) 

with 

p(o) = 
1 

c fc-1 , ( i ) 

En 
fc=0 i=0 

(4.11) 

.(*+i) 
K 

When the server achieves steady state, it means that the probabilities that various 

server states are repeated will remain constant. 

A ( 0 ) A ( 1 ) A ( 2 ) A ( 3 ) A (c-l) 

dOCi' ID 
.(!) .(2) ,(3) ,(4) Ad 

flK ^ flx Hy ' fji 

Figure 4.8 Markov chain queue representation for the fixed timeout method 

The steady-state probability that a server queue with c slots is full is known as 

the Erlang B loss function: 

n 
B(c) i=0 V (i+l) 

c fc-1 
(4.12) 

k=0 i=0 /xv 

Note that in our case, the probability of the server being in state Ec is equivalent 

to a server with c slots being full (p^ = B(c)) but the probability of the server 

being in state E^ is not equivalent to a server with k slots being full (p^ ^ B(k)). 

The previous equation can be expressed in a simpler recursive form (Jagerman et al, 
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1997): 

B(c)-1 = J^B(c-ly' + l • B{ti)-* = 1 (4.13) 

We can now express (4.10) and (4.11), which are computational expensive to 

evaluate as a function of (4.12): 

P(k) = c-7^' (4-14) 
c l \W 

B(c) 
• l 

11 „(m) 
i=k 

Because the timeout is fixed, the arrival rate does not depend on the state k and 

the service rate depends linearly on the state k, as described in (4.9). We can thus 

solve the recurrence in (4.13): 

B(c)_, _ f !r(^M (415) 

where T(a,z) is the upper incomplete gamma function, i.e. T(a,z) = f°° ta~1e~tdt. 

We insert (4.15) in (4.14) and obtain: 

y ePT(c + l,p) K ' 

After steady state is achieved, the probability p^ that the queue reaches the 

state Ek in the future remains constant and is described by (4.16). Because the 

arrivals follow a Poisson process and are thus independent, the average probability 

of connections that arrive at the queue after the steady state is achieved to find the 

queue in state Ek is equal to the steady-state probability of the queue being in state 

Ek- Finding the queue in state Ec is equivalent to the connection being rejected. 

Hence, the average probability of a connection that arrived after after steady state to 

be rejected <E>r is equal to the probability of the queue being full at steady state: 

$ r = p(c) (4.17) 

Similarly, the probability of a connection that arrived after the steady state is 

achieved to expire $ e is equal to the steady state probability that the queue is not 
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full and the connection is accepted (1 — p^) multiplied by the probability that a 

legitimate connection that entered the queue would expire p\e: 

$e = (l-p^)ple (4.18) 

As described earlier, the only significant performance measure is the probability 

that a legitimate connection that arrived after the steady state is achieved fails (<&), 

which is equal to the probability that the connection that arrived after the steady 

state is rejected ($r) plus the probability the connection that arrived after the steady 

state expires ($e)-

„c 
$ = $r + $ e = P - ( 1 - e-Tout^c) + e - T o u t „ c / 4 1 9 N 

ecr(c+l,p) 

where p, the load of an individual slot is given by (4.8). 

4.4.2 Threshold timeout method 

The threshold timeout method is an extension of the fixed timeout method. Instead 

of using a fixed timeout value, two timeout values are used. Initially, when the queue 

is empty a high timeout value T0 is used. Whenever the queue occupation is greater 

than a certain threshold S, a lower timeout value T\ is used. 

(k) (T0 k<S / ^ 
T0

(S = { (4.20) 
I Ti otherwise 

The way a connection will be assigned a timeout value varies with respect to the 

policy that is used. 

Threshold Poisson timeout strategy 

Although the Poisson policy does not have a straight-forward implementation, we 

choose to analyse it because of its modelling simplicity. The results obtained in this 

section will be a first step to analysing the more complex deterministic and deferred 

policies. When enforcing the Poisson policy, the service rates in the states E\ to E$ 

are the same as those of a server with a fixed timeout method and with a timeout 

value of T0. The service rates in the states E$+i to Ec are the same as those of a 



43 

server with a fixed timeout method but with a timeout value of Ti 

M 
(k) 

= < 
tik) k<S 

fi\ otherwise 
= < 

k/J-0 k < S 

k/j,i otherwise 
(4.21) 

where //0 and Hi, the mean service speeds before and after the queue reaches the 

threshold are as described in (4.7) for timeout values of T0 and Ti, respectively: 

Mo = 
Ai + AE 

^{l-e-^/nc + ToK 
(4.22) 

Mi = 
Ai + Ar 

A l ( i - e - T 1 M c ) / ^ c + r1A r 
(4.23) 

Arrival rates do not depend on the state E^ the server is in and are the same as 

in (4.2): 

\W = A = A, + A: 1 - r A m 
(4.24) 

Figure 4.9 illustrates the model we obtained. This is a Birth-Death Markov chain 

with server state dependent service rates. 

A(0) A d ) A(S-1) ^(5) ^(5+1) A(c-1) 

<0£-30£ 
Mo Mo 

. . , (5+1) (5+2) 
Mo Mi Mi 

Figure 4.9 Markov chain queue representation for the threshold Poisson timeout strat
egy. Service transitions from states E$+i to Ec are illustrated with thicker lines 
because in these states the service rates are higher due to the shorter timeout 

We apply the same reasoning described in (4.13) and (4.14) for calculating the 

steady-state probabilities. As one would have expected, the average probability of a 

legitimate connection arriving after the steady state is achieved to be rejected <&r is 
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equal the probability of the queue being full at steady-state, just like in the case of 

the fixed timeout method: 

$ r = p{c) (4.25) 

However, the average probability of a legitimate connection that arrives after 

the steady state is achieved to expire depends not only on the queue occupation 

distribution at steady-state but also on the transitions that the queue will make after 

the connection arrived. Because we are not able to evaluate these transitions, we will 

make the approximation that at steady-state the queue transitions that occur during 

the service time of connections place the queue is states with similar timeout values. 

Hence, according to this approximation which we refer to as the steady-state (SS) 

approximation, the average probability of a legitimate connection to expire depends 

only on the queue occupation distribution at steady-state: 

$e = f / t f (4-26) 
k=0 

where p^k\ the probability that the server is in state Ek at steady state is: 

117^+1) 
P(fc) = r U „ (4-27) 

j=0 i=0 ^ 

and p[e , the probability that a legitimate connection that enters the queue expires 

under the timeout T0
(J is evaluated similarly to (4.4): 

(k) }e~T^ k<S t x 

Pie = { _ (4-28) 
e Tl/ic otherwise 

Note that we did not use the Erlang B loss function for expressing the steady-state 

probabilities as we previously did in in Section 4.4.1 in (4.14). Because the service rate 

described in (4.21) changes at the threshold state Es, the recursive representation of 

the Erlang B loss function is no longer easy to solve. We did however use the recursive 
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representation when computing the steady-state probabilities numerically. 

Once again the only significant performance measure is the approximative prob

ability that a legitimate connection arriving after the steady state fails ($) which 

is equal to the probability that the connection is rejected ($r) plus the approxima

tive probability the connection expires ($e)> f° r connections arriving after the steady 

state. 

= P(0)T^+^(0)e"To ' 'cE^+^0)e"Tl/ic E I T T W (4-29) 

with 

^ = " ^ 1 — (4-30) 

2-^ Jchib 2^i tok^o+
kki^^ 

and no and /ii, the service speeds before and after the threshold as described in (4.22) 

and (4.23), respectively. 

Although the performance of the Poisson policy is relatively easy to compute by 

simply extending the fixed timeout method, it is difficult to implement this policy 

in a queueing system. However, the results obtained in this section will prove to be 

useful when compared to those of the deferred policy, which we expect to be very 

similar. 

Threshold deterministic timeout strategy 

The deterministic policy consists in assigning a timeout right when the connection 

enters the queue. For example, if the server is in state E^ and a connection is accepted 

in the queue, the server passes in state E^+\. The connection is thus assigned a 

timeout of ?oUt
+ . If the connection does not complete before the assigned timeout, 

it is dropped by the server. Because the deterministic policy consists in using for 

each connection a timeout based on the past state of the server, when the connection 

arrived, it breaks the memoryless property of the system. In this section we try 

however to make several approximations that allow us to use the same model we built 

earlier in order to get an insight into the performance of the deterministic policy for 
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a threshold timeout method. 

Consider the server queue having each slot numbered, from 0 to c. When a 

connection arrives it is placed on the slot with the lowest id number. Let us suppose 

there are n connections in the queue, making slots 0 to n to be occupied. When a 

connection being served on slot k leaves the queue, connections on slots k + 1 to n 

translate on position to the left, thus leaving no empty slots in the middle of the 

queue. This is without loss of generality because the connection positions in the 

queue are merely labels, all connections being served in parallel and independently. 

With this in mind, the overall service rate when the server is in state Ek is the sum 

of the service speeds of each connection: 

//(fc)=//|1|+Af|2| + -+^ | fc | (4.31) 

where n\i\, the service speed of the connection that occupies slot i in the queue depends 

on the past state of the server when this connection arrived A^: 

V\i\ = < 
a0 Au\ < Es 

^ " (4.32) 
Hi otherwise 

Evaluating (4.32) requires being able to tell what was the state of the server when 

each of the connections currently present in the queue arrived. Clearly this is not 

a memoryless model. To get past this lack of information we make the very coarse 

approximation that the connection on slot i arrived when the server was in state Ei-i 

and has thus been assigned the timeout value T0„t. 

V\i 
A*o i < S / 

(4.33) 
/xi otherwise 

Intuitively, the approximation would hold only if the queue acted like a First In, Last 

Out (FILO) queue, meaning that only the connection placed last in the queue would 

expire or complete. Hence, we refer to this approximation as the FILO queue ap

proximation. This is obviously not the normal behaviour of a server and we will 

measure the error generated by this approximation in Section 4.6.3. By inserting 
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(4.33) into (4.31) we obtain the approximative service rate when server is in state Ek: 

fx{k) =/2|i| +/i|2| + ... + p>\k\ = Af
0min(A;, S) + ^(k - min(k, S)) 

kun k < S 
P (4.34) 

S/J,Q + (k — S)/J,I otherwise 

We can now calculate the approximative steady-state queue occupation distribu

tion similarly to 4.27: 

fc-i ui) n //(*+!) 

**' = ̂ ^ r <435) 

j = 0 i=0 ^ 

Just as we used the steady-state queue occupation probabilities to evaluate the 

performance of the Poisson policy, so can we use the steady-state queue occupation 

approximative probabilities to evaluate the performance of the deterministic policy. 

The average probability for a legitimate connection arrived after the steady state is 

achieved to be rejected is the steady-state probability that the queue being full: 

$ r = p(c) (4.36) 

The average probability for a legitimate connection arrived after the steady state is 

achieved to expire is the steady-state probability of the queue being in a non blocking 

state (Ek; k < c) multiplied by the probability of a legitimate connection arrived in 

state Ek to expire: 

*e = | > ( f c ) p L f c ) (4-37) 
fc=0 
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A legitimate connection fails either if it is rejected or if it expires: 

"1 T 1 /Q\ _7n// \—^ ^ 

where 

p(o) = * (4>39) 

£ *ss+
fc5+1 ( ^ J?+1 5/io+(i-^iJ 

Threshold deferred timeout strategy 

When enforcing the deferred policy, the timeout is not assigned to a connection when 

it arrives at the server. Instead, the arrival time is recorded and if at any point the 

arrival time of a connection plus the current timeout is greater than the current time, 

the connection is dropped from the queue. If more than one connection satisfy this 

condition, only the oldest one will be dropped. Afterwards, the current timeout is 

re-evaluated based on the new server state and the process continues. 

As opposed to the deterministic policy, the deferred policy does not have a strong 

dependence of the past. The connections expire regardless of the queue occupation 

when they arrived. When the server is in state Ek,k < S the connections are served 

with mean service speed JIQ. Otherwise, the connections are served with mean service 

speed Hi. However, there is an exception to this rule. When the server transitions 

from state Eg to state Es+\, the timeout is suddenly lowered from To to T\ which may 

cause several connections to have an age greater than what the server tolerates under 

the new, shorter timeout T\. We call this the abrupt-tolerance-drop effect. Thus, if 

a connection is older than the short timeout Ti but is younger that the long timeout 

T0 then this connection gets dropped instantly when the server transitions from E$ 

to Es+i. We required the connection to be younger that the long timeout T0 because 

otherwise the connection would have had to expire before the transition. Hence, the 

service rates in the states E\ to Eg are the same as those of a server with a fixed 



49 

timeout method and with a timeout value of To. The service rate at threshold (us), 

when the server is in state Es+i, is something that we need to investigate. The service 

rates in the states Es+2 to Ec are the same as those of a server with a fixed timeout 

method but with a timeout value of 7\. The model is illustrated in Figure 4.10. 

M (*) -

kfiQ k < S 

(S+l)ns k = S + l 

kfii otherwise 

(4.40) 

A (0 ) A ( D 

c& 
Mo (1) Mo 

(2) 

^(S-1) A (5) A (5+l) A(c-1) 

Figure 4.10 Birth-Death chain queue representation for the threshold deferred timeout 
strategy. Service transitions from states Es+2 to Ec are illustrated with thicker lines 
because in these cases the service rates are higher due to the shorter timeout. The 
service transition from the state Es+i is illustrated with a dashed line because it is 
not memoryless 

We now look at the connection service speed /is which applies when the server is 

in state Es+i-

Legitimate connections. If previous to being in state E$+i the server was in state 

Eg then the abrupt-tolerance-drop effect that we discussed earlier occurs. Therefore, 

the probability distribution function (PDF) of the legitimate connection service time 

has the form of a Dirac delta in 0+ followed by an exponential distributions for t 

smaller than Ti followed and another Dirac delta in T*. The first Dirac delta has 

weight pa which represents the probability that a connection is older than T\ but 

younger than T0, making the connection expire after the transition. The expiration 

arrives instantly after the transition, which causes the Dirac delta to be placed on 

the positive side of the axis, infinitesimally close to 0. The weight of the second 

Dirac delta {p\e) is so that the CDF of the service time is 1 after Ti and represents 
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the probability that a legitimate connection would not expire instantly but would 

however expire under timeout Tx. Once again, the Dirac delta is placed at value 

infinitesimally greater than 7\ signifying that the connection will expire after the 

timeout. Figure 4.11 illustrates the service time PDF and CDF. 

G^s+1\t) = S(t-0+)pli + S(t-T1
+)ple + 

lice-^ t<Tt 

0 otherwise 
(4.41) 

Because the service rate follows a Poisson process distribution and is thus mem-

oryless, the conditional probability that a connection is older than the timeout Ti 

knowing that the connection is still in the queue, i.e. is younger than T0, is evaluated 

as: 

Pa 
Tp-T, 

To 

and pie satisfies the condition that the service time CDF is 1 in Ti: 

Pie 1 - [ ' G\S-S+1\t)dt = e 
Jo 

- 0-T^C _ To-Ti 
To 

(4.42) 

(4.43) 

-8 
P 

PDF 

X) 

o 

CDF 

PK 

Time Time 

Figure 4.11 Legitimate service time PDF and CDF after transition Es —> Es+\ for 
the threshold deferred timeout strategy 
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The mean service time for legitimate connections is : 

t (S->S+1) A 
1 — tG (S-S+l) (t)dt 

l - e - ^ ^ T ^ - T o ) 

He To 
(4.44) 

If previously to being in state Es+i the server was in state Eg+2 then the abrupt-

tolerance-drop effect does not occur. The service time PDF and CDF are illustrated in 

Figure 4.12. Similar to the fixed timeout method, the mean service time for legitimate 

connections is: 

t 
(S+2^S+1) 

t (S+2) 1 - e~Tl^ 

He 
(4.45) 

PDF 

o 

CDF 

Time Time 

Figure 4.12 Legitimate service time PDF and CDF after transition Es+2 
the threshold deferred timeout strategy 

Es+i for 

Finally, the legitimate connection service speed in state Es+i is equal to the 

average between the legitimate connection service speed when the previous state was 

Eg and that when the previous state was £'5+2 weighted by the probabilities of the 

server previously being in states Es and Es+2, p(s~~*s+1^ and p(s+2->s+i) ̂  respectively. 

His p(S—S+l) _|_ p(S+2^S+l) 
(4.46) 

The difficulty of solving (4.46) comes from evaluating the probabilities p(s~*s+1) 
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and p(s+2-+s+1)t "We leave this problem aside for now as we will later solve it by 

introducing an approximation. 

Malicious connections. Let us apply the same reasoning we used for the legiti

mate connections for evaluating the malicious connection service speed in state Es+i-

Figure 4.13 illustrates the service time PDF and CDF when the previous was E$, the 

PDF being defined by: 

G^s+1\t) = S(t - 0+)pmi + 5{t - n)p» (4.47) 

with 

Pn 
T o - 7 i 

To 

and with pm e so that the CDF of the service time is 1 in ft: 

Pme = 1 f1G^s^(t)dt = ^ 
Jo i o 

(4.48) 

(4.49) 

l 

& Pme 
a o -a 
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Figure 4.13 Malicious service time PDF and CDF after transition Eg —> E$+i for the 
threshold deferred timeout strategy 
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The mean service time for malicious connections becomes: 

m)2 

Jo Io 
(4.50) 

Just as in the case of the legitimate connections, if previously to being in state 

Es+i the server was in state Es+2 then the abrupt-tolerance-drop effect does not 

occur. We illustrate the service time PDF and CDF in Figure 4.14. The malicious 

service time in this case is simply Ti. Overall, the malicious connection service speed 

in state Es+i is : 

Mms — 
p\ 

.(S-+S+1) /A^S+l) , n(S+2^S+l) ]/t + p^ >A\ 
p(S—S+l) + p(S+2-S+l ) 

(4.51) 

PI 
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PDF 

Time 

•8 
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Time 

Figure 4.14 Malicious service time PDF and CDF after transition Es+2 
the threshold deferred timeout strategy 

Es+i for 

We can now combine the legitimate and malicious mean service times in state Es+\ 

in order to express the overall mean service time in state E$+i, as we did in (4.6): 

ts = 
mS 

Ai + Am 
(4.52) 

The service rate depends on the previous server state. In order to evaluate (4.52) 

we require the probabilities that the server was previously is in states Es and Es+2, 
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respectively. We conclude that when in state E$+i, the server is not memory less. The 

recursion between the transient state of the chain and the service rate in state Es+i 

is not trivial to express due to the complex nature of our model, let alone to solve. 

We are left with no choice but to make the following approximation: when the server 

transitions between states E$+i and Eg, the previous state of the server was Es- The 

approximation seems natural in the sense that if a transition Es —» Es+i occurs, it is 

probable that a transition Es+i —» Es occurs right after due to a connection expiring 

because of the abrupt-tolerance-drop effect. However, if after a transition Es —> E$+i 

no connections expire and a new connection arrives placing the server in state Es+2, 

the server has escaped the attraction point at Es+i and the queue will probably fill 

up some more, making transitions Es+2 —> Es+i less probable. We will refer to this 

approximation in the future as the Attraction Point (AP) approximation. With this 

in mind, the estimated legitimate and malicious service speeds at threshold become: 

1 
Vis = 

TQHC 

(5^+1) T Q ( 1 _ e-ToMc) + T^iT, - T0) 
(4.53) 

/^mS — (S—S+l) 
t 

To 

(Ti)s 
(4.54) 

Having approximative values for the service speed at threshold us we can now 

calculate the approximative steady-state queue occupation distribution similarly to 

the Poisson policy, as described in (4.27): 

P (*) -

fe-i 

n 
i=0 

A(0 

» (*+l) 

c i - i wi) En-
= < 

k\f4 

p(o)_xs+i 

j=0 t=0 A*' i+l) 

(s + iMns 

k-S-1 I k\f4fiSfit 

k<S 

k = S+l 

otherwise 

(4.55) 
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where 

P(0) = ^ : (4.56) 
y . Xk XS+1 y ^ Afc 

and 

T0fj,c\ , . 

^S ~ XM1 - e - ^ c ) + X.ToficiT, - To) + A ^ T ? l " ' 

Although by having the approximative steady-state queue occupation probabili

ties we could apply the same SS approximation that we used for the Poisson policy 

in (4.26), we choose not to follow this path. Trying to evaluate the performance of 

the deferred policy in this way means using both the AP and the SS approximation, 

which would only amplify the errors. However, (4.55) is useful because it allows us 

measure the resemblance of the steady-state queue occupation probabilities obtained 

when using the deferred policy with those obtained when using the Poisson policy, 

which we suspect to be very similar. 

4.4.3 Linear timeout method 

The linear timeout method is a straight-forward extension of the threshold timeout 

method, where instead of lowering the timeout when the queue occupation is greater 

than a certain threshold, the timeout is lowered with a small increment every time 

a connection enters the queue. When a connection departs the queue, the timeout 

is increased with the same small increment. When the queue is empty, an initial 

timeout value T0 is used. When the queue is full, the timeout becomes T\. The 

dynamic timeout in (4.20) becomes: 

(fc) _ fc(Ti - Tp) 
1 out — J o H (4.58) 

Let us now analyse the policies for assigning the dynamic timeout to connections. 
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Linear Poisson timeout strategy 

The Poisson policy for assigning timeouts is very similar to that of the threshold 

method, except that for the linear method the timeout in different for every state. 

The same reasoning used in Section 4.4.2 applies for evaluating the performance of 

the linear Poisson strategy. However, because the timeout is different in every state, 

we cannot group the terms of the performance equation together as we did in (4.29): 

$ = $r + $, e 
C / , /„ _T>(*0, 

^nr(1"^"")+^,0+ 
+p(«» £ ,-•&. n fA ' ( 1 - e 'T°S ' " ) + l*>An) (4.59) 

fe=0 i = l v ^ C 

with 

P{0) = i u / ^ r- (4-60) 

fc=0 i=l V ^c 

Linear deterministic timeout strategy 

When analysing the threshold deterministic strategy we established that the service 

rate is history dependent. The same is the case with the linear deterministic strategy. 

The overall service rate when the server is in state E\. is: 

/̂ (fc) = ^|i|+A«|2| + - + i"|fe| (4.61) 

The service speed of the connection that occupies slot i in the queue (^\i\) depends 

on the server state when the connection arrived at the queue (A\i\). Without loss of 

generality, if A\n = Ej-i, the service speed of the connection on slot i is described by: 

l( j+Am(T0 + (r1-r0)^ 

The approximation that we made in Section 4.4.2 , supposing that the queue 
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acts like a FILO queue (A\i\ = £^_i), meaning that the connection on slot i ar

rived when the server was in state Ei-i makes more sense in the case of the linear 

method. Because the timeout gets gradually decreased when the queue is filled, the 

last connection that entered the queue is presented with the lowest timeout and it is 

probable that it leaves the queue first, by expiring. According to this approximation, 

the service rate of the connection on slot i becomes: 

Ai + Am 

Ai(l - e-To-(Ti-T0)-Hc\ f A 
-^ L + Am T0 + Ti - T0 -

We obtain the approximative service rate when server is in state E^. 

k 

^ " ' = $ > | i | (4.64) 

The approximative steady-state queue occupation distribution is evaluated simi

larly to 4.27: 

fc-i 

p{k) = ru n (465) 

2^11 0+1) 
j=0 i=0 ^ 

We use the estimation in (4.65) to calculate the performance of the server by 

evaluating the steady-state reject and expire probabilities: 

$ r = p{k) (4.66) 

*e = i> f c )pL f c ) (4-67) 
fc=0 

The average fail probability for legitimate connections arriving at the queue after 
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the steady state is achieved is: 

l> = $ r + <le = p ( 0 ) 

with 

Ac 

C I 

i=l j=l 

+ ? ( 0 , E T 
g ^outMc^fc 

fc=0 IIE^I 
i=l j=l 

\ k 

i=l j=l 

(4.68) 

(4.69) 

and fi\j\, the service speed of the connection on slot j as described in (4.63). 

Linear deferred timeout strategy 

When enforcing the deferred policy, the abrupt-tolerance-drop effect occurs in all 

states Ei to Ec, the service rates in these states depending on the previous state of 

the server. In state Ec however, the only possible previous state is Ec-\. The model 

is illustrated in Figure 4.15. 

V (fe) _ 

( (fe-i—fe) (k-i->k) + (fc+i—fc) (fc+i—fc) 

p(k-l^k) _|_p(fc+l^/c) 

H' 
(fe-i-^fe) 

k < c 

k = c 

(4.70) 

^ (c -2 ) ^ (c -1 ) 

Figure 4.15 Birth-Death chain queue representation for the linear deferred timeout 
strategy. The dashed lines represent transition whose rates are past dependent 

We extend the use of the AP approximation that we made for the threshold 
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deferred timeout strategy by considering that whenever a transition Ek+i —>• Ek 

occurs, meaning that a connection left the queue, if the connection expired than this 

happened because of the abrupt-tolerance-drop effect due to the server previously 

being in state Ek- We employ the same reasoning for coupling the legitimate and 

malicious service rates as we did for the fixed timeout in Section 4.4.1 and we obtain 

the approximative individual service rate in state Ek+i". 

where 

T(k)n 
(k^k+l) _ J- out Pc / ^ „2) 

T(*) (i _ Jk)\ , T(k+1) (T(k+1) _ T(k)\ 
J ou t \ l P\e J ~t~-tout re Mout -'outJ 

and 

<k) 

2 ^rk+l) = , : o u \ 2 (4-73) 
/ r ( fc+i)V 
I-'out I 

and 

pW = e-r0
(
u

f c
tVc ( 4 J 4 ) 

We use the approximative values for the service rates to calculate the approxi

mative steady-state queue occupation distribution similarly to the Poisson policy, as 

described in (4.27): 

k~l \(i) 

**' = ̂ r ^ r (475) 

j=0 i=0 ^ 



60 

where 

£<*> = ^ - 1 V c A / ( A 1 T 0 t 1 ) ( l - e - ^ V ) 

+A,!z£t-
1)

/ie (TJS - T ^ ) + Am̂ c (TJS)" ) (4.76) 

+ 
2 ' 

Once again, we choose not to use the SS approximation to estimate the perfor

mance of the deferred policy but plan to make use of (4.75) to show the resemblance 

of the linear Poisson and linear deferred strategies. 

4.4.4 Convergence study 

In order for the steady-state based results to be valid, the convergence of the system 

toward the steady-state should not be very long when compared to the timeout values. 

We analyse theoretically the convergence speed of the fixed timeout method using the 

Modified-Offered-Load (MOL) approximation introduced by Jagerman (1975). 

The MOL approximation was initially designed in order to evaluate the transient 

behaviour of a Mt/G/c/c queue, where the arrivals follow a Poisson process, but 

with mean rate varying in time. The approximation consists in coupling results from 

an Mt/G/oo queue with an Mt/G/c/c one. The Mt/G/oo queue differs from the 

Mt/G/c/c queue in the fact that it has an infinite number of slots, that are served 

independently by the server in a parallel fashion. The mean number of occupied slots 

in an Mt/G/oo queue at time t is: 

rric ,(*) = f [i-c(t- u)]\(u)du (4.77) 
J—oo 

where C(t) is the service time CDF and X(t) is the arrival rate at time t. 

We adapt the MOL approximation for our purposes by considering that there is 

no activity before time t = 0. Furthermore, we need to consider both the legitimate 

and malicious arrival and service processes. Hence, we consider that after time t = 0, 

both the legitimate and the malicious traffic start, with the constant rates X\ and Am, 

respectively. 

AiW 
Ai t > 0 , 

(4.78) 
0 otherwise 
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Am(«) = { 
Am t>0 

0 otherwise 
(4.79) 

When considering the fixed timeout method, the legitimate and malicious service 

time CDF are described by: 

d(t) = [ Gx{u)du = 
Jo 

0 £ < 0 

l_e-tMc 0 < i < T o u t 

1 Tout < t 

(4.80) 

Cm(t)±JtGm(u)du=r 0 t<Tout 

Tout < t 
(4.81) 

The mean number of occupied slots by legitimate connections in an infinite queue 
m\oo(t) a n d the mean number of occupied slots by malicious connections in an infinite 

queue mmoo(t) for time t greater than 0 are defined as: 

mioo(t) = 

mr 

r* f Ax(i -
/ [1 - Ci(t - u)]\i(u)du = { 

J-oo [Al( l -

,(*) = / [l-Cm{t-u)]\m{u)du=\ 

-t^c 
)/»C t<Tc out 

e-Ton^y^ Tout<t 
(4.82) 

t <TC out txm/fic 

^ o u t A m / / i c ^out < t 

(4.83) 

The MOL approximation consists in substituting the load X/fj, by the mean num

ber of occupied slots m^t) in the infinite queue (Massey et Whitt, 1994). Because 

we are dealing with two types of arrival and service rates, legitimate and malicious, 

we substitute the time dependent service rates //i(t) and fJ,m{t) with the normalized 

rates A]/mi0O(t) and Xm/mmoo(t), respectively. Then, we apply the same reasoning 

for coupling the legitimate and malicious service rates as we did in (4.7) and obtain 
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the time dependant connection service speed according to the MOL approximation: 

Ai + Am 
t < Tout 

Tout 5: t 

u\ _ J Ai(l - e ^ c ) / / / c + t\m (A 8 / n 

/XMOL(*) - <; Ai + Am i4-8 4) 

Al(i-e-ToutMc)//,c + r o u t A E 

In state Ek, the overall service rate is thus: 

/*MOL(*) = ^ M O L ( * ) (4.85) 

When applying the approximation to the fixed timeout method, (4.13) and (4.14) 

become time dependent: 

B^t)-1 = ̂ ^ - B ( c - l ^ + l ; 5(0,*) = 1 (4.86) 

P{k)(t) = c _ , ^ (4.87) 

i=k MMOLW 

We analyse (4.85), (4.86) and (4.87) and notice that the only time-dependent 

parameter is the service speed //MOL(*)- However, according to (4.84) the service speed 

only varies before the first timeout elapses, i.e. t < Tout. Hence, according to the 

MOL approximation, when using the fixed timeout method, the queue achieves steady 

state after an interval of time equal to the timeout Tout. Although we do not show 

the mathematical proof, the same conclusion can be drawn for the dynamic timeout 

strategies: the queue achieves steady state at most after an interval of time equal 

to the longest timeout, To- In order to be effective, attacks usually last much longer 

than the timeout. Hence, we conclude that the steady-state performance measures 

we established previously are relevant and can be used as accurate approximations of 

performance. We will confirm these theoretical results by stochastic simulations in 

Section 4.5.3. 

In Section 4.4 we studied several timeout strategies. Due to the non-memoryless 

property of most of these strategies, we introduced various approximations that al

lowed us to estimate the steady-state distribution of the queue and the performance of 
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the server when employing each of these strategies. We present a summary of the the

oretical results obtained for the various timeout adjustment methods and assignment 

policies studied, as well as the approximations used in Table 4.3. 

4.5 Model validation 

In order to validate the correctness of the mathematical models established ear

lier, and to evaluate the impact of the approximations used to cope with the non-

memoryless behaviour of the different strategies, we ran stochastic simulations for 

various traffic rates and queue sizes. 

4.5.1 Simulation setup 

For simulation purposes, we implemented the dynamic timeout strategies in a home

made stochastic simulator. Before running each simulation, the legitimate arrivals 

times and times to complete are generated according to Poisson processes. The ma

licious arrivals times are generated according to either a Poisson process or a burst 

attack model, which we describe in more detail in Section 4.6.4. These occurrences 

are saved to a file so that simulation of the various timeout strategies in identical con

ditions is possible. At time t = 0 of each simulation, the server queue is empty. This 

is when both the legitimate and malicious traffic start. The simulation is run during 

a period of time ten times longer than the timeout, in the case of the fixed timeout 

method, and ten times longer than the empty-queue T0 timeout, in the case of the 

dynamic timeout methods. After the simulation is complete, the connections that 

Table 4.3 Summary of the theoretical results on timeout adjustment methods and 
assignment policies with their corresponding mathematical equation indexes. MOL 
is the Modified Offered Load approximation, FILO is the First-In-Last-Out queue 
approximation, AP is the Attraction Point approximation and SS is the Steady-State 
approximation 

Method type Fixed Dynamic 
Method Fixed Threshold Linear 
Policy n/a Poisson Deterministic Deferred Poisson Deterministid Deferred 

Transient state[MOL (4.87) 
Steady-state exact (4.16) exact (4.27) 
Performance exact (4.19) SS (4.29) 

FILO (4.35) AP (4.55) exact (4.27) 
FILO (4.38) SS (4.59) 

FILO (4.65) 
FILO (4.68) 

U.P (4.75) 
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are still in the queue and have not yet expired or completed are discarded. Finally, 

the transient state behaviour as well as the overall performance is gathered from the 

simulation logs. 

4.5.2 Steady-state queue occupation 

In the theoretical model, the legitimate connection success rate is calculated based 

on the steady-state server occupation probabilities. However, in Section 4.4 we made 

several approximations in order to adapt the Markov chain model to the deterministic 

and deferred timeout assignment policies. Before comparing the performance of the 

strategies, we need to assess the errors generated by these approximations. Further

more, we have no simulation or experimental equivalent of the Poisson assignment 

policy and our mathematical model does not allow us to compute the performance of 

the deferred assignment policy. We hope that by comparing the steady-state queue 

occupation, not only will we validate the approximations made earlier but we will 

also establish similarities between some of the assignment policies. 

In Figure 4.16, we illustrate the theoretical and simulation queue occupation prob

ability distributions at the steady state; for the simulations, this is computed as the 

average of queue occupations over the whole simulation. We draw several conclu

sions from these results. First, the fixed method queue occupation simulation results 

match very closely the theoretical results. Second, the theoretical threshold Poisson, 

theoretical threshold deferred and simulation threshold deferred distributions show 

a similar spike around the threshold at state .E32. However, the value of the spike 

is around 0.9 for the theoretical threshold deferred strategy, 0.5 for the theoretical 

threshold Poisson strategy and 0.4 for the simulation threshold deferred strategy. 

Third, the theoretical linear Poisson, theoretical linear deferred and simulation linear 

deferred distributions show a normal distribution-like shape, with height of around 

0.2 and centered in state E58, Eeo and E60, respectively. Finally, the theoretical and 

simulation distributions of the deterministic policy show the same shape, that of a 

flattened normal distribution for the threshold deterministic strategies and similar to 

an exponential with high values at full-queue for the linear deterministic strategies. 

However, in spite of having similar shapes, the distributions centers are misplaced 

by 7 slots in the case of the linear deterministic strategies and do not have equal 

standard deviations in the case of the threshold deterministic strategies. 
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Server State 

Figure 4.16 Theoretical (solid lines) and simulation (dashed lines) steady-state queue 
occupation probabilities, for timeout 75 s, empty-queue timeout 75 s, full-queue time
out 1 s, legitimate arrival rate 10 cnx/s, malicious arrival rate 10 cnx/s, legitimate 
complete rate 1 cnx/s, capacity 64 cnx, threshold at 32 and various timeout strategies. 
The probability of the server being is states E^, k < 24 is practically null and is not 
represented in the figure. The occupation probabilities are defined only for integer 
values of the server states; however in the figure lines used in order to help the reader 
observe the tendency of each strategy. The queue occupation for the simulation fixed 
method matches perfectly the queue occupation for the theoretical fixed method. The 
theoretical threshold Poisson, theoretical threshold deferred and simulation thresh
old deferred strategy occupations as well as their linear counterparts are very similar. 
The theoretical and simulation deterministic queue occupation functions are similarly 
shaped but are translated with up to 7 slots 
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We conclude that the Poisson assignment policy occupation results are similar to 

the deferred assignment policy occupation results, which should translate to similar 

performances for the theoretical Poisson strategies and the simulation and experimen

tal deferred strategies. Also, the theoretical deterministic queue occupation results 

match the simulation queue occupation results only roughly. This will translate to 

noticeable performance differences between the theoretical and simulation / experi

mental results for these strategies. 

4.5.3 Transient behaviour 

We compare the evolution in time of the legitimate connection success rate observed 

in five simulations with theoretical results computed using the MOL approximation 

described in Section 4.4.4. According to the MOL approximation, the legitimate con

nection success rate should vary from time 0 s during a period equal to the timeout. 

After the timeout, the steady-state should be reached. The MOL approximation re

sults and simulation results are illustrated in Figure 4.17. Although simulations show 

an erratic behaviour when looked at individually, the average of the five simulation 

runs resembles the MOL approximation prediction. Moreover, in average the steady-

state is reached sooner than expected by around 33%. Because the convergence occurs 

so quickly both in theory and simulations, we conclude that steady-state performance 

measures are relevant to the overall evaluation of the timeout strategies. 

4.6 Performance evaluation 

Having validated the correctness of the mathematical model, we now proceed to eval

uating the performance of the various timeout strategies. To this end, we will compare 

theoretical and simulation results of attacks against the abstract protocol considered 

in Section 4.3.1, together with laboratory experiments of SYN-flood attacks as de

scribed in (Boteanu et al, 2007b). However, because measuring the performance of 

the timeout strategies in different environments (legitimate and malicious traffic rate 

and queue size), we will establish a trade-off between the malicious arrival rate and 

server capacity. 
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Figure 4.17 Theoretical MOL approximation (solid line) and simulation (dotted lines) 
transient legitimate connection success rate for the fixed timeout method, for timeout 
75 s, legitimate arrival rate 1 cnx/s, malicious arrival rate 1 cnx/s, legitimate complete 
rate 1 cnx/s and capacity 64 cnx . The dashed line at time 75 s represents that time at 
which the queue should reach the steady-state, according to the MOL approximation. 
The red line illustrates the average success rate over the five runs. In simulations, 
the average success rate converges to the steady-state value quicker than expected, 
at time 50 s instead of 75 s as predicted by the MOL approximation 
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4.6.1 Capacity - Attack rate trade-off 

We are interested in how the trade-off between the attack rate and server capacity 

varies for the same legitimate connection success probability, or equivalently for the 

same connection fail probability. Even though the fully expanded expressions of 

(4.19), (4.29), (4.38), (4.59) and (4.68) are quite complex, what lies beneath it is a 

trade-off between these quantities that is essentially linear for the same connection 

complete probability, as we have verified with several numerical calculations. 

Let us define the virulence v of an attack as the attack rate Am divided by the 

queue size c. Intuitively, this value corresponds to the frequency (times per second) 

with which an attack could fill up the queue, or equivalently the number of full queues 

per second that the attack could saturate. We are interested in knowing whether the 

performance varies or remains constant for a particular attack virulence. To answer 

this question, we illustrate in Figure 4.18 the performance of the fixed timeout method 

for various attack rates and queue capacities. The figure can be compared to a spiral 

staircase where the red solid lines represent the steps. The steps go down from the 

capacity y-axis to the attack rate £-axis while turning with 90 degrees. By definition, 

on each of these steps, the virulence is constant and is represented by the angle of 

the step projection line in the xy-plane with the capacity y-axis. The question now 

becomes whether the performance remains constant or not on each of these steps. 

We observe that on each step the performance is indeed constant as the capacity and 

attack rate increase, except for maybe very low capacity and attack rate values. 

To get a better picture of the linear trade-off, we pick one of the vertical cut planes, 

at virulence v = 0.25 s_1, and observe the performance of all strategies as the capacity 

and attack rate increase, in Figure 4.19. At the leftmost point of the Figure 4.19 the 

capacity is 0 connections which explains the null performance of all the strategies. 

Aside from this point, the performance of all strategies remains essentially constant 

as the attack rate and the queue size increase. The horizontal characteristic of these 

performance lines, for all virulence values, illustrates the linear trade-off between the 

capacity and attack rate of all the strategies. 

4.6.2 Experimental setup 

For the experimental performance evaluation, we choose to implement the scenario 

of a SYN-flood attack, where the TCP stack of the server is flooded with malicious 
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64 Attack rate [cnx/V 

Figure 4.18 Capacity-attack rate trade-off for the fixed timeout method, for timeout 
75 s, legitimate arrival rate 0.1 cnx/s and legitimate complete rate 1 cnx/s. On 
the x-axis, the attack rate varies from 0 cnx/s to 64 cnx/s while on the y-axis, the 
capacity varies from 0 cnx to 1024 cnx. The z-axis illustrates the legitimate connection 
success rate. The angular axis in the xy-plane, illustrated by a green arc in the figure, 
represents the virulence (attack rate divided by capacity). The red planes represent 
vertical cuts through the solid at constant virulence 
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Figure 4.19 Capacity vs. attack rate trade-off at constant virulence 0.25 s_1, time
out 10 s, empty-queue timeout 75 s, full-queue timeout 1 s, legitimate arrival 
rate 0.1 cnx/s, legitimate complete rate 1 cnx/s, capacity varying from 0 to 256 
cnx and attack rate and varying from 0 cnx/s to 64 cnx/s. 
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SYN messages. The five components of our experimental setup are the following: 

1. The attack traffic generator, generating illegitimate SYN packets on the net

work. 

2. The legitimate traffic generator, attempting to establish fully fledged TCP con

nections. 

3. The server, whose TCP stack half-open connection queue is being flooded. 

4. The Queue Guardian (QG), a separate application whose role is to protect the 

server queue. 

5. The network, on which both kinds of traffic travel. 

Attack Traffic Generator 

For this component, we used the IXIA 400T, a special purpose traffic generator chas

sis, built for performance and conformance testing of network applications. The model 

we used has four separate Ethernet ports, capable of generating traffic up to 1 Gbps 

each. 

In order to generate the malicious traffic we used the IxExplorer application that 

runs on the IXIA hardware. Since neither the hardware nor the software can natively 

generate Poisson traffic, this type of attack was synthesised by cyclically sequencing 

255 different modes, each mode consisting in sending one single SYN packet. For 

each attack rate, pauses between modes were statically set to random values follow

ing an exponential distribution. We performed a Kolmogorov-Smirnov test on the 

inter-arrival times of the IxExplorer-generated traffic measured on the server. The 

maximum difference between the theoretical exponential and the observed CDF was 

as low as 0.12 for an attack of 1000 packets/s, which confirms that the traffic follows 

the Poisson process model closely. 

Legitimate Traffic Generator 

We used a home-made C++ application to generate the legitimate traffic necessary 

for successful TCP handshake. Both the SYN and ACK messages were sent with 

exponentially distributed inter-arrival times. Contrary to TCP stack implementations 

in standard OS, this test application will not send a SYN retry message if there 
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is no response from the server. This was a deliberate choice meant to keep the 

connection attempt rate constant and independent of the connection complete rate. 

For performance measuring purposes, all the legitimate SYN messages came from 

the same IP address. This address is discriminated only when counting the total 

number of legitimate connection attempts. After a T C P handshake is completed, the 

application will send a RST message in order to free the connection on the server 

side. We deployed the legitimate traffic generator on a dedicated machine running 

Gentoo Linux, with 2 GB of memory. 

The server whose TCP stack is flooded is also a Gentoo Linux, with 2 GB of 

memory, which allowed us to experiment with queue sizes up to 16384. 

Queue Guardian (QG) 

Rather than modifying the TCP stack kernel code, which is neither easy nor practical 

in real-life deployments, we chose to implement the dynamic timeout strategies on a 

separate application, in a manner transparent to the server and the legitimate clients. 

The QG has four different roles: 

1. It maintains an up-to-date mirror of the server queue. This is achieved by 

sniffing the network connection and interpreting packets being send and received 

by the server. We used the l i b p c a p library to sniff all IP packets on the network. 

2. It drops connections from the mirror queue, according to the chosen dynamic 

timeout method and timeout assignation policy. 

3. It forces the server queue to drop the same connections that were dropped from 

the mirror queue. This is achieved by sending RST packets to the server. The 

IP and T C P headers are spoofed so that the message appears to come from the 

original client. In order to send the spoofed RST packets at high speeds, this 

role was implemented using raw sockets. 

4. It regularly logs the state of the queue as well as the number of different types 

of packets sniffed on the network. This log is used later for evaluating the 

performance of the timeout strategy under test. 

For the deterministic policy, we used a priority queue implemented as a red-black 

tree to store the connections, ordered by their expiration time. When all legitimate 
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connections get served, the complexity of the algorithm is O (log cNm 

+ cNi), where c is the size of the server queue and Nm and Ni are the number of 

SYN-ACK responses sent to malicious and legitimate SYN packets, respectively. For 

the deferred policy, only the oldest connection in the queue needs to be analysed: 

if it is present in the queue for longer than the current timeout, it will be dropped 

from the queue. Hence, a single FIFO ring-buffer can be used to implement this 

policy. When all legitimate connections get served, the complexity of the algorithm 

is 0(Nm + cNi). In practice, however, the legitimate connections are almost always 

at the end of the queue so only Nm + Ni atomic operations need to be performed. 

Finally, for performance reasons, we chose to implement each of these four roles in 

separate threads in the QG application. The QG is run on a separate machine, based 

on a Intel Core 2 Duo processor at 2.16 GHz. 

Network Setup 

A 16-port gigabit switch (Linksys SRV-2016) was used to connected all these com

ponents together. The legitimate traffic generator machine, the server and the IXIA 

traffic generator were each connected to a separate port on the switch. For sniffing 

purposes, the QG machine was connected on a switch port setup to mirror the server 

port. For sending RST packets, a separate card on the QG machine was connected 

to another network port on the switch. Other deployment schemes are possible as 

well and are discussed in (Boteanu et al, 2007b). Figure 4.20 illustrates the network 

connections between the components we have used. 

Testing Methodology 

In all the experiments we ran, the following steps were followed in sequence: 

1. The server queue size was configured with the value required for testing. 

2. The server timeout was configured to be at least as long as the longest timeout 

on the QG. This way, all the connections drops are triggered by the QG. 

3. The legitimate connection traffic generator was started with the connection 

arrival and connection completion rates required for testing. 

4. The QG was configured with the required parameters and started. 
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5. The attack traffic parameters were configured in IxExplorer. 

6. The attack was started and the experiment was run during a period of time ten 

times longer than the longest timeout on the QG. 

7. The connection success rate was computed based on the QG's log. 

Connection completion events correspond to ACK messages being sent to the server. 

Legitimate connection arrival events correspond to SYN messages being sent from 

the legitimate IP address. The connection success rate was computed as the ratio be

tween number of connections that completed and the number of legitimate connection 

attempts during the attack. 

4.6.3 Comparative results 

We measure the performance of the two dynamic timeout methods, threshold and 

linear, along with the fixed timeout method for comparison purposes using the the

oretical model, simulations and experiments. For the dynamic methods, we theo

retically evaluated the Poisson and deterministic assignment policies and measured 

deterministic and deferred assignment policies by simulations and experiments. The 

attack traffic was generated having the exponentially distributed malicious connec

tions inter-arrival times. We tested the attacks against a small queue size of 128 cnx 

and a more reasonable queue size of 1024 cnx and explored virulences from 0.015 s_1 

to 8 s_1. The corresponding attack speeds varied from 2 cnx/s to 1024 cnx/s when 

testing against a queue size of 128 cnx, and from 32 cnx/s to 8192 cnx/s when testing 

against a queue size of 1024 cnx. The legitimate connection attempt rate was 10 cnx/s 

and the mean RTT time for the legitimate traffic was 200 ms (as observed experimen

tally in (Shakkottai et aL, 2004)). The fixed timeout strategy used a timeout value of 

10 s and the dynamic timeout strategies used empty- and full-queue timeout values 

of 10 s and 200 ms, respectively. Results for the tests against a queue size of 1024 are 

shown in Figure 4.21. 

Overall, the experimental results are very similar to the simulation results, and 

this for both queue sized considered. The average difference between the simulation 

and experimental results is 2%. The greatest discrepancy (17%) was measured for the 

linear deterministic strategy faced with an attack of virulence 8 s"1 against a queue 

size of 1024. The standard deviation for both simulation and experimental results 
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Figure 4.21 Theoretical (TH), simulation (SIM) and experimental (EXP) performance 
comparison at steady-state, for timeout 10 s, empty-queue timeout 10 s, full-queue 
timeout 0.2 s, legitimate arrival rate 10 cnx/s, malicious complete rate 5 cnx/s, ca
pacity 1024 cnx, threshold at 512 and malicious attack rate varying from 16 cnx/s 
to 8192 cnx/s. The theoretical values are illustrated by solid lines, the simulation 
values by dashed lines and the experimental values by dotted lines. Theoretical, sim
ulation and experimental values for a strategy are represented with the same colour, 
except for the theoretical Poisson assignment policies which are equivalent to the 
simulation and experimental deferred assignment policies 
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was always lower than 3%. Theoretical results are also very similar to experimental 

and simulation results except for the deterministic assignment policy. The fixed and 

linear Poisson strategy theoretical results match closely the fixed and linear deferred 

simulation and experimental results, as expected from the similar steady-state server 

occupation distributions. The threshold Poisson theoretical results are also close to 

the threshold deferred simulation experiments results, the greatest discrepancy (7%) 

begin measured for virulences between 0.5 s_1 and 1 s_1. The theoretical results 

for the threshold deterministic strategy follow the same behaviour as its simulation 

and experimental counterparts, with differences of up to 22% being measured for 

virulences of 0.1 s_1 and 8 s_1. Finally, the theoretical linear deterministic does not 

match its simulation and experimental counterparts for other than low virulences. 

We consider the theoretical results obtained for the deterministic policy unreliable 

and do not use them when evaluating this strategy. The error is caused by the FILO 

approximation which has a greater impact on the linear method than on the threshold 

method. The threshold method is less sensitive to the steady-state server occupation 

probability distribution than the linear method, because the threshold method only 

depends on the CDF value at the threshold state Es- What specific slots are occupied 

at the left and at the right of the threshold state do not influence by any means the 

value of the timeout, which makes the threshold method easier to approximate. 

As anticipated from previous work, results for low and high virulences are not 

interesting. For low virulence values (< 0.05 s -1) the attack is not strong enough to 

degrade QoS at the the server, even when using the fixed timeout strategy. For very 

high virulence values (> 8 s_1) the attack is so strong that none of the dynamic time

out strategies can maintain a connection success rate greater than 50%. In between 

these values, in what we call the window of interest, several interesting conclusions 

can be drawn about the relative performance of the various strategies. 

First, the dynamic timeout strategies perform better (or no worse) than the fixed 

timeout strategy. We measured differences of up to 85% between the linear deferred 

strategy and the fixed timeout strategy, and up to 50% between the threshold de

terministic and the fixed timeout strategy around virulences of 1 s_1. Second, the 

deferred policy always performs better than the deterministic policy. Differences up 

to 30% can be observed between the deferred and the deterministic policies around 

virulences of 2 s_1. This is due to the fact that the deferred policy is more reactive, 

deciding whether a connection should expire or not based on the current status of the 
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queue, as opposed to the status of the queue at the time of the connection arrival in 

the case of the deterministic policy. Third, the linear method performs better than 

the threshold method except when it is used with the deterministic policy and for 

virulence values greater than I s - 1 . The threshold method generally displays an over-

protective behaviour, which has the effect of correcting some of the delayed reactivity 

of the deterministic policy for medium and high virulences. 

4.6.4 Attack model variation 

In order to study the generality of the previous results with respect to different attack 

types we also used a deterministic process to generate bursts attacks. In the burst 

attack model, the illegitimate connection requests arrive in (almost) instantaneous 

bursts of a fixed number of attempts, with burst spaced at a fixed burst interarrival 

time (BIT). A virulence of 0.5 s_1 was chosen, which corresponds to attack rates of 

64 cnx/s and 512 cnx/s when testing against queue sizes of 128 cnx and 1024 cnx, 

respectively. The average connection success rates over 9 experimental and simulation 

runs for the queue of size 1024 cnx are illustrated in Figure 4.22. The vertical black 

line at BIT = 0.015625 s in Figure 4.22 represents that the packet inter-arrival time 

is the same as the mean packet inter-arrival time in the Poisson experiments at 

virulence 0.5 s_1, marked by the vertical black line in Figure 4.21. The violet vertical 

line at BIT = 2 s in Figure 4.22 marks the point where one single burst would fill 

up an empty queue entirely. Figure 4.23 offers a three-dimensional illustration of the 

correspondence between the Poisson attack and the burst attack figures. 

Two "phases" can be observed when analysing the burst attack results. The 

"liquid phase", at the leftmost part of the figures, with BIT < 2 s, corresponds to 

attack traffic bursts smaller than the queue size. The "solid", rightmost phase, for 

BIT > 2 s, corresponds to attack traffic bursts greater than the queue size. The 

resonance effect is created at BIT = 2 s, corresponding to bursts of the same size as 

the server queue. In simulations, the fixed timeout strategy performance is practically 

null at this value. This is due to the fact that the simulated attack and legitimate 

traffic start at the same time and the attack burst instantly fills up the entire queue. 

During a period of 10 s, equal to the timeout value, the queue is full and no legitimate 

connection attempts can be processed. After this period, exactly after the malicious 

connections are dropped from the queue, the following burst arrives and fills up all the 
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Figure 4.22 Legitimate connection complete rate for various strategies against burst 
attacks, with fixed queue size of 128 cnx, legitimate arrival rate 100 cnx/s, legiti
mate complete rate 5 cnx/s, empty- and full-queue timeout values 10 s and 0.2 s, 
respectively, virulence 0.5 s_ 1 for various burst inter-arrival times (x-axis), over 9 
experimental and simulation runs 
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Figure 4.23 Relationship between Poisson attack parameters of Figure 4.21 repre
sented here on the xz-plane, and burst attack parameters from Figure 4.22, yz-plane 

queue once again. This happens when the burst traffic is perfectly synchronized with 

the queue timeout, as is the case with the simulator. In experiments, however, we do 

not observe the same behaviour.First of all, the legitimate traffic and the malicious 

traffic are not synchronised. By the time the first attack burst arrives, around three 

slots in the queue are already used by legitimate connection, so three of the attack 

packets are discarded by the server. During a period of 10 s, only the number of slots 

used by legitimate connection at the time the first burst arrived will be available. 

However, because there are only 10 legitimate connection attempts per second, and 

because the legitimate connections complete rather quickly (5 every second), the few 

free slots in the server queue are enough for a large percentage of legitimate connection 

to complete. Furthermore, in experiments, the burst are never instantaneous due to 

packet transmission times and eventual collisions in the Ethernet network. This allows 

for legitimate connection to infiltrate the burst and thus reduce the burst efficiency for 

the attacker. Due to the above mentioned factors, we can say that the network acts 

as a "low-pass filter" thus greatly diminishing the resonance effect. In simulations, 

the fixed timeout strategy is influenced by the resonance effect with "harmonics" 

at BIT = 2~fc s, for k = {0..5}. In experiments, however, the resonance effect is 
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absorbed by the network. The only two strategies that seem to be slightly affected 

by the resonance effect in experiments, are the linear deterministic and the threshold 

deferred timeout strategies, and this only for the harmonic at BIT = 1 s. 

Is it important to note that the deferred policy, which performs better than the 

deterministic one, is also more robust and consistent, having lower standard deviation 

values. The fixed timeout strategy, on the other hand, is the most unstable, both 

in simulation and in experiments, with maximum standard deviation values of over 

10%. 

4.6.5 Parameter optimisation 

No matter what timeout method is used, the choice of the timeout parameters can 

influence the performance. For this reason, it is logical that we try to understand how 

these values should be chosen and how much can be gained from a careful choice of 

these values. Therefore, in this section we analyse the two dynamic timeout methods 

when coupled with the deferred policy as well as the fixed timeout method, for com

parison sake. We explore various configuration values using stochastic simulations to 

get an insight on the optimal timeout parameters. 

When employing the fixed timeout method, the only parameter to configure at the 

server-side is the timeout (Tout). For very low Tout values, the legitimate connection 

reject rate is practically null. The server is throwing the connections out of the 

queue so quickly that the queue never gets the chance to fill. On the other hand, 

the legitimate connection expire rate is very high, because connections have very 

little time to complete before the server declares them as expired. For very high 

Tout values, the effect is inverted, where the legitimate connection expire rate is null 

and the legitimate connection reject rate is high. This happens because connections 

have a very long time to complete and thus almost never expire. However, because 

connections are allowed to stay a long time in the queue, the queue easily fills and 

most of the connections arriving at the queue are rejected. The optimal Tout value 

is somewhere in-between, where the sum of the expire and reject rates is minimum, 

and depends on the legitimate and malicious traffic rates as well as the server queue 

size. Although we offer no analytical expression for the optimal Tout value, it can be 

computed numerically from (4.19). The behaviour of the fixed timeout method when 

varying the timeout is illustrated in Figure 4.24. 
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Figure 4.24 Legitimate connection reject (<£>r), expire (ipe) and fail (99) rates for the 
fixed timeout method, for capacity 32 cnx, legitimate arrival rate 10 cnx/s, malicious 
arrival rate 256 cnx/s, legitimate complete rate 5 cnx/s and timeout varying from 
2~10 s to 210 s. For very low timeout values, the expire probability is high, whereas 
for very high timeout values the reject probability is high. The optimal timeout value 
^out i s 0-13 s and the success rate 1 — ip for this timeout is 40% 
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When using the threshold and linear timeout adjustment methods, the parameters 

that can be configured at the server-side are the initial, empty-queue, timeout T0, the 

full-queue timeout T\ and, only for the threshold method, the threshold S. For 

the sake of comparison, in our case, we set the threshold at half the size of the 

queue (S = c/2) and compare the two dynamic timeout strategies when varying the 

two timeout values, T0 and 1\. The behaviour of the linear method, illustrated in 

Figure 4.25, presents similar characteristics to that of the fixed method. When low 

values are used for both To and Ti, the reject rate is low but the expire rate is high. 

When high values are used for both To and Ti, the expire rate is low but the reject 

rate is high. The special case where T0 and T\ are equal is equivalent to the fixed 

timeout method and can be observed in the plane described by the z-axis and the 

first diagonal of zy-plane. The case where the T\ is higher than the T0 is not valid 

as we required the timeout the be lowered as the queue fills. This corresponds to 

the blank portion in Figure 4.25. However, the case where T0 is high and T\ is low 

does not have any equivalent when using the fixed method. Interestingly, in these 

conditions, the reject rate is very low and the expire rate is lower than its maximum. 

This can be explained as follows: As the queue fills, the timeout is decreased, which 

makes it more unlikely for the queue to get filled entirely. Hence, new connections are 

almost always accepted in the queue which makes the reject probability low. On the 

other hand, the timeout is not low all the time, only when the queue holds a lot of 

connections. The rest of the time, the timeout is high enough so that some legitimate 

connections that entered the queue complete, hence the expire rate is relatively low 

as well. The legitimate connection success probability for the linear deferred strategy 

is illustrated in Figure 4.26. Although the maximum performance that the linear 

deferred strategy can offer for this particular traffic rates and queue size is not much 

higher than that of the fixed strategy, the former is much more robust to parameter 

configuration. The greatest advantage of the linear deferred strategy over the fixed 

strategy is that not only do high To and low T\ values provide the best performance 

under attack, these same values are optimal in non-attack scenarios This is something 

that we verified empirically for various traffic rates and queue sizes. 

The behaviour of the threshold deferred strategy illustrated in Figures 4.27 is 

somewhat similar to that of the linear deferred strategy in the sense that low To and 

T\ values as well as high To and T\ values provide bad performance but high T0 and 

low T\ values are a good compromise between the reject and expire rates. However, 
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Figure 4.25 Legitimate connection reject (blue surface) and expire (green surface) 
rates for the linear deferred timeout strategy, for capacity 32 cnx, legitimate arrival 
rate 10 cnx/s, malicious arrival rate 256 cnx/s, legitimate complete rate 5 cnx/s and 
empty- and full-queue timeout varying from 2~10 s to 210 s. The reject and expire 
rates of the fixed timeout method illustrated in Figure 4.24 are a specific case of this 
figure, observed in the plane defined by the z-axis and the diagonal of the xy-plane 
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Figure 4.26 Legitimate connection success rate for the linear deferred timeout strategy, 
for capacity 32 cnx, legitimate arrival rate 10 cnx/s, malicious arrival rate 256 cnx/s, 
legitimate complete rate 5 cnx/s and T0 and 7\ varying from 2~10 s to 210 s. Low T0 

and Ti values and high T0 and T\ values offer bad performance, painted with red on 
the figure. The best performance painted with blue on the figure, with success rates 
of up to 43%, is obtain for high T0 values and low 7\ values 
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when looking and the overall performance of this strategy in Figure 4.28 we observe 

that high T0 and low Ti values do not offer optimal performance, as it was the case 

with the linear deferred strategy. On the contrary, the maximum performance is equal 

to that of the fixed strategy and is obtained regardless of T0, for a Ti value equal to 

the optimal Tout values for the fixed strategy. This can be explained by the fact that 

when the server is under attack and the threshold is crossed, the timeout T\ is used. 

Therefore, the optimal Ti in this specific conditions is the same as the optimal Tout 

for the fixed strategy in the exact same conditions. Although this sounds somewhat 

disappointing, there are two advantages that the threshold method has over the fixed 

method. First, after the attack stops, the threshold method uses T0 as the timeout 

value which performs good in these conditions. On the other hand, the fixed method 

would keep using the same unnecessarily restrictive timeout, something that is not 

optimal any more in non-attack conditions. Second, a plateau is observed for high 

T0 and low Ti values, similar to that of the of the linear deferred strategy, with the 

exception that the performance is not optimal for these values. In most of the times, it 

is impossible to compute the optimal timeout value for the fixed method, so reaching 

the plateau could be, although not optimal, good enough performance. 

4.6.6 Traffic rate variation 

Having analysed what the performance impact of varying the timeout parameters is, 

we now proceed to measuring the sensitivity of the timeout counter-measures when 

varying the legitimate and malicious traffic rates, using stochastic simulations. 

First, for the fixed timeout method, we observe that the success rate is 100% when 

both the legitimate and malicious traffic rates are very low. As the legitimate traffic 

rate increases, the performance continues to be high, up to the point where the queue 

is saturated, as illustrated in Figure 4.29. In our case, this happens for a legitimate 

arrival rate around 128 cnx/s. However, when the malicious traffic rate reaches as 

low as 8 cnx/s, the performance drops under 50% regardless of the legitimate traffic 

rate. Note that the traffic rates exhausting all the resources are low because, for this 

analysis and without loss of generality (due to the results of Section 4.6.1), we chose 

a relatively small queue size, of only 32 cnx. 

We analyse the threshold deferred strategy in the same traffic conditions used 

previously for the fixed method. In this case, however, we choose to use very high To 
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Figure 4.27 Legitimate connection reject (blue surface) and expire (green surface) 
rates for the threshold deferred timeout strategy, for capacity 32 cnx, legitimate arrival 
rate 10 cnx/s, malicious arrival rate 256 cnx/s, legitimate complete rate 5 cnx/s and 
To and T\ varying from 2~10 s to 210 s. 
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Figure 4.28 Legitimate connection success rate for the threshold deferred timeout 
strategy, for capacity 32 cnx, legitimate arrival rate 10 cnx/s, malicious arrival 
rate 256 cnx/s, legitimate complete rate 5 cnx/s and T0 and T\ varying from 2~10 s 
to 210 s. Similar to the linear method, low T0 and T\ values and high T0 and T\ values 
offer bad performance, painted with red on the figure. The best performance painted 
with blue on the figure, with success rate of 40%, is obtain for Ti=0.13 s. The plateau 
for high T0 and low 7\ has success rate of 25% 
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Figure 4.29 Legitimate connection success rate for the fixed timeout strategy, for 
capacity 32 cnx, legitimate complete rate 5 cnx/s, timeout 10 s and legitimate and 
malicious arrival rates varying from 2° cnx/s to 210 cnx/s 
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and very low 7\ timeout values, which we previously established to be non-optimal 

but good overall configuration parameters. The results illustrated in Figure 4.30 

show that the threshold deferred strategy maintains a performance level above 50% 

for attacks up to 64 cnx/s. However, when there is very little attack traffic but the 

legitimate traffic rate is very high, in our case 1024 cnx/s, the threshold deferred 

strategy performs worst than the fixed method. This is due to the fact that very high 

T0 and very low T\ are not optimal timeout values for the threshold deferred strategy. 

In this particular case, the legitimate traffic rate is so high that the server reaches 

the threshold state and uses the very low timeout on legitimate connections, which 

causes more damage than a higher timeout would. 

Figure 4.30 Legitimate connection success rate for the threshold deferred timeout 
strategy, for capacity 32 cnx, legitimate complete rate 5 cnx/s, TQ = 2~10 s, T\ = 210 s 
and legitimate and malicious arrival rates varying from 2° cnx/s to 210 cnx/s 

Finally, we analyse the linear deferred strategy with the same very high To and very 

low Ti timeout values. As opposed to the threshold deferred strategy, the T0 and T\ 
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values chosen are now optimal. The performance of the linear deferred strategy under 

varying traffic rates is illustrated in Figure 4.31. The linear deferred strategy does not 

exhibit the same low performance effect for high legitimate and low malicious traffic 

rates. On the contrary, the linear deferred strategy outperforms the fixed method 

and the threshold deferred strategy for all traffic rates. Moreover, a performance 

increase of up to 14% when compared to the fixed method is measured, when the 

legitimate traffic is high (128 cnx/s) and the malicious traffic is low (1 cnx/s), precisely 

those rates for which the threshold deferred strategy displayed significantly decreased 

performance. 

Figure 4.31 Legitimate connection success rate for the linear deferred timeout strategy, 
for capacity 32 cnx, legitimate complete rate 5 cnx/s, To = 2~10 s, 7\ = 210 s and 
legitimate and malicious arrival rates varying from 2° cnx/s to 210 cnx/s 
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4.7 Conclusions and future work 

In this paper, we have studied the performance of different queue management strate

gies against DoS attack that try to exhaust the server connection tracking resources. 

We modelled the server queue as a Birth-Death Markov chain and analysed in this 

model three methods of adjusting the timeout value based on the queue occupation: 

the fixed, the threshold and the linear methods. The last two methods are dynamic 

timeout methods and the different policies that can be enforced for deciding whether 

a connection expired or not are the deterministic and the deferred policies. For 

modelling convenience, we also introduced the Poisson policy which we use as an in

termediate step for obtaining theoretical results about the deterministic and deferred 

policies. The deterministic and deferred policies perform non-memoryless operations, 

which we approximated to memoryless so that we can get an insight on the perfor

mance of these policies within our model. Furthermore, we tested the performance 

of all three timeout adjustment methods with the deterministic and deferred policies 

both in stochastic simulations and in laboratory SYN-flood experiments. 

Under the simplifying hypothesis that the traffic seen by the server arrives with 

exponentially distributed inter-arrival times, we confirmed the consistency of the the

oretical results when compared to simulation and experimental results. The Poisson 

policy generated very similar results to the deferred policy both when comparing the 

theoretical and simulation steady-state queue occupation probabilities and when com

paring the theoretical, simulation and experimental overall connection success rate. 

This is interesting because the Poisson policy is very intuitive to model where as the 

deferred policy is easily and efficiently implementable in real-life queue management 

mechanisms. 

Overall, the theoretical results matched the simulation and experimental results 

very closely except for the deterministic policy. On one hand, the threshold deter

ministic theoretical results followed the trend of the simulation and experimental 

results but with relatively high errors. On the other hand, the linear deterministic 

theoretical results did not match the simulation and experimental results for other 

than low virulence values. This is clearly due to the FILO approximation which has 

a lower impact on the threshold method than on the linear. The threshold method 

only changes the timeout between two values which makes it less dependent on the 

queue occupation and thus easier to approximate. 
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In order to validate the robustness of our mathematical model in the light of 

attacks other than the simplistic Poisson model, we evaluated the performance of the 

different timeout strategies when the malicious connections arrive in deterministic 

bursts of various sizes and at various intervals of time, by using stochastic simulations 

and in-laboratory SYN-flood attacks. Whether with respect to the Poisson or the 

burst attack models, we can draw several conclusions related to the performance of 

the different timeout strategies which are consistent for simulations, experiments and 

theoretical results: 

I. Capacity vs. attack rate trade-off. There exists a linear trade-off between 

the server resources (number of slots available in the queue) and the attacker 

resources (malicious connection arrival rate). For this reason, we denned the 

virulence of an attack, as the attack rate divided by the server capacity. At 

constant virulence, as the attack rate and queue size increase, the performance 

of all strategies remains constant (at different values for each strategy). 

II. Fixed vs. dynamic timeout methods. Using a dynamic timeout strategy is 

always a good idea. The only exception is the threshold deterministic strategy 

that is overprotective when faced with low virulence attacks. 

III. Threshold vs. linear methods. The linear timeout adjustment method per

forms better than the threshold timeout adjustment method. The sole exception 

occurs when coupling the methods with the less efficient deterministic policy 

for medium to high virulences. In this case, the overprotective behaviour of the 

threshold method compensates the low reactivity of the deterministic policy. 

IV. Deterministic vs. deferred policies. The deferred policy always performs 

better than the deterministic policy when protecting against Poisson process 

attacks. Moreover, the deferred policy has a lower computational overhead 

than its deterministic counterpart. 

V. Resonance effect. In simulations, we observed a resonance effect for burst 

attacks with burst interarrival times (BIT) and virulences such that a single 

burst fills the queue entirely. At these values, the fixed timeout strategy and 

the dynamic timeout strategies with the deferred policy show a significant per

formance decrease. However, this effect was not visible in experiments due to 

the low-pass filter behaviour of the network that absorbed the resonance effect. 
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VI. Timeout optimisation. High empty-queue and low full-queue timeout val

ues are optimal values for the linear deferred strategy, regardless of the legiti

mate traffic rate, queue size and malicious traffic type and rate. For all other 

strategies, there exist no universally good values to use in all conditions, ex

cept maybe for the threshold deferred strategy where high empty-queue timeout 

and low full-queue timeout offer non-optimal but reasonable performance when 

compared with the fixed timeout method. 

In essence, all of the relevant findings can be summarised into one single recom

mendation for protocol designers and system administrators managing the configura

tion of connection table management in servers and network hardware. 

Overall Recommendation: We suggest always using the linear deferred timeout strat

egy with a high empty-queue timeout value (T0 ^ 210 s) and a low full-queue 

timeout value (Ti ~ 2 - 1 0 s). These settings will provide the best overall rate of 

successful connections in all conditions. 

It is important to note that the difference in performance between this optimal 

strategy and optimal parameter choices, and other possible combinations is only sig

nificant within the so-called window of interest, which ranges between virulence values 

of 0.05 and 8 s_1. Outside of this approximately 2 orders of magnitude range, the 

recommendation above is still valid, but is not very useful because all strategies will 

perform equally well or equally badly. Nonetheless, since the implementation over

head of such strategies with respect to the others is only linear in the queue size, it 

pays to always use them, even if it is unsure whether the residual traffic rate generated 

by unfiltered or undectetable connections, will be within this window of interest. And 

even in the case where the attack will be more virulent than 8 s_1, then the linear 

tradeoff we have described above indicates that the same quality of service can be 

maintained by matching the attack rate with a like increase in the size of the queue, 

which in most protocols and applications will normally be a cheap thing to do, and 

hence a good defensive choice. 

We hope to further confirm and enhance our findings in future work by comparing 

the linear deferred strategy with high empty-queue and low full-queue timeout values 

with a similar, yet simpler approach, where the queue would act as a ring buffer. This 

is based on the intution that the linear deferred strategy with an infinite empty-queue 
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timeout T0 and very small, tending to zero, full-queue timeout Ti, will essentially 

behave as such a ring buffer. On the other hand, an implemenation of a ring buffer-

based queue strategy will be more lightweight and result in a lower overhead. This 

hypothesis needs to be confirmed in simulation and tested experimentally. 

On the mathematical modelling side, we would like to improve the approximations 

we made in order to more precisely evaluate the deterministic and deferred timeout 

assignment policies. On the experimental side, it would important to explore the 

effect on the performance of dynamic timeout strategies of using different network 

topologies; for example, this might (or might not) affect the presence and strength of 

such phenomena as the resonance effect. 

Finally, while we measured experimentally the performance of the dynamic time

out strategies only for the SYN-fiood attack, in sections 4.3.3 and 4.3.4 we showed 

how our abstract protocol can be instantiated to reflect the queue behaviour at higher 

protocol levels. Hence, this work can be easily generalised to devise dynamic time

out implementations for common connection oriented protocols. However, one of 

the immediate difficulties of doing so is that the standards for most relevant pro

tocols (e.g. HTTP vl . l (Fielding et al, 1999), TLS vl . l (Dierks et Rescorla, 2006) 

and FTP (Postel et Reynolds, 1985)) do not define connection timeout mechanisms. 

Nonetheless, the applications that implement these protocols do include such timeout 

mechanisms, and as such the results obtained here can be applied to make them more 

resilient to the corresponding version of connection depletion attacks. Verifying this 

intuition for such protocol implementations would greatly increase the applicability 

and relevance of not only the results described here, but also of the modelling and 

experimental techniques introduced. It is for that reason, the object of ongoing work 

by our research group. 
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CHAPITRE 5 

Discussion generate et conclusion 

Dans ce memoire nous nous sommes interesses a la performance d'un serveur dont 

un service oriente connexion est sous attaque de deni de service d'epuisement de 

ressources. Contrairement aux autres approches qui ont ete explorees dans le passe, 

notre solution ne se base pas sur la discrimination du trafic legitime et malicieux. De 

plus, la solution que nous proposons ne consiste pas a modifier la logique du protocole 

mais simplement de gerer de facon dynamique l'expiration des connexions dans la file 

du serveur. 

Nous avons modelise la file des connexions etablies ou en cours d'etablissement du 

serveur a l'aide des chaines de Markov. Ce type de chaine a ete utilise dans le passe 

pour mesurer la performance des equipements reseau. Nous avons adapte le modele 

mathematique afin de modeliser, en plus du trafic legitime, le trafic malicieux. Suite 

a l'analyse du modele mathematique, nous avons confirme qu'augmenter la taille de 

la file des connexions permet au serveur d'etre plus resistant aux attaques. De plus, 

le parametre evident qui peut etre optimise du cote serveur pour rendre le serveur 

plus resistant aux attaques de deni de service est le delai d'inactivite. 

En plus de la strategie par defaut qui consiste a garder le delai d'inactivite fixe, 

nous avons modelise deux methodes reactives qui diminuent la valeur du delai d'in

activite au fur et a mesure que la file de connexions se remplit : la methode threshold 

et la methode linear. Si la methode threshold est deja implemented par certains so

lutions de protection, la methode linear a ete introduite par nous. Face a un delai 

d'inactivite dynamique il existe plusieurs politiques que le serveur peut adopter pour 

assigner le delai d'inactivite aux connexions dans la file. A notre connaissance, nous 

sommes les premiers a avoir decrit formellement et analyse les politiques determinis

tic et deferred qui sont envisageables d'etre integrees dans des implementations des 

mecanismes de gestion de la file de connexions. Pour des fins de simplicite, nous avons 

aussi introduit et modelise la politique Poisson, qui par contre n'est pas facilement 

utilisable en pratique. 
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Pour confirmer la validite du modele theorique, nous avons developpe un simula-

teur stochastique a base d'evenements qui nous est propre et nous avons implements 

les methodes du delai d'inactivite dynamique ainsi que la strategie du delai d'in

activite fixe, pour des fins de comparaison. Nous avons teste les politiques d e s i 

gnation du delai d'inactivite deterministic et deferred. Afm de montrer la generality 

du modele et des strategies du delai d'inactivite dynamique, nous avons reproduit 

experimentalement une attaque de type SYN-Flood. Pour toutes les experiences et 

simulations, nous avons effectue plusieurs essais arm d'obtenir la valeur moyenne de 

la performance des strategies mais aussi l'ecart type de ces valeurs. Les strategies de 

protection ont ete implementees dans un composant reseau proche du serveur. 

Suite a l'analyse des resultats obtenus a l'aide du modele theorique, par simu

lation stochastique et experimentalement, nous confirmons la validite du modele 

mathematique. De plus, nous observons que la politique theorique Poisson a un ef-

fet tres similaire a la politique pratique deferred. Cependant, les approximations que 

nous avons considerees pour calculer theoriquement la performance de la politique 

deterministic introduisent des erreurs trop importantes par rapport aux resultats de 

simulations et experimentaux, qui rendent les resultats theoriques de la politique 

deterministic inutilisables. 

En ce qui concerne la performance des differentes strategies du delai d'inactivite 

dynamique, les conclusions que nous tirons sont les suivantes : 

Compromis capacite - taux d'attaque. L'intuition du compromis lineaire entre 

la taille de la file des connexions du serveur et le taux d'arrivee des connexions 

malicieuses est confirmee. Ceci se traduit par le fait que pour offrir la meme 

qualite de service face a une attaque avec un taux d'arrivee deux fois plus 

rapide, le serveur doit etre dimensionne pour avoir une file de taille deux fois 

plus grande. Pour cette raison, nous avons introduit la virulence d'une attaque 

comme etant le taux d'arrivee des connexions malicieuses divise par la taille de 

la file. 

Les methodes dynamiques versus la methode fixed. Les methodes dynamiques 

de gestion du delai d'inactivite offrent toujours une meilleure performance que 

la methode fixed. La seule exception est la methode threshold pour des attaques 

peu virulentes ou dans des cas ou le taux du trafic legitime est tres eleve, du 

a un phenomene de type Flash Crowd, par exemple. En plus de la meilleure 

performance, les resultats des methodes dynamiques sont plus stables statisti-
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quement, dans le sens que la performance est moins variable (ecart type plus 

petit) que celle de la methode fixed, dans les memes conditions. 

La methode linear versus la methode threshold. La methode d'ajustement du 

delai d'inactivite linear est plus performante que la methode threshold. La seule 

exception arrive quand les deux methodes sont couplees avec la politique d e 

signation du delai d'inactivite moins performante, deterministic, pour des at-

taques tres virulentes. Ceci s'explique par le fait que le caractere surprotecteur 

de la methode threshold compense la reactivite reduite de la politique determi

nistic. 

La politique deferred versus la politique deterministic. La politique d e s i 

gnation du delai d'inactivite deferred est plus reactive que la politique determi

nistic parce qu'elle decide si une connexion doit expirer ou pas en fonction de 

l'etat actuel de la file et non pas de l'etat de la file au moment de l'arrivee de 

la connexion. Pour cette raison, la politique deferred offre une meilleure perfor

mance que la politique deterministic, et ce quelque soit la methode utilisee. 

L'effet de resonance. Dans les simulations stochastiques, nous avons observe un 

effet de resonance pour les attaques en rafale, quand une seule rafale remplit 

entierement la file. La performance des strategies a base de la politique deferred 

ainsi que la methode fixed est diminuee dans ce cas specifique. Cependant, l'effet 

de resonance n'est pas observe dans les experiences a cause de l'effet de filtre 

passe-bas du reseau. 

Optimisation des parametres. Seule la strategic linear deferred presente des va-

leurs du delai d'inactivite a file vide (T0) et a file pleine (Ti) qui sont optimales 

pour tous les scenarios. Ces valeurs, T0 tres grand (ft 210) et 7\ tres petit 

(ft 2 - 1 0), montrent la robustesse de cette strategie par rapport aux variations 

du taux de trafic legitime et malicieux. Pour ces memes valeurs, la strategie 

threshold deferred offre une performance non-optimale mais qui pourrait etre 

un bon compromis par rapport a la methode fixed. 

Nous identifions dans la suite des limitations de notre approche et des directions 

de recherche pour des travaux futurs. Notre modele theorique est construit sur la 

supposition que le trafic d'attaque suit la distribution d'un processus de Poisson. Un 

attaquant a interet a generer ce type de trafic pour ne pas se faire detecter par des 

mesures d'analyse statistique. De plus, l'architecture et le mode de fonctionnement de 
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l'lnternet transforment la distribution dans le temps du trafic IP regu par une victime 

potentielle vers une distribution de processus de Poisson. Cependant, si l'attaque est 

realisee sur d'autres protocoles de plus haut niveau et avec un taux d'arrivee plus 

petit, il peut etre interessant pour l'attaquant de generer du trafic dont la distribution 

est differente de celle d'un processus de Poisson. Pour cette raison nous considerons 

comme travail futur de recherche la modelisation mathematique d'autres distributions 

d'attaque. 

L'approximation que nous avons faite pour calculer theoriquement la performance 

de la politique d'assignation du delai d'inactivite deterministic introduit des erreurs 

trop importantes et rend inutilisables les resultats theoriques. Nous visons a proposer 

des meilleures approximations pour cette politique dans des travaux futurs. 

La politique d'assignation du delai d'inactivite Poisson que nous avons modelisee 

theoriquement offre des resultats theoriques tres bons, similaires aux resultats obtenus 

par simulation stochastique est experimentalement avec la politique deferred. Nous 

avons modelise mathematiquement cette politique a cause de sa simplicite, mais il 

n'est pas evident quel serait l'algorithme correspondant a cette politique qui pourrait 

etre implemente dans une strategic du delai d'inactivite dynamique dans la pratique. 

Comme travail futur, il serait interessant de trouver un algorithme decrivant la po

litique Poisson, de l'implementer et de tester l'impact de l'effet de resonance face a 

cette politique. Nous soupgonnons que cette politique serais plus robuste que la poli

tique deferred, qui offre des performances similaires, a cause du fait que les connexions 

ne sont pas jetees instantanement apres transitions de la file, comme c'est le cas avec 

la politique deferred. De plus, nous soupgonnons que la strategic linear deferred confi-

guree avec un delai d'inactivite a file vide tres grand et avec un delai d'inactivite a 

file pleine tres grand serait equivalente a une technique de gestion de la file comme 

une structure de donnees de type tampon circulaire (ring buffer). La confirmation de 

cette intuition permettrait de batir un modele mathematique plus simple pour cette 

strategic qui se traduirait par une estimation numerique de performance plus rapide 

et plus precise. 

L'architecture que nous avons choisie pour la realisation des mesures experiment ales 

des strategies du delai d'inactivite dynamique contre une attaque de type SYN-Flood 

nous a limite a des vitesses d'attaque de l'ordre de 8 Mbps. Cette limitation est due 

a l'utilisation du meme canal de communication pour le controle de la file du ser-

veur, via l'envoie des paquets RST, que pour le transport des messages des clients. 
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Les solutions que nous proposons pour combler ce probleme sont soit d'utiliser une 

connexion reseau dediee au controle de la file des connexions du serveur, soit de 

deployer l'application de protection sur le serveur a proteger. 

Finalement, nous avons considere le cas ou l'attaquant depense toutes ses res-

sources pour attaquer le serveur a un seul niveau du modele OSI. Si dans les experiences 

nous avons choisi de illustrer les strategies de protections face a l'attaque SYN-Flood 

qui vise le protocole de communication au niveau transport, TCP, dans le modele 

mathematique et les simulations stochastiques nous avons fait des abstractions qui 

permettent d'appliquer les resultats et conclusions a d'autres protocoles orientees 

connexion. De plus, nous montrons comment capturer le comportement d'une at-

taque d'inondation avec des requetes HTTP ou encore d'une attaque de reservation 

des places pour un evenement, en identifiant les evenements qui generent des tran

sitions dans le modele abstrait. Notre intuition est que les attaques qui visent les 

protocoles de plus haut niveau sont plus avantageuses pour l'attaquant non seule-

ment parce que cette approche est peu etudiee et que la plupart des methodes de 

protection de plus bas niveau ne sont pas applicables mais aussi parce que le com-

promis entre les ressources de l'attaquant et du defenseur est plus favorable pour 

l'attaquant dans ce cas. Des travaux de recherche futurs pourront confirmer cette 

intuition et montrer le niveau d'attaque optimal pour l'attaquant ce qui permettrait 

a un defenseur de savoir comment et ou concentrer les efforts. 

Pour conclure, nous rappelons que les attaques de deni de service par epuisement 

des ressources sont un outil tres puissant qui permet de bloquer completement ou 

partiellement l'acces des clients legitimes a des ressources specifiques sur Internet. 

Ce travail presente une modelisation des attaques d'epuisement des ressources, et 

plus important, des methodes pratiques pour combattre ces types d'attaques. Pour 

les administrateurs des systemes, ce travail permet de savoir comment configurer 

les mecanismes de protection deja en place pour avoir une meilleure protection et 

comment dimensionner les serveurs pour garantir une certaine qualite de service. 

Pour les concepteurs des systemes d'exploitation, des equipements reseau et des so

lutions de protection materielles et logicielles, ce travail presente des strategies de 

gestion du delai d'inactivite qui offrent une tres bonne protection contre les at

taques d'epuisement des ressources mais qui s'implementent facilement, qui n'in-

duisent pas beaucoup de temps de calcul supplement aire et qui sont complement aires 

avec d'autres techniques de defense. 
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Abstract. In this paper, we study the performance of timeout-based 
queue management practices in the context of flood denial-of-service 
(DoS) attacks on connection-oriented protocols, where server resources 
are depleted by uncompleted illegitimate requests generated by the at
tacker. This includes both crippling DoS attacks where services become 
unavailable and Quality of Service (QoS) degradation attacks. While 
these queue management strategies were not initially designed for DoS 
attack protection purposes, they do have the desirable side-effect or pro
viding some protection against them, since illegitimate requests time out 
more often than legitimate ones. While this fact is intuitive and well-
known, very few quantitative results have been published on the potential 
impact on DoS-attack resilience of various queue management strategies 
and the associated configuration parameters. We report on the relative 
performance of various queue strategies under a varying range of attack 
rates and parameter configurations. We hope that such results will pro
vide usable configuration guidelines for end-server or network appliance 
queue hardening. The use of such optimisation techniques is comple
mentary to the upstream deployment of other types of DoS-protection 
counter measures, and will probably prove most useful in scenarios where 
some residual attack traffic still bypasses them. 

Keywords: Denial of service attack, degradation of service attack, queue 
management, timeout, dynamic timeout. 

1 Introduction 

A denial-of-service (DoS) network at tack occurs when the victim receives a ma
licious s tream of packets tha t prevent the legitimate communication from taking 
place. DoS flood at tacks consist in sending the victim (typically a server) a higher 
volume of traffic t han it can handle. This can be achieved either by saturat ing the 
server's network connection or by using weaknesses in the communication proto
cols tha t typically allow the attacker to generate high server resource usage for a 
limited attacker effort. Distributed denial-of-service (DDoS) at tacks are simply 
DoS attacks performed by multiple agents, most frequently simultaneously. In 
this paper we direct our at tent ion towards the resource exhaustion at tacks on 
connection oriented protocols. Although the studied-to-death SYN-flood at tack 
fits well into this category, we use it merely as an example to explain our ap
proach. As we will discuss, it is our hope tha t our approach could potentially 
be applied to other TCP-based at tacks (e.g. ACK flood) or higher-level at tacks 



against Web servers (straight HTTP or via SSL), FTP servers, VPN gateways, 
mail servers, or even DoS protection mechanisms in upstream network appli
ances. 

The impact of a DoS attack on a particular system will vary depending on 
the protocols and applications involved. Furthermore, an attack can have mea
surable impact on the Quality of Service (QoS) of a system even when the server 
resources are not completely exhausted [21], such as in the case of Degradation 
of Service attacks [19]. While degrading QoS or even rendering a service unavail
able might be possible, this always comes at a cost for the attacker. For a given 
service level or attack impact, there is a direct relationship between the resources 
expended by the attacker and the target. These tradeoffs have been discussed 
for crippling DoS attacks [16,17], but these formalisms cannot be easily applied 
to QoS degradation attacks. While some experimental testbeds have been pro
posed to try to measure these tradeoffs [2], there are in fact very few quantitative 
results (modelling or experimental) concerning degradation of service attacks. 

Various methods and appliances for protecting against DoS attacks have been 
suggested, for example Cisco Guard XT, Captus IPS, COSSACK, DefCOM, 
D-WARD, MANAnet Shield, Mazu Enforcer, NetBouncer, Peakflow, Proof of 
Work, Pushback, Secure Overlay Services, Traceback and others (see [19,20] 
for complete surveys on the topic). These can be viewed as first- and second-
line defences, where first-line defences use traffic profiling or anomaly detection 
mechanisms and filter it accordingly [8,25,22], and second-line defences consist 
in modifying TCP/IP protocols to positively affect the resource tradeoff in favour 
of the defender [3,28,10,12,7]. 

Nonetheless, it is possible for sophisticated attacks to evade both types of 
defences. Thus, a considerable amount of residual attack traffic could still evade 
both network- and host-based defences and reach the end server OS and applica
tion connection queues. When all traffic-discriminating counter-measures have 
been bypassed, legitimate and residual attack traffic is indistinguishable. For
tunately, certain features of the end server can mitigate the impact of residual 
traffic, even in those conditions. These features therefore constitute a last line 
of defence. Queue management algorithms that were initially designed to min
imise the impact of network traffic loss or high latency fall into that category. 
One of the most common such features is the attribution of timeout periods to 
all incoming connections. Protocols that implement this feature and that do not 
necessarily require explicit messages to close a connection are called soft protocols 
and they perform better than their counterpart hard protocols in unexpected net
work conditions like DoS attacks [14]. In practice, the timeouts can be adjusted 
dynamically according to administrator-configurable thresholds on resource us
age levels, as has been suggested and implemented in network appliances [10] 
and OS [18] for the specific purpose of improving resiliency against DoS attacks. 
When these thresholds are reached, the server is placed in a "protective" state, 
which in principle has the effect of favouring fast legitimate connections over 
attack connections. 



Unfortunately, it is not clear at all what the "optimal" threshold values are, 
as there is no quantitative method for estimating the parameters that minimise 
the effects of DoS attacks while maintaining equivalent levels of QoS. In the rest 
of this paper, we try to address this gap. One of the reasons we are interested 
in this is because such features are very general and already in place at the 
various network and application layers. Note also that maximising their effec
tiveness as DoS protections is complementary and in principle compatible with 
the deployment and use of other upstream defences. 

In the next section we propose a stochastic modelling tool for DoS at
tacks, based on Markov chains. Using this model, we analyse three different 
timeout-based protection strategies in Sect. 3. We provide in Sect. 4 the experi
mental results obtained by simulating these strategies according to two different 
implementations. Finally, we conclude and give directions for future work in 
Sect. 5. 

2 Modelling Servers under DoS Attack with Markov 
Chains 

Markov chains are a stochastic modelling tool that describe the states and dy
namics of a system at successive times. They are said to be memoryless if the 
probability of transition between any two states is independent of the previous 
states. The stochastic process generating state transition events is thus said to 
be markovian, which is equivalent to saying that they are distributed in time 
according to a Poisson distribution. Markov chains can also be used to model 
systems in which this is not the case, i.e. those where state transitions probabil
ities will depend on past history. In instances where the key parameters such as 
rate of arrivals and departures are known, the model can be "solved". First, this 
means that given state probabilities at given time, predictions can be made about 
state probabilities at a later time. We can also compute steady-state probabilities, 
which correspond to the likelihood of the various states at the equilibrium of the 
system. 

Markov chains are suitable for modelling network performance and have been 
used in that purpose for many years. In particular, Markov Chains have also 
been used as modelling tool in network security. Baras [1] suggests detecting 
route falsification attacks in mobile ad-hoc networks (MANET) using a Hidden 
Markov Model (HMM). More recent studies [27] show that using edge sampling 
techniques along with HMM can be used to reconstruct a network attack path. 
HMMs can also be used in Intrusion Detection Systems [11,15], the transitions 
between each state in the Markov model being generated by intrusion, detection 
and recovery events. Finally, Khan et al. [13] have successfully used Markov Chain 
modelling of queues to design DoS traffic detection strategies. In our case, we 
will use Markov chains to model the performance of servers under DoS attacks. 



2.1 Description of the model 

Typical Markov chain models used in network performance have each state char
acterised by the number of connections in the system. A maximum number of 
connections c can be served at the same time. Connections arrive with rate A 
and are served with rate p,. In our case, each state in the chain is characterised 
by two values: Ni and Nm, the number of connections used by legitimate users 
and malicious users, respectively. A maximum number of both legitimate and 
malicious connection c can be served in the same time. All connection requests 
that arrive when the server is in a saturated state (JVj + Nm = c) will be re
jected. Transitions between states occur with different rates for the legitimate 
and malicious connection requests: A; and pn for the arrivals and servings of 
legitimate connections and Am and fj,m for the arrivals and servings of malicious 
connections. The chain has a triangular form where states on the upper line 
represent that no malicious connections are present in the system and states on 
the diagonal represent that only malicious connections are present in the system 
(see Fig. 6 in the appendix). The following events generate transitions between 
states: 

— connection arrived: the server received a connection request from a client. It 
occurs at a rate A; 

— connection completed: the connection was either elevated to a higher-level 
protocol, or the client was served with the required information and the 
connection was closed successfully. It occurs at a rate [i\\ 

— connection rejected: the server was not able to serve the connection because 
no more connections channels were available (queue full). It occurs at a rate 
4>r; 

— connection expired: the server tried to serve the connection but the commu
nication timed out and the connection was dropped. It occurs at a rate (f)e; 
and 

— connection failed: the connection was either rejected or it expired. It occurs 
at a rate <fr = </y + 4>e. 

In the particular case of a SYN-flood attack, Ni will actually represent the 
number of legitimate connections (and Nm the number of malicious ones) that 
are half-open. The connection arrived and connection completed events repre
sent a SYN message and the corresponding ACK message being received by the 
server, respectively. In the case of an SSL connection depletion attack, Ni and 
Nm represent the number of legitimate and malicious completed TCP connec
tions, respectively, that have not yet established a secure channel and for which 
the negotiation phase is still in progress. The connection arrived events repre
sent the Client hello message being received by the server and the connection 
completed events represent the corresponding Finished message being sent by 
the server. It is even possible to consider a nested model, each level representing 
a different layer in the protocol stack. 

How realistic is this model regarding legitimate arrival and service rates? It 
is known that user sessions initiations resemble phone calls [23] and thus have 



a Poisson arrival process with exponential inter-arrival times. We will make the 
supposition that all incoming connections follow this pattern, assumption that 
is used in other DoS related research [21,5]. In most cases, serving rates depend 
only of network transit times but in some cases user interaction is also a factor. 
It has been shown that because of the network queueing algorithms, all the 
IP packet traffic tends toward a Poisson process as the load increases [4]. For 
modelling purposes, we will make the supposition that the network is heavily 
used and therefore that legitimate service rate follows a Poisson process model. 
According to our assumption, connections completed events are generated at 
exponential intervals of time from the connection arrived events, if the timeout 
has not elapsed. Otherwise, connection expired events are generated at timeout 
intervals from the connection arrived events. 

The rate at which connection completed messages are generated by the legit
imate clients is /xc. Only messages that arrive to the server before their timeout 
elapses will generate connection completed events; we thus have that in > /ic. All 
the other will be ignored by the server and connection expired events are gener
ated when the timeout elapses. Therefore, the Probability Distribution Function 
(PDF) of the legitimate connection service time Gi(t) will have the form of 
an exponential distribution for t smaller than the timeout tout, followed by an 
appropriately weighted delta Dirac function at tout 

Gt(t) = 

\fj,ce
 tfXc 

\S(t- toxlt)pexpi 
re o 

t < ^out 

t = tout 

otherwise 
(1) 

y 0 otherwise 

where 

/•OO 

Pexpire = / flce'^dt = e " W c . (2) 
' ' t o u t 

The mean service time and the service rate for legitimate connections are 

t, 4 / tGt(t)dt = — ; * 4 i = ^ _ (3) 
Jo Mc ti 1-e * ° « ^ 

While we model legitimate packet arrivals as a Poisson process this is not 
general for attack traffic as the attacker is free to use whatever strategy he or she 
wants. Even though there is no proof that this is optimal, the attacker might want 
to mimic the legitimate arrivals process in order to thwart certain time analysis 
detection methods. In any case, we will assume that the residual attack traffic, 
unfiltered by upstream defence mechanisms is distributed according to a Poisson 
distribution, because otherwise it could have been potentially discriminated by 
such techniques. We make this assumption in order to be able to construct a 
simple enough mathematical model that we can numerically resolve. However, 
we will later explore in Sect. 4 attacks for which this is not true. 

Concerning the malicious packet service process, the strategy of the attacker 
is to exhaust the server resources using the smallest effort possible. This is 



achieved by generating the connection arrived events and then abandoning the 
communication without any notice to the server. Malicious connections will even
tually all expire and generate connection expired events at tout intervals of time 
from the connection arrived events. The malicious connection service rate is in 
this case pm = l/tout. 

Although the triangular DoS Markov chain model that we presented describes 
the states in which the server will be during an attack, these states are not 
directly visible because individual connections can not be labelled as legitimate 
or malicious. For this reason, we will analyse the visible Markov chain that has 
c + 1 states, each state being characterised by the number of connections N used 
by both legitimate and malicious users. The probability that the visible Markov 
chain is in a state N is the sum of all probabilities that the hidden Markov chain 
is in state (NhNm) with Nt + Nm = N. 

The visible connection arrival process is the sum of two Poisson processes 
with rates A/ and Am and thus also a Poisson process with rate A = A/ + Xm. In 
a Markov chain model the load is defined as the ratio between the arrival and 
service rates. In our case, we distinguish the load generated by the legitimate 
users pi = \i/m, and the load generated by malicious users pm = Am/ 'pm. The 
overall load p cannot be computed directly because the service processes are 
not memoryless. Our goal is to compute the overall load by approximating the 
overall mean service time t. We consider i to be constant in time and equal to 
the average of the mean legitimate service time ti and mean malicious service 
time tm weighted by the legitimate load and the malicious load, respectively: 

* = - ^ L - t | + - ^ - « o u t (4) 
Pi + Pm Pl+ Pm 

The approximative mean service rate in the visible chain is: 

tl~ i~ \mtf + Xin2
m 

We can now calculate an approximative overall load generated by both legitimate 
and malicious users as p = A//L With this approximation we can compute the 
steady-state probability that the system is in the state k using Erlang's loss 
formula: 

i=0 

2.2 Approximate solutions to the model 

Because the connections are served independently, the only significant perfor
mance measure is the probability <f> that a legitimate connection will fail, which 
is equal to the probability that the connection will be rejected <f>r plus the prob
ability the connection will expire (f>e, i.e. 0 = <\>r + <j>e. 



The blocking probability is by definition the probability that the system is 
saturated, i.e. that the queue is full. A connection is rejected if the server is 
saturated when the connection arrived event is generated. The probability that 
a connection is rejected (f)r is thus equal to the probability that the server is in 
state c at that moment. If the system were at equilibrium, this will be exactly 
the steady-state probability pc. If we assume that the system will never be far 
from equilibrium, we can approximate it as such, i.e. </>r & pc. 

A connection expires with the probability Expire if the server is not saturated 
when the connection arrived event is generated. The connection expire proba
bility can also be approximated with the steady-state probabilities as follows: 

c - l 

PkPexpire \ ' ) 

k=Q 

In this model, the resources that the attacker spends to achieve a negative 
impact on the service level are proportional to the residual malicious connections 
arrival rate Am; the actual malicious traffic arrival rate at the upstream defences 
might be significantly higher. The resources that the server spends to achieve 
the required service level is represented by the capacity c of the queue. We are 
interested in how the tradeoff between the attacker and server resources varies 
for the same legitimate connection fail probability </>, or equivalently for the same 
connection complete probability l — (j). Even though the fully expanded expression 
of 4> is quite complex, what lies beneath it is a tradeoff between these quantities 
that is essentially linear for the same connection complete probability, as we 
have verified with several numerical calculations. Fig. 1(a) illustrates the contour 
curves for the connection complete probability, for different values of attack 
rates and server capacities. Note that they are essentially straight, indicating 
that an increase in attack rate by the attacker can be efficiently matched by a 
corresponding linear increase in queue capacity by the defender, while keeping 
the same quality of service; this confirms previously known intuition by experts 
in the network security field. 

Although the residual traffic rates represented might seem ridiculously small, 
this traffic would have already been severely filtered by other upstream defences, 
if such were present. Thus, in order to get this small amount of residual traffic 
through, the attacker might have had to generate large amounts of traffic at 
the perimeter, resulting in a high resource cost. See Table 1 in the Appendix 
for default configuration parameters of different implementations of connection-
oriented protocols. 

Given a certain attack rate Xm and server capacity c, the parameter that 
can be optimised by the defender is the timeout. As Fig. 1(b) shows, the two 
components of the legitimate connections reject probability 4>, <j)e and 4>r, change 
in opposite directions as we vary the timeout: 4>e decreases exponentially with 
the timeout, while <f>r increases. When no attack is present 0 r is null for A/ < /x/c; 
it has the limit A; — mc for infinite timeout when A; > inc. When an attack is 
present, <f>r has the limit A/ when timeout is infinite. For a specific attack rate and 
capacity there is an optimal timeout value that can be calculated numerically. 



(a) 

Fig . 1. (a) Steady-state legitimate connection complete probabilities for various queue 
capacities c (x-axis) and attack rates Am (y-axis), at fixed legitimate arrival rate A; = 10 
cnx/s, mean service time ti = 1 s, and timeout tout = 75 s. For each pair (x,y), the 
corresponding connection complete probability is indicated as a gray-scale value for 
the corresponding rectangular region of the graph. Better quality of service (i.e. higher 
probability, lighter shades) are achieved with bigger queues and lower attack rates. 
The contour curves connect points (x, y) with the same connection complete probabil
ities (same colour), and are approximately represented by straight lines in the figure, 
(b) Variation of the steady-state reject, expire and fail probabilities, 4>r, 4>e, and <f>, 
respectively, as a function of the timeout value tout-

3 Dynamic Timeout Management Strategies 

We will now analyse two queue management strategies tha t consist in dynam
ically adjusting the timeout. This is, of course, in contrast with the s tandard 
strategy of having a fixed, non-adaptive connection t imeout value. Ideally we 
would want to make this adjustment by looking at the triangular Markov chain 
and choosing a timeout according to the number of legitimate and malicious 
connections in the server. Unfortunately, this model is not visible because the 
server is unable to distinguish if a connection request is legitimate or malicious. 
Therefore, the only information available to adjust the t imeout is the total num
ber of connections used. While the threshold prevention strategy is already im
plemented in Microsoft Windows Server 2003 and some security appliances, the 
second strategy, linear timeout prevention, is a concept tha t we introduce. Fig. 7 
in the appendix illustrates how they fit in the taxonomy of DDoS defence of [20]. 

There are for each of these strategies, two alternate methods for deciding how 
to flush out t imed out connections: deterministic and deferred. The deterministic 
method consists in tagging each connection with a pre-determined expiry t ime 
upon its arrival. The expiry time is simply the arrival t ime plus the timeout value 
at the moment of arrival. To take into account the fact tha t the reality of the 
system might have changed drastically since the arrival of a connection, another 



approach seems more suitable: to defer the assignment of an expiry time, such 
that if the timeout decreases after its arrival, the connection is checked against 
the new timeout value. Thus at any given time, connections are flushed if the 
time elapsed since their arrival is bigger than the current timeout value. We refer 
to this method as the deferred method. In the rest of this section, we instantiate 
the general Markov models of Sect. 2 and compute steady-state probabilities for 
the deterministic method only. We will nonetheless present simulation results 
for both in Sect. 4. 

3.1 Threshold-based timeout adjustment strategy 

This consists in using a normal, long timeout to at first. If the number of connec
tions used in the server is greater then a certain threshold S, a shorter, attack 
timeout t\ will be used. The timeout used will depend at all times on the state 
k in which the server is: 

t(*0 =Uo k<S ^ 
1 t\ otherwise 

The probability that an individual connection will expire Expire •> the legiti
mate service rate //; and the approximative overall service rate /} described in (2), 
(3) and (5) all become state dependent: 

(fc) / X (fe) . 1 \ 
„ (* ) _ „ - t<*l / ic . „ ( * ) = /*<= • f.(fc) - M ' ^m^Xm^l +XlVrn) 
^expire e ' ^l _Ak) ' M (fc) 

(9) 
We use the same principle as before to calculate the probability that the 

server is in a specific state k using Erlang's loss formula: 

3=0 P »=0 \ j=0 P / 

Similar to the case where no timeout adjustment is made, the significant per
formance measure <f> representing the legitimate connection fail event probability 
is calculated as: 

c - l 

<t> = (f>r + <t>e = Pc + X ^ P e x p i r e ( U ) 
fc=0 

The tradeoff between the attacker and server resources is still linear but more 
favourable for the server than with a fixed timeout. Fig. 2 illustrates this tradeoff 
for numerical values of the rates (Aj and ///), timeouts (to and ti) and threshold 
S similar to what we can find in Microsoft and McAfee products that use this 
strategy in a real-life scenario. 
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Fig. 2. Steady-state legitimate connection complete probabilities for various queue 
capacities c (x-axis) and attack rates Am (y-axis), at fixed legitimate arrival rate A; = 10 
cnx/s, mean service time U = 1 s, and timeout values to = 75 s, ti = 1 s for (a) a single 
threshold at S — c/2, and (b) linear adjustment. Connection complete probabilities for 
each combination (x, y) of queue size and attack rate is represented by gray-scaling the 
corresponding rectangular region. 

3.2 Linear t i m e o u t a d j u s t m e n t s t r a t e g y 

This strategy differs from the threshold-based one in the way the timeout is 
decreased. Instead of suddenly decreasing the timeout when the server s ta te 
reaches a certain threshold, this strategy gradually decreases the t imeout as 
the number of connections in the server increases. When no connection is used 
(i.e. the server is in the state 0) an empty-queue long timeout to is used; when 
all connections are used (i.e. the server is in the state c), a full-queue shorter 
t imeout t\ is used; and otherwise, a linear interpolation of the two values is used 
in all other server states. Thus, (8) becomes t^t = to + (t\ — to)k/c. 

The same definitions in (9) tha t describe the individual connection expire 

event probability Expire' * n e legitimate service rate /x; and the approxima

tive overall service rate p,^ can be inserted in the Erlang loss formula (10) to 

calculate the legitimate connection fail event probability: 

c - 1 

4> = 4>T + 4>e Pc + ^2pkP, (fc) 
expire 

(12) 
fc=0 

Once again, we are interested in the tradeoff between the attacker and server 
resources. Analysis of the two protection strategies show tha t for the same values 
of systems parameters and traffic (within the range explored), the linear t imeout 
protection strategy could perform bet ter than the threshold t imeout protection 
strategy. These results are illustrated in Fig. 2(b). Finally, it is important to note 
tha t while the linear t imeout adjustment strategy is slightly more complex than 



the threshold-based one, the computational overhead for a server implementing 
it is negligible. 

4 Experimental Results and Interpretation 

We implemented these two strategies, in both their deterministic and deferred 
variants, and measured their performance using a home-made traffic simula
tor. We also implemented and measured the performance of the standard fixed-
timeout strategy, for comparison. The legitimate and residual malicious connec
tion requests were generated using Poisson processes. The connection complete 
events for legitimate connections were also generated using a Poisson process. 
The residual attack traffic was generated in two different ways: a) a Poisson pro
cess, in order to validate the theoretical model, and b) a deterministic process 
with bursts of instantaneous traffic at regular time intervals; the volume of each 
burst adjusted such that the averaged traffic rate would always remain the same. 

In the first case, we conducted simulations with parameters equivalent to 
those of a hardened Web server under attack. The queue capacity was set to a 
more realistic 8000 cnx and shorter timeout values were used: tout = 10 s, i0 = 
10 s, t\ — 0.2 s. The range of attack rates explored went from a modest 128 cnx/s 
to a very respectable 65536 cnx/s, equivalent to a 26 Mbps (!) residual attack 
bandwidth. For all strategies, nine different input data sets were used (except 
for the linear deferred, where only one simulation was run). The averaged results 
are shown in Fig. 3 and they give a clear picture of the relative performance of 
the various methods we have discussed here; the maximum standard deviation 
for performance in all runs was 0.023. 

In order to better understand these results, it is useful to define the notion 
of relative attack virulence as the ratio between the rate of attack Xm and the 
queue size c. Intuitively, it corresponds to how many queues per second the at
tack could fill up, if there was no timeout and no legitimate traffic. In fact, our 
first observation is that virulence is indeed the most important parameter affect
ing completion probabilities. We have confirmed this by running simulations at 
various combinations of attack rate and queue size, and have observed the same 
linearity between them as we have described in Sect. 3 for the theoretical model 
(see Fig. 4 in the appendix for more details). 

As can be seen, at low virulence (< 0.05 s_ 1) the QoS degradation is negligi
ble, and at very high virulence (> 16 s_ 1) the degradation is equally unaccept
able for all strategies. In between these values, which constitutes the "window 
of interest" of these results, several conclusions can be drawn with respect to 
the relative performance of these strategies that confirm the theoretical predic
tions of Sect. 3. First, both timeout adjustment strategies are much better than 
those with a fixed timeout. Second, linear adjustment performs slightly better 
than the threshold-based timeout adjustment. In particular, the differences in 
performance can be as high as 20%, for virulence around 2 s. This corresponds 
to a relatively high residual attack rate of 16,000 cnx/s (6.5 Mbps) at which all 
strategies would notice a significant decrease in QoS (at least 30% legitimate con-
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Fig. 3 . Legitimate connection complete rate (y-axis) for various strategies, with fixed 
queue size c = 8000, legitimate traffic rate A;=100 cnx/s, mean service time ti = 0.2 s, 
and timeout values to=W s and ti=0.2 s, for various relative virulence (ic-axis). 

nections lost), except the linear deferred strategy where QoS degradation would 
be very small (a few percent). Finally, let us emphasise that these conclusions 
are quite general. We ran a separate set of simulations with values typical of an 
unprotected T C P stack in an unhardened OS. For the same relative virulence, 
the QoS degradation results obtained are very similar, hence re-confirming the 
relative performance of the various strategies. 

In the second case, we explored the performance of these strategies against 
attack traffic not generated according to a Poisson process, something we could 
not do with our theoretical model. The results of these simulations are shown 
in Fig. 4, where we show the performance of the strategies for a fixed attack 
rate and various burst inter-arrival times. First, we notice that a Poisson attack 
strategy is not always optimal for the attacker, as a significant degradation of 
QoS happens at an inter-arrival rate of 2 s (identified with a vertical line in 
Fig. 4). This value is particularly significant as at this virulence level the queue 
is completely filled with attack traffic at every burst, and the only time that 
legitimate traffic can be serviced is after some of these packets have timed out 
and before the next burst. This is akin to a "resonance effect" where the attack 
characteristics are matched to those of the queue. This is optimal to the attacker, 
first because higher inter-arrival times results in bursts that are oversized and 
waste attack packets, and in addition result in an increased time window in 
which legitimate packets can be serviced. Consequently, QoS levels re-establish 
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Fig. 4. Legitimate connection complete rate (y-axis) for various strategies, with fixed 
queue size c = 128 cnx, legitimate traffic rate A/=10 cnx/s, mean service time U = 1 s, 
timeout values to=75 s and t i = l s, and attack rate Am = 64 cnx/s, for Poisson attacks 
(far left) and various burst inter-arrival times (a;-axis). 

themselves linearly with respect to inter-arrival times. Second, if inter-arrival 
time is decreased, burst volume also decreases thus leaving space in the queue 
for legitimate requests arriving before the next burst to be serviced. 

Nonetheless, the relative performance of the queue management strategies is 
the same as in the Poisson attack case. The only notable deviation is that the 
linear deterministic adjustment strategy is more robust to the queue resonance 
effect described above. Its performance is better than the linear deferred method 
(and all others) at all inter-arrival time settings, except for low-volume, frequent 
bursts. 

5 Conclusions and Future Work 

In this paper we made an effort to understand the effectiveness of queue man
agement strategies against DoS attacks. We first constructed a Markov model 
describing the behaviour of a server under DoS attack that tries to exhaust the 
available connection slots in the queue. This model has allowed us to gain in
tuition on the likely tradeoffs between the various parameters that characterise 
a system under attack (traffic and service rates, queue size, etc.). Of particular 
interest, but relatively unexplored, is the possibility of optimising queue man
agement parameters such as timeout and queue capacity with the respect to an 



expected residual attack rate and QoS requirement. There are however a few 
limitations to this model that should be the object of further research. First, we 
have used the steady-state approximations, thus assuming equilibrium, which 
is not accurate in the case of high residual traffic rates. Second, we have not 
described in this paper the model for analysing the deferred method of policing 
timeout connections out of the queue. 

Nonetheless, from the analysis of the model in combination with the simu
lation results (which include non-Poisson residual traffic distributions), several 
interesting conclusions can be drawn that should be of immediate application for 
those vendors and system administrators that are incorporating or using such 
types of strategies in OS and applications in host servers or in anti-DoS network 
appliances: 

1. The tradeoff between residual attack rate and queue capacity is indeed lin
ear for almost all strategies and scenarios. This confirms previously known 
empirical evidence. 

2. Dynamically adjusting timeout is always a good idea, except for coarse 
threshold-based adjustments that are overprotective in the case of light resid
ual attack traffic. 

3. Fine-grained linear timeout adjustments always outperforms fixed timeout 
and threshold-based adjustments, and is significantly better for moderate 
attack traffic rates. 

4. The deterministic method of policing connections out of the queue is more 
robust to attack parameter optimisation (the "resonance effect") and has 
lower CPU overhead. However, the deferred method performs better against 
Poisson attacks, at the cost of a CPU overhead linear in the size of the queue. 

We hope to further confirm these findings in future work by a) exploring a 
wider range of attack strategies and queue management algorithms and parame
ters in simulation, and b) conducting actual experiments in laboratory networks 
pitting various attacks against implementations of these strategies in different 
OS and applications. In these experiments we hope to test in conditions be
yond some of the modelling assumptions made, such as Poission service rates for 
legimitate connections. In particular, we are aware that RTT distributions tend 
to be heavy-tailed [26], and we hope to test our results such conditions which 
are probably more realistic for normal network conditions. 

Finally, while the work shown here is only applicable as-is to SYN-flood at
tacks it has the potential to be applied to other types of connection depletion 
attacks for TCP or other higher level protocols. One of the immediate difficul
ties of generalising this work, is that the standards for most relevant protocols 
(e.g. HTTP vl . l [9], TLS v l . l [6] and FTP [24]) do not define connection timeout 
mechanisms. Nonetheless, several applications that implement these protocols do 
include such timeout mechanisms (see Table 1 in the Appendix), and as such 
some of the results obtained might be applied to make them more resilient to 
the corresponding version of connection depletion attacks. Verifying this intu
ition for such protocol implementations is the object of ongoing research by our 
group. 
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A Additional Tables &; Figures 

Protocol 

TCP 

HTTP/1.1 

Server 
Linux 2.6.20 

Solaris 9 
Windows 2003 

Apache 2.0 
IIS 6.0 

Queue size c [cnx] 
1024 
1024 
1000 
150 

8000 

Timeout tout [s] 
180 
60 
21 
300 
120 

Attack rate Am [cnx/s] 
5.7 
17.1 
47.6 
0.5 
66.7 

Table 1. Minimal attack rate exhausting all the connections of a server configured by 
default 

Mean results of the legitimate connection completion rates when using the 
fixed-threshold and the linear t imeout protection strategies are presented in 
Fig. 5. The s tandard deviation was smaller than 1 0 - 2 for all scenarios and strate
gies tested. 
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Legit, rate A; 
[cnx/s] 
128 

16384 

No protection 

9.08% 
9.01% 

Threshold det. 

66.22% 
64.08% 

Threshold def. 

85.86% 
62.43% 

Linear det. 

59.63% 
64.93% 

Linear def 

92.40% 
87.25% 

Table 2. Simulation results showing connection success rate for all strategies and dif
ferent legitimate connection request rates, Am=10000 cnx/s, mean service time ^=0.2 
s, and timeout values io=10 s and i i=0.2 s 

128 256 384 512 M0 768 896 1024 

Capacity [cnx] 

(a) 

128 256 384 512 640 768 896 

Capacity [cnx] 

(b) 

256 384 512 640 768 

Capacity [cnx] 

128 256 384 512 640 768 896 

Capacity [cnx] 

(c) (d) 

Fig . 5. Simulation results showing legitimate connection complete frequencies for var
ious queue capacities and attack rates, A;=10 cnx/s, /x;=l cnx/s, to=75 s and ii = 1 
s, for the single threshold, (a) and (b), and linear strategies, (c) and (d), using the 
deterministic and deferred methods, respectively. 
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ABSTRACT 
In this paper we experimentally analyse various dynamic 
timeout adjustment strategies in server queues as poten
tial counter-measures against degradation of service attacks. 
Previous theoretical work studied the relative performance 
of bo th coarse-grained threshold-based timeout and fine
grained adjusment strategies where the timeout value is ad
justed as the number of connections in the queue varies. In 
addition, two methods for removing timed-out connections 
were explored: the deterministic method where the expiry 
t ime is determined at connection arrival depending on the 
timeout value at tha t moment, and the deferred method 
where connections are continuously polled and flushed when 
the time-in-queue is larger than the current t imeout value. 

We report on experiments performed on a lab network 
where these strategies were tested against various configu
ration and attack parameters. The experimental results con
firm the conclusions previously obtained from mathematical 
modelling and simulation, i.e. t ha t a) finer-grained dynamic 
adjustment performs bet ter t han coarse-grained or no ad
justment , and b) t ha t the deferred method performs bet ter 
than the deterministic one. Furthermore, our implementa
tion of these counter-measures is very efficient and transpar
ent with respect to the servers and applications it tries to 
protect. I t could therefore be easily integrated into existing 
OS and applications or implemented in separate network de
vices, either on dedicated machines or network appliances. 

Categories and Subject Descriptors 
G.2.0 [ C o m p u t e r - C o m m u n i c a t i o n N e t w o r k s ] : General— 
Security and protection 

General Terms 
Experimentation, Measurement, Performance, Security 

Keywords 
Denial of Service, Degradation of Service, SYN flood 
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1. INTRODUCTION 
Denial-of-service attacks have been plaguing the Internet 

for more than a decade. They have been a topic of much 
research for almost as long. Much has been done and wri t ten 
about modelling them and about potential counter-measures 
against them (see [1, 2] for complete surveys on the topic). 

The amount of effort or resources expended by the at
tacker (whether bandwidth, expendable source IP addresses 
or even individual botnet machines) to at tack a single tar
get, is in most cases negligible compared to the amount of 
resources the defender would have to spend to maintain an 
equivalent availability of service. Previous work [3, 4] has 
tried to discuss and formalise such tradeoffs, and several 
counter-measures based on protocol modifications have been 
proposed to t ry to t ip these tradeoffs in favour of the defend
ers. However, it is commonly assumed amongst security ex
perts tha t with the current availability of botnets from which 
to launch these attacks, there is little one can do to prevent 
a single target from becoming completely flooded and hence 
unavailable: the tradeoffs are just hopeless. Nonetheless, in 
the context of large-scale orchestrated DoS campaigns such 
as the recent one in Estonia (see [5] for a very informative 
and quanti tat ive technical summary) , potentially involving 
hundreds or even thousands of targets , such tradeoffs might 
not be so advantageous to an attacker with finite resources. 
In addition, it is not only necessary to understand the trade
offs in the context of crippling DoS attacks, where the target 
is reduced to 0% availability, bu t also the tradeoff between 
resources expended to degrade to or maintain an equiva
lent quality of service (QoS). In other words, these resource 
tradeoffs must also be understood in the context of Degrada
tion of Service at tacks [6, 1], where the objective is not nec
essarily to make a target completely unavailable bu t ra ther 
substantially decrease its QoS. 

In previous work [7], we have explored these tradeoffs be
tween timeout adjustment counter-measures and flooding 
attacks on connection-oriented protocols, the quintessencial 
example of which is the SYN-flood attack on TCP. The main 
interest of such counter-measures is tha t they can in princi
ple be implemented in a t ransparent fashion by simple con
figuration adjustments, -without extra hardware or software, 
and are complementary to the many other SYN-flood protec
tion measures t ha t have been developed and commercialised. 

We describe in the next section the various counter-meas
ures we studied and the at tack models against which we 
evaluated their QoS maintenance performance. We report 
on the lab experiments we have performed in Sect. 3, describ
ing laboratory setup, implementation details and testing and 
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measurement methodologies. We describe the experimental 
results and compare them with the theoretical results pre
viously obtained in Sect. 4. We discuss the limitations and 
practical applicability of our work in Sect. 5, and summarise 
our findings and conclude in Sect. 6. 

2. PREVIOUS WORK 
In these attacks, the defender resources being expended 

are available slots in a pending connection queue, while 
the attacker resources are numbers of connection attempts 
(e.g. SYN packets sent, in the case of SYN flood). The mea
sure of QoS is the percentage of legitimate connection at
tempt requests that get serviced by the target. In [7] we con
sidered the relative performance of various queue manage
ment strategies with respect to maintaining this QoS mea
sure. In particular, since illegitimate connection that make 
it to the queue never get completed (e.g. because the cor
responding ACK packets are never sent by the attacker), it 
would seem intuitive that lowering the timeout values when 
the queue is under attack would result in more illegitimate 
request being flushed out than legitimate ones. On the other 
hand, increasing it again when the queue empties out would 
prevent unadvertently flushing out legitimate connections 
when no longer under attack. With this in mind, we consid
ered three types of strategies for adjusting timeout values: 

A. The traditional fixed timeout strategy, where the time
out is always the same, regardless of queue occupation. 

B. The threshold strategy where the timeout changes be
tween two fixed values, as the number of connections in 
the queue crosses a pre-defined threshold. This coarse-
grain adjusment method is not new and is already im
plemented in the TCP stack of some operating systems 
(OS), e.g. Microsoft Windows Server 2003 [8]. 

C The linear method, a straightforward generalisation 
of the former, where the timeout value is determined 
according to a linear function depending on the num
ber of connections in the queue, with two pre-defined 
empty- and full-queue timeout values. 

Furthermore, we considered two timeout enforcement meth
ods for flushing connections from the queue when the time
out is dynamically adjusted: 

1. The deterministic method, where the expiry time for 
each connection is deterministically set when the con
nection arrives in the queue. 

2. The deferred method, where connections in the queue 
are continuously polled, and flushed if they have been 
in the queue longer that the current timeout value. 

Finally, two attack models were considered: 

I. the Poisson attack model, a simpler albeit not very 
realistic model, where the interarrival times of illegiti
mate connection attemps follow an exponential (i.e. a 
Poisson model) distribution. 

II. the burst attack model, where illegitimate connection 
requests arrive in (almost) instantaneous bursts of a 
fixed number of attempts, with burst spaced at a fixed 
burst interrarival time (BIT). 

Using Markov chain-based queue models (in the case of 
Poisson attacks) and a custom-built event-driven simulator 
(for both types of attacks), we were able to verify that: 

i. For all strategies and methods, the tradeoff between at
tack rate (connection attempts per second) and server 
queue size is essentially linear. Because of this tradeoff, 
the only parameter that significantly influences QoS 
degradation, for a fixed strategy and method, is the 
ratio between attack rate and queue size, which we 
called the relative attack virulence.1 

ii. Fine-grained timeout adjustment (linear) always out
performs coarse-grained (threshold) adjustment, and 
the latter outperforms the fixed timeout strategy. 

iii. The deferred method generally performs better than 
the deterministic one, except for the case of the linear 
deferred which performs worse than the linear deter
ministic method for burst attacks. 

iv. In the case of burst attacks, some strategies and meth
ods are quite sensitive to attack parameter optimisa
tions. In particular, the lowest QoS for each defensive 
strategy is achieved when the BIT is set such that the 
queue is filled with a single burst. We called this phe
nomenon the queue resonance effect. 

These results, if confirmed in real-life settings, would be 
of high practical interest. They would indicate how sim
ple choices in queue management algorithms could result 
in dramatic improvements in resilience against QoS degra
dation attacks. Of course, this is only true for attack vir
ulences that are not too low or not too high, i.e. attacks 
whose virulence is within the window of interest, since for 
attacks outside this window the QoS degradation is equally 
negligible or overwhelming, for all strategies. Therefore, we 
enunciate the following hypothesis based on the theoretical 
evidence of [7]: 

Main Hypothesis. Within the window of interest (attack 
virulences between 1/8 and 8 s _ 1) , finer-grained time
out adjustment strategies using the deferred method 
will always perform better against SYN-flood attacks 
than those using coarser-grained adjustment or the de
terministic method. 

Until we can verify this hypothesis for real-life networks, 
we have to content ourselves with gathering supporting ev
idence from testing on laboratory networks. The setup and 
methodology we used to do so in the case of SYN-flood at
tacks is described in the next section. 

3. EXPERIMENTAL SETUP AND TESTING 
METHODOLOGY 

The five components of our experimental setup are the 
following: 

1. The attack traffic generator, generating illegitimate 
SYN packets on the network. 

2. The legitimate traffic generator, attempting to estab
lish fully fledged TCP connections. 

'intutively, the attack virulence indicates how many times 
per s the attack could fill the queue, if there were no legiti
mate requests and a very low timeout value. 
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3. The server, whose T C P stack half-open connection 
queue is being flooded. 

4. The Queue Guardian (QG), a separate application whose 
role is to protect the server queue. 

5. The network, on which bo th kinds of traffic travel. 

3.1 Attack Traffic Generator 
For this component, we used the IXIA 400T, a special 

purpose traffic generator chassis, built for performance and 
conformance test ing of network applications. T h e model we 
used has four separate Ethernet ports , capable of generating 
traffic up to 1 Gbps each. 

In order to generate the two types of malicious traffic we 
wanted to test (Poisson and burs t ) , we used the IxExplorer 
application tha t runs on the IXIA hardware. Since neither 
the hardware nor the software can natively generate Poisson 
traffic, this type of at tack was synthesised by cyclically se
quencing 255 different modes, each mode consisting in send
ing one single SYN packet. For each attack rate, pauses be
tween modes were statically set to random values following 
an exponential distribution. We performed a Kolmogorov-
Smirnov test on the inter-arrival times of the IxExplorer-
generated traffic measured on the server. The maximum 
difference between the theoretical exponential and the ob
served cumulative distribution functions (CDF) was as low 
as 0.12 for an at tack of 1000 packets/s , which confirms tha t 
the traffic follows the Poisson process model closely. 

For burst traffic, we ran experiments with different BIT 
values, where the number of packets in a burst was chosen 
so tha t overall a t tack ra te remained the same for all ex
periments. IxExplorer allowed us to generate burst at tack 
traffic using only one mode, the burst mode, for BIT < 8s. 
For burst at tacks with BIT > 8s, several modes were se
quenced, each mode sending an entire burst followed by one 
or several "pause" modes. In the first case, we were able to 
script several experiments a t various BIT values, one after 
the other. A pause at least as long as the server's largest 
t imeout value was inserted between attacks in order to pre
vent the experiments results from being contaminated by 
previous ones. 

3.2 Legitimate Traffic Generator 
We used a home-made C + + application to generate the 

legitimate traffic necessary for successful T C P handshake. 
Both the SYN and ACK messages were sent with exponen
tially distributed inter-arrival times. Contrary to T C P stack 
implementations in s tandard OS, this test application will 
not send a SYN retry message if there is no response from 
the server. This was a deliberate choice meant to keep the 
connection a t t empt ra te constant and independent of the 
connections complete rate . For performance measuring pur
poses, all the legitimate SYN messages came from the same 
IP address. This address is discriminated only when count
ing the total number of legitimate connection a t tempts . Af
ter a T C P handshake is completed, the application will send 
a RST message in order to free the connection on the server 
side. We deployed the legitimate traffic generator on a dedi
cated machine running Gentoo Linux, with 2 GB of memory. 

The server whose T C P stack is flooded is also a Gentoo 
Linux, with 2 GB of memory, which allowed us to experi
ment with queue sizes up to 16384. 

3.3 Queue Guardian (QG) 
Rather than modifying the T C P stack kernel code, which 

is neither easy nor practical in real-life deployments, we 
chose to implement the dynamic t imeout strategies on a sep
arate application, in a manner t ransparent to the server and 
the legitimate clients. The QG has four different roles: 

1. It maintains an up-to-date mirror of the server queue. 
This is achieved by sniffing the network connection and 
interpreting packets being send and received by the 
server. We used the l i b p c a p library to sniff all IP 
packets on the network. 

2. It drops connections from the mirror queue, according 
to the chosen timeout adjustment strategy and con
nection expulsion method. 

3. I t forces the server queue to drop the same connec
tions tha t were dropped from the mirror queue. This 
is achieved by sending RST packets to the server. The 
IP and T C P headers are spoofed so t ha t the message 
appears to come from the original client. In order to 
send the spoofed RST packets at high speeds, this role 
was implemented using raw sockets. 

4. It regularly logs the s tate of the queue, as well as the 
number of different types of packets sniffed on the net
work. This log is used later for evaluating the perfor
mance of the timeout strategy under test. 

For the deterministic method, we used a priority queue 
implemented as a red-black tree to store the connections, or
dered by their expiration time. When all legitimate connec
tions get served, the complexity of the algorithm is 0 ( log cNm 

+ cNi), where c is the size of the server queue and Nm and 
Ni are the number of SYN-ACK responses sent to malicious 
and legitimate SYN packets, respectively. In the deferred 
method, only the oldest connection in the queue needs to 
be analysed: if it is present in the queue for longer than the 
current t imeout, it will be dropped from the queue. Hence, 
a single FIFO ring-buffer can be used to implement this 
method. When all legitimate connections get served the 
complexity of the algorithm is 0(Nm + cA^). In practice, 
however, the legitimate connections are almost always at 
the end of the queue so only Nm + JVj atomic operations 
need to be performed. Finally, and for performance reasons, 
we chose to implement each of these four roles in a separate 
thread in the QG application. The QG is run on a separate 
machine, based on a Intel Core 2 Duo processor a t 2.16 GHz. 

3.4 Network Setup 
A 16-port gigabit switch (Linksys SRV-2016) was used t o 

connected all these components together. The legitimate 
traffic generator machine, the server and the IXIA traffic 
generator were each connected to a separate port on the 
switch. For sniffing purposes, the QG machine was con
nected on a switch por t setup to mirror the server port . For 
sending RST packets, a separate card on the QG machine 
was connected t o another network port on the switch. Other 
deployment schemes are possible as well and we will discuss 
them in Sect. 5. Fig. 1 illustrates the network connections 
between the components we have used. 

3.5 Testing Methodology 
In all the experiments we ran, the following steps were 

followed in sequence: 



Queue Guardian 

Figure 1: Experimental lab network setup 

1. The server queue size was configured with the value 
required for testing. 

2. The server timeout was configured to be at least as 
long as the longest timeout on the QG. This way, all 
the connections drops were triggered by the QG. 

3. The legitimate connection traffic generator was started 
with the connection arrival and connection completion 
rates required for testing. 

4. The QG was configured with the required parameters 
and started. 

5. The attack traffic parameters were configured in IxEx-
plorer. 

6. The attack was started and the experiment was run 
during a period of time ten times longer than the longest 
timeout on the QG. 

7. The connection success rate was computed based on 
the QG's log. 

Connection completions correspond to ACK messages being 
sent to the server. Legitimate connection attempts corre
spond to SYN messages being sent from the legitimate IP 
address. The connection success rate was computed as the 
ratio between the connections completed and the legitimate 
connection attempts during the attack. 

4. RESULTS AND ANALYSIS 
We measured the performance of the two dynamic timeout 

strategies, threshold and linear, along with the fixed timeout 
strategy for comparison purposes. For the dynamic strate
gies, we tested both the deterministic and deferred methods 
of assigning timeouts to connections. We compare these re
sults with those obtained in a previously built home-made 
traffic simulator (described in [7]) that implements these 
strategies. The attack traffic was generated using both mod
els described above. In both cases we tested the attacks 
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—Exp. Linear Deterministic 
- E x p . Threshold Deferred 
HExpJLinear Deferred 

- E x p . Fixed Timeout 
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Figure 2: Legitimate connection complete rate (y-
axis) for various strategies, with fixed queue size 
c = 128, legitimate traffic rate 100 packets/s, mean 
service time 0.2 s, initial and final timeout values 10 
s and 0.2 s, respectively, for various Poisson attack 
virulences (x-axis). 

against a small queue size of 128 and a more reasonable 
queue size of 1024. 

4.1 Poisson attacks 
In the case of Poisson attacks, we explored virulences from 

0.015 to 8 s"1. The corresponding attack speeds varied from 
2 to 1024 packets/s when testing against a queue size of 128, 
and from 32 to 8192 packets/s when testing against a queue 
size of 1024. The legitimate connection attempt rate was 10 
packets/s and the mean RTT time for the legitimate traffic 
was 200 ms (as observed experimentallly in [9]). The fixed 
timeout strategy used a timeout value of 10 s and the dy
namic timeout strategies used empty- and full-queue timeout 
values of 10 s and 200 ms, respectively. Results for the tests 
against a queue size of 128 are shown in Fig. 2. 

Overall, the experimental results are very similar to the 
simulation results. The average difference between the sim
ulation and experimental results is 2%. The greatest dis
crepancy (17%) was measured for the linear deterministic 
strategy faced with an attack of virulence 8 s _ 1 against a 
queue size of 1024. 

As anticipated from the simulations, results for low and 
high virulences are not interesting. For low virulence values 
(< 0.05s-1) the attack is not strong enough to degrade QoS 
at the the server, even when using the fixed timeout strat
egy. For very high virulence values (> 8s - 1 ) the attack is 
so strong that none of the dynamic timeout strategies can 
maintain a connection success rate greater than 50%. In be
tween these values, the window of interest, several conclu
sions can be drawn that confirm previous theoretical results. 

First, the dynamic timeout strategies perform better or 
equivalent than the fixed timeout strategy. We measured 
differences of up to 85% between the linear deferred strat
egy and the fixed timeout strategy, and up to 50% between 
the threshold deterministic and the fixed timeout strategy 
around virulences of 1 s _ 1 . Second, the deferred technique 
always performs better than the deterministic technique. 
Differences up to 30% can be observed between the deferred 
and the deterministic techniques around virulences of 2 s_ 1 . 
This is due to the fact that the deferred technique is more 
reactive, deciding whether a connection should expire or not 
based on the current status of the queue, as opposed to the 



« A 

0.5 s-

2 s => burst size = queue size 

Virulence 
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s ta tus of the queue at the time of the connection arrival in 
the case of the deterministic technique. Third, the linear 
t imeout strategy performs bet ter than the threshold time
out strategy with the exception of the deterministic tech
nique for virulence values greater t han I s - 1 . The threshold 
strategy has an overprotective behaviour when faced to an 
attack, and this seems to correct some of the delayed reac
tivity of the deterministic technique for medium and high 
virulence values. 

4.2 Burst attacks 
In order to s tudy the generality of these results with re

spect to different at tack types we also used a deterministic 
process to generate bursts attacks. A virulence of 0.5 s ^ 1 

was chosen, which corresponds to at tack rates of 64 and 512 
packets/s when testing against queue sizes of 128 and 1024, 
respectively. The average connection success rates over 9 ex
perimental runs and their corresponding s tandard deviation 
for the queue of size 128 are illustrated in Fig. 3. The verti
cal black line a t BIT = 0.015625 s in Fig. 3 represents t ha t 
the packet inter-arrival t ime is the same as the mean packet 
inter-arrival t ime in the Poisson experiments a t virulence 
0.5 s _ 1 , marked by the vertical black line in Fig. 2. The 
dashed black vertical line at BIT = 2s in Fig. 3 marks the 
point where one single burst would fill up an empty queue 
entirely. Fig. 4 offers a three-dimensional illustration of the 
correspondence between the Poisson and the burst figures. 

Two "phases" can be observed when analysing the burst 
at tack results. The "liquid phase", a t the leftmost par t of 
the figures, with BIT < 2s, corresponds to at tack traffic 
bursts smaller t han the queue size. The "solid", rightmost 
phase, for BIT > 2s, corresponds to at tack traffic bursts 
greater t han the queue size. The resonance effect is created 
at BIT = 2s, corresponding to bursts of the same size as 
the server queue. In simulations, the fixed t imeout strategy 
performance is practically null at this value. This is due 
to the fact t ha t the simulated at tack and legitimate traffic 
start a t the same t ime and the at tack burst instantly fills 
up the entire queue. During a period of 10 s, equal to the 
t imeout value, the queue is full and no legitimate connec
tion a t tempts can be processed. After this period, exactly 
after the malicious connections are dropped from the queue, 

the following burst arrives and fills up all the queue once 
again. This happens when the burst traffic is perfectly syn
chronized with the queue timeout, as is the case with the 
simulator. In experiments, however, we do not observe the 
same behaviour. 

First of all, the legitimate traffic and the malicious traf
fic are not synchronised. By the t ime the first a t tack burst 
arrives, around three slots in the queue are already used by 
legitimate connection a t tempts , so three of the at tack pack
ets are discarded by the server. During a period of 10 s, 
only the number of slots used by legitimate connection at
tempts a t the t ime the first burst arrived will be available. 
However, because there are only 10 legitimate connection at
tempts per second, and because the legitimate connections 
complete rather quickly (5 every second), the few free slots 
in the server queue are enough for a large percentage of legit
imate connection a t tempts to complete. Furthermore, in ex
periments, the burst are never instantaneous due to packet 
transmission times and eventual collisions in the Ethernet 
network. This allows for legitimate connection a t tempts to 
infiltrate the burst and thus reduce the burst efficiency for 
the attacker. Due to the above mentioned factors, we can 
say tha t the network acts as a "low-pass filter" thus greatly 
diminishing the resonance effect. In simulations, the fixed 
timeout strategy is influenced by the resonance effect with 
"harmonics" a t BIT = 2~ks, for k — {0..5}. In experiments, 
however, the resonance effect is absorbed by the network. 
The only two strategies t ha t seem to be slightly affected by 
the resonance effect in experiments, are the linear determin
istic and the threshold deferred t imeout strategies, and this 
only for the harmonic a t BIT = I s . 

Is it important to note tha t the deferred method, which 
performs bet ter t han the deterministic one, is also more ro
bust and consistent, having lower s tandard deviation values. 
The fixed t imeout strategy, on the other hand, is the most 
unstable, bo th in simulation and in experiments, with max
imum standard deviation values of over 10%. 

5. LIMITATIONS AND FUTURE WORK 
Although the dynamic timeout strategy implementations 

have a low CPU overhead, there are two limitations t ha t pre
vented us from testing higher at tack rates and queue sizes. 

The first limitation is due to the network architecture 
we implemented. The malicious SYN packets and the QG-
generated RST packets are sent through the same switch and 
thus, at high at tack rates, some RST packets are dropped 
by the switch due to Ethernet collisions. This creates a 
cumulative difference in the size and content of the mirror 
queue compared to the server queue. For example, an aver
age of 0.3% of the resets sent by the QG are dropped by the 
switch for an at tack rate of 8192 packets/s , which is equiv
alent to 6.65 Mbps. For at tack rates higher than 8 Mbps 
the RST packet loss is so significant tha t the QG's mirror 
queue is completely corrupt in a mat te r of seconds. This 
limitation can be overcome by using a different network ar
chitecture, where the QG would be deployed either directly 
on the server or on a network appliance directly connected 
to the server, while still preserving the transparency to bo th 
the server application and OS and the legitimate clients. 

The second limitation is due to C P U consumption on the 
QG machine. When using the deterministic technique to 
protect a queue size of 1024 with 10 legitimate connection 
a t t empts per second against an at tack of 6.65 Mbps, the 
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Figure 3: Legitimate connection complete rate and standard deviation (y-axis) for various strategies, with 
fixed queue size c = 128, legitimate traffic rate 100 packets/s, mean service time 0.2 s, initial and final timeout 
values 10 s and 0.2 s, respectively, virulence 0.5 s~l for various burst inter-arrival times (x-axis), over 9 runs. 

average CPU usage was of 9%. The deferred technique con
sumed in average 8% of the CPU, for the same attack pa
rameters. Most of this CPU time is spent in kernel mode, 
handling the sending and sniffing of IP packets. We ignored 
the previous architectural limitation of RST packets loss and 
managed to reach attack rates as high as 300 Mbps for the 
deterministic method and 62 Mbps for the deferred method, 
compiled in debug mode, before the approaching 100% CPU 
usage, and hence starting to miss some of the packets that 
traverse the network. It is our belief that a more powerful 
machine should be able to handle up to gigabit attack traffic. 

6. CONCLUSIONS 
In this paper, we tested the hypothesis that within the 

window of interest (attack virulences within 1/8 and 8 s _ 1 ) , 
finer-grained timeout adjustments strategies using the de
ferred method perform better than ones using coarser-grained 
adjustment or the deterministic method. We implemented 
both a fine-grained, linear and a coarse-grained, threshold 
dynamic timeout adjustment strategy in their deterministic 
and deferred variants. The performance measures obtained 
in these laboratory experiments for the different strategies 
against Poisson attack traffic was consistent with the per
formance measures against Burst traffic. First, that using 
a dynamic timeout strategy is always a good idea. Second, 
that the deferred method performs better than the deter
ministic technique, and has slightly lower CPU usage, due 
to having a lower algorithmic complexity. Third, the lin
ear, fine-grained timeout adjustment strategy performs bet
ter than the threshold, coarse-grained timeout adjustment 
strategy when in their deferred implementation. Finally, the 
resonance effect that we expected when testing against burst 
attack traffic is very limited in experiments, due to network 
delays created by network equipment buffers, Ethernet col
lisions and non-instantaneous packet send times. 
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