156 research outputs found

    Mitigation of Side-Effect Modulation in Optical OFDM VLC Systems

    Full text link
    Side-effect modulation (SEM) has the potential to be a significant source of interference in future visible light communication (VLC) systems. SEM is a variation in the intensity of the light emitted by a luminaire and is usually a side-effect caused by the power supply used to drive the luminaires. For LED luminaires powered by a switched mode power supply, the SEM can be at much higher frequencies than that emitted by conventional incandescent or fluorescent lighting. It has been shown that the SEM caused by commercially available LED luminaires is often periodic and of low power. In this paper, we investigate the impact of typical forms of SEM on the performance of optical OFDM VLC systems; both ACO-OFDM and DCO-OFDM are considered. Our results show that even low levels of SEM power can significantly degrade the bit-error-rate performance. To solve this problem, an SEM mitigation scheme is described. The mitigation scheme is decision-directed and is based on estimating and subtracting the fundamental component of the SEM from the received signal. We describe two forms of the algorithm; one uses blind estimation while the other uses pilot-assisted estimation based on a training sequence. Decision errors, resulting in decision noise, limit the performance of the blind estimator even when estimation is based on very long signals. However, the pilot system can achieve more accurate estimations, thus better performance. Results are first presented for typical SEM waveforms for the case where the fundamental frequency of the SEM is known. The algorithms are then extended to include a frequency estimation step and the mitigation algorithm is shown also to be effective in this case

    A novel OFDM format and a machine learning based dimming control for lifi

    Get PDF
    This paper proposes a new hybrid orthogonal frequency division multiplexing (OFDM) form termed as DC‐biased pulse amplitude modulated optical OFDM (DPO‐OFDM) by combining the ideas of the existing DC‐biased optical OFDM (DCO‐OFDM) and pulse amplitude modulated discrete multitone (PAM‐DMT). The analysis indicates that the required DC‐bias for DPO‐OFDM-based light fidelity (LiFi) depends on the dimming level and the components of the DPO‐OFDM. The bit error rate (BER) performance and dimming flexibility of the DPO‐OFDM and existing OFDM schemes are evaluated using MATLAB tools. The results show that the proposed DPO‐OFDM is power efficient and has a wide dimming range. Furthermore, a switching algorithm is introduced for LiFi, where the individual components of the hybrid OFDM are switched according to a target dimming level. Next, machine learning algorithms are used for the first time to find the appropriate proportions of the hybrid OFDM components. It is shown that polynomial regression of degree 4 can reliably predict the constellation size of the DCO‐OFDM component of DPO‐OFDM for a given constellation size of PAM‐DMT. With the component switching and the machine learning algorithms, DPO‐OFDM‐based LiFi is power efficient at a wide dimming range. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    BER performance study for optical OFDM of optical camera communication

    Get PDF
    In this article, different forms of optical orthogonal frequency division multiplexing (OFDM) were observed which were suitable for optical camera communication (OCC) systems. This research aims to establish the bit error rate (BER) versus signal-to-noise ratio (SNR) of the OCC system. This research will focus on OCC systems and the design that produces the noise of the clipping but will gain SNR as a whole if an optimum clipping factor is chosen. The BER versus SNR analysis was investigated for the different clipping factors 0.7, 1.4, and 2.6. The BER performance of the asymmetrically clipped optical OFDM (ACO-OFDM) was also compared with the direct current optical OFDM (DCO-OFDM) to show the suitable effectiveness of the proposed approach. ACO-OFDM was considered to be better due to lower bit loading, but DCO-OFDM was efficient for higher SNR values. This was because the DC bias used was inefficient in terms of optical capacity, while ACO-OFDM used only half of the subcarriers to transmit the information. Moreover, ACO-OFDM two-dimensional half-subcarriers of mapping rule would introduce the clipping noise to its unused 2D subcarriers, although further data can be provided by the 2D DCO-OFDM mapping rule

    Downlink Performance of Optical OFDM in Outdoor Visible Light Communication

    Get PDF
    Visible light communication (VLC) is a promising ubiquitous design alternative for supporting high data rates. Its application has been primarily oriented to indoor scenarios, but the proliferation of light-emitting diodes in the streets warrants its investigation in outdoor scenarios as well. This paper studies the feasibility of VLC in a conventional outdoor scenario, when optical orthogonal frequency division multiplexing techniques are employed. The presence of sunlight reduces the system's performance, hence sophisticated adaptive techniques must be applied. Closed-form expressions of the signal-to-noise ratio and of the mean cell data rate are derived and our simulations demonstrate their accuracy. Besides, the outage probability when adaptive modulation and coding schemes are employed is analytically expressed. It is shown that, when modulation bandwidth adaptation is carried out depending on the time of day and the illuminance from ambient light, the mean cell data rate is increased and the outage probability is reduced.This work was supported in part by the Spanish National ELISA Project under Grant TEC2014-59255-C3-3-R, the TERESA-ADA Project under MINECO/AEI/FEDER, UE Grant TEC2017-90093-C3-2-R and the 5RANVIR Project under MINECO/AEI/FEDER, UE Grant TEC2016-80090-C2-1-R. The work of B. Genovés Guzmán was supported by the Spanish MECD FPU Fellowship Program. The work of M. C. Aguayo-Torres was supported by the Universidad de Málaga. The work of H. Haas was supported in part by EPSRC through the Established Career Fellowship Extension under Grant EP/R007101/1 and in part by the Wolfson Foundation and the Royal Society. The work of L. Hanzo was supported in part by EPSRC under Project EP/Noo4558/1 and Project EP/PO34284/1, in part by the Royal Society's GRFC Grant, and in part by the European Research Council's Advanced Fellow Grant QuantCom

    Visible light communication using new Flip-FBMC modulation system technique

    Get PDF
    Filter bank multi-carrier (FBMC) modulation in the visible light communication (VLC) system is one of the most promising modulation systems in optical wireless communications (OWC), especially in 5G and 6G future applications. FBMC has a wide bandwidth compared to other modulation systems. One of the highest degree essential conditions for utilising the signal in VLC is that the signal is real positive, the signal is agreeable with intensity modulation/direct detection (IM/DD), where Hermitian symmetry (H.S) is utilised to get a real signal (RE) and to be unipolar direct current (DC)-bias is used. Here the challenge arises as this method increases complicating, due to the modulation of the N number of frequency symbols, these symbols need 2N inverse fast fourier transform (IFFT) and fast fourier transform (FFT), in addition to energy consumption. This research focused on the time domain and not the frequency domain by using the traditional complex FBMC generation signal, and to obtain the RE signal by placing the RE signal side by side with the imaginary signal (IMs) in a row, and then using new Flip-FBMC technology, which saves more energy. The proposed technologies provide approximately 57% of the number of IFFT/FFT. The use of Flip-FBMC technology consumes less energy than traditional technologies with better bit error rate (BER) performance
    corecore