3,686 research outputs found

    Automatic summarization of rushes video using bipartite graphs

    Get PDF
    In this paper we present a new approach for automatic summarization of rushes, or unstructured video. Our approach is composed of three major steps. First, based on shot and sub-shot segmentations, we filter sub-shots with low information content not likely to be useful in a summary. Second, a method using maximal matching in a bipartite graph is adapted to measure similarity between the remaining shots and to minimize inter-shot redundancy by removing repetitive retake shots common in rushes video. Finally, the presence of faces and motion intensity are characterised in each sub-shot. A measure of how representative the sub-shot is in the context of the overall video is then proposed. Video summaries composed of keyframe slideshows are then generated. In order to evaluate the effectiveness of this approach we re-run the evaluation carried out by TRECVid, using the same dataset and evaluation metrics used in the TRECVid video summarization task in 2007 but with our own assessors. Results show that our approach leads to a significant improvement on our own work in terms of the fraction of the TRECVid summary ground truth included and is competitive with the best of other approaches in TRECVid 2007

    Towards key-frame extraction methods for 3D video: a review

    Get PDF
    The increasing rate of creation and use of 3D video content leads to a pressing need for methods capable of lowering the cost of 3D video searching, browsing and indexing operations, with improved content selection performance. Video summarisation methods specifically tailored for 3D video content fulfil these requirements. This paper presents a review of the state-of-the-art of a crucial component of 3D video summarisation algorithms: the key-frame extraction methods. The methods reviewed cover 3D video key-frame extraction as well as shot boundary detection methods specific for use in 3D video. The performance metrics used to evaluate the key-frame extraction methods and the summaries derived from those key-frames are presented and discussed. The applications of these methods are also presented and discussed, followed by an exposition about current research challenges on 3D video summarisation methods

    Statistical and Dynamical Modeling of Riemannian Trajectories with Application to Human Movement Analysis

    Get PDF
    abstract: The data explosion in the past decade is in part due to the widespread use of rich sensors that measure various physical phenomenon -- gyroscopes that measure orientation in phones and fitness devices, the Microsoft Kinect which measures depth information, etc. A typical application requires inferring the underlying physical phenomenon from data, which is done using machine learning. A fundamental assumption in training models is that the data is Euclidean, i.e. the metric is the standard Euclidean distance governed by the L-2 norm. However in many cases this assumption is violated, when the data lies on non Euclidean spaces such as Riemannian manifolds. While the underlying geometry accounts for the non-linearity, accurate analysis of human activity also requires temporal information to be taken into account. Human movement has a natural interpretation as a trajectory on the underlying feature manifold, as it evolves smoothly in time. A commonly occurring theme in many emerging problems is the need to \emph{represent, compare, and manipulate} such trajectories in a manner that respects the geometric constraints. This dissertation is a comprehensive treatise on modeling Riemannian trajectories to understand and exploit their statistical and dynamical properties. Such properties allow us to formulate novel representations for Riemannian trajectories. For example, the physical constraints on human movement are rarely considered, which results in an unnecessarily large space of features, making search, classification and other applications more complicated. Exploiting statistical properties can help us understand the \emph{true} space of such trajectories. In applications such as stroke rehabilitation where there is a need to differentiate between very similar kinds of movement, dynamical properties can be much more effective. In this regard, we propose a generalization to the Lyapunov exponent to Riemannian manifolds and show its effectiveness for human activity analysis. The theory developed in this thesis naturally leads to several benefits in areas such as data mining, compression, dimensionality reduction, classification, and regression.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore