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Abstract

In this paper1 we present a new approach for automatic summarization

of rushes, or unstructured video. Our approach is composed of three major

steps. First, based on shot and sub-shot segmentations, we filter sub-shots

with low information content not likely to be useful in a summary. Sec-

ond, a method using maximal matching in a bipartite graph is adapted

to measure similarity between the remaining shots and to minimize inter-

shot redundancy by removing repetitive retake shots common in rushes

video. Finally, the presence of faces and motion intensity are charac-

terised in each sub-shot. A measure of how representative the sub-shot

is in the context of the overall video is then proposed. Video summaries

composed of keyframe slideshows are then generated. In order to evalu-

ate the effectiveness of this approach we re-run the evaluation carried out

1The original publication is available at www.springerlink.com. DOI: 10.1007/s11042-009-
0398-1
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by TRECVid, using the same dataset and evaluation metrics used in the

TRECVid video summarization task in 2007 but with our own assessors.

Results show that our approach leads to a significant improvement on

our own work in terms of the fraction of the TRECVid summary ground

truth included and is competitive with the best of other approaches in

TRECVid 2007.

1 Introduction

Video summarization has recently become an active and popular research field,
partly because of the growth in video sharing on the internet, and the fact that
benchmark data and metrics for formal evaluation are now available through
TRECVid [Over et al., 2007], [Over et al., 2008]. Video summaries provide a
condensed version of a full-length video and should include the most important
content from within the original video. Summaries can be used in a range of dif-
ferent media applications including browsing and search, TV program editing,
and so on. A variety of approaches have been proposed for automatic sum-
marisation based on redundancy detection [Byrne et al., 2007], frame clustering
[Ferman and Tekalp, 2003], speech transcripts [Taskiran et al., 2006], and mul-
tiple information streams [Ma et al., 2002].

In 2007 and 2008, the National Institute of Standards and Technology (NIST)
in Gaithersburg, Md. USA, coordinated an evaluation of automatic video sum-
marization for rushes video, i.e. extra video, B-rolls footage, etc. This took place
as part of a larger video benchmarking activity with worldwide participation
which has been running since 2001, known as TRECVid [Smeaton et al., 2006].
The achievements of the dozens of participants in the TRECVid video sum-
marisation task were presented at two workshops held in conjunction with the
ACM Multimedia Conferences in Augsburg, Germany (2007) and in Vancou-
ver, Canada (2008). The overall video summarization task, the data used, the
evaluation metrics, etc., are described in two overview papers from those work-
shops [Over et al., 2007], [Over et al., 2008] and some of these details such as
the data used, are described later in this paper. Importantly, in the TRECVid
guidelines for rushes summarization, several criteria have been used for evalu-
ating the automatically generated summaries, including the fraction of ground
truth objects and ground truth events included by the summary (IN), the ease
of understanding the summary (EA), the time needed for subjective judgment
of the summary by an assessor (TT, VT), and the compactness of the summary
(DU, XD).

For our participation in this task in 2007, we used a keyframe-based approach
[Byrne et al., 2007] but it did not perform as well as expected, especially for the
IN and EA criteria. The inclusion results (IN) placed our approach (mean:
0.38; median: 0.38; best: 0.70) among the 5 lowest scoring participants. Our
low EA scores (mean: 2.53; median: 2.67) placed us second worst out of 25
participants. This poor performance encouraged us to undertake detailed failure
analysis and motivated us to re-analyze the characteristics of rushes videos and
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of how summaries for rushes should be generated.
There are two types of redundant information in rushes video. The first is

content such as clapperboards, color bars, monochromatic shots and very short
shots. This content is not related to the main content of the video and so is not of
value in a summary. The second type of redundant content is repetition of some
shots with near-identical material appearing in the second and subsequent shots.
During program production, the same shot is often taken many times because
an actor may fluff his/her lines or a director may want a second or subsequent
“take” in case there are errors which would only become apparent in the post-
production stage. A director may even slightly change the content of the original
video by adding or deleting lines or may change the angle of the camera, for
example. All these near-duplicates arise from the creative processes involved in
filming but nonetheless they do represent repeated and thus redundant material.
For summarization purposes, such re-taken shots should be detected and only
one of them kept, removing others from the final summary.

Our approach described in this paper is an enhancement on what we pro-
duced for TRECVid in 2007 and focuses on representative frames selection,
useless content detection and removal, re-take detection and content filtering
and ranking among the remaining selected shots. In order to select representa-
tive frames which represent video content with as much precision as possible,
we calculate the difference between consecutive frames based on color features
at the pixel level in each shot and we use a geometrical approach to select repre-
sentative frames. Although we don’t explicitly segment sub-shots, our method
for keyframe selection guarantees that representative frames in each sub-shot
are selected as both the sum of differences and length of the shot are consid-
ered. SVM classifiers are trained based on the TRECVid development data
to detect color bars and monochromatic frames which are regarded as having
no value in a video summary. Clapperboard clips are removed by an exist-
ing method for Near-Duplicate Keyframe (NDK) detection. After filtering this
non content-bearing material, we reduce inter-shot redundancy by removing
repeated retake-shots. Maximal matching based on the Hungarian algorithm
is then adopted to measure the similarity between retake shots at the level of
keyframes. Finally, we reduce the intra-shot redundancy of the remaining shots
in two steps:

1. We remove similar sub-shots by calculating the color similarity between
keyframes that represent sub-shots;

2. We detect the important content including the presence of a face and
motion intensity to score remaining keyframes and keep the keyframes
with higher score according to the time limitation requirements of the
final summary.

Figure 1 describes our overall approach to rushes summarization. First, a given
rushes video is structured into shots and sub-shots and useless sub-shots are
filtered (see Section 2 and Section 3). Then, overall inter-shot redundancy is
reduced by removing repetitive re-take shots (see Section 4). Finally, a measure
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Figure 1: Our approach to rushes video summarization

is proposed to score the presence of faces and motion for intra-shot redundancy
removal (see Section 5). We present a summary of our experimental results in
Section 6 and some conclusions in Section 7.

2 Video Structuring

Given the raw nature of rushes video and the fact that it has little structure or
organisation, the first thing we need to do is to structure it by detecting shots
and sub-shots and extract keyframes as representatives from each sub-shot. We
do this using shot detection, which we now describe.

2.1 Shot Detection

Since all rushes videos are unedited, hard cuts typically dominate the transitions
used because the cameraperson will switch off the camera between “takes” while
the next shot is being set up. For this reason, we focus only on detection of hard
cuts. In our work we use a mutual information measure between two successive
frames calculated separately for each RGB channel. The mutual information
between two successive frames is calculated separately for each of the R, G and
B channels. In the case of the R component, the element CR

t,t+1(i, j), 0 ≤ i, j ≤
(N − 1), N being the number of gray levels in the image, corresponds to the
probability that a pixel with gray level i in frame ft has gray level j in frame
ft+1. The mutual information of frame fk, fl for the R component is expressed
as:

IR
k,l = −

N−1
∑

i=0

N−1
∑

j=0

CR
k,l(i, j) log

CR
k,l(i, j)

CR
k (i)CR

L (j)
(1)

The total mutual information between frames fk and fl is defined as:

Ik,l = IR
k,l + IG

k,l + IB
k,l (2)
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A smaller value of the mutual information leads to a high probability of larger
difference in the content between two frames. Local mutual information mean
values on a temporal window W of size Nw for frame ft are calculated as:

It =

NW +t
∑

i=1

Ii,i+1

NW

(3)

The standard deviation of mutual information on the window is calculated as:

σI =

√

√

√

√

√

√

NW +t
∑

i=t

(Ii,i+1 − It)
2

N
(4)

The quantity
|It−It,t+l|

σI
is then compared to a threshold H , which represents

the mutual information variation at frame ft deviating from the mean value
and determines a boundary frame. The threshold H is set empirically based on
experimental results using a data set with annotated boundary frames. Essen-
tially, the mutual information used in our approach measures the relative change
value of color feature, which is not sensitive to the absolute difference value of
color feature. H could in theory be adapted for various different video types.
However, the rushes videos include many different video types and we found
that values of H for different video types are very close to each other in a large
number of experiments for boundary frame detection anyway. Assuming that
the video sequence has a length of N frames, the shot boundary determination
algorithm may be summarized as follows:

Step 1: calculate the mutual information time series It,t+1 with 0 ≤ t ≤
N −NW .

Step 2: calculate It and σI at each temporal window in which ft is the first
frame.

Step 3: if
|It−It,t+1|

σI
≥ H , frame ft is determined as a shot boundary.

We evaluated the effectiveness of this approach on the TRECVid development
data for shot boundary detection and it achieved an overall performance of
93.4% recall and 91.5% precision, which is acceptably close to the state of the
art [Smeaton et al., 2009].

2.2 Sub-shot Partition

In rushes video, each shot usually contains not only the scripted action, but also
other material that is not related to the story of whatever is being filmed, such
as camera adjustments, discussions between the director and actors, background
noise from the film crew as a shot is being set up, environmental noise, and un-
intentional camera motion. Furthermore, the scripted action usually contains
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varied content because of camera and/or object movements. In video summa-
rization, we aim to remove video segments not related to the storyline and to
include only selections from the remaining video segments. One keyframe for
each shot, however, is not sufficient for this purpose and so we partition each
shot into sub-shots corresponding to different content.

We split each frame into 8×8 pixel grids and calculate the mean and variance
of RGB color in each grid. fij is the feature vector of the jth grid in the ith
frame. Euclidean distance is used to measure the difference between neighboring
frames Fi and Fj as follows:

Diff(Fi, Fi+1) =
∑

j

||fij − f(i+1)j || (5)

Usually, in one sub-shot the cumulative frame difference
∑

i

Diff(Fi, Fi+1)

shows gradual change. High curvature points within the curve of cumulative
frame differences are likely to indicate the sub-shot boundaries and we exploit
this in our work. We denote the straight line passing through pi, pj as pipj ,
where pi, pj are the points on the curve of cumulative frame difference and i, j
are frame indexes. We define the distance between the point px on the curve
pipj and the line pipj as Dist(px, pipj). Let Px denote the projection of px on
the line pipj , so:

Px = pi + µ(pj − pi) (6)

where

µ =
(px − pi) • (pj − pi)

(pj − pi) • (pj − pi)
(7)

so that
Dist(px, pipj) = ||px − Px|| (8)

According to the definitions above, we propose a simple but efficient sub-shot
segmentation method as follows:

• Set the number of frames in shot S, NF= frames in shot S;

• For each point on the curve of cumulative frame difference p1pNF , cal-
culate the distance Dist(pk, p1pNF ). Seek the pointpk , which has the
maximum Dist(pk, p1pNF ). If Dist(pk, p1pNF ) > Cdist, mark pk as a
high curvature point.

• For each point on the curve pipk and pkpNF , calculate the distance and
find the point with maximum distance pk2pk3, if Dist(pk2, p1pk) > Cdist,
mark pk2 as a high curvature point; similarly if Dist(pk3, pkpNF ) > Cdist,
mark pk3 as a high curvature point.

• Update the curves to be processed as pk1, pk2, pk2pk . . . ; Repeat the cal-
culations above. If all distances calculated are smaller than Cdist, then
exit.
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S u b 0 s h o t 5

Figure 2: Illustration of sub-shot partitioning algorithm

• All high curvature points selected are sorted in order for sub-shot segmen-
tation boundaries.

Figure 2 explains this idea more clearly. After sub-shot partitioning, the keyframes
are selected as the midpoints between two consecutive high curvature points.

3 Removal of Non Content-Bearing or Useless

Video

In rushes video, some of the useless content captured consists of actions recorded
by the camera, and some consists of content inserted during video recording.
Examples of this useless content contained in rushes video are illustrated in Fig-
ure 3. These include color bars inserted for colour calibration, monochromatic
shots also inserted for calibration of the camera and to assist with metering light
levels, clapperboards used to create a visual record of the program, scene, shot
and other metadata, and shots which are very short, of the order of 1 second or
less. All of these should be removed from the video summary.

Figure 3: Examples of video content to be removed from the video summary
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Shots less than 1 second in duration are removed automatically. For shots
consisting of color bars and monochromatic shots, four MPEG-7 features includ-
ing color layout, scalable color, edge histogram and homogenous texture are ex-
tracted from all keyframes in the corresponding shots for all of the video, using a
commonly available platform known as the AceToolbox [O’Connor et al., 2005],
as follows:

• The scalable color descriptor from the MPEG-7 XM is extracted for each
keyframe. This is a Haar transform-based encoding scheme applied across
values of a uniform quantization of the HSV space to 256 bins, after a non-
linear mapping into a four-bit representation, giving higher significance to
small values. The Haar transform consists of a sum operation (a low-
pass filter) and a difference operation (a high-pass filter). Summing pairs
of adjacent lines results in a histogram with half the number of bins.
Performing this process iteratively, we obtain histograms of 128, 64, 32
and 16 bins respectively.

• The color layout descriptor is designed to capture the spatial distribution
of color in an image. By default, the input image is divided into 64 (8×8)
blocks and their average colors are derived (YCrCb color space). These
are then transformed into a series of coefficients by an 8×8 discrete cosine
transformation (DCT). A few low-frequency coefficients are selected using
zigzag scanning and quantized to form the description.

• The Canny algorithm [Canny, 1986] is used for edge detection in a multi-
stage process. First, the frame image is smoothed by Gaussian convolution
and a 2-D first derivative operator then highlights ridges. The algorithm
then tracks along the top of these ridges and sets to zero all pixels not
actually on the ridge top so as to give a thin line in the output. Finally,
we compute an edge direction histogram from the edge image.

• Homogeneous texture is based on the use of Gabor functions which are
sinusoidal modulated Gaussian. In a set, all filters are similar in the sense
that they can be generated from one filter (called the mother wavelet or
the basis wavelet) simply by translation, scaling and rotation. For this
reason the set of filters can be seen as a set of wavelets. Nevertheless, it
does not satisfy orthogonality and it is efficient for analysis but not for
reconstruction. On the other hand, it provides very good properties of
scale and rotation invariance. The frequency space is partitioned into 30
channels with 6 equal divisions in the angular direction (30 ◦ intervals)
and 5 octave divisions in the radial direction. The values of the stan-
dard deviation were chosen such that the contour sections of the Gaussian
envelopes coincide at their half magnitude.

Following low-level feature extraction, we use support vector machine (SVM)
classifiers, trained to recognize color bars and monochromatic shots. We em-
ploy the algorithm for Near-Duplicate Keyframe (NDK) detection described in
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[Ngo et al., 2006] to detect clapperboards. A set of 50 example keyframes of
clapperboards were extracted from the TRECVid development set. The re-
gions where clapperboards are present were manually annotated. Among the
keyframes of each shot in the given rushes video, we detect the key points and
match them with the example clapperboards. If enough matches are found that
lie in the annotated regions, the keyframe is detected as a clapperboard and
removed.

4 Re-take Shot Detection and Removal

As mentioned earlier, in rushes the same scene can be re-shot many times in
order to eliminate actor or filming mistakes. In such cases, the re-taken shots
should be detected automatically and the most satisfactory one kept, remov-
ing the others from the final summarization. Rows 1, 2 and 3 in Figure 4
show the keyframes extracted from three re-taken shots in rushes test video ID:
MRS044500.

Figure 4: Examples of re-taken shots from rushes video

We assume that the similarity between shots can be measured according
to the similarity of keyframes extracted from corresponding shots. Thus, the
re-taken shots are detected by modeling the continuity of similar keyframes.
Motivated by maximal matching in bipartite graphs, we propose an approach
for similarity detection between video shots based on this matching technique.

The key for re-take shot detection is how to measure the similarity between
two shots. The detailed motivation of our approach is, firstly, that shot similar-
ity should be measured by sub-shot similarity relationships because the re-take
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shots in rushes video are frequent, the content is complex, and using sub-shots
can represent video content more precisely compared with using one keyframe
for one shot. The bipartite graph is used to model the sub-shot similarity re-
lationships and maximal matching in bipartite graphs is used to measure the
similarity between the shots. Our second motivation is based on the fact that
the content in one sub-shot is consistent, and so it iss appropriate to extract
one keyframe to represent a corresponding sub-shot. We calculate the similar-
ity between two keyframes to measure the similarity between the corresponding
sub-shots. Keyframe similarity is calculated according to the difference among
the spatial color histogram and texture features between two keyframes.

A bipartite graph is a connected undirected graph such that the vertices of
G are partitioned into two sets X and Y and every edge of G has one end point
in X and the other in Y . Matching M in G is a set of edges that have no end
points in common. The maximum bipartite matching problem is how to find a
matching with the greatest number of edges over all matchings.

According to the definitions of bipartite graphs and maximum matching,
a shot can be expressed as: S = {k1, k2, . . . , kn}, where ki represents the ith

keyframe. So, for two shots, Sx = {kx1, kx2, . . . , kxn} and Sy = {ky1, ky2, . . . , kyn},
the similar keyframes between Sx and Sy can be expressed by a bipartite graph
G = {Sx, Sy, E}, where V = Sx ∪ Sy, E = {eij}, indicates kxi is similar to
kyj. Figure 5 illustrates two examples of bipartite graphs for retake-shot 1,
retake-shot 2 and retake-shot 3, those shots introduced in Figure 4.k x 1 k x 2 k x 3 k x 4 k x 5 k x 6 k x 7 k x 8

k y 1 k y 2 k y 3 k y 4 k y 5
(a)

k x 1 k x 2 k x 3 k x 4 k x 5
k y 1 k y 2 k y 3 k y 4 k y 5 k y 6 k y 7

(b)

Figure 5: Two examples of bipartite graphs for re-taken shots from Figure 4:
(a) shot 1 and shot 2; (b) shot 2 and shot 3

Clearly, there exist many similar pairs of keyframes between pairs of re-
taken shots. In our experiments however, we also find there often exist similar
keyframes within the one retaken-shot. This results in one-to-many, many-to-
one and many-to-many relations in a bipartite graph. In this case, there will be
many similar keyframe pairs found between two dissimilar shots. The bipartite
graph between retake-shot 3 and a different shot shown in Figure 5 illustrates
such a case in Figure .

If we use the number of similar keyframe pairs to determine which are the
retake-shots, 4 similar keyframe pairs are found in the Sx shot shown in Figure
6 and exceed half of the keyframes in Sx. In this case, Sx is likely determined
to be similar to Sy, whilst this is not the case in practice.
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k x 1 k x 2 k x 3 k x 4 k x 5
k y 1 k y 2 k y 3

k x 6 k x 7
Figure 6: A bipartite graph between two dissimilar shots

In our approach, the similarity between two shots is measured by the maxi-
mal matching of similar keyframes in the bipartite graph model. The Hungarian
algorithm [Dai et al., 1995] is used to calculate maximal matching M, M ⊆ E.
If M ≥ min{⌈ 23n⌉, ⌈ 23m⌉} where n, m are the number of keyframes in the two
shots, it is determined that one shot is similar with respect to the other. Figure
7 shows the maximal matching results of the examples shown in Figure 5 and
Figure 6.k x 1 k x 2 k x 3 k x 4 k x 5 k x 6 k x 7 k x 8

k y 1 k y 2 k y 3 k y 4 k y 5
(a)

k x 1 k x 2 k x 3 k x 4 k x 5
k y 1 k y 2 k y 3 k y 4 k y 5 k y 6 k y 7

(b)k x 1 k x 2 k x 3 k x 4 k x 5
k y 1 k y 2 k y 3

k x 6 k x 7 k x 8
(c)

Figure 7: Examples of maximal matching results for shots in Figures 5 and 6

From Figure 6, we can see that the maximal matching of dissimilar shots
is 1. From this, it is relatively straightforward to determine true retake-shots
according to maximal matching.

The matching steps using the Hungarian algorithm are now described. We
assume that a given bipartite graph is Gk = {Sx, Syk, Ek}; Mark “0” expresses
the vertex that is not searched, mark “1” expresses the saturation vertex and
mark “2” expresses the vertex that cannot increase the matching score.
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Step1: Given an initial matching M , mark all vertices as “1”;
Step2: Check if every vertex in Sx has a non-“0” mark.

If yes, M is the maximal matching. End.
If no, find a vertex marked “0” x0 ∈ Sx, let A← {x0}, B ← ∅.

Step3: Check if N(A) = B(N(A) ⊆ SYk). N(A) expresses the
vertices belonging to Syk that neighbor with the vertices in A.
B(N(A) ⊆ SYk) expresses the vertices belonging to Syk that neigh-
bor with the vertices in N(A).

If yes, x0 cannot increase matching, mark x0 as “2”, go to Step
2;

If no, find a vertex Syi in N(A) − B, check if Syi is marked
with“1”.

If yes, there exists an edge (Syi, z) ∈M , let A← A∪{z}, B ←
B ∪ {Syi}, and go to Step 3.

If no, there exists an augmenting path from x + 0 to Syi, let
M ←M ⊕ P mark X0 and Syi as “1”, go to Step 2.

The complexity of this algorithm is O(ne), where n is the number of vertices
of Sx in the bipartite graph G = {Sx, Sy, E} and e is the number of edges.
After measuring the similarity of shots, re-take shots are detected, the last shot
is kept and others are removed because the last retake shot is usually the most
satisfactory one from the point of view of appearing in a summary.

5 Selecting Representative Shots and Summary

Generation

After we perform the detection and removal of low-value content and repetitive
re-take shots, useful content is kept as candidate material for inclusion in the
generated summary. However the volume of the remaining video content typi-
cally exceeds an amount that would be deemed useful to make up a summary.
Indeed the useful duration limit in the TRECVid summarisation guidelines was
set at 4% of the original video in 2007, and 2% of the original video in 2008.
This means that the most representative video clips need to be selected from
the remaining content in order to generate the final summary. In our work,
we extract motion and face factors to rank how representative each remaining
sub-shot is in the context of the overall video.

A three-stage process, achieved using the aceToolbox [O’Connor et al., 2005],
is used to describe the level of motion activity in each sub-shot. First, MPEG-1
motion vector data is extracted from the video. Next, the percentage of non-zero
blocks in the frame (where a high percentage indicates higher motion activity)
is calculated for each frame in the video. Finally, this per-frame data is used
along with the shot boundary data calculated previously, to compute an average
motion measure for the entire sub-shot. As a result, each keyframe in a given
sub-shot is assigned the same measure of motion activity.

12



Our face detection processing extends the Bayesian Discriminating Fea-
ture (BDF) originally proposed by Liu [Liu, 2003] for detecting frontal faces in
grayscale images. Using a statistical skin color model [Cooray and O’Connor, 2005],
we can detect multiple faces at various sizes and orientations within color im-
ages. Ideally this processing would be carried out for each frame of the original
footage; however, for efficiency we only perform this operation on the detected
keyframes. While this reduction in processing time potentially results in a loss
of information, such as the prevalence of faces across shots, it ensures efficient
processing while still providing enough information to reliably enhance summary
construction.

Sub-shot duration is important for sub-shot selection so we use the following
simple weighting to combine the factors.

Score = (Number − of − faces/Max− faces− in− footage× 0.3) +

(Amount− of −motion× 0.3) +

(Duration− of − subshot/Total− duration− all× 0.4)

Once the representative scores for sub-shots are calculated, those sub-shots
with highest scores are selected according to the summary duration limitation.
Finally, 1-second clips centred around the keyframe in each selected sub-shot
are extracted for generating our final summary.

6 Dataset and Experiments Results

Using our approach described in this paper, we generated the summaries for
all test rushes videos in the TRECVid 2007 rushes summarization evaluation.
The data used in this evaluation consisted of MPEG-1 files corresponding to
rushes video recorded for TV programs, specifically the BBC dramatic series
Casualty, House of Elliot, Jonathan Creek, Ancient Greece, Between the Lines
and others. The files were 25 minutes in duration on average, an artifact of the
fact they were recorded onto tapes initially, and digitized subsequently. The
task set to the TRECVid participants was to generate a video summary with
no interaction except one single play through with unlimited optional pauses,
such that it maximises viewers efficiency at recognising objects and events as
quickly as possible, a true definition of what a summary should do.

In evaluating the effectiveness of a video summary, it would be very difficult
to formally identify all content in a source video, do likewise for a summary and
then compare them in a way that was repeatable and scalable to large numbers
of generated summaries. In TRECVid, the organisers created partial ground
truths for 42 original videos and human judges or assessors then viewed each
summary and judged it against the list of important segments making up the
ground truth. While this is an approximation of the effectiveness of a summary
it is a scalable approach which is repeatable, which is what we do in this paper.

Twenty-two research groups completed submissions to the TRECVid BBC
Rushes summarisation evaluation in 2007 and the overview paper from the sum-
marizaion workshop points to the different approaches taken by the groups, as
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well as their relative performances [Over et al., 2007]. Possibly the most sur-
prising result was the good performance of the baseline systems, which were
based on crude frame sampling approaches2.

The seven criteria set by the TRECVid guidelines for summarization evalu-
ation in 2007 and used again in 2008 are:

• EA: Easy to understand: (1 strongly disagree — 5 strongly agree);

• RE: Little duplicate video: (1 strongly disagree — 5 strong agree);

• IN: Fraction of inclusions found in the summary (0 — 1);

• DU: Duration of the summary (sec);

• XD: Difference between target and actual summary size (sec);

• TT: Total time spent judging the inclusions (sec);

• VT: Video play time (vs. pause) to judge the inclusions (sec).

IN, DU and XD are objective criteria which we can calculate directly in order to
evaluate our summaries and allow direct comparison with the published results
from TRECVid. However, EA, RE, TT and VT are criteria that depend on
subjective judgments by assessors. Thus for a complete evaluation of our pro-
posed approach it was necessary to re-run the evaluation performed by NIST
with our own test subjects. Ten participants (all students in the School of In-
formation System & Management, National University of Defense Technology,
China) were selected to review the generated summaries under the exact same
guidelines and setup as carried out by NIST in the TRECVid evaluation and
they gave their score for the four subjective criteria.

Of course, by running our own evaluation of summary content outside the
TRECVid process we could potentially introduce new subjective variations into
the evaluation process. To investigate this, we first evaluated three sets of
summaries using our own participant assessors: the two baseline summary sets
used in TRECVid and our own original submission to TRECVid in 2007. The
experimental results we obtained with our own assessors compared to the official
results reported from TRECVid assessors are shown in Table 1.

The results in Table 1 show there exists only a small difference in the subjec-
tive judgments between our participant assessors and assessors used by NIST.
This is understandable given that different people have different skills, intellects,
powers of discernment, etc. However, from Table 1 we can see that the difference
of judgments between our assessors and NIST assessors is small. From this we
conclude our participants’ evaluations on the subjective criteria are reasonable
and credible. Given this, we proceeded to re-run the complete evaluation of
summaries we have generated.

2Because of the relatively excellent performance of baseline runs in TRECVid Summarisa-
tion 2007, we use these as a basis for comparison against our own work since they were almost
the best.
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Table 1: Experimental results for the comparison between our assessors and
NIST assessors

Criterion EA RE TT VT

TRECVid Baseline 1
Our Assessors 3.12 3.26 115.45 73.20
NIST Assessors 3.33 3.33 110.67 66.67

TRECVid Baseline2
Our Assessors 3.35 3.30 118.10 70.38
NIST Assessors 3.67 3.67 109.17 63.83

Our original TRECVid 2007
Our Assessors 2.29 3.33 76.78 48.49
NIST Assessors 2.67 3.67 70.83 42.67

Table 2: Experimental results for IN (inclusion), DU (duration) and XU (target
vs. summary size)

Criterion IN DU XD

TRECVid Baseline1 0.60 66.40 -2.28
TRECVid Baseline2 0.62 64.60 -0.89
Mean of all 22 teams 0.48 49.54 10.33
Our original TRECVid 0.38 40.90 8.65
Our enhanced 0.78 41.61 18.83

Table 3: Experimental results for EA (ease), RE (duplication), TT (time judg-
ing) and VT (video playback)

Criterion EA RE TT VT

TRECVid Baseline1 3.12 3.26 115.45 73.20
TRECVid Baseline2 3.35 3.30 118.10 70.38
Our original TRECVid 2.29 3.33 76.78 48.49
Our enhanced 3.74 3.88 89.21 44.50
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The experimental results averaged over all of our summaries for all of the test
videos in TRECVid summarisation 2007 are shown in Table 2 and Table 3. The
results in Table 2 show our enhanced approach results in a big improvement in
IN score (+0.40, more than double) with a slightly longer duration of summaries
(+0.71 sec, 1.7%) compared with our original approach. Of particular note is
the fact that our enhanced approachs XD is 18.83, which is 8.5 sec longer than
the mean of the other 22 teams. This is because in our approach we tend
to retain the valuable content from original source rushes as much as possible
within the summary duration requirement. Table 3 shows the evaluation results
for the four subjective criteria. Clearly we obtain very encouraging results for
the EA and RE. These experimental results clearly show that our enhanced
approach performs competitively compared with the other TRECVid teams
and the baselines.

7 Conclusion and Discussion

Rushes videos are captured by professional cameramen as the early stage of
the video production lifecycle. As an unedited version of the final video, they
include many useless and redundant or repeated shots. Although the structure
of the video and the threading of the storyline are not directly available, rushes
are organized based on shot structure.

In this work, we employ shot and sub-shot detection for video structuring,
we train SVMs for removing useless content, and we model the similarity of
keyframes between two shots by bipartite graphs. We then measure shot simi-
larity by maximal matching for re-take shot detection. Based on consideration
of motion, face and duration, sub-shots are ranked and the most representative
clips are selected for final summary generation. This corresponds to a sig-
nificantly extended approach compared to our original TRECVid submission.
To evaluate this new approach, we re-ran the evaluation procedure ourselves
with our own assessors. Experimental results indicate that our subjective eval-
uation is in line with that originally carried out by NIST. Our improved ap-
proach clearly demonstrates improvements compared to our original approach,
but more importantly compared to the TRECVid baselines and the other teams
who participated in the evaluation.

Not withstanding this, the summarization problem clearly still remains chal-
lenging. Indeed, most submissions cannot significantly outperform the two base-
lines, which are simply based on fixed-length shot selection and visual clustering.
This poses the key question as to whether a deeper semantic understanding of
the content can help in this regard and this is something for future work.
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