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Abstract

The increasing rate of creation and use of 3D video content leads to a pressing need for methods capable of lowering
the cost of 3D video searching, browsing and indexing operations, with improved content selection performance.
Video summarisation methods specifically tailored for 3D video content fulfil these requirements. This paper presents
a review of the state-of-the-art of a crucial component of 3D video summarisation algorithms: the key-frame
extraction methods. The methods reviewed cover 3D video key-frame extraction as well as shot boundary detection
methods specific for use in 3D video. The performance metrics used to evaluate the key-frame extraction methods
and the summaries derived from those key-frames are presented and discussed. The applications of these methods
are also presented and discussed, followed by an exposition about current research challenges on 3D video
summarisation methods.

Keywords: 3D key-frames extraction, 3D video summarisation, Shot boundary detection

1 Review
In the last years, new features have been implemented in
video applications and terminal equipments due to users
demand, who are always seeking for new viewing expe-
riences more interactive and immersive, such as those
provided by 3D video. This new visual experience is cre-
ated by depth information that is part of 3D video and
absent in classic 2D video. The inclusion of depth infor-
mation in video signals is not a recent innovation, but
the interest in this type of content and aspects related to
it, such as acquisition, analysis, coding, transmission and
visualisation, have been increasing recently [1, 2]. Lately,
3D video has been attracting attention from industry,
namely content producers, equipment providers, distribu-
tors and from the research community mostly on account
of the improvements in Quality of Experience that it
provides to viewers [3], as well as due to the new busi-
ness opportunities presented by this emergingmultimedia
format.
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In the past, video repositories were relatively small so
that indexing and retrieval operations were easy to per-
form. More recently, the massification of 3D video and
its applications have resulted in the generation of huge
amounts of data, increasing the need for methods that
can efficiently index, search, browse and summarise the
relevant information with minimum human intervention.
Furthermore, 3D video description and management is
also required to enable quick presentation of the most
important information in a user-friendly manner [4, 5].
Video summarisation is a video-content representation
method that can fulfil these requirements. In contrast to
summarisation of 2D video, which has been the subject
of a significant amount of research, 3D video summarisa-
tion is still a relatively unexplored research problemwhich
deserves more attention.
A video summary is a short version of a full-length video

that preserves the essential visual and semantic infor-
mation of the original unabridged content. In the video
summarisation process, a subset of key-frames or a set
of shorter video sub-sequences (with or without audio)
are chosen to represent the most important segments of
the original video content according to predefined crite-
ria [4]. This video content representation can be used in
the promotion of movies, TV channels or other entertain-
ment services. Video summarisation can also be used for
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content adaptation operations in constrained communi-
cation environments where bandwidth, storage capacity,
decoding power or visualisation time is limited [6].
The literature defines two types of video summaries,

namely those based on key-frames and those comprised
of video skims [7]. A video summary based on key-frames
is made up of a set of relevant frames selected from the
video shots obtained from the original video. This type
of summary is static, since the key-frames, being tempo-
rally distant and non-uniformly distributed, do not enable
adequate rendering/reproduction of the original tempo-
ral evolution of the video content. Here, the video content
is displayed in a quick and compact way for browsing
and navigation purposes, without complying with timing
or synchronisation requirements. Video skims are usually
built by extracting the most relevant temporal segments
(with or without audio) from the source sequence. After
the extraction, all temporal segments are concatenated
into sequential video with much shorter length than the
source sequence. The methods used for computation of
key-frames and video skims summaries are quite distinct,
but these two types of representations for video content
can be transformed from one to the other. A video skim
can be generated from a key-frame summary by adding
frames or segments that include the key-frames, while a
key-frame summary can be created from a video skim
by uniform sampling or selecting the most representative
frame from each video skim segment [4].
In regard to 3D video content, a detailed study of the

existing scientific literature reveals that comprehensive
comparative studies of 3D video summarisation methods
are missing. To help filling this gap, this paper presents
a review of 3D video summarisation methods based on
key-frames. This overview of the current state-of-the-art
is mainly focused on the methods and features that are
used to generate and evaluate 3D video summaries and
not so much on the limitations or performance of specific
methods. Since experimental set-ups, 3D video formats
and features used for summarisation are considerably dif-
ferent from one computational method to another, a fair
comparative analysis of the results, advantages and short-
comings of all methods is almost impossible. This paper
also identifies open issues to be investigated in the area of
3D key-frame extraction for summarisation.
The remainder of the paper is organised as follows.

Section 1.1 presents the existing 3D video representa-
tion formats and relevant features for the purpose of
summarisation; then, in Section 1.3, the generic frame-
work normally used in 3D key-frame extraction methods
is presented, after which Section 1.4 reviews the most
important shot boundary detection (SBD)methods for 3D
video. Then, Section 1.5 characterises the relevant meth-
ods used in 3D key-frame extraction for summarisation
while Section 1.6 addresses common methods used for

presentation of key-frames. Section 1.7 describes perfor-
mance evaluation methods suitable for 3D video sum-
maries based on key-frames, and Section 1.8 describes
some applications of this kind of summaries. Section 1.9
discusses the prospects and challenges of the 3D key-
frame extraction methods, and finally Section 2 concludes
the paper.

1.1 3D video representation formats
In this review article, ‘3D video’, is defined as a representa-
tion format which differs from 2D video by the inclusion
of information that allows viewers to perceive depth. This
depth information can be conveyed either indirectly via
two or more views of the scene (e.g. left and right views)
or explicitly through either depth maps of geometric rep-
resentation of connected 3D points and surfaces.
The most common formats used used to represent 3D

visual scenes include natural video and/or geometric rep-
resentations.

• Stereoscopic video is composed of two slightly shifted
video views of the same scene, where one corresponds
to what would be observed by a left eye and the other
by the right eye of a human observer. Since these are
two views of the same scene, the corresponding
images are related by the binocular disparity, which
refers to the difference in the image plane coordinates
of similar features captured in two stereo images. The
scene depth is perceived from the disparity when
using stereoscopic displays and can also be computed
for different types of computer vision applications
(e.g. measuring distances in 3D navigation).

• Multiview video (MVV) is composed of more than
two video views shifted in the vertical and/or
horizontal position. Typically, MVV acquisition is
done using an array of synchronised cameras with
some spatial arrangement, which capture the visual
scene from different viewpoints. The MVV format is
useful for applications supported by autostereoscopic
displays with or without head tracking, which render
a denser set of 3D views that are displayed through
lenticular and parallax barriers. With this type of
display, viewers are able to see the portrayed scene
from different angles by moving the head along a
horizontal plane. A typical application of this video
format is freeview navigation where users are given
the option of freely choosing the preferred viewpoint
of the scene.

• Video-plus-depth (V+D) is composed of a video
signal (texture) and respective depth map. Each value
of the depth map represents the distance of the object
to the camera for the corresponding pixel position.
Typically, the depth information is quantised with 8
bits, where the closest point is represented with value
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255 and the most distant point is represented with 0.
Additional virtual views (i.e. not captured) of the
same scene imaged can be synthesised from the V+D
original information by using 3D warping
transformations. Several different applications and
services can benefit from the V+D format, due to its
inherent backward compatibility with 2D video
systems and higher compression efficiency achievable
when compared to stereoscopic video. For instance,
3DTV services can be seamlessly deployed while
maintaining compatibility with legacy 2D video
services.

• Multiview video-plus-depth (MVD) is composed of
video and depth maps for more than two views of the
specific scene. The depth information can be
computed from different views or captured directly
using time-of-flight (ToF) sensors. MVD can be used
to support dense multiview autotereoscopic display
in a relatively efficient manner. From a relatively
small set of different views and corresponding depth
maps, a much larger set of views can be synthesised at
the display side, avoiding coding and transmission of
a great deal of data while enabling smooth transitions
between viewpoints. Several emerging applications
such as free viewpoint video and free viewpoint TV
will use the MVD format due to its compact
representation of 3D visual information.
Mixed-reality applications and gaming are also
important application fields for MVD.

• 3D computer graphics use a geometry-based
representation, where the scene is described by a set
of connected 3D points (or vertices), with associated
texture/colour mapped onto them. The data content
of this format can be organised into geometry,
appearance and scene information [8]. The geometry
includes the 3D position of vertices and polygons (e.g.
triangles) that are constructed by joining these
vertices. The appearance is an optional attribute
which associates some properties (e.g. colour, texture
coordinates) to the geometry data. Finally, the scene
information includes the layout of a 3D scene with
reference to the camera (or view), the light source
and description of other 3D models if they are
present in the scene. 3D computer graphics can
provide better immersive and interactive experience
than conventional 2D video, since the user is
provided more freedom to interact with the content
and get a realistic feeling of ‘being there’. Relevant
applications can be found in quite different fields,
such as medicine, structural engineering, automobile
industry, architecture and entertainment.

• Plenoptic video is composed of a very large of the
number of views (e.g. hundreds or thousands)
captured simultaneously. This multiple view

acquisition process can be interpreted as a partial
sampling of the plenoptic function [9], which
represents not only spatial or temporal information
but also angular information of about the captured
light rays, i.e. captures a segment of the whole
observable scene represented by a light field. In
practice a 3D plenoptic image is captured by a normal
image sensor placed behind an array of uniformly
spaced semi-spherical micro-lenses. Each micro-lens
works as an individual low resolution camera that
captures the scene from an angle (viewpoint) slightly
different from that of its neighbours. Plenoptic video,
also known as light field video, is an emerging visual
data representation with known applications in
computational photography, microscopy, visual
inspection and medical imaging among others.

1.2 3D video features for summarisation
The scene depth is the additional information that is either
implicitly or explicitly conveyed by 3D video formats.
Therefore, depth is also the signal component that mostly
contributes to distinguish 3D video summarisation meth-
ods from those used for 2D video. One of the first works
combining depth with features of 2D video to summarise
3D video was done by Doulamis et al. [10]. The authors
proposed an algorithm jointly operating on both the depth
map and the left channel image to obtain a feature vec-
tor for use in video segmentation and key-frame extrac-
tion methods. The feature vector including segment size,
location, colour and depth. Another important feature is
the depth variance associated with the temporal activ-
ity, which was used by Ferreira et al. in [11] for temporal
segmentation of 3D video. The average stereo disparity
per frame and temporal features such as image difference
and histogram difference are computed and combined in
feature vectors which in turn are used by a clustering
algorithm to partitioning 3D video in temporal segments.
Another work using frame intensity histogram distribu-
tions as features and the Jensen-Shannon difference to
measure frame difference in feature space is presented in
[12]. This is used to segment a video clip into shots, and
then to choose key-frames in each one. More recently,
Papachristou et al. in [13] also segmented 3D video using
low-level features obtained from disparity, colour and tex-
ture descriptors computed from histograms and wavelet
moments. An improved three-dimensional local sparse
motion scale invariant feature transform descriptor is
used in [14], for RGB-D videos, based on grey pyra-
mid, depth pyramid and optical flow pyramids that are
built for both colour frames and depth maps. Point fea-
tures are determined with a SIFT descriptor are combined
with depth information of the point as well as optical-
flow derived motion information. Although this work is
focused on gesture recognition, the features and similarity
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measures may also be used in key-frame extraction meth-
ods. This work presented in [15], uses vectors containing
moments (mean, standard deviation, skewness and kur-
tosis) of signature profiles of blocks with variable size for
the luminance and disparity frames. A descriptor of frame
moments was developed for summarising stereoscopic
video through key-frame extraction and also to produce
stereoscopic video skims. Yanwei et al. in [16] proposed a
multiview video summarisation method which uses low-
level and high-level features. The low-level features are
based on visual attribute of video, as colour histogram,
edge histogram and wavelet while for high-level features
the authors use the Viola-Jones as face detector in each
frame.
Geometric features are also relevant for temporal seg-

mentation and extraction of key-frames in 3D visual
information. For instance, Assa et al. in [17] proposed a
method to produce an action synopsis of skeletal anima-
tion sequences for presenting motion in still images. The
method selects key-frames based on skeleton joints and
their associated attributes (joint positions, joint angles,
joint velocities, and joint angular velocities). In [18], the
authors also use geometric features, such as the number
and location of vertices of surface, to produce video sum-
maries of animation sequences. Other geometric features
used by Jianfeng et al. in [19] to summarise 3D video are
features vectors formed by the histograms of the vertices
in the spherical coordinate system. A different type of fea-
tures rely on 3D shape descriptors. For instance, Yamasaki
et al. in [20] used the shape of 3Dmodels to split the video
in different motion/pose temporal segments. Relevant
shape features, such as shape histograms, shape distribu-
tion, spin image and spherical harmonics were studied in
[21], where the performance of shape similarity metrics is
evaluated for applications in 3D video sequences of peo-
ple. Since similarity measures are of utmost importance in
summarisation this is a relevant work in the context of this
paper. Another type of features used in [22] for key-frame
extraction is based on deformation analysis of animating
meshs while the vertices positions in mesh models and
motion intensity were used by Xu et al. in [23] in temporal
segmentation of 3D video.

1.3 3D key-frame extraction framework
Summarisation of 3D video follows a generic process-
ing chain that is extended from 2D video by considering
the inherent depth and geometric information as relevant
feature contributors for selecting the dominating content
in 3D moving scenes. A possible approach is based on
clustering by grouping similar frames according to some
similarity measure [24], without any prior processing or
feature extraction. However, a more generic and system-
atic approach that better suits the problem of 3D video
summarisation follows the three-step framework of Fig. 1,

Shot boundary
detection

Key-frame 
presentation

Video

Static 
storyboard

Dynamic
slideshow

Single image
(stroboscopic effect)

Key-frame
extraction

Video shots

Fig. 1 A conceptual framework for key-frame summarisation

where the entire video sequence is first divided into video
shots based on scene transitions using an SBD method,
followed by a key-frame extraction method applied to
each video shot to extract the most representative frames,
based on the specific properties of the video content and
similarity measures. Finally, the extracted key-frames are
either presented to the viewers or stored, following some
predefined presentation structure.
Following the conceptual framework shown in Fig. 1,

the input video is segmented into video shots, mostly
based on spatio-temporal criteria, but other criteria can
be used such as based on motion [20, 25] or the com-
bination of the temporal and depth features [11]. More
details can be found in Section 1.4. After this segmen-
tation, one or more key-frames are extracted from each
video shot according to user-defined parameters, or based
on specific requirements (in Fig. 1, only one key-frame is
extracted). The most relevant key-frame extraction meth-
ods are presented in Section 1.5. Once the key-frames are
extracted, they need to be presented in an organised man-
ner for easy viewing during video browsing or navigation.
In this framework, three key-frame presentation methods
are described, static storyboard, dynamic slideshow and
single image based on stroboscopic effect, but othermeth-
ods can be found in the literature (see Section 1.6). The
key-frame presentation methods are independent of the
key-frame extraction operation and thus the same key-
frame summary can be presented to viewers in different
ways.



Ferreira et al. EURASIP Journal on Image and Video Processing  (2016) 2016:28 Page 5 of 19

1.4 Shot boundary detection
In the recent past, development of SBD methods for 2D
video received a lot of the attention from the video pro-
cessing research community. However, very few works
have investigated the SBD problem in the context of 3D
video, especially taking into account depth information.
Relevant surveys of video SBD methods with specific
application in 2D video can be found in the literature
[26–28]. In this section, we briefly introduce the main
concepts behind these methods for 2D video. Then, the
most promising and better performing SBDmethods used
for 3D key-frame extraction are explained in detail.
A video segment can be decomposed into a hierarchical

structure of scenes, video shots and frames, with the linear
video first divided into video scenes, which may comprise
one ormore video shots (set of correlated frames). A video
scene is defined as a set of frames which is continuous and
temporally and spatially cohesive [29], while a video shot
may also be defined by camera operations, such as zoom
and pan. Thus, the video shot is the fundamental unit in
the content structure of a video sequence. Since its size
is variable, the identification of start and end of the video
shots is done using specific SBD methods.
Figure 2 presents a generic framework of a SBDmethod.

While this framework is similar for both 2D and 3D video,
the actual algorithms used for each type of content are
not the same due to the difference in their relevant fea-
tures. Firstly, the relevant visual features are computed,
in general forming feature vectors for each video frame
as described in Section 1.2. In the second step, the visual
features of consecutive frames are compared using spe-
cific similarity measures some decision criteria are used
to identify shot boundaries. The decision methods used
to find shot boundaries can be based on static thresholds
(as in Fig. 2), adaptive thresholds (thresholds depend on
the statistics of the visual features used), B-splines fittings
[30], support vector machines (SVM) [31] and K-means
clustering [11]. The detection accuracy of SBDmethods is
improved by combining several visual features [32].
Video shot boundaries can be classified into two types:

abrupt shot boundary (ASB) (as in Fig. 2) and gradual
shot boundary (GSB), according to a certain classification
of scene transition, which in general is related to content
variation over time. This is common in 2D and 3D video,
despite the fact that scene transition in 3D video may
include depth changes besides the visual content itself. In
ASB, the scene transition occurs over very few frames,
usually a single frame defines the boundary. In the case of
GSB, the transition takes place gradually over a short span
of frames. Themost common gradual transitions are fade-
ins, fade-outs, dissolves and wipes [26–28]. A common
problem in SBD is the correct discrimination between
camera operations and object motion that originate the
gradual transitions, since the temporal variation of the

Shot Boundary

Video shot A Video shot B

Extraction of visual features

Measure similarities between frames

Shot Boundary/Non-Boundary Decision 

Theshold

1

2

3

Original sequence

Segmented sequence

Fig. 2 A generic diagram of SBD framework

frame content can be of the same order of magnitude and
take place over the same number of frames. This similarity
of visual effects caused by camera operations and object
motion can induce false detections of gradual shot bound-
aries. This problem is aggravated for video sequences with
intense motion.

1.4.1 SBDmethods
Doulamis et al. in [10] proposed a key-frame extraction
method for stereo video which includes a SBD method.
Here, the entire video sequence is divided into video
shots using an algorithm based on the analysis of DC
coefficients of compressed videos, following the solution
proposed in [33]. More recently, Papachristou et al. in [13]
presented a framework for stereoscopic video shot classi-
fication, that uses a well-known method designed for 2D
video to segment the original stereoscopic video into shots
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[34]. However, this method was applied only to the colour
channels of the videos to be summarised. Ferreira et al.
[11] proposed an algorithm to detect 3D shot boundaries
(3DSB) based on a joint depth-temporal criterion. The
absolute frame difference and sum of absolute luminance
histogram difference are used as the relevant measures in
the temporal dimension, while in the depth dimension,
the variance of depth in each frame is used. A K-means
clustering algorithm that does not require training and
does not use thresholds is applied to choose the 3DSB
transition frames. Ferreira’s method is independent of the
video content and can be applied to 2D or 3D video shot
boundary identification. In the case of the 2D video, abso-
lute frame differences and sum of absolute luminance
histogram difference are used.
Some methods target segmentation of 3D mesh

sequences using properties of 3D objects as the shape and
motion/action (e.g. human body motion, raise hands) to
detect the shot boundaries. Yamasaki et al. [20] proposed
a temporal segmentation method for 3D video record-
ings of dances, which is based on motion speed, i.e. when
a dancer/person changes motion type or direction, the
motion becomes small during some short period and in
some cases it is even paused for some instants, accord-
ing to the type of dance. To seek the points where motion
speed becomes small the authors used an iterative close
point algorithm proposed in [35] which is employed in
the 3D space (spherical coordinates). In contrast to con-
ventional approaches based on thresholds, the authors
devised a video segmentation scheme appropriate for dif-
ferent types of dance. In this scheme, each local minimum
is compared with local maxima occurring before (lmaxbef )
and after (lmaxaft) the local minima. When lmaxbef and
lmaxaft are 1.1 times larger than the local minimum, a
temporal segmentation point is declared to occur at the
minimum location. Since the decision rule is not based on
absolute values and thresholds, rather on relative values of
extrema, it is more robust to data variation (like type of
dance) and no empirically derived decision thresholds are
used.
Another method which uses the motion speed of the

3D objects was presented by Xu et al. [23]. To reduce
computation time of motion information the authors used
the point distance (DP) instead of vertices position in
Cartesian coordinates. DP is defined as Euclidean distance
between one fixed point and all 3D objects’ vertices coor-
dinates of each frame. Figure 3 shows the point distance
for 2 frames of Batter’s sequence. Before determination of
scene transitions, the histogram of point distance of each
frame is calculated.
To detect abrupt and gradual transitions of 3D video, the

Euclidean distance between the histograms of point dis-
tance and three thresholds are used, where the threshold
values were derived empirically.

Fig. 3 Point distance of the frames #38 and #39 of Batter sequence.
Grey values means the point distance from (0,0,0) [23]

Ionescu et al. [36] used a histogram-based algorithm
specially tuned for animated films to detect ASB. From
GSB only fades and dissolves are detected, since they are
the most common gradual transition. The GSB detection
is done using a pixel-level statistical approach proposed
by [37]. The authors proposed the Short Colour Change
(SCC) detection algorithm to reduce the cut detection
false positives. The SCC is the effect that accompa-
nies short term frame colour changes, caused by explo-
sion, lightning and flash-like visual effects. More recently,
Slama et al. [38] proposed a method based on the motion
speed to split a 3D video sequence into segments char-
acterised by homogeneous human body movements (e.g.
walk, run, and sprint). However, the author only consid-
ers as significant video shot transition indicators changes
of type of movement. Here, video shots with small differ-
ences from previous shots and small number of frames
are avoided. The motion segmentation used in this work
is based on the fact that when humans modify the motion
type or direction, the motion magnitude decreases sig-
nificantly. Thus, finding the local minimum of motion
speed can be used to detect the break point where human
body movements changes and consequently to segment
the entire video into shots.

1.4.2 Evaluationmetrics
Three well-known performance indicators are used in the
evaluation of the SBD methods for 2D video: recall rate
(R), precision rate (P) [39] and accuracy measure F1 [40].
The computation of these values is based on the com-
parison of manual segmentation (ground-truth) and com-
puted segmentation. If a ground-truth is available these
metrics can be applied to 3D video SBD methods.
Recall rate is defined as the ratio between the number

of shot boundaries detected by an algorithm and the total
number of boundaries in the ground-truth dataset (see
Eq. (1)). Precision rate, computed according to Eq. (2), is
defined as the ratio between the number of shot bound-
aries detected by an algorithm and the sum of this value
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with the number of false positives. F1 is a measure that
combines P and R, see Eq. (3).

R = D
D + DM

(1)

P = D
D + DF

(2)

F1 = 2RP
R + P

(3)

where D is the number of shot boundaries correctly
detected by the algorithm, DM is the number of missed
boundaries and DF is the number of false detections. For
good performance, the recall and precision rates should
have values close to 1. The best performance is reached
when F1 is equal to 1, while the worst occurs at 0.
The recall rate, precision rate and measure F1 were

used to evaluate the performance of temporal segmenta-
tion methods for 3D video in [11, 23, 38], while Yamasaki
et al. [20] only used recall and precision rates in the eval-
uation process. Although, these 3D SBD methods used
the same evaluationmetrics, the comparison of the results
and performance obtained from such SBD methods is not
possible because different datasets were used.

1.4.3 Discussion
Since the major difference between 2D and 3D video is
the implicit or explicit availability of depth information,
the visual features used in the SBD methods for 3D video
must take depth into account, i.e. the temporal segmen-
tation must also consider depth information in order to
use depth discontinuities in shot detection. Until now,
most research works on SDB for 3D video, did not use the
depth information in the detection process. For example,
Doulamis et al. in [10] proposed a key-frame extraction
method for stereo video which includes a SBD method.
However, this algorithm does not take into account the
depth information of the stereo video and it is only applied
to one view of the stereo sequence, for instance the left
view. Another drawback of Doulamis’ work is the lack
of performance evaluation of the proposed temporal seg-
mentationmethod. Amethod to segment stereo video was
proposed in [13], but the proposed procedure does not
take depth into account either.
In [20, 23, 38], the authors proposed SDB methods for

3D video, which are only applicable to 3D mesh models
and require modifications to be used with most common
pixel-based 3D video formats, like stereo or video-plus-
depth. Finally, Ferreira et al. [11] proposed a method
which uses the depth and temporal information for auto-
matic detection of 3D video shots from the 3D video
sequence that uses a K-means clustering algorithm to
locate the boundaries. This algorithm has the advantage
of not using any explicit thresholds or training procedure.

A common problem with the 2D video SBD methods
described in the literature is the lack of common compar-
ison grounds, as few works use the same dataset to test
the methods proposed and evaluate their performance.
This is a serious problem as it limits the number of com-
parisons that can be made to compare the different SBD
methods. For the 3D case, the lack of comparative anal-
yses is even more severe, due to the reduced number of
SBD methods developed so far specifically for this type
of visual information. The few works that have been pro-
posed for SBD in 3D video usually use the Recall and
Precision rate to evaluate performance, but the lack of
benchmark 3D video sequences with ground-truth shot
segmentations severely limit the number and types of per-
formance evaluations that can be made. As mentioned
above, the evaluation metrics presented in Section 1.4.2
are based on comparison between manual and computed
segmentation. Therefore, besides being very important to
have common test datasets, the development of universal
and objective measures, which are specific for SBD and
can be applied in different content domains and 3D video
formats is highly recommended and desired.

1.5 3D key-frame extraction
In this section, we briefly introduce the main concepts
behind key-frame extraction methods for 2D video and
describe key-frame extraction methods for 3D video.
The key-frame extraction methods under review are
grouped into seven categories: non-optimised, cluster-
ing, minimum correlation, minimum reconstruction error
(MRE), curve simplification, matrix factorisation and
other methods.

1.5.1 Non-optimisedmethods
The simplest method for 3D key-frame summarisation is
uniform sampling (UnS). This method selects key-frames
at regular time-intervals (see Fig. 4a), e.g. selecting one
video frame every minute to be a key-frame. This will
result in a set of key-frames evenly distributed through-
out the video. However, the selected key-framesmight not
contain meaningful or pertinent visual content or there
may be two or more similar key-frames. For instance, the
selected key-frame might show a bad image (e.g. unfo-
cused) or no key-frame exists for some video shots, thus
failing to effectively represent the video content.
Another simple and computationally efficient frame

selection method is position sampling (PoS). In PoS, once
the boundaries of a video shot are detected, the method
selects frames according to their position in the video
shot, and e.g. the first, or the last or the middle frame
of the video shot (see Fig. 4b) can be chosen as key-
frames. Thus, the size of key-frame summary corresponds
to the number of video shots of the entire video. In some
summarisation applications, one key-frame per video shot
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Equal intervals Detected video shotsa b

Fig. 4 a UnS method: uniform sampling at equal intervals. b PoS method: selecting the first frame of each video shot

is not enough, and the PoS method can be adapted to
this need by allowing the selection of multiple frames at
fixed positions within the video shot. For 3D video, UnS
and PoS are used mostly as references for comparisons
with other methods, as in [18, 41, 42]. Ionescu et al. [36]
selected as key-frames the frames in the middle of the
video shot to reduce temporal redundancy and computa-
tion cost of his animation movies summarisation method.
Yanwei et al. [16] used the middle frame of each video
skim segment to represent this summary in a storyboard.
In general the above non-optimised methods may be used
in both 2D and 3D video with minor adaptations.

1.5.2 Clustering
Clustering can be used to partition a large set of data into
groups minimising intra-group variability and maximis-
ing inter-group separation. After partitioning, the data in
each cluster have similar features. The partitioning can be
based on the similarities or distances between the data
points where each datum represents a vector of features
of a frame. These points are grouped into clusters based
on feature similarity and one or more points from each
cluster are selected to represent the cluster, usually the
points closest to the cluster centre. The representative
points of the clusters can be used as key-frames for the
entire video sequence. A significant number of clustering
methods reported in the literature use colour histograms
as the descriptive features, and the clustering is performed
using distance functions such as Euclidean distances or
histogram intersection measures. These methods are very
popular due to its good clustering robustness and the sim-
plicity inherent to computing colour histograms [43, 44].
Other features can also be used in clustering-based meth-
ods. For example, Ferreira et al. in [11] used temporal and
depth features with a clustering algorithm to segment 3D
video sequences into 3D video shots.
K-means is one of the simplest algorithms used to solve

the clustering problem. This clustering algorithm can be
applied to extract key-frames from short video sequences
or shots, but its application to longer video sequences
must be done with care taking into account the large pro-
cessing time and memory requirements of the algorithm.

To reduce the number of frames used by the clustering
algorithm some authors pre-sample the original video, as
proposed in [24]. The quality of the summaries may not
be affected by this operation but the sampling rate must
be chosen carefully. Although K-means is a popular and
well-known clustering algorithm it has some limitations
such as the need to pre-establish the number of clusters
desired priori and the fact that the sequential order of the
key-frames may not be preserved. Huang et al. [18] used
the K-means clustering algorithm for extracting a set of
3D key-frames to be compared with the output of their
key-frame extraction method.

1.5.3 Curve simplification
In the curve simplification method, each frame of the
video sequence can be treated as a point in multidi-
mensional feature space. The points are then connected
in sequential order through an interpolating trajectory
curve. The method then searches for a set of points which
best represent the curve shape. Binary curve splitting
algorithm [45] and discrete contour evolution [46, 47]
are two curve simplification algorithms used in the key-
frame extraction methods. Curve simplification-based
algorithms preserve the sequential information of the
video sequence during key-frame extraction; however, the
search for the best representation curve has high com-
putational complexity. The curve simplification method
proposed in [48] was used by Huang et al. [18] in the
evaluation process of the 3D key-frame extractionmethod
they proposed.

1.5.4 Minimum correlation
Minimum correlation based methods extract a set key-
frames such that the inter-key-frame correlation is mini-
mal, i.e. it extracts the key-frames that are more dissimilar
from each other. Formally, the optimal key-frame extrac-
tion based on minimum correlation can be defined as

K = arg min
l0,l1,..,ln−1

Corr
(
fl0 , fl1 , . . . , fln−1

)
(4)

where Corr(.) is a correlation measure, n is the frame
number of original sequence F, li is the frame index
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in F and K is the set of resulting key-frames with m
frames, K = {fl0 , fl1 , . . . , flm−1}. Different algorithms can
be used to find the optimal solution, such as logarith-
mic and stochastic search or a genetic algorithm [4].
The key-frame extraction method for stereoscopic video
based onminimum correlation has been presented first by
Doulamis et al. in [10]. Here, colour and depth informa-
tion are combined to summarise stereo video sequences.
After the segmentation of the entire video sequence, a
shot feature vector is constructed based on size, location,
colour and depth of each shot. To limit the number of shot
candidates, a shot selection method based on similarly
between shots is applied. Finally, the stereo key-frames
are extracted from each of the most representative shots.
The extraction is achieved by minimising a cross correla-
tion criterion and uses a genetic algorithm [49]. Since this
approach selects frames by minimisation of cross correla-
tion, they are not similar to each other in terms of colour
and depth.

1.5.5 Minimum reconstruction error
In MRE based methods, the extraction of the key-frames
is based on the minimisation of the difference between
the original video sequence/shot and the sequence recon-
structed from the key-frames. A frame interpolation func-
tion I(t,K) is used to compute the frame at time t, of
the reconstructed sequence, from a set of key-frames
K. The frame-copy method can be used to reconstruct
the video sequence/shot (i.e. performing zero-order inter-
polation), but more sophisticated methods like motion-
compensated interpolation might be used as proposed in
[50]. The reconstruction error E(F,K) is defined as

E (F,K) = 1
n

n−1∑

i=0
d

(
fi,I(i,K)

)
(5)

where d(.) is the difference between two frames, F is video
sequence/shot with n frames, F = {f0, f1, . . . , fn−1}, where
fi is the ith frame.
The key-frame ratio R(K) defines the ratio between the

number of frames in the set K, m and the total num-
ber of frames in video sequence/shot F, n, i.e. R(K) =
m/n. Given a key-frame ratio constraint Rm, the opti-
mum set of key-frames K∗ is the one that minimises the
reconstruction error, i.e.

K∗ = argmin
K∈F

E(F,K) s.t. R(K) ≤ Rm (6)

Thus, the MRE is defined by

MRE = E(F,K∗) (7)

For example, given a shot F with n = 10 frames and a key-
frame ratio R(K) = 0.2, this algorithm extracts at most 2
frames as key-frames, i.e.m = 2.

Xu et al. in [19] presented a key-frame extraction
method to summarise sequences of 3D mesh models,
wherein the number and location of key-frames are found
through a rate-distortion optimisation process. As in all
shot-based methods, in Xu’s method shot detection is
performed before key-frame extraction. Here, the SBD is
based on the motion activity of a human body in danc-
ing and sports videos. The motion activity is measured by
the Euclidean distance between feature vectors of neigh-
bouring 3D frames. The feature vectors are derived from
three histograms (one for each spherical coordinate r, θ

and φ) of all vertices of the 3D frames. Before the compu-
tation of spherical histograms, the Cartesian coordinates
of vertices are transformed to the spherical coordinates.
One of the three histograms is computed by splitting the
range of the data in equal size bins. Then, the number of
points from the data set that fall into each bin is counted.
After shot detection, the key-frames are extracted in each
shot. The key-frame extraction method is based on a rate-
distortion trade-off expressed by a Lagrangian cost func-
tion, cost(Shotk)=Distortion(Shotk)+λRate(Shotk) where
Rate is the number of key-frames in a shot and Distortion
is the Euclidean distance between feature vectors.
Huang et al. [51] also presented a key-frame extraction

method for 3D video based on rate-distortion optimisa-
tion, where Rate and Distortion definitions are similar to
those used in [19]. However this method is not based on
shot identification, since it produces 3D key-frame sum-
maries without requiring prior video shot detection. The
key-frame summary sought should minimise a Concise-
ness cost function, which is a weighted sum of the Rate
and Distortion functions defined in the work. A graph-
based method for extracting the key-frames is used, such
that the key-frames selection is based on the shortest
path in the graph that is constructed from a self-similarity
map. The spherical histogram of the 3D frames is used to
compute the self-similarity map.
More recently, Ferreira et al. [42] proposed a shot-based

key-frame extraction method based on rate-distortion
optimisation for 2D and 3D video. For each video-shot,
a corresponding set of key-frames is chosen via dynamic
programming by minimising the distortion between the
original video shot and the one reconstructed from the set
of key-frames. The distortion metric comprises not only
information about frame difference, but also the visual
relevance of different image regions as estimated by and
aggregated saliency map, which combines three saliency
feature maps computed from spatial, temporal and depth
information.

1.5.6 Matrix factorisation
Another class of methods use matrix factorisation tech-
niques to extract frames from a video sequence. Matrix
factorisation (MF) techniques are based on approximating
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a high dimension matrix A (original data) by a prod-
uct of two or more lower dimension matrices. The A
matrix can be composed of different features of the video
or image, e.g. Gong and Liu [52] used the colour his-
tograms to represent video frames while, Cooper et al.
[53] computed the MF of the similarity matrix into essen-
tial structural components (lower dimension matrices).
In addition to dimension reduction, the MF techniques
allow reducing significantly the processing time andmem-
ory used during the operation. The MF techniques found
in these key-frame extraction methods include singu-
lar value decomposition (SVD) and non-negative matrix
factorisation.
Gong and Liu [52] proposed a key-frame extraction

method based on SVD. To reduce the number of frames
to be computed before the SVD, only a subset is taken
from the input video at a pre-defined sample rate. Then,
colour histograms (RGB) are used to create a frame-
feature matrix A of the pre-selected frames. Next, the
SVD is performed on matrix A to obtain an orthonor-
mal matrix V in which each column vector represents
one frame in the defined feature space. Then a set of
key-frames are identified by clustering the projected coef-
ficients. According to user’s request, the output can be a
set of key-frames (one of each cluster) or a video skim
with a user specified time duration. To construct the set
of key-frames, the frames that are closest to the centres
of the clusters are selected as key-frames. Non-negative
similarity matrix factorisation based on low-order dis-
crete cosine transforms [53] and sliding-window SVD [54]
are other approaches for key-frame extraction based on
matrix factorisation.
In [18], Huang et al. proposed a method to be used

with 3D video to represent an animation sequence with
a set of key-frames. Given an animation sequence with
n frames and m vertices of a surface in each frame, an
n × m matrix A is built with the vertices coordinates.
This matrix A is then approximately factorised into a
weight n × k matrix W and a key-frame k × m matrix
H, where k is the predefined number of key-frames. As k
is selected to be smaller than n and m, this decomposi-
tion results in compact version of the original data A ≈
WH. An iterative least square minimisation procedure is
used to compute the weights and extract the key-frames.
This procedure is driven by user-defined parameters
such as a number of key-frames and an error threshold.
Lee et al. [22] introduced a deformation-driven genetic
algorithm to search good representative animation key-
frames. Once the key-frames are extracted, similar to
[18], the animation is reconstructed by a linear combina-
tion of the extracted key-frames for better approximation.
To evaluate the performance of the proposed method,
the authors compare it with Huang’s method proposed
in [18].

1.5.7 Othermethods
The methods described in this section could not be easily
classified into the preceding categories, mostly on account
of the diversity of approaches followed in solving the
key-frame extraction problem. As such, and given their
importance, they are described all together in this section.
Assa et al. proposed a method to create an action syn-

opsis image composed of key poses (human body motion)
based on the analysis through motion curve. The method
integrates several key-frames into a single still image or a
small number of images to illustrate the action. Currently,
it is applied in 3D animation sequences and 2D video as
documented in [17].
Lee et al. [25] proposed a method to select key-frames

from 3D animation video using the depth information of
the animation. The extracted key-frames are used to com-
pose a single image summary. The entire video sequence
is divided into temporal segments based on the motion
of the slowest moving objects, and then a summarisation
method is applied to the segments. The depth information
and the respective gradient (computed with depth val-
ues of each frame) is used to compute the importance of
each frame. A single image summary composed of several
foreground visual objects is built based on the impor-
tance of each frame. The authors proposed a threshold
based approach to control the visual complexity (num-
ber of foreground objects) of the single image summary
(one for each video sequence), as it is showed in Fig. 5.
By using this approach, the number of video frames to
be analysed is reduced, but in some cases the method
canmiss important information contained in the temporal
segments.
Jin et al. [41] proposed a key-frame extraction method

for animation sequences (skeletal and mesh animations).
The method uses animation saliency computed from the

Fig. 5 Single image key-frame presentation method [25]
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original data to aid the selection of the key-frames that
can be used to reconstruct the original animation with
smaller error. Usually, an animation sequence is charac-
terised by a large amount of information. For computa-
tional efficiency, the animation sequence is projected to a
lower-dimensional space where all frames of the sequence
are represented as points of curves defined in the new
lower-dimensional space. Then, the curves in the lower-
dimensional space are sampled and these sampled points
are used to compute the Gaussian curvature values. Next,
the points with the largest curvature value are selected
as candidate key-frames. Finally, a key-frame refinement
method is employed to minimise an error function which
incorporates visual saliency information. The aim of a
visual saliency is to identify the regions of an image which
attract higher human visual attention. Lee Huang et al.
[55] expanded this idea to 3D video and computed mesh
saliency for use in a mesh simplification algorithm that
preserves much information of the original input. More
recently, visual saliency has also been used in 3D key-
frame extraction, in the method proposed by Ferreira
et al. in [42].
Yanwei et al. [16] proposed a multiview summarisation

method for non-synchronised views, including 4 of them
covering 360°, which results in small inter-view correla-
tion, thus more difficult to compute similarity measures.
In this method, each view is segmented into video shots
and general solution combines features of different shots
and uses a graphmodel for the correlations between shots.
Due to the correlation among multi-view shots, the graph
has complicated connectivity, which makes summarisa-
tion very challenging. For that purpose, random walks are
used to do shot clustering and then the final summary
is generated by a multi-objective optimisation process
based on different user requirements, such as the num-
ber of shots, summary length and information coverage.
The output of Yanwei’s method is a multiview storyboard,
condensing spatial and temporal information.

1.5.8 Discussion
The problem of key-frame extraction for 3D video has
been presented first by Doulamis et al. in [10] who pro-
posed a method combining colour and depth information
to summarise stereo video sequences. Papachristou et al.
in [13] developed a video shot classification framework
for stereoscopic video, in which the key-frame extrac-
tion method used is based on mutual information. Even
though the framework was proposed for stereoscopic
video, the key-frame extraction method only uses one
view of the stereoscopic video. Until now, only some spe-
cific 3D video formats were considered by the existing
key-frame extraction methods. Stereoscopic video was
used in [10, 42], V+D is used by Ferreira et al. in [42] and
3D computer graphics format in [17–19, 22, 25, 51]. Thus,

further room exists for research on efficient key-frame
extraction methods that can be applied to other 3D video
formats, such as MVV, MVD and holoscopic video.
Most 3D key-frame extraction methods cited in this

paper were developed for specific content and 3D format
and only four of them include comparisons with simi-
lar methods [18, 22, 41, 51]. In [18], curve simplification,
UnS and clustering methods were utilised as reference
methods for performance evaluation and comparison of
the proposed matrix factorisation methods. The authors
showed that the method based on matrix factorisation
extracts more representative key-frames in comparison
with the other three competing methods [22, 41, 51].
However, the algorithm is very slow with quadratic run-
ning time complexity. In [22], the proposed method based
on genetic algorithm is compared with Huang’s method
[18] in terms of the PSNR and computational complex-
ity. The former is very efficient in terms of computation
time when compared to the latter but qualitywise (aver-
age PSNR) it is slightly worse. However, Huang’s method
[18] is slightly better when comparing maximum and
minimum PSNR.
Peng Huang et al. in [51] confront their key-frame

extraction method with the method used in [19] and
the results show improved performance for all 3D video
sequences used. Jin et al. in [41] compare the proposed
method with the UnS and Principal Component Analysis
methods [56]. The results show that the proposed method
achieves much better reconstruction of skeletal and mesh
animation than the other methods under analysis.
As mentioned before, most of the key-frame extraction

methods for 3D video, rely on a previous SBD step. How-
ever, the methods just described, from [18, 22, 41, 51], do
not perform any pre-analysis of the video signal to identify
shots and their boundaries. The quality of key-frame sum-
maries obtained using these approaches can be negatively
affected when accurate shot segmentation is not available.
Another important issue is the definition of the number of
key-frames need to represent the original sequence. This
number depends on user requirements and on the content
of the video to be summarised and its choice frequently
involves a trade-off between the quality and efficiency of
the key-frame summary.

1.6 Key-frame presentation
Once the key-frames are extracted, they need to be pre-
sented in an organisedmanner to facilitate video browsing
and navigation operations by the user. The video pre-
sentation methods aim to show the key-frames in some
meaningful way allowing the user to grasp the content of
a video without watching it from beginning to end [4].
The most common methods for key-frame presentation
are the static storyboard, dynamic slideshow and single
image, see Fig. 1.
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Static storyboard presents a set of miniaturised key-
frames spatially tiled in chronological order, allowing
a quick browsing and viewing of the original video
sequence. This presentation method was used with 3D
video in [10, 18, 19, 22, 41, 51]. The second method is the
dynamic slideshow that presents the key-frames one by
one on the screen, which allows browsing over the whole
video sequence. Other presentation method is the sin-
gle image, which morphs parts of different key-frames in
chronological to produce a single image. Normally, in this
presentation type the background and foreground objects
(time shifted) are aggregated in single image, as exempli-
fied in Fig. 6. In this figure, the foreground is the children
who plays in bars of a playground. Here, we can see 3 posi-
tions of the children in the bars which corresponds to 3
key-frames of video sequence.
Qing et al. [12] proposed a generic method for extract-

ing key-frames in which the Jensen-Shannon divergence
is used to measure the difference between video frames to
segment the video into shots and to choose key-frames in
each shot. The authors also proposed a 3D visualisation
tool, used to display key-frames and the useful informa-
tion related to the process of key-frame selection. More
recently, Nguyen et al. [57] proposed the Video Summa-
gator. This method provides a 3D visualisation of a video
cube of static and dynamic video summaries. Assa et al.
proposed a method to create an action synopsis image
from a 3D animation sequence or 2D video [17]. Lee et al.
also proposed amethod to summarise a 3D animation into
a single image based on depth information [25].
In [58] a 3D interface (3D-Ring and 3D-Globe) was pro-

posed as an alternative to the 2D grid presentation for
interactive item-search in visual content databases, see
Fig. 7. Even though this system was designed to be used
with a large database it can also be applied to visualise
key-frames summaries of 2D and 3D video.

Fig. 6 Video synopsis proposed [43]

Fig. 7 a 3D-Ring interface, b 3D-Globe interface and c 2D grid
presentation (figures based on [58])

1.6.1 Discussion
Most of the 3D key-frame extraction methods proposed
in the literature until now are focused on the extraction
rather than in the presentation of key-frame sets to the
viewers. So far only Assa et al. and Lee et al. proposed in
[17] and [25] two presentation solutions distinct from the
static storyboard used in association with most of 3D key-
frame extraction methods [10, 18, 19, 22, 41, 51]. In this
scenario, with only two presentation solutions, it is fore-
seeable that the development of new 3D video and image
display devices will lead to the creation of new meth-
ods to display 3D video summaries or key-frame collages
providing the user with more immersive and more mean-
ingful ways to observe these types of time-condensed
video representations.

1.7 Quality evaluation of 3D key-frame summaries
One of the most important topics in video summarisation
algorithmic development is the evaluation of the key-
frame extraction methods. In this section, we present cur-
rent key-frame summary evaluation methods and some



Ferreira et al. EURASIP Journal on Image and Video Processing  (2016) 2016:28 Page 13 of 19

related issues. These methods are aggregated into three
groups: result description, subjective and objective meth-
ods, as it was proposed in [4].

1.7.1 Result description
This is the most common and simple form of evaluation
key-frame extraction methods since it does not require
a reference, either for objective or subjective compari-
son with other methods. Usually, it is used to explain
and describe the advantages of some method compared
with others based on presentation or/and description
of the key-frames extracted (visual comparison), as in
[18, 19, 22, 25, 41, 51]. This type of evaluation can also be
used to discuss the influence of specific parameters or fea-
tures of the method and also the influence of the content
in the key-frame set, as in [10, 19]. In some works, this
type of evaluation method is complemented with objec-
tive and/or subjective methods as in [19, 25]. However, the
result description method has some limitations, such as
the reduced number of methods which can be compared
at same time, i.e. it is inadequate to compare key-frame
summaries of a large number of video sequences or meth-
ods. Another drawback is the subjectivity inherent to
this type of evaluation, since the underling comparisons
results are usually user-dependent and so prone to inter
and intra observer fluctuations.

1.7.2 Subjectivemethods
Subjective methods rely on the independent opinion of a
panel of users judging the quality of the generated key-
frame video summaries according to a known methodol-
ogy. In this type evaluation, a panel of viewers are asked
to observe both the summaries and the original sequence
and then respond to questions related to some evaluation
criteria, (e.g. ‘Was the key-frame summary useful?’, ‘Was
the key-frame summary coherent?’) or if each key-frame
is ‘good’, ‘fair’, or ‘poor’ according to the original video
sequence.
The experiments can include a set of absolute evalua-

tions and/or a set of relative evaluations, in which two key-
frame summaries are presented and compared. Usually,
the summary visualisation and rating steps are repeated
for each video in the evaluation set by each viewer. Dur-
ing the evaluation of the key-frame summaries, it is also
required taking into account the external factors which
can influence the ratings of the summaries, such as the
attention and fatigue specially when there are long evalu-
ation sessions with many video summaries. In addition to
these factors, the experiments must follow standard rec-
ommended protocols prepared specifically for subjective
assessment of video quality [59].
Subjective evaluationmethods were used in [16, 60–63].

In [60], subjective assessment was used to grade the single
key-frame representations as ‘good’, ‘bad’ or ‘neutral’ for

each video shot and also give appreciations on the num-
ber of key-frames with possible grades being ‘good’, ‘too
many’ and ‘too few’ in the case of multiple key-frames
per shot. In [61, 63], the quality of the key-frame sum-
mary is evaluated by asking users to give a mark between
0 to 100 for three criteria, ‘informativeness’, ‘enjoyabil-
ity’ and ‘rank’ after watching the original sequences and
the respective key-frames summaries. Ejaz et al. [62] used
subjective evaluations to compare the proposed method
with four prominent key-frame extraction methods: open
video project (OV) [45], Delaunay triangulation (DT) [64],
STIll and MOving Video Storyboard (STIMO) [65] and
Video SUMMarisation (VSUMM) [24]. In this case, the
evaluation is based on mean opinion scores (MOS) and
viewers are asked to rate the quality of the key-frame sum-
mary on scale of 0 (minimum value) to 5 (maximum value)
after watching the original sequences and the respective
summaries generated by all the methods.
In [16] subjective assessments were also used to eval-

uate multiview video summaries. The aim is to grade
the ‘enjoyability’, ‘informativeness’ and ‘usefulness’ of the
video summary. Here, three questions were put to the
viewer to evaluate the method: Q1: ‘How about the enjoy-
ability of the video summary?’ Q2: ‘Do you think the
information encoded in the summary is reliable compared
to the original multiview videos’ and Q3: ‘Will you pre-
fer the summary to original multiview videos if stored in
your computer?’. In reply to the questions Q1 and Q2, the
viewers assigned a score between 0 (minimum value) to
5 (maximum value) and for Q3 the viewers only need to
respond with ‘yes’ or ‘no’. From all 3D key-frame extrac-
tion methods reviewed, only [16, 17, 25] used subjective
evaluations.

1.7.3 Objectivemethods
Although subjective evaluation provides a better repre-
sentation of the human perception than objective eval-
uation, it is not suitable for practical implementations
due to the time required to conduct the opinion collec-
tion campaigns. Objective evaluation methods are repro-
ducible and can be specified analytically, and since they
are automatable can be used to rate the proposed method
on large number of videos of variable genres and formats.
Thesemethods can be applied to all types of video formats
without requiring the services of video experts and can
be performed rapidly and automatically if suitable quality
measures are available. Besides being faster, simpler and
easily replicable, this type of method is more economical
than the subjective evaluation.
The works reviewed in this article, which use objective

quality evaluation, employ several quality measures orig-
inally developed for 2D video, but can be also applied
to 3D video, after being modified to take into account
the specific features of 3D visual information. The shot
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reconstruction degree (SRD) distortion measure [66] and
the fidelity measure (Fm) defined in [67] follow two differ-
ent approaches. Fidelity measure employs a global strat-
egy, while SRD uses a local evaluation of the key-frames.
To judge the conciseness of a key-frame summary a mea-
sure of the Compression Ratio (CR) is used [68]. If a
ground-truth summary is available the Comparison of
User Summaries (CUS) [24], Recall rate, Precision rate
and accuracy measure (F1) measures can be used. These
measures compare the computed summaries with those
manually built by users. More details on these measures
are presented in the next sub-sections.

Shot reconstruction degree: SRD measures the capa-
bility of a set of key-frames to represent the origi-
nal video sequence/shot. Assuming a video shot F =
{f0, f1, . . . , fn−1} of n frames and K = {fl0 , fl1 , . . . , flm−1} a
set of m key-frames selected from F, the reconstructed
scene shot F ′ = {f ′

0, f ′
1, . . . , f ′

n−1} is obtained from the K
set by using some type of frame interpolation. The SRD
measure is defined as

SRD(F, F ′) = 1
n

n−1∑

k=0
Sim

(
fk , f

′
k

)
(8)

where n is the size of the original video sequence/shot
F and Sim(.) is the similarity between two video frames.
In Liu et al. [66], the similarity measure chosen was peak
signal-to-noise ratio (PSNR), but other similarity metrics
that include 3D features can also be used in the evaluation
of 3D key-frame summaries. A K key-frame summary is a
good representation of the original F when the magnitude
of its SRD is high.

Fidelity Fm is computed as the maximum of the minimal
distances between the set of key-frames K and each frame
of the original F, i.e. a Semi-Hausdorff distance dsh. Let
F be a video sequence/shot containing n frames, and the
set K = {fl0 , fl1 , . . . , flm−1} of m frames, selected from F.
The distance between the set K and a generic frame fk s.t.
0 ≤ k ≤ n− 1 belonging to F can be calculated as follows.

dmin(fk ,K) = min
j

{
d

(
fk , flj

)}
; j = 0, 1, . . . ,m − 1 (9)

Then the semi-Hausdorff distance dsh between K and F
is defined as

dsh(F,K) = max
k

{dmin(fk ,K)}; k = 0, 1, . . . , n − 1 (10)

The Fidelity measure is defined as

Fm(F,K) = MaxDiff − dsh(F,K) (11)

whereMaxDiff is the largest possible value that the frame
difference measure can assume. The function d(fa, fb)
measures the difference between two video frames a and
b. The majority of the existing dissimilarity measures can

be used for d(, ), such as the L1-norm (city block dis-
tance), L2-norm (Euclidean distance) and Ln-norm [67].
As it was mentioned before, the Fm measure can be used
for 3D video with the necessary changes in the d(, ) dis-
tance. Whenever Fm is high, this means that the selected
key-frames provide an accurate representation of the
whole F.

Compression ratio: A video summary should not con-
tain too many key-frames since the aim of the summari-
sation process is to allow viewers to quickly grasp the
content of a video sequence. For this reason it is important
to quantify the conciseness of the key-frame summary.
The conciseness is the length of the key-frame video sum-
mary in relation to the original video segment length
and can be measured a compression ratio, defined as
the relative amount of ‘savings’ provided by the summary
representation:

CR(F) = 1 − m
n

(12)

wherem and n are the number of frames in the key-frame
set K and the original video sequence F respectively. Gen-
erally, high compression ratio is desirable for a compact
video summary [68].

Comparison of user summaries (CUS): CUS is a quan-
titative measure based on the comparison of summaries
built manually by users and computed summaries. It was
proposed by Avila et al. in [24]. The user summaries
are taken as reference, i.e. the ground-truth, and the
comparison between the summaries is based on specific
metrics. The colour histogram is used for comparing key-
frames from different video summaries, while the distance
between them is measured using the Manhattan distance.
Two key-frames are similar if the Manhattan distance of
their colour histograms is below a predetermined thresh-
old δ. In [24], this threshold value was set to 0.5. Two
evaluation metrics, accuracy rate CUSA and error rate
CUSE , are used to measure the quality of the computed
summaries. They are defined as follows:

CUSA = nmatch
nUS

CUSE = nno-match
nUS

(13)

where nmatch and nno-match are, respectively, the number
of matching and non-matching key-frames between the
computed and the user generated summary and nUS is the
total number of key-frames in the summary. CUSA varies
between 0 and 1, where CUSA = 0 is the worst value
indicating that none of the key-frames from the computed
summary matches those of the user summary. A value of
CUSA = 1 is the best case and indicates that all key-
frames from both summaries perfectly match each other.
A null value for CUSE indicates a perfect match between
both summaries.
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Computational complexity: Another relevant perfor-
mance metric taken into account in the evaluation of
key-frame extraction methods is the computational com-
plexity, which is usually equated with the time spent to
construct a key-frame summary. This metric was used
in [24, 62, 63, 68, 69] for 2D video summaries. In 3D
key-frame extraction methods, the computational com-
plexity metric is only used by Lee et al. in [22], where the
computational complexity of Lee’s and Huang’s et al. [18]
methods are compared.

Othermethods: Othermethods andmeasures were used
for objective evaluation of 3D key-frames summaries.
In [19, 51] a rate-distortion curve is used, modelling
a monotonic relationship between rate and distortion,
with increases of the former leading to decreases of the
latter. In the case of [18], the root mean square error
(RMSE) distance between the original and reconstructed
animation was used as the objective quality measure
(with an inverse relationship in this case). This mea-
surement is the same as in [70] and [71]. Lee et al.
[22] used PSNR to measure the reconstruction distor-
tion. Jin et al. in [41] measure reconstruction error of
the animation from the extracted key-frames, using aver-
age of degrees of freedom (DOF) of reconstruction error
magnitude.

1.7.4 Discussion
Conciseness, coverage, context and coherence are desir-
able attributes in any key-frame summary. Some of these
attributes are mostly subjective as is the case of the con-
text and coherence. Conciseness is related to the length of
the key-summary, while the coverage evaluation is based
on comparison between computed key-frames summary
and ground-truth summary, expressed by the recall rate,
precision rate, CUSA and CUSE .
Most evaluation metrics reviewed above were devel-

oped for 2D video. However, some of them, such as Fm
and SRD, have also been extended to evaluate 3D video
summaries after some adaptation. This is the casse of the
3D key-frame extraction method presented by Ferreira et
al. in [42], where the Fm and SRD metrics were used.
To measure the Recall rate, Precision rate, CUSA, CUSE ,
computational complexity and compression ratio in 3D
video summarisation, no adaptation is needed.
The key-frame extraction methods are often

application-dependent (e.g. summarisation of sports
videos, news, home movies, entertainment videos and
more recently for 3D animation) and the evaluation
metrics must be adapted to the intended use. A good
summary quality evaluation framework must be based
on a hybrid evaluation scheme which includes the
strengths of subjective and objective methods and also
the advantages of result description evaluations.

1.8 Applications
In this section, some applications of 3D key-frame extrac-
tion methods and some aspects related to these applica-
tions are presented. These applications are grouped into
five categories: video browsing, video retrieval, content
description, animation synthesis and others.

1.8.1 Video browsing
The video browsing and associated problem has been
investigated by the research community for decades, [72].
However, the growing use of 3D video and the specific
characteristics of this type of visual information make
3D video browsing a more interesting and challenging
problem. The access to databases or other collection of
videos could be eased by the use the key-frame extrac-
tion methods to abstract/resume long video sequences in
the repository of interest. With this kind of abridged video
representation, a viewer can quickly find the desired video
in a large database. For example, once an interesting topic
has been identified through display of the key-frames, a
simple operation as a click on the respective key-frame
can initiate video playback of the original content at that
particular instant. Many video browsing methods have
been proposed for 2D video [72]. However, to the best of
the authors’ knowledge, in the case of 3D video there are
no works reported in the literature.

1.8.2 Video retrieval
In contrast to video browsing, where viewers often just
browse interactively through video summaries in order
to explore their content, in video retrieval the viewers
search for certain visual objects (e.g. objects, people and
scenes) in a video database. In this type of retrieval pro-
cesses, viewers are typically expected to know exactly
what they are looking for. Therefore, it is crucial to imple-
ment appropriate search mechanisms for different types
of queries provided by distinct viewers and with particu-
lar interests. The matching between the viewers’ interests
(queries) and the database content can be made with
recourse to textual or image based descriptions or com-
binations of both. Some 2D video search and retrieval
applications have combined video browsing and retrieval
in the same platform [72]. In the case of 3D video this
problem is still open for research. Finally, it is worth to
point out that work done on 3D object recognition tech-
niques which can also be used in retrieval, as published
in [73–75].

1.8.3 Content description
Vretos et al. [76] presented a way of using the
audio-visual description profile (AVDP) of the MPEG-7
standard for 3D video content description. The descrip-
tion of key-frames is contemplated in the AVDP profile
through the MediaSourceDecompositionDS (i.e. Media-
SourceDecompositionDS is used in the AVDP context to
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decompose an audiovisual segment into the constituent
audio and video channels). Thus this content description
scheme, allows that 3D key-frames can be used for fast
browsing and condensed representation of query results
of 3D video search tasks. Other application of key-frames
to content description was proposed by Sano et al. [77].
Here, the authors proposed and discussed how the AVDP
profile of the MPEG-7 can be applied to multiview 3D
video content [56].

1.8.4 Animation synthesis
Blanz et al. [78] proposed a morphable 3D face model
by transforming the shape and texture of example into
a new 3D model representation. According to this mod-
elling approach, new or similar faces and expressions can
be created by forming linear combinations of the 3D face
models. A similar concept to the proposed in [78] can
be applied to generate 3D models [79] or to synthesise
new motion from captured motion data [80]. Animation
synthesis based on key-frames [81] using the same con-
cept has been presented in [78–80], to interpolate frames
between two key-frames. However, the quality of the
interpolated frames is dependent on the inter-key-frame
distance and on the interpolation method used.

1.8.5 Others
Assa et al. [17] proposed the use of action synopsis images
as icons (personal computer desktop and folders) and
thumbnails of the 3D animation. Assa et al. also pro-
posed an automatic or semi-automatic generationmethod
to create comic strips and storyboards for 3D animation.
Lee et al. [25] presented a method to create a single image
summary of a 2D or 3D animation, which can be used
in the same application as Assa’s work. Halit et al. [56]
proposed a tool for thumbnail generation from motion
animation sequences. Several authors, as [82–85] have
used key-frame extractionmethods in the 2D-to-3D video
conversion.

1.9 Prospects and challenges
Although some significant work has been done in the 3D
video summarisation domain, many issues are still open
and deserve further research, especially in the following
areas.

1.9.1 SBD and key-frame extractionmethods
The selection of the features used by shot boundary and
key-frame extraction methods is still an open research
problem, because these features depend on the appli-
cation, video content and representation format. For
instance, in fast-motion scenes edge information is not
the best choice to detect shot boundaries due to motion-
induced blur. Thus, it may be better to automatically find
the useful features based on some assumptions about the
video-content.

The majority of key-frame extraction methods pub-
lished in the literature use low-level features and content
sampling approaches to identify the relevant frames that
should be included in the key-frame summary. Recently,
the inclusion of perceptual metrics in the SBD and key-
frame methods are gaining some space. Recently and in
the context of 2D video, some key-frame extraction meth-
ods based on visual attention models have emerged as,
[60–63, 86]. However, for 3D video only two solutions are
available [41, 42]. Hence, key-frame extraction in 3D video
still poses relevant research problems to be investigated
and efficiently solved.
Another open challenge is the combination of the visual

features with additional information, such as audio fea-
tures, text captions and content description, for use in
shot boundary detection and selection of the optimal
frames in 3D video. In the current literature, there is also
a lack of summarisation methods based on key-frames
or video skims, for the most recent 3D video formats
such as MVD and plenoptic video. Another topic open to
further research is the application of scalable summari-
sation to 3D formats [87]. Despite the fact that several
previous works addressed scalable summarisation for 2D
video, e.g. [88, 89], such methods were not extended
to 3D and multiview, which leads to open research
questions.

1.9.2 Evaluation
In the past evaluation frameworks for 2D key-frame sum-
marisation methods were proposed in [90, 91]. More
recently, Avila et al. [24] also proposed another evalua-
tion setup, wherein the original video and the key-frame
summaries of several methods are available for down-
loading, together with the results of several key-frame
extraction methods for 2D video. Unfortunately for the
case of 3D video, there is not as yet any similar framework,
where key-frame summaries and the respective original
sequences are available for research use.
The number and diversity of evaluation metrics (objec-

tive, result description and subjective) used to compare
state-of-the-art key-frame extraction methods make their
comparative assessment a difficult task. Therefore, the
development of metrics which can be used in the evalu-
ation of key-frames summaries in different domains and
3D video formats is a very important area of video-
summarisation related research. Furthermore the focus
of the evaluation process must be application-dependent.
For instance, in browsing applications, the time spent by
the user to search or browse for a particular video is the
most important factor, but on the other hand, in detection
events, the evaluation metric must focus on the successful
detection of these events.
One other problem that arises in the evaluation pro-

cess is the replication of results of previous works, as
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some works are not described with enough details to
allow independent implementation or the input data is
unavailable or else it is not easy to use due to data for-
mat incompatibilities or lack of information about their
representation format. Thus, the best way to test and com-
pare key-frame extraction methods for 2D and 3D is to
build publicly accessible repositories containing test kits,
made up of executable or web-executable versions of the
methods and the test sequences.

1.9.3 Presentation
Another challenging topic in the research of 3D key-
frame summarisation is the design of an efficient and
intuitive visualisation interface that allows easy naviga-
tion and visualisation of the key-frame summaries. These
applications should be independent of the terminal capa-
bilities (display dimension, processing and battery power),
i.e. should be usable on small screen devices such as
smartphones as well as on ultra-high-definition displays.
In addition, the visualisation interface should be inde-
pendent from the key-frame summarisation method, to
allow the visualisation of different formats of 3D key-
frames video summaries, such as stereoscopic video or
video-plus-depth and also 2D video in the same frame-
work. The interface should be capable of dealing with the
most common key-frame visualisation methods such as,
static storyboard, dynamic slideshow and hierarchically
arranged viewing. In particular, the most recent 3D inter-
face for searching and viewing images or video in large
databases, 3D-Ring and 3D-Globe, are interesting solu-
tions which must be taken into account in the definition
of new key-frame visualisation methods [58].

1.9.4 Video summary coding
In the past, the problem of scalable coding of video sum-
maries was addressed in [88, 92–94]. In [92] the authors
propose a hierarchical frame selection scheme which con-
siders semantic relevance in video sequences at different
levels computed from compressed wavelet-based scalable
video. In [93], a method to generate video summaries
from scalable video streams based on motion information
is presented; while in [94], the authors propose to parti-
tion a video summary into summarisation units related
by the prediction structure and independently decodable.
Ferreira et al. in [88] proposed a method to encode an
arbitrary video summary using dynamic GOP structures
in scalable streams. The scalable stream obtained was fully
compatible with the scalable extension of the H.264/AVC
standard. However, all approaches were proposed for 2D
video and used older generation video coding methods.
The application of video summary coding to the 3D video
format and the use of the most recent video coding, such
as HEVC, should also be explored to find efficient coding
tools for such purpose.

2 Conclusions
In this paper, we have presented a review of 3D key-frame
extraction methods covering the major results published
in recent journal issues and conference proceedings. Dif-
ferent state-of-the-art methods for key-frame extraction
and evaluation metrics were presented and examined.
The most important presentation methods for key-frame
summaries were also discussed.
Various suggestions for the development of future 3D

video summarisation methods are made, particularly ori-
ented for future research on 3D key-frame extraction
methods and potential benefits that may be attained
from further research based on visual attention mod-
els. So far, 3D video key-frame extraction methods based
on visual attention have not been deeply researched,
so this is an interesting point to be explored. More
research effort should also be put on methods for per-
formance evaluation of key-frame extraction algorithms.
The current plethora of different objective and sub-
jective evaluation methods, most of them not easily
comparable between each other, motivates a research
goal towards unified and comparable methods for per-
formance evaluation and benchmarking of 3D video
summaries.
One other important and interesting research topic is

the design and implementation of methods and tools to
present 3D key-frame summaries. It is clear that the way
a key-frame set is presented to viewers influence the time
and effort they have to devote to interpret the summarised
visual data. Finally, efficient coding of video summaries
also leads to research problems which are still open for
further research, since no specific solutions for 3D video
are currently available.
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