83 research outputs found

    M-ary energy detection of a Gaussian FSK UWB system

    Get PDF
    The energy detection M-ary Gaussian frequency-shift keying (FSK) system is proposed in this paper. The system performance is analyzed in additive white Gaussian noise channels, multipath channels, and in the presence of synchronization errors. The numerical results show that the M-ary modulation achieves the higher data rate than the binary modulation. However, it also results in performance degradation

    IA-OPD : an optimized orthogonal pulse design scheme for waveform division multiple access UWB systems

    Get PDF
    A new design scheme of orthogonal pulses is proposed for waveform division multiple access ultra-wideband (WDMA-UWB) systems. In order to achieve WDMA and to improve user capacity, the proposed method, termed as interference alignment based orthogonal pulse design (IA-OPD), employs combined orthogonal wavelet functions in the pulse design. The combination coefficients are optimized by using interference alignment. Due to the reciprocity between transmitted and local template signals, the iterative process based on maximum signal to interference plus noise ratio (Max-SINR) criterion can be used to solve the optimization problem in interference alignment. Numerical results demonstrate that the optimized orthogonal pulses provide excellent performances in terms of multiple access interference (MAI) suppression, user capacity and near-far resistance without using any multiuser detection (MUD) techniques. Thus, the IA-OPD scheme can be used to efficiently design a large number of orthogonal pulses for multiuser WDMA-UWB systems with low computational complexity and simple transceiver structure

    M-ary energy detection of a Gaussian FSK UWB system

    Get PDF
    The energy detection M-ary Gaussian frequency-shift keying (FSK) system is proposed in this paper. The system performance is analyzed in additive white Gaussian noise channels, multipath channels, and in the presence of synchronization errors. The numerical results show that the M-ary modulation achieves the higher data rate than the binary modulation. However, it also results in performance degradation

    Position estimation for IR-UWB systems using compressive sensing

    Get PDF
    Recently, a growing interest in precise indoor wireless locating systems has been observed. Indoor environments are typically complex wireless propagation channels with numerous multi-paths created by closely spaced scattering objects. The ability to resolve these multi-paths is very important for good ranging resolution and positioning accuracy. Impulse-Radio Ultra-Wideband (IRUWB) is a promising technology to fulfill these requirements in harsh indoor propagation environments due to its great time resolution and immunity to multipath fading. One of the major IRUWB signal processing challenges is the high sampling demands of IR-UWB digital receivers, which greatly elevates the cost and power consumption of IR-UWB systems . Compressive Sensing provides a solution by allowing them to sample IR-UWB signals at a lower rate than the Nyquist sampling limit. The CS approach relies on the fact sparse representations are possible in the localization context. Basically two sparsity patterns can be exploited: Firstly, transmitting an ultra-short pulse through a multipath UWB channel leads to a received UWB signal that can be approximated by a linear combination of a few atoms from a pre-defined dictionary, yielding thus a sparse representation of the received UWB signal. Secondly, the inherent spatial sparsity of scene can be introduced through the use of an overcomplete basis or dictionary that enables to jointly evaluate all multiple location hypothesis. In this degree thesis, three novel data-acquisition and positioning methods exploiting different sparse representations for IR-UWB signals under challenging indoor environments are presented. Essentially, through the formulation of sparsity-based reconstruction techniques it is viable to localize targets while reducing the computational load and sampling requirements. Their performance is assessed and compared under the framework of the IEE.802.15.14a channel models, which is a standard developed specifically for UWB wireless positioning.Recientemente, se ha observado un interés creciente en los sistemas de localización pasiva inalámbrica para edificios interiores como oficinas o naves industriales. Típicamente, los ambientes de interiores son canales de propagación inalámbricos complejos con numerosas reflexiones creadas por objetos dispersivos muy próximos entre sí. La capacidad de resolver estos múltiples caminos es muy importante para una buena resolución de alcance y precisión de posicionamiento. Impulso-radio de banda ultra-ancha (UWB-IR) es una tecnología prometedora para cumplir con estos requisitos en entornos de propagación interiores debido a su gran resolución temporal y la inmunidad al desvanecimiento por múltiples caminos. Uno de los principales retos de procesamiento de señales IR-UWB es la alta demanda de muestreo de receptores digitales IRUWB, lo que eleva considerablemente el costo y el consumo de energía de los sistemas IR-UWB. Compressive Sensing proporciona una solución que permite muestrear señales IR-UWB a un ritmo menor que el límite de muestreo propuesto por Nyquist. El enfoque de este problema con Compressive Sensing se basa en el hecho de que representaciones dispersas son posibles en el contexto de la localización. Básicamente dos patrones de dispersión pueden ser explotados: En primer lugar, la transmisión de un pulso ultra corto, través de un canal de banda ancha donde la señal experimenta trayectos múltiples, conduce a una señal de UltraWideband recibida que puede ser aproximada por una combinación lineal de unos pocos átomos de un diccionario predefinido, obteniéndose así una representación dispersa de la señal de UWB recibida. En segundo lugar, la escasez de objetivos a localizar de la escena se puede utilizar mediante el uso de un diccionario sobre-completo que permita evaluar conjuntamente las múltiples hipótesis de ubicación en un escenario bidimensional, adquiriendo así una representación dispersa, con pocos elementos. En este proyecto final de carrera, se presentan tres nuevos métodos de adquisición de datos y posicionamiento que explotan diferentes representaciones dispersas para señales IR-UWB bajo ambientes interiores. En esencia se plantea, mediante la formulación de técnicas de reconstrucción de Compressive Sensing, que es viable localizar objetivos y al mismo tiempo reducir los requisitos de carga computacional y altos ritmos de muestreo. El rendimiento de los algoritmos propuestos se evalúa y se compara en el marco de los modelos de canal IEE.802.15.14a, que es un estándar desarrollado específicamente para el posicionamiento inalámbrico en sistemas UltraWideband.Recentment, s'ha observat un interès creixent en els sistemes de localització passiva sense fil per a edificis interiors com oficines o naus industrials. Típicament, els ambients d'interiors són canals de propagació complexos amb nombroses reflexions creades per objectes dispersius molt pròxims entre si. La capacitat de resoldre aquests múltiples camins és molt important per a una bona resolució d'abast i precisió de posicionament. Impuls-ràdio de banda ultra-ampla (UWB-IR) és una tecnologia prometedora per complir amb aquests requisits en entorns de propagació interiors a causa de la seva gran resolució temporal i la immunitat al esvaniment per múltiples camins. Un dels principals reptes de processament de senyals IR-UWB és l'alta demanda de mostreig dels receptors digitals IR-UWB, el que eleva considerablement el cost i el consum d'energia dels sistemes IR-UWB. Compressive Sensing proporciona una solució en la qual permet mostrejar senyals IR-UWB a un ritme menor que el límit de mostreig proposat per Nyquist. L'enfocament d'aquest problema amb Compressive Sensing es basa en el fet que representacions disperses són possibles en el context de la localització. Bàsicament dos patrons de dispersió poden ser explotats: En primer lloc, la transmissió d'un pols de molt poca duració a través d'un canal de banda ample on la senyal experimenta múltiples trajectes, això condueix a una senyal de UltraWideband rebuda que pot ser aproximada per una combinació lineal d'uns pocs àtoms d'un diccionari predefinit, obtenint-se així una representació dispersa. En segon lloc, l'escassetat de objectius a localitzar en l?escena es pot utilitzar mitjançant l'ús d'un diccionari sobre-complet que permeti avaluar conjuntament les múltiples hipòtesis d'ubicació en un escenari bidimensional, adquirint així una representació dispersa. En aquest projecte final de carrera, es presenten tres nous mètodes d'adquisició de dades i posicionament que exploten diferents representacions disperses per senyals IR-UWB sota ambients interiors. En essència es planteja, mitjançant la formulació de tècniques de reconstrucció de Compressive Sensing, que és viable localitzar objectius i al mateix temps reduir els requisits de càrrega computacional i alts ritmes de mostreig. El rendiment dels algoritmes proposats s'avalua i es comparen en el marc dels models de canal IEE.802.15.14a, que és un estàndard desenvolupat específicament per al posicionament sense fil en sistemes UltraWideband

    Transceiver design and system optimization for ultra-wideband communications

    Get PDF
    This dissertation investigates the potential promises and proposes possible solutions to the challenges of designing transceivers and optimizing system parameters in ultra-wideband (UWB) systems. The goal is to provide guidelines for UWB transceiver implementations under constraints by regulation, existing interference, and channel estimation. New UWB pulse shapes are invented that satisfy the Federal Communications Commission spectral mask. Parameters are designed to possibly implement the proposed pulses. A link budget is quantified based on an accurate frequency-dependent path loss calculation to account for variations across the ultra-wide bandwidth of the signal. Achievable information rates are quantified as a function of transmission distance over additive white Gaussian noise and multipath channels under specific UWB constraints: limited power spectral density, specific modulation formats, and a highly dispersive channel. The effect of self-interference (SI) and inter-symbol interference (ISI) on channel capacity is determined, and modulation formats that mitigate against this effect is identified. Spreading gains of familiar UWB signaling formats are evaluated, and UWB signals are proved to be spread spectrum. Conditions are formulated for trading coding gain with spreading gain with only a small impact on performance. Numerical results are examined to demonstrate that over a frequency-selective channel, the spreading gain may be beneficial in reducing the SI and ISI resulting in higher information rates. A reduced-rank adaptive filtering technique is applied to the problem of interference suppression and optimum combining in UWB communications. The reduced-rank combining method, in particular the eigencanceler, is proposed and compared with a minimum mean square error Rake receiver. Simulation results are evaluated to show that the performance of the proposed method is superior to the minimum mean square error when the correlation matrix is estimated from limited data. Impact of channel estimation on UWB system performance is investigated when path delays and path amplitudes are jointly estimated. Cramér-Rao bound (CRB) expressions for the variance of path delay and amplitude estimates are formulated using maximum likelihood estimation. Using the errors obtained from the CRB, the effective signal-to-noise ratio for UWB Rake receivers employing maximum ratio combining (MRC) is devised in the presence of channel path delay and amplitude errors. An exact expression of the bit error rate (BER) for UWB Rake receivers with MRC is derived with imperfect estimates of channel path delays and amplitudes. Further, this analysis is applied to design optimal transceiver parameters. The BER is used as part of a binary symmetric channel and the achievable information rates are evaluated. The optimum power allocation and number of symbols allocated to the pilot are developed with respect to maximizing the information rate. The optimal signal bandwidth to be used for UWB communications is determined in the presence of imperfect channel state information. The number of multipath components to be collected by Rake receivers is designed to optimize performance with non-ideal channel estimation

    Wideband Impulse Modulation and Receiver Algorithms for Multiuser Power Line Communications

    Get PDF
    We consider a bit-interleaved coded wideband impulse-modulated system for power line communications. Impulse modulation is combined with direct-sequence code-division multiple access (DS-CDMA) to obtain a form of orthogonal modulation and to multiplex the users. We focus on the receiver signal processing algorithms and derive a maximum likelihood frequency-domain detector that takes into account the presence of impulse noise as well as the intercode interference (ICI) and the multiple-access interference (MAI) that are generated by the frequency-selective power line channel. To reduce complexity, we propose several simplified frequency-domain receiver algorithms with different complexity and performance. We address the problem of the practical estimation of the channel frequency response as well as the estimation of the correlation of the ICI-MAI-plus-noise that is needed in the detection metric. To improve the estimators performance, a simple hard feedback from the channel decoder is also used. Simulation results show that the scheme provides robust performance as a result of spreading the symbol energy both in frequency (through the wideband pulse) and in time (through the spreading code and the bit-interleaved convolutional code)

    Sparse channel estimation based on compressed sensing theory for UWB systems

    Get PDF
    Català: L'estimació de canal en receptors wireless esdevé un factor determinant a l'hora de incrementar les prestacions dels sistemes sense fils per tal de satisfer les exigències cada vegades més elevades dels consumidors en quant a velocitats de transmissió i qualitat. En aquesta tesi es proposa explotar la "sparsity" que mostren els canals wireless per tal de millorar els clàssics sistemes d'estimació de canal mitjançant les noves teòries de Compressed Sensing. Així doncs, es proposa un nou model freqüencial de senyal on el canal i un nou algoritme de reconstrucció de senyals sparse que redueix la probabilitat de detecció de falsos camins de propagació millorant d'aquesta manera l'estimació de temps d'arribada.Castellano: En los últimos años, la revolución inalámbrica se ha convertido en una realidad. Wi-fi está en todas partes, impactando significativamente en nuestro estilo de vida. Sin embargo, las comunicaciones inalámbricas nunca tendrán las condiciones de propagación igual que los cables debido a las duras condiciones de la propagación inalámbricas. El canal de radio móvil se caracteriza por la recepción múltiple, eso es que la señal recibida no sólo contiene una camino de propagación, sino también un gran número de ondas reflejadas. Estas ondas reflejadas interfieren con la onda directa, lo que provoca una degradación significativa del rendimiento del enlace. Un sistema inalámbrico debe estar diseñado de tal manera que el efecto adverso del desvanecimiento multicamino sea reducido al mínimo. Afortunadamente, el multipath puede ser visto como diversidad de información dependiendo de la cantidad de Channel State Information (CSI) disponible para el sistema. Sin embargo, en la práctica CSI rara vez se dispone a priori y debe ser estimado. Por otro lado, un canal inalámbrico a menudo puede ser modelado como un canal sparse, en la que el retraso de propagación puede ser muy grande, pero el número de caminos de propagación es normalmente muy pequeño. El conocimiento previo de la sparsity del canal se puede utilizar eficazmente para mejorar la estimación de canal utilizando la nueva teoría de Compressed Sensing (CS). CS se origina en la idea de que no es necesario invertir una gran cantidad de energía en la observación de las entradas de una señal sparse porque la mayoría de ellas será cero. Por lo tanto, CS proporciona un marco sólido para la reducción del número de medidas necesarias para resumir señales sparse. La estimación de canal sparse se centra en este trabajo en Ultra-Wideband (UWB) porque la gran resolución temporal que proporcionan las señales UWB se traduce en un número muy grande de componentes multipath que se pueden resolver. Por lo tanto, UWB mitiga significativamente la distorsión de trayectoria múltiple y proporciona la diversidad multicamino. Esta diversidad junto con la resolución temporal de las señales UWB crear un problema de estimación de canal muy interesante. En esta tesis se estudia el uso de CS en la estimación de canal altamente sparse por medio de un nuevo enfoque de estimación basado en el modelo de frecuencial de la señal UWB. También se propone un nuevo algoritmo llamado extended Orthogonal Matching Pursuit (eOMP) basado en los mismos principios que el clásico OMP, con el fin de mejorar algunas de sus característica.English: In recent years, the wireless revolution has become a reality. Wireless is everywhere having significant impact on our lifestyle. However, wireless will never have the same propagation conditions as wires due to the harsh conditions of the wireless propagation. The mobile radio channel is characterized by multipath reception, that is the signal offered to the receiver contains not only a direct line-of-sight radio wave, but also a large number of reflected radio waves. These reflected waves interfere with the direct wave, which causes significant degradation of the performance of the link. A wireless system has to be designed in such way that the adverse effect of multipath fading is minimized. Fortunately, multipath can be seen as a blessing depending on the amount of Channel State Information (CSI) available to the system. However, in practise CSI is seldom available a priori and needs to be estimated. On the other hand, a wireless channel can often be modeled as a sparse channel in which the delay spread could be very large, but the number of significant paths is normally very small. The prior knowledge of the channel sparseness can be effectively use to improve the channel estimation using the novel Compressed Sensing (CS) theory. CS originates from the idea that is not necessary to invest a lot of power into observing the entries of a sparse signal because most of them will be zero. Therefore, CS provides a robust framework for reducing the number of measurement required to summarize sparse signals. The sparse channel estimation here is focused on Ultra-WideBand (UWB) systems because the very fine time resolution of the UWB signal results in a very large number of resolvable multipath components. Consequently, UWB significantly mitigates multipath distortion and provides path diversity. The rich multipath coupled with the fine time resolution of the UWB signals create a challenging sparse channel estimation problem. This Master Thesis examines the use of CS in the estimation of highly sparse channel by means of a new sparse channel estimation approach based on the frequency domain model of the UWB signal. It is also proposed a new greedy algorithm named extended Orthogonal Matching Pursuit (eOMP) based on the same principles than classical Orthogonal Matching Pursuit (OMP) in order to improve some OMP characteristics. Simulation results show that the new eOMP provides lower false path detection probability compared with classical OMP, which also leads to a better TOA estimation without significant degradation of the channel estimation. Simulation results will also show that the new frequency domain sparse channel model outperforms other models presented in the literature

    Information Theory of underspread WSSUS channels

    Get PDF
    The chapter focuses on the ultimate limit on the rate of reliable communication through Rayleigh-fading channels that satisfy the wide-sense stationary (WSS) and uncorrelated scattering (US) assumptions and are underspread. Therefore, the natural setting is an information-theoretic one, and the performance metric is channel capacity. The family of Rayleigh-fading underspread WSSUS channels constitutes a good model for real-world wireless channels: their stochastic properties, like amplitude and phase distributions match channel measurement results. The Rayleigh-fading and the WSSUS assumptions imply that the stochastic properties of the channel are fully described by a two-dimensional power spectral density (PSD) function, often referred to as scattering function. The underspread assumption implies that the scattering function is highly concentrated in the delay-Doppler plane. Two important aspects need to be accounted for by a model that aims at being realistic: neither the transmitter nor the receiver knows the realization of the channel; and the peak power of the transmit signal is limited. Based on these two aspects the chapter provides an information-theoretic analysis of Rayleigh-fading underspread WSSUS channels in the noncoherent setting, under the additional assumption that the transmit signal is peak-constrained

    Detection, Synchronization, Channel Estimation and Capacity in UWB Sensor Networks using Compressed Sensing.

    Full text link
    Conventional receivers in ultrawideband (UWB) communication system usually require high sampling rate and thus consume much power. With compressed sensing (CS), the sampling rate can potentially be reduced. In this thesis, the performance of CS used in a UWB receiver is evaluated. Using a compressed sensing approach, the receiver consists of a number of analog correlators that process the received signal by projecting the received signal using random (or pseudo random) vectors. Considering the practical implementation in the receiver, the orthogonal Hadamard vectors in the correlators are adopted. After projection, the matching pursuit or basis pursuit is used to obtain the channel estimate. The recovered channel templates are then correlated with received signal to detect the transmitted information bits. The bit error rate (BER) performance of systems with different number of pilots, projection vectors, and fingers in a rake receiver is also evaluated. Moreover, the performance of different receivers and the effect of the finite bit resolution on channel estimation is investigated. It is shown that the sampling rate can be reduced significantly with only a slight degradation in performance when a compressed projection matrix is used compared to when a conventional Nyquist sampling rate is applied. A second aspect of UWB investigated is channel measurement and corresponding channel capacity. The measurement data of a channel between the UWB antennas under the bridge across Telegraph Road in Michigan is used to calculate the channel capacity. The channel capacity calculated in this specific environment provides the knowledge of the fundamental limit of rate of transmission in this particular scenario. A third aspect of UWB communication considered involves the synchronization and detection of signal presence. An m-sequence is used to synchronize the signal. The corresponding BER performance is evaluated. It is observed that the BER performance of the proposed synchronization method is comparable to that of a system assumed to have perfect synchronization. Finally, the autocorrelation characteristic of the signal is exploited to detect the existence of the signal. The advantage of the method proposed is that the threshold to determine the existence of signals is independent of signal-to-noise ratio.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108820/1/syuchen_1.pd
    • …
    corecore