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Abstract 

Recently, a growing interest in precise indoor wireless locating systems has been observed.  Indoor 

environments are typically complex wireless propagation channels with numerous multi-paths 

created by closely spaced scattering objects. The ability to resolve these multi-paths is very 

important for good ranging resolution and positioning accuracy. Impulse-Radio Ultra-Wideband (IR-

UWB) is a promising technology to fulfill these requirements in harsh indoor propagation 

environments due to its great time resolution and immunity to multipath fading. One of the major IR-

UWB signal processing challenges is the high sampling demands of IR-UWB digital receivers, 

which greatly elevates the cost  and power consumption of IR-UWB systems . Compressive 

Sensing provides a solution by allowing them to sample IR-UWB signals at a lower rate than the 

Nyquist sampling limit.  

The CS approach relies on the fact sparse representations are possible in the localization context. 

Basically two sparsity patterns can be exploited: Firstly, transmitting an ultra-short pulse through a 

multipath UWB channel leads to a received UWB signal that can be approximated by a linear 

combination of a few atoms from a pre-defined dictionary, yielding thus a sparse representation of 

the received UWB signal. Secondly, the inherent spatial sparsity of scene can be introduced 

through the use of an overcomplete basis or dictionary that enables to jointly evaluate all multiple 

location hypothesis. 

In this degree thesis, three novel data-acquisition and positioning methods exploiting different 

sparse representations for IR-UWB signals under challenging indoor environments are presented. 

Essentially, through the formulation of sparsity-based reconstruction techniques it is viable to 

localize targets while reducing the computational load and sampling requirements. Their 

performance is assessed and compared under the framework of the IEE.802.15.14a channel 

models, which is a standard developed specifically for UWB wireless positioning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Resum 

Recentment, s'ha observat un interès creixent en els sistemes de localització passiva  sense fil  per 

a edificis interiors com oficines o naus industrials. Típicament, els ambients d'interiors són canals 

de propagació complexos amb nombroses reflexions creades per objectes dispersius molt pròxims 

entre si. La capacitat de resoldre aquests múltiples camins és molt important per a una bona 

resolució d'abast i precisió de posicionament. Impuls-ràdio de banda ultra-ampla (UWB-IR) és una 

tecnologia prometedora per complir amb aquests requisits en entorns de propagació interiors a 

causa de la seva gran resolució temporal i la immunitat al esvaniment per múltiples camins. Un dels 

principals reptes de processament de senyals IR-UWB és l'alta demanda de mostreig dels 

receptors digitals IR-UWB, el que eleva considerablement el cost i el consum d'energia dels 

sistemes IR-UWB. Compressive Sensing proporciona una solució  en la qual permet mostrejar 

senyals IR-UWB a un ritme menor que el límit de mostreig proposat per Nyquist. 

 
L'enfocament d'aquest problema amb Compressive Sensing es basa en el fet que representacions 

disperses són possibles en el context de la localització. Bàsicament dos patrons de dispersió poden 

ser explotats: En primer lloc, la transmissió d'un pols de molt poca duració a través d'un canal de 

banda ample on la senyal experimenta múltiples trajectes, això condueix a una senyal de 

UltraWideband rebuda que pot ser aproximada per una combinació lineal d'uns pocs àtoms d'un 

diccionari predefinit, obtenint-se així una representació dispersa. En segon lloc, l'escassetat de 

objectius a localitzar en l’escena es pot utilitzar mitjançant l'ús d'un diccionari sobre-complet que 

permeti avaluar conjuntament les múltiples hipòtesis d'ubicació en un escenari bidimensional, 

adquirint així una representació dispersa.  

 
En aquest projecte final de carrera, es presenten tres nous mètodes d'adquisició de dades i 

posicionament que exploten diferents representacions disperses per senyals IR-UWB sota 

ambients interiors. En essència es planteja, mitjançant la formulació de tècniques de reconstrucció 

de Compressive Sensing, que és viable localitzar objectius i al mateix temps reduir els requisits de 

càrrega computacional i alts ritmes de mostreig. El rendiment dels algoritmes proposats s'avalua i 

es comparen en el marc dels models de canal IEE.802.15.14a, que és un estàndard desenvolupat 

específicament per al posicionament sense fil en sistemes UltraWideband. 

  



 

Resumen 

Recientemente, se ha observado un interés creciente en los sistemas de localización pasiva 

inalámbrica para edificios interiores como oficinas o naves industriales. Típicamente, los ambientes 

de interiores son canales de propagación inalámbricos complejos con numerosas reflexiones 

creadas por objetos dispersivos muy próximos entre sí. La capacidad de resolver estos múltiples 

caminos es muy importante para una buena resolución de alcance y precisión de posicionamiento. 

Impulso-radio de banda ultra-ancha (UWB-IR) es una tecnología prometedora para cumplir con 

estos requisitos en entornos de propagación interiores debido a su gran resolución temporal y la 

inmunidad al desvanecimiento por múltiples caminos. Uno de los principales retos de 

procesamiento de señales IR-UWB es la alta demanda de muestreo de receptores digitales IR-

UWB, lo que eleva considerablemente el costo y el consumo de energía de los sistemas IR-UWB. 

Compressive Sensing proporciona una solución que permite muestrear señales IR-UWB a un ritmo 

menor que el límite de muestreo propuesto por Nyquist. 

 

El enfoque de este problema con Compressive Sensing  se basa en el hecho de que 

representaciones dispersas son posibles en el contexto de la localización. Básicamente dos 

patrones de dispersión pueden ser explotados: En primer lugar, la transmisión de un pulso ultra 

corto, través de un canal de banda ancha donde la señal experimenta trayectos múltiples, conduce 

a una señal de UltraWideband recibida que puede ser aproximada por una combinación lineal de 

unos pocos átomos de un diccionario predefinido, obteniéndose así una  representación dispersa 

de la señal de UWB recibida. En segundo lugar, la escasez de objetivos a localizar de la escena se 

puede utilizar mediante el uso de un diccionario sobre-completo que permita evaluar 

conjuntamente las múltiples hipótesis de ubicación en un escenario bidimensional, adquiriendo así 

una representación dispersa, con pocos elementos. 

 
En este proyecto final de carrera, se presentan tres nuevos métodos de adquisición de datos y 

posicionamiento que explotan diferentes representaciones dispersas para señales IR-UWB bajo 

ambientes interiores. En esencia se plantea, mediante la formulación de  técnicas de 

reconstrucción de Compressive Sensing, que es viable  localizar objetivos y  al mismo  tiempo 

reducir los requisitos de carga computacional  y altos ritmos de  muestreo. El rendimiento de los 

algoritmos propuestos  se evalúa y se compara en el marco de los modelos de canal 

IEE.802.15.14a, que es un estándar desarrollado específicamente para el posicionamiento 

inalámbrico en sistemas UltraWideband. 
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1. Introduction 

1.1. Objective 

 

The purpose of this project is to assess the problem of localization in IR-UWB systems 
using a Compressive Sensing. Impulse Radio Ultra-Wideband has emerged as a 
promising candidate for positioning passive nodes in wireless networks due to its fine 
time resolution that provides good ability to distinguish multipath components and great 
positioning capabilities. One major challenge in IR-UWB signal processing is the 
requirement of high sampling rate which leads to prohibitive cost of signal acquisition and 
a high computational load for the positioning estimation process. By exploiting different 
kinds of sparsity’s patterns using CS based techniques, these requirements can be 
greatly relaxed without compromising the estimation accuracy provided by traditional 
sampling schemes.   

The project main goals are:  

 Apply CS-based techniques to solve the localization problem by exploiting the 
inherent sparseness structure of the context of the problem.  

 Assure the estimation accuracy in multipath conditions and in the reduction of amount 
of data processed introduced by CS.  

 Survey the literature of CS recovery algorithms and model the ones fitted to the 
problem’s environment. 

 Analyze the performance of CS reconstruction methods combined with the problem’s 
model proposed. 

1.2. Requirements & Specifications 

 

Project requirements:  

- Extended analysis of the Compressive Sensing theory applied to the positioning 
problem in IR-UWB systems  

- Validation of the performance and feasibility by numerical assessment of the CS-
Positioning techniques in rich multipath propagation conditions produced by the 
challenging environments.  

- Acceptable estimation accuracy  

- Significate reduction of computational complexity and load.    

  

Project specifications:   

- Target environment: Mostly indoor and outdoor suburban-like environments of 
small to medium ranges, alternating models with NLOS /LOS paths.   

- Channel model: Modified Saleh-Valenzuela model proposed for the IEE 802.15.4a 
physical layer with frequency ranges of 2 GHz – 10 GHz (UWB) whose 
parameters vary with environments above.  

- Number of potential targets: 1 

- Number of anchor nodes: 4 

- IR-UWB system model: The transmitting device is assumed to transmit periodic 
frames of Gaussian pulses of very short duration.  
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- Greedy sparsity recovery algorithms:   

• Matching Pursuit techniques and its extended version : Orthogonal 
Matching Pursuit (OMP)  

• Compressive Sampling Matching Pursuit (CoSaMP)  
• Model-based compressive sampling  

 

1.3. Methods 

 

This project is basically the continuation of the supervisor’s previous work in the field of 

Position Estimation using ultra-wideband signals, the main ideas behind it as well. This 

work is developed in the framework of the Department of Signal Theory and 

Communications. 
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1.4. Work plan 

 

 

 

CS-based location algorithm with 
UWB systems in sensor networks

Background Theory

Compressive sensing : Theory & 
Applications

Position Estimation Algorithms: 
Two steps vs DPE

IR-UWB system overview

UWB Wireless channel study

Study of the statistical properties 
of the IEE 802.15.4a channels

Multipath effect on location 
estimation algorithms

IR UWB DPE classic performance 
on UWB channels

Implementation of CS-DPE with 
2D Interpolation & Search max 

Peak strategy

Implementation of family of 
greedy reconstruction CS 
algorithms

Overview of the original CS-DPE 
with OMP 2D reconstruction

Block based vs Standard CS 
Theory

Implementation of the processing 
chain in Matlab

With standard / Block based 
CoSaMP 

Preliminary testing phase to 
evaluate basic performance 

Integration  with 
Multitrilateration techniques

Solve integration difficulties 
through benchmark testing

Adjust CS model based algorithms 
to meet project requirements  

Evaluation & Testing  
performance of all strategies

Optimization of CS parameters 

Performance of CS-based 
methods on several conditions 
(LOS and NLOS conditions, 
compression rates, SNR, different 
number of nodes)

Assessment report of all 
strategies with their numerical 
evaluation
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2. State of the art of the technology used or applied in this 

thesis: 

A background, comprehensive review of the literature is required. This is known as the 

Review of Literature and should include relevant, recent research that has been done on 

the subject matter. 

2.1. Compressive sensing 

 

Conventional approaches to sampling signals or images follow Shannon’s theorem: the 

sampling rate must be at least twice the maximum frequency in the signal (the so-called 

Nyquist rate). CS establishes a novel sensing / sampling paradigm by suggesting it may 

be possible to surpass the traditional limits of sampling theory. 

The field of CS grew out of the work of Candès, Romberg, Tao and  Donoho, who 

showed that a finite-dimensional signal having a sparse or compressible representation 

can be recovered from a small set of linear, non-adaptive measurements [1, 2, 3, 4]. 

The amount of data generated by sensing systems has grown from a trickle to a torrent. 

Unfortunately, in many important and emerging applications, the resulting Nyquist rate is 

so high that we end up with far too many samples. Alternatively, it may simply too costly, 

or even physical impossible, to build devices capable of acquiring samples at the 

necessary rate. 

CS theory builds upon the fundamental fact that we can represent many signals using 

only a few non-zero coefficients (sparse representation) in suitable basis or dictionary.  

Nonlinear optimization can then enable recovery of such signals from fewer 

measurements than traditional methods. Rather than first sampling at a high rate and 

then compress the sampled data, CS finds a way to directly sense the data in a 

compressed form.  

In communications systems such as Ultra-Wideband (UWB), where the Analog-to-digital 

(ADC) converters are a major challenge in practical implementations, CS emerges as a 

robust alternative to address the issue. 

 

2.1.1. Review of Compressive Sensing 

 

This section presents briefly the main ideas behind compressive sensing and its 

mathematical foundations. 

Consider a real-valued, finite length, discrete time signal 𝑥 ∈ ℝ 𝑀   which can be 

expressed in orthonormal basis  𝜓 = [ 𝜓1 𝜓2 … 𝜓𝑀] as follows: 

 

    𝑥 = ∑ 𝜓𝑖 𝜃𝑖 
𝑀
𝑖=1        (2.1) 

 

Where the vector 𝜃 =  [ 𝜃1 … 𝜃𝑀 ]  is the sparse vector, whose coefficients are mostly zero.  
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It can also be represented by matrix notation: 

 

    𝑥 = Ψ𝜃      (2.2) 

 

The matrix  Ψ , the dictionary where 𝜃 becomes sparse, has dimensions 𝑀𝑥𝑀.  

2.1.2. Sparsity  

Many natural signals have concise representations when expressed in a convenient basis. 

Consider, for example, an image and its wavelet transform. Although nearly all the image 

pixels have nonzero values, the wavelet coefficients offer a concise summary: most 

coefficients are small, and the relatively few large coefficients capture most of the 

information. 

So the implication of sparsity seems now clear: when a signal has a sparse 

representation, one can discard the small coefficients without too much perceptual loss. 

This is the principle used in many modern lossy coders such as JPEG.  

Mathematically, we say that a signal 𝜃 is 𝐾-sparse when it has at most 𝐾  << M non-

zeros: 

 ‖𝜃‖0  ≤  𝐾.  𝑊𝑒 𝑙𝑒𝑡 𝛴𝑘 =  {𝜃 ∶ ‖𝜃‖0  ≤  𝐾}.   (2.3) 

 

Typically, signals are not truly sparse, but admit a more or less sparse representation in 

some basis  Ψ . These set of signals are called compressible in the sense that the 

magnitude of their coefficients, when sorted, decay rapidly.  

The assumption of sparsity, along with the compressibility, is a requirement in order for 

the reconstruction process to succeed. 

 

2.1.3. Measurement or sensing matrix 

As mentioned earlier, when CS theory is applied to communications, the sampling rate 

can be reduced. How this is exactly achieved? First of all, consider the classical linear 

measurement model for the above signal: 

 

    𝑦 = Φ𝑥 = ΦΨ𝜃     (2.4) 

 

Where Φ is the measurement matrix, whose dimensions are 𝑁𝑥𝑀  (𝑁 < 𝑀).This matrix 

projects the signal 𝑥  into a lower dimensional space and forms the measurements 

vector 𝑦.The construction of sensing schemes is a central challenge in the area of CS 

research from both the practical and theoretical point of view. The difficulties arise in the 

practical situations or real systems, constructing new frameworks in Analog-to-

information conversion (AIC) as an alternative to traditional ADC is not as clear as the 

matrix notation stated above. This thesis does not study the feasibility of these hardware 

implementations. 
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But how is this measurement matrix designed? 

Instead of describing a design procedure, we will focus on a number of desirable 

properties that these matrices must satisfy, which are listed below. 

 

 

 

 

 

 

 

   FIGURE 2.1: Compressive Sensing Matrix equation 

 

2.1.4. Properties of the sensing matrices 

2.1.4.1.  Null space conditions 

A natural place to begin is by considering the null space of Φ, denoted 𝑁 (Φ)  =  {𝑧 ∶

 Φ𝑧 =  0}. If we wish to be able to recover all sparse signals 𝜃 from the measurements y, 

then it is immediately clear that for any pair of distinct vectors  𝜃, 𝜃′ ∈  𝛴𝑘 , we must 

have  Φ𝑥 ≠  Φ𝑥′ , since otherwise it would be impossible to distinguish 𝑥 from 𝑥′ based 

solely on the measurements 𝑦 

2.1.4.2.  Mutual Coherence 

Another concept that plays an important role on the guarantees of better CS is coherence. 

The coherence is defined as the maximum value amongst inner product of the 

orthonormal representation basis and the orthonormal measurement matrix. A low value 

is desirable in order to ensure mutually independent matrices. The coherence can be 

measured: 

 

  𝜇(Φ, Ψ) = max  |〈𝜙𝑘, 𝜓𝑗〉|   1 ≤ 𝑘 ≤ 𝑁 , 1 ≤ 𝑗 ≤ 𝑀   (2.5) 

 

Verifying that a matrix obeys this property is computationally feasible, unlike the other 

properties. Hence, its importance to provide concrete recovery guarantees. 

2.1.4.3. Restricted Isometry Property 

In [5], Candès and Tao introduced the following isometry condition on matrices Φ and 

established its important role in CS. This is also the most widely used criterion for 

evaluating the quality of a CS measurement matrix. It can be summarized as follows: 

Definition 1. A matrix A satisfies the restricted isometry property (RIP) of order 𝑘 if there 

exists a 𝛿𝑘 ∈ (0, 1) such that  (1 −  𝛿𝑘)  ‖𝜃‖2
2 ≤  ‖ΦΨ𝜃‖2

2 ≤  (1 +  𝛿𝑘)  holds for all   𝜃 ∈

 𝛴𝑘. 
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The important question is how can one create a matrix Φ, given the basis Ψ, so that Φ 

has the RIP of high order? Verifying that any given matrix has this property is 

computationally intensive and involves checking all (𝑛
𝑘

) submatrices with 𝑘 columns of ΦΨ. 

One approach to obtain a matrix Φ with the RIP of high order is to use random matrices. 

The 𝑁 ×  𝑀 matrices can be generated according to the following rules:  

- Form Φ by sampling N column vectors uniformly on the unit sphere in ℝ𝑀. 

- Let the entries of Φ be i.i.d. normal with zero mean and unit variance. 

All obey the restricted isometry property of order k provided that  𝑁 >  𝐶 · 𝐾 log (𝑀/𝐾) , 

for some constant C, therefore establishing a lower bound on the measurements needed. 

These matrices also are highly incoherent with any fixed basis with high probability as 

well. Thus, random projections plays a central role as a universal measurement basis. 

Not all of these conditions are necessary, but for stable recovery and robustness against 

noise, it is indispensable to satisfy them.  

2.1.5. Signal Reconstruction Algorithms 

 

Since N << M, the system has more unknowns than equations, and thus the system is 

not invertible .There are variety of methods that are able to solve the optimization 

problem. 

Since the 𝑙2 norm or least squares minimisation does not usually return a sparse vector, 

alternatives have been sought. One way is to directly force a constraint sparsity, using 

the 𝑙0 norm, but solving this minimisation program is an NP-complete problem, in other 

words, is computational intensive. Although it gives the correct results, the strategy 

becomes too costly and inefficient. 

Since, out of the infinite solutions to the system, the CS interest lies in recovering the 

sparsest solution, 𝑙1 minimisation comes as a firm candidate.  

 

 

 

 

 

 

 

 

 

 

FIGURE 2.2: Solving the 𝑙1 and 𝑙2 minimisation problem in ℝ2.The dotted line represents the sparse solutions. 

The sparsest solution comes with 𝑙1minimisation. 
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This procedure can be re-written as a convex optimization task and, also reinterpreted as 

a linear program.  

It is shown in [6] that the following linear program can exactly reconstruct the signal with 

high probability, if the RIP property holds, the vector is sufficiently sparse and the number 

of measurements is above the mentioned bound: 

 

     min
𝜃∈ ℝ𝑀

 ‖𝜃‖𝑙1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑦 = ΦΨ𝜃     (2.6) 

Now, this belongs to the noise-free case, in real systems, measurements are noisy and 

the reconstruction program is reformulated, but it still can be solved with convex relaxed 

optimisation techniques: 

 

              min
𝜃∈ ℝ𝑀

 ‖𝜃‖𝑙1   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ‖𝑦 − ΦΨ𝜃‖𝑙2  ≤ 𝜖   (2.7) 

 

In the literature, there are two great families of solvers for (2.7) that are used in the field 

of CS. One of them is the already stated Convex Relaxation or 𝑙1 minimisation algorithms, 

based on linear programming techniques such as BS (Basis Pursuit), but these often 

become too intractable when working with large scale problems. The other alternative is 

Greedy Pursuit algorithms, who belong to a class sub-optimal iterative solvers that are 

very popular in the sparse signal reconstruction field. 

2.1.6. Greedy Pursuit Algorithms 

Greedy pursuit is a class of nonlinear iterative algorithms, that are also called Matching 

Pursuit, where at each step, atoms (columns of the 𝚽𝚿 ) are selected in a greedy fashion 

to best approximate the signal. The matching procedures present polynomial running 

times and are more computationally efficient than most convex 𝒍𝟏 optimization techniques. 

In the following sub-section I present a few of the most popular variants: 

2.1.6.1. Orthogonal Matching Pursuit (OMP) 

OMP is a simple and improved variant of matching pursuit algorithms. Its operation is 

based on the principle mentioned above and goes as follows: Firstly, selects the atom of 

the dictionary (ΦΨ) most correlated at each step, then it projects the signal orthogonally 

onto the subspace spanned by the candidate atoms, by adopting a least squares step, 

and finally it updates the residual.  

The improvement lies on the fact that the algorithm does not pick twice the same atom 

thanks to the orthogonality introduced in the residual, even though it comes with the 

expense of more computation. 

OMP has a few more drawbacks such as poor robustness against noise, unknown 

success when the signal is compressible, non-uniform guarantees of success as 𝑙1 

convex minimization and, finally, the requirement of the level of sparsity. Therefore, the 

performance of OMP can be weak if its settings are not chosen right. 
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2.1.6.2. Compressive Sampling Matching Pursuit (CoSaMP) 

An extension to orthogonal matching pursuit algorithms is the CoSaMP (COmpressive 

SAmpling Matching Pursuit) algorithm published in [7] .CoSaMP serves as an improved 

version of OMP, since its time complexity is slightly better and assures more guarantees 

in terms of stability and uniformity as best optimization based approaches [7, 8]. The next 

summarized list details the basic steps behind the overall greedy iterative structure: 

 Identification: Finds the largest 2K components of the signal proxy. 

 Support Merge: Merges the support of the signal proxy with the support of the 

solution from the previous iteration. 

 Estimation: Estimates a solution via least squares with the constraint that the 

solution lies on a particular support. 

 Pruning: Takes the solution estimate and compresses it to the required support,  

 Sample Update: Updates the “sample”, namely the residual in ΦΨ -space. 

 

The performance of CoSaMP is compared with OMP, in terms of behavioural aspects like   

stability, running time and optimal number of samples, at this table: 

 

 OMP CoSaMP Convex Opt 

Sampling Matrix  Sub-Gaussian  Partially satisfy RIP RIP 

Opt. # Samples Yes Yes Yes 

Uniformity No Yes Yes 

Stability ? ( Not Proven) Yes Yes 

Running Time 𝑂(𝑀𝑁) 𝑂(𝐾𝑀𝑁) 𝐿𝑃(𝑀𝑁) 

 

TABLE 2.1: Comparison of CS algorithm’s performances. M stands for # measurements, N for signal 

length and K refers to the sparsity level. LP (·) is the cost of a linear program 

 

2.1.7. Model-Based Compressive Sensing 

Standard CS dictates that robust signal recovery is possible from 𝑁 = 𝑂(𝐾 ∙ 𝑙𝑜𝑔 (
𝑀

𝐾
)) 

measurements. It is possible to substantially decrease the  𝑁  bound by using more 

realistic signals models that go beyond the concept of simple sparsity [26].   

These models correspond to a new class of structured compressible signals, whose 

coefficients are no longer strictly sparse but have a structured power-law decay, in other 

words, the assumption of the location of the non-zero components are no longer 

distributed randomly along the signal. 

By reducing the number of degrees of freedom of a sparse / compressible signal by 

permitting only certain configurations of the large and zero/small coefficients, structured 
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sparsity models provide two immediate benefits to CS. First, they enable us to reduce, in 

some cases significantly, the number of measurements N required for stable recovery. 

Second, during signal recovery, they enable us to better differentiate true signal 

information from recovery artefacts, which leads to a more robust recovery. 

 UWB channels are modelled as sparse channels in which the delay spread can be very 

large due to the high dimensional signal space generated by their large bandwidth, but 

the number of significant paths is normally small, furthermore experimental studies have 

shown that the multipath arrives in a few clusters. A structured sparsity model exists for 

these kinds signal and is the so-called Block sparsity model. 

The Block sparsity model consists of a class of signal vectors 𝑥 ∈ ℝ𝑊𝐽, with W standing 

for the block length and J being the total number of blocks. This signal can be reshaped 

into 𝑊𝑥𝐽 matrix as follows: 

    𝑿 = [𝒙𝟏 ⋯ 𝒙𝑱]  ∈  ℝ𝑊𝑥𝐽    (2.8) 

The locations of the significant coefficients cluster in blocks under a specific sorting order. 

Typically examples, besides the one mentioned above, are DNA microarrays and 

magnetoencephalography, sensor networks and MIMO communications. In the last two 

cases, several signals share a common coefficient support, which can be exploited if the 

signals are concatenated, therefore exhibiting Block sparsity. 

To incorporate this notion of block-structured sparsity into greedy recovery algorithms, a 

simple algorithm is constructed to obtain the best block-based approximation of the 

signal 𝑿.  

   𝑆(𝑋, 𝐶) = {
𝒙𝒋  ‖𝒙𝒋 ‖

2
≥ 𝜌,

 0   ‖𝒙𝒋 ‖
2

< 𝜌,
  1 ≤ 𝑗 ≤ 𝐽  (2.9) 

Where 𝐶  stands for the number of active clusters present on the signal. The 

approximation algorithm simply performs a column-wise hard thresholding. Let 𝜌 be the 

𝐶-th largest 𝑙2 norm among the columns of 𝑿.  This framework can be extended to a 

block-compressible model where the 𝑙2 norm of the blocks flows a power-law decay rate. 

It is noticeable that the level of sparsity is now 𝐶 ∙ 𝑊. 

In [26], significant improvements were shown. The block-based outperformed the 

traditional CoSaMP in running time because it involved sorting fewer coefficients in the 

approximation step and it required fewer iterations to converge. They also provided a 

theoretical framework for stable recovery for noisy measurements and block 

compressible signals. Finally, the lower bound of measurements needed for stable 

recovery was shown to be linear with sparsity, precisely, 𝑁 = 𝑂(𝐶𝑊). 

A Block-based CoSaMP is developed in [26]. For more details of the algorithm 

implementation, please see the Appendix. There are other cluster-based greedy recovery 

algorithms [22], they can be classified based on the requirements of prior knowledge 

such as number of active clusters, size of clusters, the assumption of the locations of 

clusters in the signal space and the total level of sparsity .The following table summarizes 

them: 
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Algorithms Num. of 

Clusters 

Size of Clusters Fixed Cluster Positions Sparsity 

Block CoSaMP Yes Yes Yes Yes 

Block-CoSaMP 

with Dynamical 

Programming  

Yes No No Yes 

Block OMP Yes Yes Yes Yes 

CluSS MCMC No No No No 

   TABLE 2.2: Different Block-Based CS Algorithms 

 

The CluSS MCMC algorithm [23] is based on a Bayesian approach to the Compressive 

Sensing cluster-based reconstruction procedure. It is very appealing since it does not 

require any prior knowledge of any kind, but for large scale applications it needs to 

perform a lot computation of hyper parameters. Block OMP [24] is a block sparse of the 

Orthogonal Matching Pursuit algorithm, whose performance is really similar to the Block-

CoSaMP. The Block CoSaMP, with a dynamical programming approximation algorithm 

approach [25], eliminates the need for block sizes and it does not fix their positions in the 

signal space. 

2.1.8. CS algorithms Stopping Criteria 

The greedy CS reconstruction algorithms have an iterative nature, therefore a stopping 

criteria is needed for the algorithms to decide when to halt. One of the most widely used 

criteria is based on a heuristic metric, the residual of the approximation, when it drops a 

certain level the iteration process stops. But this would require knowledge of the noise 

magnitude or SNR at the receiver side, which would certainly not be realistic. 

It is non-intuitive to decide which stopping criteria is the best, it mainly depends on the 

practical application and other factors. But for this thesis, a couple of natural methods will 

be used to stop the algorithms:  

 A fixed number of iterations, set high enough to assure convergence. 

 Difference between successive residual drops a certain tolerance. 

Nonetheless, the OMP algorithm iterates a fixed number of times equal to the level of 

sparsity selected. 
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2.2. UWB Technology 

In this section, the main characteristics of Ultra-Wideband (UWB) technology are 

discussed. 

2.2.1. IR-UWB Overview 

Ultra-wideband is a radio technology that can use a very low energy level for short-range, 

high-bandwidth communications over a large portion of the radio spectrum. The definition 

of UWB signals is related to the occupied frequency bandwidth. To specifically define 

what is meant by an UWB signal, the following fractional bandwidth definition is 

employed: 

    𝐵𝑓 = 2
𝑓ℎ−𝑓𝑙

𝑓ℎ+𝑓𝑙
 

Where 𝑓𝑙 and 𝑓ℎ  are the lower and upper end (3 dB points) of the signal spectrum, 

respectively. UWB signals are then those signals that have a fractional bandwidth greater 

than 25 %. On the other hand, according to the Federal Communications Commission 

(FCC) [9], a UWB signal is defined to have an absolute bandwidth of at least 500 MHz. 

 

 

  

 

 

 

 

    FIGURE 2.3: PSD (Power Spectral Density) of different RF signals  

 

Specifically, Impulse radio UWB communicates with baseband pulses of very short 

duration, typically on the order of a nanosecond, thereby spreading the energy of the 

radio signal very thinly between DC and a few gigahertz.  

The UWB is seen as the most serious candidate to achieve this vision of wireless 

interconnection between computing devices. Today, UWB is only at the beginning of its 

development for the consumer market. There is still a lot to be done to make this 

technology attractive. Other works around the standardization and the regulation are to 

be done, as well, in order to make UWB widespread and popular. 

 

2.2.2. Characteristics and Challenges of IR-UWB systems 

What makes UWB technology unique is that it has many attractive features for a high 

number of applications such as communications, sensors, positioning, tracking and radar. 

 IR-UWB radios can be designed with relatively low-complexity and low power 

consumption. The transmitter complexity can be greatly reduced, but the receiver side is 
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not exempt of design challenges such as high bandwidth A/D converters, Wideband LNA 

(Low-Noise Amplifiers) and low Signal to Noise ratio (SNR). The ultra-fine time resolution 

of these signals also require accurate timing source to keep up synchronisation. 

Actually, the battery life in a UWB system will no longer be limited by the necessary 

emitted output power at the antenna, but by the backend consumption (modem and 

processing), which is prone to further enhancement with silicon downscaling and pulse 

detection techniques. 

They are very suited in energy constrained, short-range wireless applications including 

personal-area-networks, low-power sensor networks, and wireless body-area-networks. 

Because of the bandwidths that can be achieved with IR-UWB radios, they are also used 

in precise location systems and for dedicated high-data-rate communication links.  

The lack of available spectrum to support the growing number of wireless devices is well 

known. In the short-range application space, UWB can drive potential solutions for many 

of today’s problems identified in the areas of spectrum management. The power spectral 

density (PSD) of UWB signals is extremely low, which enables UWB system to operate in 

the same spectrum with narrowband technology without causing undue interference. 

 

2.2.3. UWB location systems 

In the coming years, we will see the emergence of high-definition situation aware (HDSA) 

applications with capability to operate in harsh propagation environments where GPS 

typically fails, such as inside buildings. Such applications require localization systems 

with sub-meter accuracy. 

Among the variety of prospective applications of IR-UWB, one of the most promising is in 

wireless sensor networks (WSNs), which require both robust communications and high-

precision ranging capabilities.  

Some of the reasons why UWB radio is considered a viable solution for precise   

localization systems are the great time resolution of the signal, which translates into good 

ranging accuracy, good ability to distinguish different arriving multi-path components 

(MPCs), robustness to multipath fading and penetrate obstacles.  Proof of this was the 

introduction of an IR-UWB physical layer in the IEE 802.15.4a [10], a standard for low 

data rate communications combined with positioning capabilities. 

Since IR-UWB signals have very short duration pulses, they can provide very accurate 

ranging and positioning capability in short range indoor radio propagation environments. 

Besides, the high time resolution characteristic of the UWB signal makes the time of 

arrival (TOA) method a good choice for location estimation in UWB communications. 

2.3. Position Estimation Techniques 

 

Recently, the subject of positioning in wireless networks has drawn considerable attention. 

With accurate position estimation, a variety of applications and services such as 

enhanced, improved fraud detection, location sensitive billing, intelligent transport 

systems and improved traffic management can become feasible for cellular networks .For 

short-range networks, on the other hand, position estimation facilitates applications such 
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as inventory tracking, intruder detection, tracking of fire-fighters and miners, home 

automation and patient monitoring  

In order to realize potential applications of wireless positioning, accurate estimation of 

position should be performed even in challenging environments with multipath and non-

line-of-sight (NLOS) propagation.  

The localization approaches can be classified as self-positioning, where the target locates 

itself, and remote-positioning, where a central unit, with the help of information collected 

by reference nodes, estimates the target’s position. 

Impulse Radio Ultra-Wideband (IR-UWB) has emerged as a promising candidate for 

remote-positioning in wireless networks in challenging environments. 

2.3.1. Two Steps vs. DPE schemes 

Remote-positioning can also be further divided into two different estimation schemes. 

Direct positioning (DPE) refers to the case in which the position estimation is performed 

directly from the signals travelling between the nodes, the idea was firstly introduced by 

Weiss for narrowband systems in [11]. On the other hand, two-step positioning firstly 

extracts certain signal parameters, such as Angle of Arrival (AOA), Received Signal 

Strength (RSS) and Time of Arrival (TOA).Then estimates the position based on those 

signal parameters through the use of mapping (fingerprinting), geometric and statistical 

techniques. 

         

FIGURE 2.4: (a) DPE scheme (b) Two-steps scheme 

 

There is quite interest in ranging-based algorithms in UWB-localization, especially the 

TOA algorithm, because they are very suited for these kind of systems due to their great 

time resolution. 

The ToA (Time of Arrival) approach subdivides the problem: firstly, the ranging 

information between the target and the reference nodes is extracted, a simple trilateration 

or multi-trilateration, typically solved by least squares method, yields the location of the 

target node.  

There are multiple versions of the ToA estimation phase based on their complexity and 

optimality such as the matched filter approach, which works by selecting the first peak 

after a given threshold of the correlation of the transmitted undistorted pulse with the 

received signal, and the non-coherent energy detectors, of less complexity because of 

their lower sampling requirements. 
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          FIGURE 2.5: TOA Trilateration with three nodes 

 

 Nonetheless, the performance of two-steps can degrade significantly in low SNR and 

dense multipath conditions. However, recent work claim that this approach to positioning 

could be potentially improved, especially in challenging scenarios, if one treats the 

problem as a whole. That is to convert the two-step approach into a single-step 

procedure where digitized signals are combined to solve directly for the position 

coordinates. This positioning approach is known as Direct Position Estimation (DPE) in 

the literature. However, this comes with an increased computational complexity because 

the problem is now a single-multivariate non-convex optimization.  

DPE also has the inconvenient of having to transmit the received signal of each reference 

node to a central processing unit, whereas two steps only requires the transmission of 

parameters. In IR-UWB localization systems, this could be a major challenge because 

massive amount of data are generated due to the high sampling needed for such large 

bandwidth. 

Furthermore, the DPE procedure does not require a threshold selection, unlike many two 

steps approaches such as TOA where it can be a critical factor on performance accuracy.  

DPE approaches have also been studied in GNSS systems, where in [12] was proven 

analytically to outperform two-steps procedures. In UWB systems, to name a few works, 

a MUSIC-algorithm type is proposed in [13], a frequency domain approach is submitted in 

[14] and a MLE (Maximum Likelihood Estimator) is introduced in [15]. 

2.3.2. Compressive Sensing based Position Estimation 

 

The key to apply CS ideas is to find a linear transformation, one that is able to connect 

position related signal parameters and sensor node measurements. Finding sparsity 

under a certain basis is also essential for the CS to be feasible. In the localization context, 

the sparse temporal properties of UWB channels or the implicit spatial sparsity of the 
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localization scenario or grid, where potential targets cover small part of the discrete 

spatial domain, could be exploited. 

In the context of two-steps localization, CS doesn’t necessarily need to aim to reconstruct 

accurately signals since the first stage of the problem is more of a parameter estimation 

case. The interest lies on maintaining the estimation accuracy even with a reduced 

number of measurements, which will result in a substantial complexity improvement in 

wireless networks that use UWB positioning, because of their high sampling requirements. 

The CS framework has been effectively applied in communications applications such as 

channel estimation in ODFM [16] and UWB [27]. From the compressive measurements, 

the impulse response is reconstructed by 𝑙1 minimisation methods thanks to the sparse 

structure of large bandwidth channels.  

One of the initial works on sparsity-based indoor localization in WSN was [17], since then 

many approaches use different schemes of positioning and sparsity models. To name a 

few examples: In [18] they exploit discrete sparsity pattern in the grid location using 

reconstructed UWB signals from reduced volume of data in a distributed wireless sensor 

network. Sparsity in the spatial domain is also exploited in [19] using DPE for multi-target 

estimation and with a TDOA approach in [20]. All of these techniques aim to reduce the 

computational and storage demands to make the target localization in WSN viable. 

But there has been CS applied to non-range based techniques like for example, a CS-

based RSS method for indoor wireless networks [21], where the received signal strengths 

from a mobile tag at different WLAN Access Points (AP’s) is used to create a radio map, 

which serves as the sparse model. CS theory is able to recover the RSS radio map with a 

reduced number of measurements and an improvement on the localization accuracy 

compared to traditional methods used in the literature. 
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3. Methodology / project development:  

3.1. IR UWB Signal Model 

 

The transmitted UWB signal can be written as, 

 

   𝑠(𝑡) =  ∑ ∑ 𝑎𝑗𝑝(𝑡 − 𝑘𝑇𝑓 − 𝑗𝑇𝑠𝑦𝑚)
𝑁𝑓−1
𝑘=0

∞
𝑗=0        (3.1) 

Where the coefficient 𝑎𝑗 ∈ ±1 is the 𝑗𝑡ℎ transmitted bit, 𝑇𝑠𝑦𝑚  is the symbol duration and 

𝑇𝑓 =
𝑇𝑠𝑦𝑚

𝑁𝑓
  is the Pulse Repetition Period (PRF), also referred as Time of Frame. To 

simplify the scenario, it is assumed 𝑎𝑗 = 1  . Therefore, the tag is considered to 

periodically transmit IR-UWB pulses of very short duration. 

The single pulse waveform 𝑝(𝑡)  is typically a Gaussian monocycle or one of its 

derivatives of duration 𝑇𝑝.  

 

   

 

 

 

 

 

FIGURE 3.1: UWB Gaussian monocycle pulse 

 

The signal propagates through an L-path fading channel whose response to 𝑝(𝑡)  is 

∑ ℎ𝑙𝑝(𝑡 − 𝜏𝑙)𝐿−1
𝑙=0  with  𝜏0  < 𝜏1 < ⋯  < 𝜏𝑀 , being 𝜏0  the delay corresponding to the LOS 

component. The received signal, for a given symbol, is then the summation of multiple 

delayed and attenuated replicas of the received pulse waveform  �̃�(𝑡), which includes the 

antenna and filters distortion. It can be expressed as: 

 

   𝑦(𝑡) =  ∑ ∑ ℎ𝑙𝑝(𝑡 − 𝑘𝑇𝑓 − 𝜏𝑙)
𝑁𝑓
𝑘=0

𝐿−1
𝑙=0 + 𝑤(𝑡)   (3.2) 

 

Where  𝑤(𝑡)  is Additive White Gaussian Noise (AWGN) and is statistically modelled 

as  𝒩(0, 𝜎𝑤
2 ).  The signal associated to the 𝑘𝑡ℎ  transmitted pulse, in the frequency 

domain, turns out to be: 

 

    𝑌𝑘(𝑤) = ℎ0𝑆𝑘(𝑤)𝑒−𝑗𝑤 𝜏0 + ∑ ℎ𝑙
𝐿−1
𝑙=0 𝑆𝑘(𝑤)𝑒−𝑗𝑤 𝜏𝑙 + 𝑉𝑘(𝑤) (3.3) 
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Where the Line-of-Sight (LOS) component is separated in the first term from the signal 

replicas associated to multipath. The frequency component associated to the shifted 

pulse is given by: 

   𝑆𝑘(𝑤) = �̃�(𝑤)𝑒−𝑗𝜔𝑘𝑇𝑓      (3.4) 

 

Where �̃�(𝑤) denotes the Fourier Transform of  the pulse �̃�(𝑡) and 𝑉𝑘(𝑤) is the noise in 

the frequency domain associated to the 𝑘𝑡ℎ symbol. 

Sampling (3.3) at 𝑤𝑚 =
2𝜋

𝑁
𝑚   for 𝑚 = 0 … 𝑀 − 1 and rearraging the frequency domain 

samples 𝑌𝑘[𝑚] into the vector 𝒚𝑘 ∈ ℂ𝑀𝑥1 yields: 

 

   𝒚𝑘 = ℎ0𝑺𝑘𝒆𝝉𝟎 + �̃�𝑘      (3.5) 

 

Where �̃�𝑘 = 𝑺𝑘𝑬𝒉 + 𝒗𝑘 and 𝑺𝑘 ∈ ℂ𝑀𝑥𝑀  is a diagonal matrix whose components are the 

frequency samples of the shifted pulse. The matrix 𝑬 ∈ ℂ𝑀𝑥(𝐿−1)  contains the delay-

signature vectors associated to each arriving delayed signal (multipath), 

 

   𝑬 = [ 𝒆𝝉1   … 𝒆𝝉𝑙  …  𝒆𝝉𝑳−𝟏 ]          (3.6) 

 

with 𝒆𝝉𝑙 = [ 1  𝑒−𝑗
2𝜋

𝑀
𝜏𝑙   ⋯  𝑒−𝑗

2𝜋

𝑀
(𝑀−1)𝜏𝑙  ]𝑇. The channel fading coefficients are represented in 

the discrete domain too as 𝒉 =  [ ℎ1  ⋯ ℎ𝐿−1 ]𝑇 ∈  ℝ(𝐿−1)𝑥1, notice that the LOS fading 

contribution ℎ𝑜 is excluded, and the noise samples in vector 𝒗𝑘 ∈ ℂ𝑀𝑥1 

 

3.2. CS-based Position Estimation Models 

In this section, the linearized models used in this work to apply CS-positioning in UWB 

channels are presented. 

3.2.1. CS Direct Position Estimation Model 

The positioning approach that attempts to solve the problem in a single step followed by a 

multi-dimensional search over the spatial coordinates of the plane, with a frequency 

domain perspective, was proposed in [12].  

The CS framework is combined with this high resolution Periodogram-based DPE 

approach to jointly estimate the location of the target.  Firstly, the system model equation 

is rearranged to account for all the anchor nodes, in other words, the new observation 

frequency sample vector is redefined as the concatenation of signals received from all 

anchors: 

   𝒚𝑘 = ( 𝒚𝑘
(1), … , 𝒚𝑘

(𝑛), … , 𝒚𝑘
(𝑁𝑎) )𝑇     

   𝒚𝑘 =  �̅�𝑘,0𝒆𝒑 + �̃�𝑘      (3.7) 
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With �̅�𝑘,0 = 𝑑𝑖𝑎𝑔(ℎ0,1𝑺𝑘 , … , ℎ0,𝑁𝑎𝑺𝑘) being a block diagonal matrix with pulse spectral 

components weighted by LOS channel fading coefficients, 𝒆𝒑 = (𝒆𝑓1(𝒑), … , 𝒆𝑓𝑁𝑎(𝒑))𝑇 the 

steering vectors as a function of the target spatial coordinates 𝒑 = [ 𝑥 , 𝑦 ]𝑇 , and �̃�𝑘 =

( �̃�𝑘
(1), … , �̃�𝑘

(𝑛), … , �̃�𝑘
(𝑁𝑎) )𝑇. The steering vectors  𝒆𝑓𝑛(𝒑) are defined as in (3.6), but in 

this case the delay is related to the position vector 𝒑 by the geometrical relation 𝑓𝑛(𝒑) =
‖𝒑−𝒑𝒏‖

𝒄
  with 𝒑𝒏 being the coordinates of the 𝑛𝑡ℎ anchor node.  

The DPE position is given by the location vector that maximizes the following cost 

function, 

   �̂� = arg max
𝒑

𝒆𝒑
𝑯𝑹 𝒆𝒑      (3.8) 

Where 𝑹 denotes the sample covariance matrix and it is computed by averaging over 

properly aligned frequency samples of all anchors: 

 

   𝑹 =  
1

𝑵𝑓
∑ 𝒚𝑘

𝑁𝑓
𝒌=𝟏  𝒚𝑘

𝐻 ∈ ℂ𝑀·𝑁𝑎 𝑥 𝑀·𝑁𝑎     (3.9) 

Being 𝑁𝑓 the number of observed frames used for averaging. The optimization of (3.8) 

can be computed by a grid search method or other stochastic methods. The cost function 

can be interpreted as the power-position profile because it provides the signal energy 

distribution with respect to spatial position. 

Based on the sparsity of the target scenario, i.e., the number of unknown targets is small 

in the discrete spatial domain, hence the cost function or power-position profile can fit as 

a sparse or compressible representation. 

Consider a subset of the complete local observation in an anchor node, by applying a 

sensing matrix: 

   �̆�𝑘
(𝑛) = Φ𝒚𝑘

(𝑛)      (3.10) 

 

This matrix Φ  is given by selecting 𝑁 rows from the identity matrix  𝚰𝑀  , so it takes 

𝑁 samples of the observation vector 𝒚𝑘 (𝑁 <  𝑀) , assuming a uniform distribution. 

The CS-based reconstruction of the power-position profile from compressive 

measurements can be implemented if there is a linear model relating the random 

compressive measurements and the energy of the power-position profile. Assuming the 

target area is partitioned into a finite grid of dimensions 𝑁𝑥 · 𝑁𝑦.The following model is 

proposed: 

   𝑹 ̆ =  ∑ 𝜎𝒑𝒊
�̆�𝒑𝒊

�̆�𝒑𝒊

𝐻𝑁𝑥 𝑁𝑦−1
𝑖=0 + �̆�𝜺    (3.11) 

 

Where 𝑹 ̆ ∈ ℂ𝑁·𝑁𝑎 𝑥 𝑁·𝑁𝑎 is the compressed version of the sample covariance matrix, which 

can be computed as �̆� =  
1

𝑵𝑓
∑ �̆�𝑘

𝑁𝑓
𝒌=𝟏  �̆�𝑘

𝐻
, keeping in mind that �̆�𝑘 is the concatenation of 

compressed signals from all anchors. �̆�𝜺 represents imperfections of the model and 𝜎𝒑𝒊
  is 

the scene energy indicator of location 𝒑𝑖 , which can be seen as the output of the cost 

function in (3.8). These values, 𝜎𝒑𝒊
 , are concatenated in a column vector of dimensions 
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𝑁𝑥𝑁𝑦  𝑥 1 to form 𝝈 .Finally, vector �̆�𝒑𝒊
= (Φ𝒆𝑓1(𝒑𝒊), … , Φ𝒆𝑓𝑁𝑎(𝒑𝒊))𝑇 denotes the compressive 

steering vector corresponding to the grid location 𝒑𝑖. 

Following the sparse notation, the classic compressive sensing equation can now be 

written: 

   �̆� = 𝑨𝝈 + 𝒓𝜺       (3.12) 

Where �̆� is a (𝑁𝑁𝑎)2𝑥1 vector formed by the concatenation of the columns of 𝑹 ̆.To clarify 

the notation, the operator 𝑣𝑒𝑐(·) will be in charge of this operation, then �̆� = 𝑣𝑒𝑐(�̆�). The 

matrix 𝑨 is the dictionary where  𝝈 becomes sparse and also incorporates the sensing 

operation. The columns of 𝑨  contain the vectorised candidate covariance matrices 

corresponding to the different target locations 𝒑𝑖 that conform the spatial scanning grid, 

the dictionary is defined as: 

   𝑨 = [ �̆�(𝒑0) ⋯ �̆�(𝒑𝑁𝑥𝑁𝑦−1) ]       (3.13) 

Where �̆�(𝒑𝑖) =  𝑣𝑒𝑐(�̆�𝒑𝒊
�̆�𝒑𝒊

𝐻) .The elements different from zero of 𝝈 represent the grid 

points that might indicate possible locations of targets. 

The sparse vector 𝝈 reconstruction from the compressive measurements can be 

formulated as the following minimisation problem: 

 

   min
𝝈

‖𝝈‖𝑙1
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �̆� ≈ 𝑨𝝈       (3.14)  

The reconstruction algorithms used along with their performance in UWB channels are 

discussed in the Results section.    

 

3.2.2. CS-Periodogram based Position Estimation Model 

In this new positioning framework, we adapt the basic principles of the previous 

compressive sensing model, but the recovery is now carried out locally at each reference 

node. This change aims to exploit a different kind of sparsity and implement the 

positioning in a two steps fashion.  

This shift in the way the sparsity is exploited is motivated due to the fact that the temporal 

behaviour of UWB wireless channels, in particular, the channel’s impulse response, 

whose fading coefficients decay rapidly with time, results in a compressible structure in 

the delay domain. Indeed, a large portion of multipath reflections are much attenuated 

and the dominant reflections just become sparser. 

Consider again a subset of observation vector in the frequency domain at the 𝑛-𝑡ℎ anchor 

node: 

   �̆�𝑘
(𝑛) = Φ𝒚𝑘

(𝑛)       

In the first stage, a linear model relating the power-delay profile or pseudo-periodogram 

and the random compressive measurements at each anchor node is used. Assuming the 

time-delay axis is divided in 𝑁𝜏 points. The following model, which is basically the same 

as (3.11) but in the delay domain, is proposed: 
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   𝑹 ̆𝒏 =  ∑ 𝜎𝝉𝒊
�̆�𝝉𝒊

�̆�𝝉𝒊

𝐻𝑁𝜏
𝑖=0 + �̆� 𝜺

(𝒏)
     (3.15) 

 

Where 𝑹 ̆
𝒏 ∈ ℂ𝑁 𝑥 𝑁· is the compressed version of the sample covariance matrix, which 

can be computed as  𝑹 ̆
𝒏 =  

1

𝑵𝑓
∑ �̆�𝑘

(𝒏)𝑁𝑓
𝒌=𝟏  �̆�𝑘

(𝒏)𝐻
. �̆� 𝜺

(𝒏)
represents imperfections of the 

model and 𝜎𝝉𝒊
  is the energy indicator of delay 𝝉𝑖 . These values, 𝜎𝝉𝒊

 , are concatenated in 

a column vector of dimensions 𝑁𝜏  𝑥 1 to form 𝝈 . Finally, vector �̆�𝝉𝒊
= Φ𝒆𝝉𝒊

 denotes the 

compressive steering vector corresponding to the delay 𝝉𝑖. 

Following the sparse notation, the classic compressive sensing equation can now be 

written: 

   �̆�𝒏 = 𝑨𝝈𝒏 + 𝒓𝜺
(𝒏)      (3.16) 

 

Where �̆�𝒏 is a (𝑁)2𝑥1 vector formed by applying the 𝑣𝑒𝑐(·) operator. The matrix 𝑨 is the 

dictionary where  𝝈 becomes sparse and also incorporates the sensing operation. The 

columns of 𝑨 contain the vectorised candidate covariance matrices corresponding to the 

different target locations 𝝉𝑖  that conform the temporal scanning grid, the dictionary is 

defined as: 

   𝑨 = [ �̆�(𝝉0) ⋯ �̆�(𝝉𝑁𝜏−1) ]       (3.17) 

 

Where �̆�(𝝉𝑖) =  𝑣𝑒𝑐(�̆�𝝉𝒊
�̆�𝝉𝒊

𝐻) .The elements different from zero of 𝝈  represent the grid 

points that might indicate possible locations of targets. 

The sparse vector 𝝈𝒏 reconstruction from the compressive measurements can be 

formulated as the following minimisation problem: 

 

   min
𝝈𝒏

‖𝝈𝒏‖𝑙1
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �̆�𝒏 ≈ 𝑨𝝈𝒏       (3.18)  

This new approach aims to make the CS recovery step anchor-wise, so another kind of 

sparsity can be explored. Therefore, this method can be reinterpreted as ToA-based 

positioning scheme. 

The recovered vector 𝝈𝒏 contains the most K significant contributions of the power delay 

profile of the channel. The main scheme proposed to solve the second stage of the 

positioning model presented next. 

3.2.2.1. Multi-trilateration scheme 

There is a set of measures or delays estimated from each anchor that can be use in a 

trilateration procedure to calculate the target position. In [31], a multi-trilateration method 

has been developed that takes into account multiple delays  {𝜏𝑙1 ⋯ 𝜏𝑙𝐾} extracted at 𝑙-th 

reference node and, by using a tree-based optimization algorithm, it optimally decides the 

target’s position by minimising a cost function .Mathematically expressed: 

 

    𝐼(𝒑, 𝑘) = ∑ (𝜏𝑙[𝑘𝑙] · 𝑐𝑁𝑎
𝑙=1 − ‖𝒑 − 𝒑𝒍‖)2  (3.19) 
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    �̂� = min
�̂�

𝐼(𝒑, 𝑘)     (3.20)  

Where 𝒑 ∈ ℝ𝟐 is the estimated position, 𝒑𝒍 ∈ ℝ𝟐 is the location of the 𝑙𝑡ℎ anchor node, c is 

the speed of light constant and 𝜏𝑙[𝑘𝑙] , 𝑘𝑙 ∈  {1, … , 𝐾}, are all the potential ToA’s detected 

in the 𝑙𝑡ℎ anchor node. 

The motivation to keep 𝐾 paths comes from the fact that to locate the true ToA, one has 

to search backward from the peak location to locate any possible significant energy paths, 

which may not be the strongest. 

The reconstruction algorithms used along with their performance in UWB channels are 

discussed in the Results section. 

3.2.3. CS-based CIR Position Estimation Model  

The last linearized model comes from the ideas derived in [29] and it is based on the 

theory of sparse channel estimation. The positioning scheme still resembles to the one 

described in the previous section in the sense that is a two steps procedure and the 

compressive sensing theory is applied in the first stage.  

But now, the parameter estimation stage focuses on the multipath taps delays from the 

channel impulse response. To apply the compressive sensing framework, the sparse 

representation from [29] in the frequency domain is presented: 

Firstly, consider the received waveform from the IR-UWB signal model in the frequency 

domain in (3.5) to be re-written into this form, without pointing out the LOS contribution: 

   𝒚𝑘 = 𝑺𝑘𝑬𝒉𝒆 + 𝒘𝑘      (3.21) 

     

Where once again 𝑺𝑘 ∈  ℂ𝑀𝑥𝑀  is the diagonal matrix whose components are the 

frequency samples of the shifted pulse. The matrix 𝑬 ∈ ℂ𝑀𝑥𝑀 is extended to incorporate 

all the delay-signature vectors associated to each arriving delayed signal (multipath), 

 

   𝑬 = [ 𝒆𝝉𝑜   … 𝒆𝝉𝑙  …  𝒆𝝉𝑴−𝟏 ]          (3.22) 

   

With 𝒆𝝉𝑙 = [ 1  𝑒−𝑗
2𝜋

𝑀
𝜏𝑙  ⋯  𝑒−𝑗

2𝜋

𝑀
(𝑀−1)𝜏𝑙  ]𝑇. The channel fading coefficients are represented 

in the discrete domain too as  𝒉𝒆  =  [ ℎ1  ⋯ ℎ𝑀−1 ]𝑇 ∈  ℝ𝑀𝑥1  and the noise samples in 

vector 𝒗𝑘 ∈ ℂ𝑀𝑥1. The vector 𝒉𝒆 can be identified as the K-sparse signal and  𝑩 = 𝑺𝑘𝑬 ∈

 ℂ𝑀𝑥𝑀 as the dictionary where the channel becomes sparse. The noise-free version of 

(3.21) can be formulated as: 

   𝒚𝑘 = 𝑩𝒉𝒆 = 𝑺𝑘𝑬𝒉𝒆      (3.23) 

In order to compress the frequency domain samples, a widely used random matrix 𝑪 ∈

ℝ𝑁𝑥𝑀 with entries i.i.d taken from a normal distribution with zero-mean and unit variance 

is used. 

   �̆�𝒌 = 𝑪𝒚𝒌       (3.24) 

Where �̆�𝒌 is the 𝑁𝑥1 vector of CS measurements. This illustration will help clarify the 

notation: 
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   FIGURE 3.2: CS structure of channel estimation 

 

Therefore, the sparse channel estimation �̂�𝒆  can be obtained from the compressed 

samples  �̆�𝒌  applying sparse signal reconstruction techniques. The sparse signal 

recovery problem is formulated as, 

    

  min
𝒉𝒆

‖𝒉𝒆‖𝑙1
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝒚𝑘 ≈ 𝑪𝑩𝒉𝒆       (3.25) 

 

The estimated CIR �̂�𝒆  contains the parameters of interest or, in other words, the 𝐾 

potential ToA’s that can yield the target location through a multi-trilateration algorithm as 

the one described in the earlier section.  

The reconstruction algorithms used along with their performance in UWB channels are 

discussed in the Results section. 
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4. Results 

For the numerical evaluation of the algorithms, the channels models developed in the 
framework of the IEE.802.15.4a (See Appendix) are considered. In particular, the CM3 
Office LOS model [28] that is characterized to exhibit dense multipath. All simulations are 
run with 250 independent channel realizations.  

The results are given for a simplified scenario with a single target. The positioning 

algorithm is evaluated in 2D square setting of 6𝑥6 𝑚2. The number of anchors has been 
fixed to 4, placed at each corner of the square room. 

Next, in this table are summarized the parameters related to the IR-UWB signal model 
that remain constant throughout the simulations. 

 

𝑻𝒑 (Pulse duration ) 1 𝑛𝑠  

𝑻𝒇( Time of frame) 56 𝑛𝑠 

𝑻𝒂 ( Acquisition window) 𝑇𝑓 

𝑭𝒔 ( Sampling frequency) 2 𝐺𝐻𝑧 

 

                                         TABLE 4.1: Simulation Parameters 

 

The pulse duration 𝑻𝒑  determines the path resolution and the non-compressive sampling 
rate 𝑭𝒔  translates the observation window to into 𝑻𝒇 ∗ 𝑭𝒔 samples.  The sampling rates 

of the acquired signal  𝒚𝑘 and, after the compression step, �̆�𝑘 are related through the 

compression rate 𝝆 that is defined as a follows: =
𝑵

𝑴
 , where 𝑴 represents the total 

number of samples acquired in a 𝑻𝒇 window and 𝑵 the total number of samples after the 
compression step.  

The parameter 𝑵𝒇 denotes the total number of observed data frames, to strictly focus on 

the behaviour of the compression, the estimator takes samples for a longer period of time 
as the compression rate decreases. Therefore reducing the effect of insufficient data and 
increasing the robustness to noise. This way the compressed observations are forced to 
be the same for every compression rate. 

In the following table the details of the relation between these parameters are presented: 

𝒑 1 0.5 0.25 

𝑵 128 64 32 

𝑵𝒇 128 256 1024 

    

   TABLE 4.2: Relationship between the parameters 𝜌, 𝑁, 𝑁𝑓 
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The metrics used to assess the localization performance simulations localization are 

described below: 

   𝑅𝑀𝑆𝐸(𝑚) = √
1

𝐽
∑ ‖𝑝 − �̂�‖2𝐽

𝑗=1    (4.1) 

Where 𝐽  stands for the number of channel realizations used, 𝑝 = [ x   y ]𝑇   is the true 

position of the randomly placed target in the scenario and  �̂� = [ x𝑒  y𝑒 ]𝑇 is the estimated 

location that yield the positioning algorithms.  

The estimation accuracy is determined by the root mean square error in meters. The 

empirical CDF (Cumulative distribution Function) of the position error is also computed in 

some cases for better understanding. Each point of the curves below have been 

generated with 250 independent channel realizations. A parametric study of the 

relationship between CS variables and the localization error metrics is carried out to 

evaluate the overall performance of the CS reconstruction algorithms. 

 

The level of SNR is fixed to 4 dB for the assessment of the numerical performance of the 

algorithms. It is worth mentioning that there is signal averaging being performed in the 

CS-CIR model, by taking advantage of the arriving frames of one IR-UWB symbol, and 

the covariance matrices of the other CS models are computed over a pre-defined number 

of frames to improve the estimation process. Therefore, the SNR level at the end of the 

receiver chain is further improved with the use of these techniques. 

A short review of the main CS variables is presented: 

4.1. Level of Sparsity 

The level of sparsity 𝐾 is a requirement for the majority of standard CS algorithms, both 

the traditional and the model-based greedy types. For this particular application, the 

sparsity will be treated as a tuning parameter. Nevertheless, there are ’sparsity-aware’ 

greedy algorithms that use different adaptive strategies to estimate the sparsity [30]. 

Since the sparsity is directly related to the multipath density of the UWB wireless channel, 

it is non obvious to select a proper value. At first sight, it may seem that a low value of 

sparsity should be enough to capture the paths that could yield the location.  

Problems can arise if one is under-estimating or over-estimating the sparsity. If the 

number of paths searched, 𝐾, in the algorithm is high then there is a potential problem of 

picking the wrong atom (column) in the dictionary due to the noise, however, if the 𝐾, is 

too small then we may miss the true ToA, due to the possibility of earlier paths being 

weaker than the first path. Anyway, there is absolutely no interest on overfitting (high 𝐾) 

because the probability that the ToA path is in a far region from the LOS contribution is 

very low. 

A large value of sparsity increases approximately the overall running time of the CS 

reconstruction algorithm by a factor of 𝑂(log(𝐾)).  

For the model-based case, 𝑊 defines the block size and 𝐶 the number of active clusters 

that the algorithms will seek for. The total level of sparsity is defined as 𝑊 ∙ 𝐶 .The 

parameter 𝑊  and 𝐶 are critical for right performance, because now instead of searching 
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for the 𝐾 most significant paths, the algorithms seeks for the 𝐶 most significant clusters of 

size 𝑊.   

4.2. Compression rate 

The compression rate plays a fundamental role on the performance of the recovery 

algorithms. Testing the effect of reducing acquired samples on the localization error 

provides a measure of how much the sampling demands can be cut down, which is one 

of the problems that UWB systems are actually facing. 

Ideal compressive sensing theory states that the signal under observation can be 

recovered with a critical number of measurements, exactly  𝑁 = 𝑂(𝐾 ∙ 𝑙𝑜𝑔 (
𝑀

𝐾
))  for 

standard recovery and 𝑁 = 𝑂(𝑊𝐶) for model based recovery.  

 

4.3. Performance CS-DPE Model 

A parametric study of the relationship between CS variables and the localization error 

metrics is carried out to evaluate the overall performance of the CS reconstruction 

algorithms. 

The CS-DPE model is special in the sense that is the most different out of the other two 

proposed model. It is indeed exploiting another kind of sparsity pattern, the discrete 2D 

grid. Therefore, we summarize the list of parameters that have been used for its testing: 

 𝑁𝑥 = 200 , 𝑁𝑦 = 200 

 Number of iterations for OMP: 1 

Notice that the number of iterations could be set equal to the number of potential targets 

in the scene. The OMP is the algorithm of choice for this particular model, since the 

strategy is to simply find the most correlated atom of the huge dictionary that discretizes 

the spatial grid in Nx ∙ Ny. 

 

FIGURE 4.1: Rho sweep of the CDF of the error position 

The CS-DPE model degrades clearly when the compression rate is low, although 

showing some incongruences with low values of  𝑝 . OMP suits as the best CS algorithm 
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because its simplicity and rapid convergence, since it only requires one iteration to find 

the peak corresponding to the target in the spatial grid.  

The huge demands of computational power and storage make the CS-DPE a very 

expensive technique in terms of computational resources. One key improvement will be 

to reduce the number of points of the grid, at the cost of increasing the gridding error. 

It is well known in the literature that increasing the parameter space resolution, i.e. 

increasing the discrete grid where the parameter lies, tends to increase the coherence of 

the dictionary, which can result in to bad results. 

In the next table the RMSE for each compression rate is presented: 

 

𝝆 RMSE [m] 

0.0625 3.63 

0.125 3.06 

0.25 3.62 

0.5 1.63 

0.75 1.72 

1 1.19 

 

TABLE 4.3: RMSE as function of 𝑝 for CS-DPE model 
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4.4. Performance CS-Periodogram Multi-ToA Model 

4.4.1. Sparsity Sweep 

 

• Standard CS Algorithms 

 

a)  𝑝 = 0.75 

 

b) 𝑝 = 0.25 

FIGURE 4.2: Sparsity sweep of CoSaMP and OMP 

 

• Block CS Algorithm 

 

 

a) 𝑝 = 0.75 

 

b) 𝑝 = 0.25 

FIGURE 4.3: Sparsity sweep of Block-Based CoSaMP 
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The level of sparsity plays an important role as a tuning parameter because the number 

of paths to be searched for that could possibly be candidates for the true delay path is not 

known a priori, although it can be narrowed down to a certain range close to the strongest 

contribution. Both standard algorithms have very similar performance in terms of 

estimator accuracy, and CoSaMP’s slightly better theoretical performance is not 

confirmed in this particular application. An interesting case for is 𝑝 = 0.25, where quite the 

opposite trend that in  𝑝 = 0.75  is going on, this due to the fact that the number of 

required samples to guarantee the recovery scales linearly with the level of sparsity.   

In the case of model-based CS reconstruction, the block size  𝑊  does not have a 

significant impact on the estimator’s performance at any compression rate. The number 

of active clusters plays a far more important role , notice how when the block size is set to 

one sample ( 𝑊 = 1) , for any value of C, the model-based automatically corresponds to 

the standard CoSaMP with a level of sparsity C.  

The fact that 𝑊  cannot be tuned properly might be a sign that the signal under 

reconstruction, in this case the few clusters of the multipath arriving according to the 

Saleh-Valenzuela model, is not well fit under this simple structured sparsity model. 
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4.4.2. Compression rate Sweep 

 

• Standard CS algorithms: 

 

a) 𝐾=15                             b)  𝐾=5 

 

FIGURE 4.4: Compression rate sweep of CoSaMP and OMP 

 

• Block CS algorithm:  

 

 

 

 

 

 

 

 

 

 

 

a) 𝑊=5 

FIGURE 4.5: Compression rate sweep of Block-Based CoSaMP 

 

In these graphs, it is clear that there is an expected trade-off between the compression 

rate chosen and the estimator’s accuracy. For all levels of sparsity, the RMSE degrades 
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significantly as it approaches a fourth of the original sampling rate, i.e. 𝑝 = 0.25. For a 

lower sparsity level, the RMSE holds a bit longer as the compression rate goes up (↓↓  𝜌) . 

The standard CS recovery algorithms with a low level of sparsity seem to be performing 

almost equally to the block-based algorithm when the latter considers a medium number 

of active clusters  ( 𝐶 =  4 , 𝐶 =  5) , even though it is employing a larger total level of 

sparsity ( 𝑊 · 𝐶).  The more relaxed measurement bound of the model-based can be 

seen taking effect, since the RMSE does not degrade so quickly. 
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4.4.3. Signal-To-Noise Ratio Sweep 

 

 Standard CS Algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Block CS algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

The SNR sweep is carried out in order to see the robustness of the CS algorithms against 

noise. Nonetheless, the number of frames, here fixed, to compute the covariance matrix 

of the Position Estimation model is still kept high , meaning that for this range of level of 

SNR , the positioning algorithm still can perform if enough averaging is done. 

 

a) 𝑝=0.5 and 𝐾=10 

 

FIGURE 4.6:  SNR sweep for CoSaMP and OMP 

 

a) 𝑝 =0.5 and 𝑊=5 

FIGURE 4.7: SNR sweep of Block-based CoSaMP 
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4.5. Performance of CS- CIR MultiToA Model  

4.5.1. Sparsity Sweep 

 

 Standard CS algorithms 

 

a) 𝑝 = 0.75 

 

b) 𝑝 = 0.25 

FIGURE 4.8: Sparsity sweep of CoSaMP and OMP 

   

 Block CS algorithm 

 

 

a) 𝑝 = 0.75 

 

b) 𝑝 = 0.25 

FIGURE 4.9: Sparsity sweep of Block-Based CoSaMP 
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In 4.7 a), CoSaMP has a steady decrease of the RMSE as the level of sparsity increases 

until it reaches a lower bound. In the other hand, OMP breaks down when a certain level 

is surpassed. This observation contrasts with the CS-periodogram model, where both 

achieve the same numerical performance. Similar effects in the tuning of this parameter 

are observed if compared with the anterior CS model for the family of standard algorithms. 

For different compression rate, the tuning seems to indicate that the optimal values of 

sparsity for the localization problem ought to be low. 

 

For the block-based algorithm, the block length  , once again, is not critical to the 

localization performance. The performance of the Block-Based CoSaMP is pretty similar 

in terms RMSE to the standard methods. As the number of active clusters assumption 

increases, the performance just gets better. One of the initial reasons of using a block-

based sparsity model was to capture the LOS cluster containing the LOS path and its 

neighbours, but the results indicate that is not the right strategy.  
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4.5.2. Compression rate Sweep 

 

 Standard CS Algorithms: 

 

a) 𝐾 = 15 

 

b) 𝐾 = 5 

FIGURE 4.10: Compression rate sweep of CoSaMP and OMP 

 

 Block CS algorithm: 

 

 

a) 𝑊 = 5 

FIGURE 4.11: Compression rate sweep of Block-based  CoSaMP 
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The dependence of the performance error in meters on the number of measurements 

becomes quite clear on both, standard and block-based, algorithms. 

4.5.3. Signal-to-Noise Ratio Sweep 

 

 Standard CS Algorithms 

 

  

 

 

 

 

 

 

 

 

 

 

 

 Block CS algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

The number of frames has been fixed for this sweep. The overall performance on this 

range of SNR level of all the algorithms stays constant, meaning that the signal averaging 

 

 

a) 𝑝=0.5 and 𝐾=10 

 

FIGURE 4.12: SNR sweep for CoSaMP and OMP 

 

b) 𝑝 =0.5 and 𝑊=5 

               FIGURE 4.13: SNR sweep of Block-based CoSaMP 
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of the different frames that it is used in the CS-CIR model to increase robustness against 

noise is effective. One inconvenient of the strong signal averaging is that we are 

penalizing high-data rate communications that could complement the IR-UWB positioning 

system. 

4.6. Comparison 

 

Finally, we compare the three proposed models: 

 

 Overall Error performance 

CS-Periodogram Multi-ToA and CS-CIR Multi-ToA models have very similar a 

performance in terms of localization error.  They basically differ on the design of the CS 

dictionary, the CS-Periodogram Multi-ToA does not include the parameterized 

waveforms (atoms) that closely matches the information-carrying pulse shape  and 

the CS-CIR Multi-ToA definitely includes the pulse contribution in its dictionary, thus 

leading a sparser representation of the signal to be recovered . For both models, the 

cluster-based reconstruction algorithm fails to outperform clearly the standard methods. 

Initially, it was thought that the transition from CS-Periodogram to the CS-CIR based 

model will help boosting the cluster-based CoSaMP performance because ,related to the 

previous comment on the design difference of the dictionary, the signal being recovered 

was now more suited to fit for the cluster model. But that was not the case. Extracting the 

channel statistical parameters and relating them to 𝑊, block size, and 𝐶 , the number of 

active clusters, was another strategy applied that continued to fail. 

The CS-DPE model seems to be outperformed by the CS based two steps strategies that 

employed a novel multi-trilateration. To further improve the CS-DPE, a finer search 

strategy than simply looking for the strongest correlated atom in the 2D grid space and 

finding a trade-off between the grid points and computational load would be necessary. 

 

 Running time 

 

The time complexity of the CS algorithms is mostly polynomial with time and they do not 

suppose a bottleneck in the whole process, except for the CS-DPE where the dictionaries 

can get very large and require huge amounts of storage. Anyway, the CS-CIR model was 

found to best in terms of running time, closely followed by the CS-Periodogram model. 
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5. Budget 

This work is based on theoretical analysis and numerical assessment of some algorithms 
with the help of the Matlab software.  
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6. Conclusions and future development:  

The novel technique of CS-based positioning presented in this Degree Thesis has still not 

reached its full potential. It has been proved that choice of the CS reconstruction 

algorithm that implements the ToA estimation stage is not a critical factor, but rather the 

assumption of the signal model under reconstruction, specifically, the dense multipath 

that UWB channels exhibit. It surely can make a difference to boost the performance.  

In the lines of possible future development, there are two directions that can be taken, the 

first consists on modifying the current standard CS algorithms by incorporating strategies 

based on a few priori knowledge when selecting the most correlated atoms in the 

dictionary, for example, taking into account the fact that the ToA path is not far away from 

the strongest contribution .The second one is to find a structured sparsity  based CS 

algorithm that adjusts better to the dynamic cluster-based model of the challenging 

multipath, and provides a more flexible framework in the sense that requires less 

demands of heuristics.  

The ultimate goal would be to achieve sub-meter accuracy in situation of significant 

reduction of the samples acquired. The numerical assessment has proven that greatly 

lowering the number of measurements degrades the localization capabilities of IR-UWB 

systems.  

 CS framework provides a very interesting signal processing paradigm in the indoor UWB 

localization context. Even though the quality of the novel position estimation technique 

can still be upgraded, the foundations of the procedure have been provided and the 

quantitative analysis shows that it still can perform in very harsh conditions. 

It has been shown that the fusion of sparse-based techniques with positioning algorithms 

is possible, and that the best candidate for the CM3 Office LOS channel is the CS-

Periodogram position estimation model that slightly outperforms the CS-CIR position 

estimation model and definitely exceeds the localization performance of the CS-Direct 

Positioning model. 
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Appendices: 

 

     CoSaMP  

    Block-Based CoSaMP 
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     OMP  

 

 

IEE 802.15.14.a Channels Model  

The generic channel model that is used for the 2-10 GHz model. The key features of the 
model are summarized:  

 𝑑−𝑛 law for the path-loss  

 frequency dependence of the path-loss 

 modified Saleh-Valenzuela model:  

o Arrival of paths in clusters.  
o Mixed Poisson distribution for ray arrival times.  
o Possible delay dependence of cluster decay times.  
o Some NLOS environments have first increase, then decrease of power 

delay profile.  

 Nakagami-distribution of small-scale fading, with different m-factors for different 
components  

 Block fading: channel stays constant over data burst duration. 

The CM3 Office model is an indoor office environment, the rooms are comparable to the 
size of residential homes, but some rooms (especially cubicle areas, laboratories, etc.) 
are considerably larger. Areas with many small offices are typically linked by long 
corridors. Each of the offices typically contains furniture, book shelves on the walls, etc., 
which adds to the attenuation given by the (typically thin) office partitionings. This model 
was developed under measurements covering a range of 3-28 meters and from 2-8 GHz. 
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List of the main parameters for the model: 

 𝑛 path-loss exponent 

 𝜎 shadowing standard deviation 

 𝑃𝐿𝑜 path-loss at 1m distance 

 𝐴𝑎𝑛𝑡 antenna loss 

 𝑘 frequency dependence  
 

 �̅� mean number of clusters 

 Λ inter-cluster arrival rate 

 𝜆1 , 𝜆 2 ,𝛽 ray arrival rates ( Poisson 

Model) 

 Γ inter-cluster decay constant 

 𝑘𝛾, 𝛾𝑜inter-cluster decay time 

constants 

 𝜎𝑐𝑙𝑢𝑠𝑡𝑒𝑟cluster shadowing variance 

 

This model is a statistical model whose basic assumption is that multipath components 

(MPCs) arrive in clusters, formed by the multiple reflections from the objects in the vicinity 

of receiver and transmitter. The clusters, as well as the MPCs within a cluster, arrive 

according to Poisson processes with different rates and have inter-arrival times that are 

exponentially distributed. The MPCs amplitudes are independent Rayleigh random 

variables, and the corresponding phase angles are independent uniform random 

variables over (0,2𝜋). The power decays exponentially with cluster decay as well as 

excess delay within a cluster. 

A typical Channel Impulse Response (CIR): 

 

 

 

 

 

 

 

 

 

 

 


