154 research outputs found

    Securing Internet Protocol (IP) Storage: A Case Study

    Full text link
    Storage networking technology has enjoyed strong growth in recent years, but security concerns and threats facing networked data have grown equally fast. Today, there are many potential threats that are targeted at storage networks, including data modification, destruction and theft, DoS attacks, malware, hardware theft and unauthorized access, among others. In order for a Storage Area Network (SAN) to be secure, each of these threats must be individually addressed. In this paper, we present a comparative study by implementing different security methods in IP Storage network.Comment: 10 Pages, IJNGN Journa

    Implementation and comparison of iSCSI over RDMA

    Get PDF
    iSCSI is an emerging storage network technology that allows for block-level access to disk drives over a computer network. Since iSCSI runs over the very ubiquitous TCP/IP protocol it has many advantages over its more proprietary alternatives. Due to the recent movement toward 10 gigabit Ethernet, storage vendors are interested to see how this large increase in network bandwidth could benefit the iSCSI protocol. In order to make full use of the bandwidth provided by a 10 gigabit Ethernet link, specialized Remote Direct Memory Access hardware is being developed to offload processing and reduce the data-copy-overhead found in a standard TCP/IP network stack. This thesis focuses on the development of an iSCSI implementation that is capable of supporting this new hardware and the evaluation of its performance. This thesis depicts the approach used to implement the iSCSI Extensions for Remote Direct Memory Access (iSER) with the UNH iSCSI reference implementation. This approach involves a three step process: moving UNH-iSCSI from the Linux kernel to the Linux user-space, adding support for the iSER extensions to our user-space iSCSI and finally moving everything back into the Linux kernel. In addition to a description of the implementation, results are given that demonstrate the performance of the completed iSER-assisted iSCSI implementation

    Study of TCP Issues over Wireless and Implementation of iSCSI over Wireless for Storage Area Networks

    Get PDF
    The Transmission Control Protocol (TCP) has proved to be proficient in classical wired networks, presenting an ability to acclimatize to modern, high-speed networks and present new scenarios for which it was not formerly designed. Wireless access to the Internet requires that information reliability be reserved while data is transmitted over the radio channel. Automatic repeat request (ARQ) schemes and TCP techniques are often used for error-control at the link layer and at the transport layer, respectively. TCP/IP is becoming a communication standard [1]. Initially it was designed to present reliable transmission over IP protocol operating principally in wired networks. Wireless networks are becoming more ubiquitous and we have witnessed an exceptional growth in heterogeneous networks. This report considers the problem of supporting TCP, the Internet data transport protocol, over a lossy wireless link whose features vary over time. Experimental results from a wireless test bed in a research laboratory are reported

    Fairness in a data center

    Get PDF
    Existing data centers utilize several networking technologies in order to handle the performance requirements of different workloads. Maintaining diverse networking technologies increases complexity and is not cost effective. This results in the current trend to converge all traffic into a single networking fabric. Ethernet is both cost-effective and ubiquitous, and as such it has been chosen as the technology of choice for the converged fabric. However, traditional Ethernet does not satisfy the needs of all traffic workloads, for the most part, due to its lossy nature and, therefore, has to be enhanced to allow for full convergence. The resulting technology, Data Center Bridging (DCB), is a new set of standards defined by the IEEE to make Ethernet lossless even in the presence of congestion. As with any new networking technology, it is critical to analyze how the different protocols within DCB interact with each other as well as how each protocol interacts with existing technologies in other layers of the protocol stack. This dissertation presents two novel schemes that address critical issues in DCB networks: fairness with respect to packet lengths and fairness with respect to flow control and bandwidth utilization. The Deficit Round Robin with Adaptive Weight Control (DRR-AWC) algorithm actively monitors the incoming streams and adjusts the scheduling weights of the outbound port. The algorithm was implemented on a real DCB switch and shown to increase fairness for traffic consisting of mixed-length packets. Targeted Priority-based Flow Control (TPFC) provides a hop-by-hop flow control mechanism that restricts the flow of aggressor streams while allowing victim streams to continue unimpeded. Two variants of the targeting mechanism within TPFC are presented and their performance evaluated through simulation

    The global unified parallel file system (GUPFS) project: FY 2002 activities and results

    Full text link

    SDN Enabled Network Efficient Data Regeneration for Distributed Storage Systems

    Get PDF
    Distributed Storage Systems (DSSs) have seen increasing levels of deployment in data centers and in cloud storage networks. DSS provides efficient and cost-effective ways to store large amount of data. To ensure reliability and resilience to failures, DSS employ mirroring and coding schemes at the block and file level. While mirroring techniques provide an efficient way to recover lost data, they do not utilize disk space efficiently, resulting in large overheads in terms of data storage. Coding techniques on the other hand provide a better way to recover data as they reduce the amount of storage space required for data recovery purposes. However, the current recovery process for coded data is not efficient due to the need to transfer large amounts of data to regenerate the data lost as a result of a failure. This results in significant delays and excessive network traffic resulting in a major performance bottleneck. In this thesis, we propose a new architecture for efficient data regeneration in distribution storage systems. A key idea of our architecture is to enable network switches to perform network coding operations, i.e., combine packets they receive over incoming links and forward the resulting packet towards the destination and do this in a principled manner. Another key element of our framework is a transport-layer reverse multicast protocol that takes advantage of network coding to minimize the rebuild time required to transmit the data by allowing more efficient utilization of network bandwidth. The new architecture is supported using the principles of Software Defined Networking (SDN) and making extensions where required in a principled manner. To enable the switches to perform network coding operations, we propose an extension of packet processing pipeline in the dataplane of a software switch. Our testbed experiments show that the proposed architecture results in modest performance gains

    Performance analysis and design of iSCSI over wireless network

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Fiber Channel Vs. Internet Scsi On Storage Area Networks For Disaster Recovery Operations

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2006Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2006Bu tez çalışmasında iSCSI tabanlı veri depolama ağlarının performansının iyileştirilmesi için iSCSI ve TCP katmalarının birbiriyle etkileşimi incelenmektedir. Bu inceleme neticesinde en uygun iSCSI ve TCP parametre değerleri belirlenmeye çalışılmıştır. Uygun parametre değerleri kullanılarak optimize edilmiş bir iSCSI veri depolama çözümünün Fiber Kanal tabanlı veri depolama çözümlerine alternatif olabileceği gösterilmeye çalışılmıştır.This thesis examines the interactions between the iSCSI and TCP layer in order to improve the performance of iSCSI-based storage system. As a result of this study, the most proper iSCSI and TCP parameter values were supposed to be determined. By using these proper parameter values, it was tried to be shown that an optimized iSCSI-based storage solution with suitable parameters can be an alternative to FC-based storage solutions.Yüksek LisansM.Sc

    Benchmarking of IP-based Network Storage Systems

    Get PDF
    Mobile platforms with access to high speed wireless network have become ubiquitous. Advancements in network technology and consumer electronics have brought traditional storage systems into offices and homes. Services based on cloud technologies, including object based storage, have gained popularity among both private users and enterprises. However, there is still a lack of systematic evaluation of both traditional storage systems and cloud based object storage in a mobile and wireless context. In this thesis, we evaluate the performance of three drastically different storage systems, namely NFS, iSCSI, and OpenStack Swift, which can potentially be used by mobile platforms over wireless network. We build a testbed and an in house, ad hoc microbenchmark to study the impact of various network complexities and different access behaviours of application. In addition, we employ two widely used macrobenchmarks -- PostMark and FileBench -- to simulate the workloads of typical applications. We find that: (1) iSCSI excels in networks whose condition is as good as LAN; (2) NFS and Swift are more suitable for complex networks such as wireless network and WAN; (3) Swift is a viable replacement for NFS in all scenarios; and (4) System configuration on the client side impacts storage performance significantly and deserve adequate attention. Furthermore, we make several recommendations to practitioners and point out numerous future research directions
    corecore