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Mobile platforms with access to high speed wireless network have become
ubiquitous. Advancements in network technology and consumer electronics
have brought traditional storage systems into offices and homes. Services
based on cloud technologies, including object based storage, have gained pop-
ularity among both private users and enterprises. However, there is still a
lack of systematic evaluation of both traditional storage systems and cloud
based object storage in a mobile and wireless context.
In this thesis, we evaluate the performance of three drastically different storage
systems, namely NFS, iSCSI, and OpenStack Swift, which can potentially be
used by mobile platforms over wireless network. We build a testbed and an
in house, ad hoc microbenchmark to study the impact of various network
complexities and different access behaviours of application. In addition, we
employ two widely used macrobenchmarks – PostMark and FileBench – to
simulate the workloads of typical applications.
We find that: (1) iSCSI excels in networks whose condition is as good as LAN;
(2) NFS and Swift are more suitable for complex networks such as wireless
network and WAN; (3) Swift is a viable replacement for NFS in all scenarios;
and (4) System configuration on the client side impacts storage performance
significantly and deserve adequate attention. Furthermore, we make several
recommendations to practitioners and point out numerous future research
directions.
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Chapter 1

Introduction

Network storage systems have been widely deployed in enterprises and organi-
sations since their introduction in 1980s [60]. Their performance and reliability
have been proven in practice. Network storage was developed as a solution to
enable sharing of storage devices attached directly to computers, which were
traditionally private and not shared. Traditional network storage is dominated
by two major families – network attached storage (NAS) and storage area net-
work (SAN).

SAN shares the storage device itself and provides block level access. The
actual organisation of data stored in the device and the synchronisation between
concurrent access are the duty of the clients. On the other hand, NAS provides
access to file systems deployed on the storage devices. The interface of access
is file oriented and provides a subset of the features of a local file system. The
server handles the physical organisation of data and coordinates concurrent
access. A set of storage providers and a set of clients then form a “storage
network”.

Traditional NAS and SAN are often deployed over wired and dedicated net-
works. Moreover, SAN systems are generally deployed in data centres. The
emergence of storage appliances and developments in consumer network elec-
tronics have led to network storage systems deployed at homes and in offices.

Mobile platforms, such as laptop, smart phone, and tablet, with increasing
computing power have become ubiquitous. Combined with the advancements in
wireless network technologies and growing accessibility to high speed wireless
network, such as IEEE 802.11n [33], HSPA [69], and LTE [70], the current
abundance of applications is a natural result [54]. Besides being deployed in
offices and at homes, network storage systems begin to be accessed by mobile
platforms through wireless networks.

1.1 Motivation
The computing power of mobile platforms, the speed of wireless networks,
and the complexity of applications have grown substantially. However, battery
capacity has seen only limited improvements. Mobile platforms are powered by
batteries with limited capacity. Energy efficiency has thus become the salient
concern in mobile computing.

Storage subsystem is key to virtually any kind of application or service
based on information technology. Energy efficiency of the storage subsystem is
therefore technically and economically paramount for mobile applications. Re-

1



2 CHAPTER 1. INTRODUCTION

search indicates that energy consumption of mobile platforms greatly depends
on computation intensity and wireless network throughput [54, 55]. With the
computing power of modern mobile platforms, storage activities over wireless
network are generally transmission bound. The performance of storage subsys-
tem thus depends on the throughput of transmission over wireless network. It
is therefore possible to investigate the energy efficiency of storage subsystem by
measuring transmission throughput. Moreover, performance itself is of enough
interest to users of storage systems.

Services based on cloud computing, including storage, have gained pop-
ularity in recent years [15]. Cloud computing features scalability, elasticity,
easy to use, and pay per use [42], which make cloud based object storage ser-
vices a viable choice for both individual and enterprise users. Emerging object
based [3, 43] cloud storage services have gained popularity with its attractive
features among both individual users and enterprises. Moreover, road warriors,
working from home, and high speed wireless network in office are all common in
contemporary business. The energy efficiency and performance of using cloud
based object storage on mobile platforms therefore worth investigation.

There are abundant studies on traditional storage systems. However, few
of them studied in the context of a mobile platform accessing storage services
through wireless links. Furthermore, there is no systematic comparison of con-
temporary IP-based storage systems that included both traditional systems
and cloud based object storage.

1.2 Problems and Scope
In this thesis we evaluate the performance of three drastically different network
storage technologies in different client side environments and under emulated
network conditions. We try to gain insights on the following questions:

• Are traditional NAS and SAN suitable in mobile and wireless scenarios?
• Is cloud based object storage a viable replacement for NAS and SAN?
• If the suitability and viability are not universal, what are the strengths

and the limitations?

Furthermore, performance evaluation also allows us to indirectly infer the en-
ergy efficiency of the network storage technologies.

The user story we assume and simulate is that of an individual user. There
are read and write access of files and metadata operations. Furthermore, we
assume exclusive access to the storage service from a single device. That is,
no concurrent access of stored objects or files from other sessions, no need of
consistency across devices, and no security concerns.

We choose Network File System (NFS) version 4 [56, 65] and Internet Small
Computer System Interface (iSCSI) [10, 45] as the representatives of NAS and
SAN, respectively. NFS is famous and widely used by organisations to share
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file systems located on their storage servers. It is built into most popular
open source operating systems and is readily available. SCSI is the standard
protocol of storage hardware such as disks. iSCSI allows SCSI commands to
be exchanged over TCP/IP network. It is widely used to allow access to hard
disks attached to remote hosts or specialised storage devices.

Open source implementations as well as commercial implementations for
both NFS and iSCSI are available. For example, Linux kernel is bundled with
an open source implementation of NFS and there are open source implemen-
tations of iSCSI available as optional packages for most Linux distributions.
Commercial implementations and storage appliances for NFS and iSCSI are
also available in the market.

Popular cloud storage services are often proprietary (see Appendix A),
meaning that it is usually impossible to set them up in a laboratory envi-
ronment. Among those who are open source, we choose OpenStack Swift [53]
(“Swift” hereafter) as the representative for cloud based object storage. It is
an integral component of the OpenStack cloud computing suite [52] which has
gained popularity among enterprise users. There are even companies dedicated
to providing services for Swift1. This entails that by investigating its perfor-
mance, it is possible to benefit a wide range of users and applications.

We investigate the performance of the three storage systems in three main
directions. Specifically, we investigate the impact of:

• different access approaches employed by applications
• client environment
• network condition

on network storage performance in this thesis.
It should be noted, nevertheless, that the coverage of this thesis is limited.

We focus on application throughput and not other aspects, such as CPU usage
and number of packets. More detailed discussion is provided in Chapter 7.

1.3 Methodology
The primary methodologies employed in this thesis are experimenting, mea-
surement, and data analysis. We use an in house, ad hoc microbenchmark [73]
and two popular macrobenchmarks – PostMark [36] and FileBench [67] – to
evaluate the performance.

The microbenchmark conducts file read and write operations through POSIX
file API2 and metadata operations via command line. For file operations we
evaluate the impact of file size, access unit size, different forms of access, and
the number of worker threads. Other aspects such as traffic overhead and
operating system specific behaviours are also examined.

1Such as SwiftStack (http://swiftstack.com/).
2Official website of POSIX working group: http://www.opengroup.org/austin/

http://swiftstack.com/
http://www.opengroup.org/austin/


4 CHAPTER 1. INTRODUCTION

Specifically, we simulate applications which cache files locally and synchro-
nise with remote storage service periodically. Microbenchmarking experiments
mainly focus on batch operations which is similar to the access pattern of such
applications. The metric in these experiments is the transmission throughput
for file operations and completion time for metadata operations.

Macrobenchmarking experiments, on the other hand, cover applications
which access the storage service interactively. Macrobenchmarks are configured
to simulate the behaviours of some typical applications which an individual user
might use. The metric in macrobenchmarking experiments is completion time
for PostMark and IOPS for FileBench.

The benchmarks are run on a custom built testbed which consists of three
computers and an Ethernet switch. One of the computers is the network em-
ulator which is capable of simulating network complexities often seen in the
Internet, such as latency, loss, and jitter. The other computers are the client
machine and the server machine.

System states, such as time and network interface counters, are collected
from numerous sources as applicable. Collection method includes invoking C
library routines and accessing Linux kernel counters, either through /proc
pseudo file system or through system utilities such as date. In addition,
tcpdump3 is used in metadata experiments to observe network traffic.

We rely on MySQL4, PHP5, and Octave6 for data analysis.

1.4 Thesis structure
In Chapter 2 we briefly introduce the storage technologies studied in this thesis
and provide an overview on related work.

Detailed description of the testbed, including hardware and software config-
urations and settings of various experimental variables related to our emulated
network, is provided in Chapter 3.

Chapter 4 and 5 are devoted to our custom microbenchmark. Design of
the microbenchmark, the set of different access approaches, and experiments
related to file operations are first discussed in Chapter 4. Metadata operations
are discussed in Chapter 5.

Macrobenchmarking experiments, which evaluates the performance of the
storage technologies under workloads similar to typical applications, are dis-
cussed in Chapter 6.

Based on the results we obtained, we compare the three storage technologies
investigated and discuss some future research directions in Chapter 7. Finally,
we finish this thesis with conclusions in Chapter 8.

3Official website: http://www.tcpdump.org/
4Official website: http://www.mysql.com/
5Official website: http://php.net/
6Official website: https://www.gnu.org/software/octave/

http://www.tcpdump.org/
http://www.mysql.com/
http://php.net/
https://www.gnu.org/software/octave/


Chapter 2

Background

In this chapter, we briefly introduce the three storage technologies investigated
in this thesis. One example is selected from each of the three families of storage
– NFS from NAS, iSCSI from SAN, and Swift from object based cloud storage.

NFS is a file access protocol and requires at least one message exchange
per access. On the other hand, iSCSI is a block access protocol. Its behaviour
depends on the file system deployed on the drive. For some file systems, such as
ext4, it is possible to aggregate multiple file access into fewer iSCSI command
exchanges. Swift is similar to NFS in the regard of file access but is based on
the concept of objects and supports only full object access.

We do not intend to provide a complete coverage of the storage technolo-
gies but to mention only parts which are relevant to this thesis. For detailed
information, please refer to their respective specifications [10, 72] and docu-
mentation [53].

Finally, we present a survey on related work at the end of this chapter.

2.1 Network File System

Network File System (NFS) [56] is a file access protocol based on Remote
Procedure Call (RPC) [5, 72], originally developed at SUN Microsystems [60].
Modern POSIX compatible operating systems are often bundled with an im-
plementation of NFS.

NFS provides access to parts of local file systems of the server machine to
client machines. These shared parts of remote file systems are called “exports”
and are mounted into local file system hierarchy of the client machine. A
mounted export can then be accessed through ordinary system calls for file
I/O. Random access within a file is supported and each file operation may
require several NFS operations to complete.

One thing to note is that the client does not do any organisation work which
an ordinary file system does. Rather, this is the responsibility of the local file
system on the server machine. An overview of NFS storage system architecture
is illustrated in Figure 2.1.

During the years, there are numerous revisions to the protocol – version 2, 3,
and 4. Previous studies mostly focused on version 2 and 3 [19, 58]. We note that
these studies were conducted ten years ago, when version 4 implementations
were still immature and were not widely deployed. In this thesis, we investigate
the latest version, version 4 (“NFSv4” hereafter).

Compared to previous versions there are numerous changes and new features

5
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kernel NFS client

kernel NFS server

local file system
Application

Storage

Network

Remote
Procedure Calls

Figure 2.1: NFS architecture.

in NFSv4. NFSv4 mandates the use of TCP as the transport protocol to provide
congestion control and to adapt to network unreliability. It is stateful and
clients are required to perform OPEN operation before and CLOSE operation
after accessing a file to provide enhanced share semantics.

A new COMPOUND operation is introduced which allows coalescing multi-
ple RPCs required for a file access operation into a single one. This reduced the
number of round trips required for a file operation and thus the access latency.
The concept of open delegation and leases alleviates the coordination burden
of both clients and the server by temporarily transferring control of a certain
file to a client. Numerous security improvements were also made, such as the
use of textual user identifiers instead of integers, and mandatory support of
GSS-API [18].

2.2 Internet Small Computer System
Interface

Small Computer System Interface (SCSI) is a family of protocols designed for
communication between host computer and peripheral devices. It is widely
used by storage devices, such as hard disks, for block level access and is practi-
cally the common language to communicate with such devices. Internet Small
Computer System Interface (iSCSI) [10, 45] is a protocol which allows the en-
capsulation of SCSI commands into TCP/IP packets for exchange over the
Internet.

iSCSI follows the client-server model. The server is called the “target” and
the client is called the “initiator”. The initiator sends SCSI commands to re-
quest service from a device attached to the target. This device can be physical
or logical, such as a part of a hard disk, and is identified by its logical unit
number (LUN). iSCSI utilises the concept of sessions to manage communica-
tions between client and initiator. Figure 2.2 illustrates the architecture of an
iSCSI based storage system.
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iSCSI target

Application

Storage

Network

local file system

iSCSI initiator Encapsulated
SCSI commands

Figure 2.2: iSCSI based storage architecture.

A wide range of scenarios have been considered during the design of iSCSI,
including remote access, lossy links, slow storage targets, such as tape. Accel-
eration hardware for iSCSI is also commercially available. Control and data
traffic share the same communication channel for the ease of hardware imple-
mentations. It is possible by design to use multiple network channels, such
as concurrent TCP connections, with a session. Nevertheless, such feature is
usually available only in commercial implementations bundled with enterprise
class storage appliances.

2.3 OpenStack Swift
OpenStack [52] is an open source cloud computing platform. It consists of
various components, including the object based storage service – Swift [53].
Swift is one of components of the initial release of OpenStack and is of highest
degree of maturity.

Swift aimed to provide an open source alternative to Amazon S3. It is im-
plemented in Python and runs in the user space. The object storage service is
accessed through an HTTP [22] based RESTful [21] API. Swift itself is com-
posed of several components: Proxy Server, Object Server, Container Server,
and Account Server.

Proxy Server is the front end of the whole Swift architecture. All commu-
nications between Swift and a client are handled by the Proxy Server. It is
also responsible for locating other components responsible for each request and
route the request accordingly.

Object Server stores objects as binary blobs on local devices. Local path
for an object is derived from the hash of the name of the object. Metadata
are stored as extended file attributes (xattr) which is not universally available
in file systems. Permissible candidate for underlying file system is therefore
limited.

Container Server handles the listing of objects. Each object belongs to a
specific container. The list is stored as an SQLite database and does not include
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the location of the objects. Account Server is similar to the Container Server,
except that it handles the listing of containers.

In addition to the aforementioned components, there are also the Replica-
tion processes, Updaters, and Auditors. Storage Policies can also be configured
to provide differentiated service.

2.3.1 CloudFuse
As mentioned earlier, all experiments in this thesis are conducted via POSIX
file API. We therefore need an adaptor to bridge Swift API and Linux virtual
file system (VFS) interface. CloudFuse [4] is a file system in user space (FUSE)
implementation of Swift API client.

Linux FUSE consists of two components: a kernel module and a user space
library. The kernel module interfaces with VFS like other file systems do. FUSE
implementations, such as CloudFuse, connects to the kernel module through
the assistance of the library. The two components communicate by passing
file system operations and responses as messages via a virtual device. FUSE
library supports multithreaded FUSE implementations. CloudFuse by default
enables this features and is capable of utilising multiple TCP connections.

Objects corresponding to a file are retrieved in their entirety when the file is
opened and then stored in a local temporary file. All subsequent operations are
conducted on this temporary file. Finally, when the file is closed, the content
of the local temporary file is uploaded to Swift to update the objects.

There are two exceptions. The first is when the file is truncated or opened
solely for writing, then the existing objects are not retrieved. The second is
when the file is opened only for reading, then the local temporary file is not
upload when the file is closed.

The storage architecture of Swift/CloudFuse combination is illustrated in
Figure 2.3.

CloudFuse

OpenStack Swift

local file system
Application

Storage

Network

HTTP requests

Figure 2.3: Swift/CloudFuse architecture. CloudFuse is capable of utilising
multiple TCP connections.



2.4. RELATED WORK 9

2.4 Related work

A comprehensive comparison of the performance of NFS and iSCSI is provided
by Radkov et al. [58] They focused on metadata operations via POSIX system
calls. In addition to metadata operations, they conducted single threaded file
I/O experiments using an 128MiB file. This is perhaps more similar to the
access pattern of a database management system than to an ordinary user.
Drago et al. conducted an in depth study of one commercial cloud storage
service [15] and compared several of them [16]. Some of our experiments were
inspired by their results and some of our findings agree with theirs. Gauger et
al. [23] derived a mathematical model for iSCSI throughput in different network
environments and they focused on low latency networks.

Numerous studies aimed to improve storage performance under limited con-
nectivity. Roselli et al. [59] found that small files are common in daily usage
environments and reads are more common than writes. Large files tend to be
accessed randomly than sequentially. They also found that most blocks have a
short lifetime, suggesting that using a large and non-volatile buffer and longer
write-back delay may greatly improve storage performance.

Muthitacharoen [47] proposed an approach to reduce the traffic of NFS by
employing a local cache and transmits only parts of a file which the other party
does not have already. Kroeger et al. [37] proposed an approach to intelligently
prefetch files from remote storage server to increase performance. Nightingale
et al. [49] suggest that by relaxing synchronous semantics from application’s
perspective to that of users, it is possible to achieve both the durability and
ordering guarantees of a synchronous file system and the performance of an
asynchronous one. One effect is that small write requests which are not read
immediately after being written can be bundled.

Hardware acceleration for network tasks has been studied and become com-
mercially available. Modern operating systems by default leverage the TCP
offload engines [14] on network interface. Moreover, there are a variety of ded-
icated iSCSI host bus adaptors which implement full iSCSI and TCP stack
available in the market. However, as Sarkar et al. [61] indicated, the capability
of acceleration hardware must be at least on the same level as the host to have
positive effect.

Various approaches exist for storage in distributed systems or over wide
area network. Hildebrand et al. [29, 30] proposed an extension to NFSv4 which
employs a parallel file system architecture to achieve high performance for large
file access. Small file and metadata access still go through legacy NFSv4 I/O
path. Google File System [25] is the storage system used by the network giant
Google. Wang et al. [74] proposed a distributed file system which supports
random inserts and random truncates with a file.

Coda [62], the successor of Andrew [31, 46], is a network file system which
supports offline operations under the assumption that there are few shared
files between users and relaxed consistency requirements. In addition to Coda,
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GPFS [63], Lustre [51], and Ceph [75] are distributed file systems bundled
in modern Linux kernel source tree. Henschel et al. [28] deployed and tested
Luster over an 100Gbps trans-continental wide area network. They found that
applications are able to run over such deployments. However, the performance
does not scale with the increase in bandwidth due to complications in the
network core.

Cloud storage and local storage can supplement each other. Livenson et
al. [38] implemented a prototype of a proxy which provides a unified interface for
accessing heterogeneous storage services, including local file systems and cloud
storages. Zhang et al. [79] proposed integrating local file system with cloud
storage service to improve resilience against data corruption and inconsistency.
FUSE implementations for other cloud storage exist, such as dropfuse1 for
Dropbox and S3QL2 for Amazon S3, Google Drive, and OpenStack Swift.

Cabrera et al. [7, 8] proposed an architecture which stripes files over multiple
storage nodes, which is also named Swift. We conjecture that OpenStack Swift
is probably inspired in part by their approach.

A survey on storage studies which involved benchmarking is provided by
Traeger et al. [73]. We categorised the experiments conducted in this thesis ac-
cording to their definitions. Tarasov et al. [68] tried to spur debates on how file
systems should be evaluated by showing that simply running the benchmark
which others ran not necessarily produces meaningful results. Chen et al. [12]
proposed an approach to adapt workloads of a benchmark according to the
capabilities and the capacity of the platform under test. Moreover, they pro-
posed an approach to use obtained measurements to predict the performance
of untested workloads. Shivam et al. [66] proposed an approach to automate
benchmarking in order to explore the test space with less effort.

1Available at https://github.com/arekzb/dropfuse
2Available at https://bitbucket.org/nikratio/s3ql

https://github.com/arekzb/dropfuse
https://bitbucket.org/nikratio/s3ql


Chapter 3

Environment

The storage systems investigated in this thesis are deployed in a custom testbed.
In this chapter, we describe the configuration of our testbed. Figure 3.1 pro-
vides an overview of it.

Client - Linux

Network emulator -
WANem

Server - LinuxGbE / 802.11n

/mnt/nfs
/mnt/iscsi (ext4)
/mnt/fuse (CloudFuse)

sdb sdc sdd

NFS
(ext4)

iSCSI Swift
(ext4)

Figure 3.1: Testbed overview. Wireless network is unused in this thesis.

3.1 Hardware
The testbed consists of four components: the client machine, the server ma-
chine, the network emulator, and the network fabrics.

The client machine is an Intel’s Shark Bay development board (B0 step)
with a quad core IvyBridge CPU clocked at 2.6GHz, 4GiB of memory, on-
board Intel 82579LM Gigabit Ethernet interface, a Samsung MZ-7PD128 Solid
State Drive as system disk and log storage. It is also equipped with an Intel
Centrino Advanced-N 6205 wireless interface but unused in the experiments.

The server machine is a Supermicro server with an Intel Xeon X5570 quad
core processor clocked at 2.93GHz, 6GiB of memory, on-board Intel 82576
Gigabit Ethernet interface, four Western Digital WD2502ABYS 250GB SATA
hard drives. One of the hard disks serves as the system disk and one for each
of the storage systems we investigated.

The network emulator is a Dell laptop with an Intel Core2 Duo P8400 dual
core processor clocked at 2.26GHz, 4GiB of memory, on-board Intel 82567LM
Gigabit Ethernet interface.

11



12 CHAPTER 3. ENVIRONMENT

The network switch is an ASUS RT-N66U home router with a 600MHz
Broadcom BCM5300 chip and 250MiB of memory. All Ethernet interfaces on
the switch and cables used are capable of operating 1Gbps bandwidth.

3.2 Software
Both client and server machine run Fedora1 17 with a patched Linux kernel ver-
sion 3.2.1 [44]. The default TCP congestion avoidance algorithm is CUBIC [26].
The WAN emulator software is WANem2 3.0 Beta 2 and is run using live image
from a USB flash memory stick. It is capable of emulating various network
complexities, including network latency (delay), packet loss, and jitter [24, 35],
which are the parameters used in our experiments. The network switch runs
Tomato3 1.28. Inherent latency of such configuration is less than 1ms.

To allow high bandwidth experiments, we increased the initial size of TCP
buffer to 4MiB and the maximum size to 16MiB on both the server and the
client machine. In addition, we disabled TCP connection metrics caching in
Linux kernel route cache4. The modifications to system configuration are shown
in Listing 3.2. On the client machine, we disabled all TCP offload engines [14]
on the Ethernet interface in order to accurately capture packets.

net. netfilter . nf_conntrack_max = 262144
net.core. wmem_max = 16777216
net.core. rmem_max = 16777216
net.ipv4. tcp_rmem = 1048576 4194304 16777216
net.ipv4. tcp_wmem = 1048576 4194304 16777216
net.ipv4. tcp_no_metrics_save = 1
net.core. netdev_max_backlog = 10000

Figure 3.2: /etc/sysctl.conf

The NFS implementation in Linux kernel was used for NFS experiments.
We increased the number of nfsd threads on the server machine to 32. The
NFS mount is a directory in an ext4 partition and was exported with sync and
no_subtree_check flags set.

We used the iSCSI implementation by Intel [44] on both the client (the
initiator) and the server (the target) with only basic iSCSI features utilised5.
The iSCSI target software is configured to emulate 1024 bytes of sector size
on top of 512 bytes hard disk sector size. Maximum data segment lengths are
64KB and burst lengths are 64MB. We formatted an ext4 partition from the
client on the iSCSI disk. The partition is mounted with default options.

1Official website: http://fedoraproject.org/
2Official website: http://wanem.sourceforge.net/
3Official website: http://www.polarcloud.com/tomato
4Set tcp_no_metrics_save kernel parameter to 0.
5Available at http://sourceforge.net/projects/intel-iscsi/

http://fedoraproject.org/
http://wanem.sourceforge.net/
http://www.polarcloud.com/tomato
http://sourceforge.net/projects/intel-iscsi/
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The default block I/O scheduler of Fedora 17 is Completely Fair Queuing
(CFQ). The other scheduler options are NOOP and deadline [2]. We note
that CFQ is highly configurable. It is even possible to mimic the operation of
deadline. In this thesis we left the parameters in default values.

For Swift we used the latest version on GitHub6 with Python 2.7.3. We
configured it as in the official “Swift All In One”7 configuration. For the sim-
plicity8, we configured only one replica and one instance of each component,
and used ext4 as the file system for underlying partition. We used CloudFuse [4]
on the client machine to allow access to Swift API via POSIX file API.

3.3 Storage targets
There are totally four possible storage targets in our testbed. From the per-
spective of an application, a storage target is equivalent to a directory backed
by a file system “mount”.

There is one storage target for NFS and one for Swift/CloudFuse. There are
two possible storage targets for iSCSI depending on the block I/O scheduler
used on the client machine. In this thesis, we examine CFQ scheduler and
deadline scheduler which are defaults for popular Linux distributions9.

A reference storage target is a directory in the local file system of one of the
disks on the server machine. This target serves a reference of a direct attached
storage (DAS). All experiments related to this storage target were conducted
on the server machine (see Appendix B).

The baseline throughput of the hard disks, measured by conducting sequen-
tial read and write using dd system tool with direct flag set10, is 110MiB/s
for read and 100MiB/s for write.

3.4 Network scenarios
Various parameters of the network emulator were varied to explore the impact
of network condition. The parameters investigated are: latency11, packet loss,
and jitter.

We chose 100Mbps (12.5MiBps) as the bandwidth. Such access links are
available to home users via digital subscriber lines (DSL) and IEEE 802.11n [33]
wireless network, or through an LTE [70] subscriptions nowadays.

6Available at http://github.com/openstack/swift
7As described in http://docs.openstack.org/developer/swift/development_

saio.html
8For example, to reduce the intensity of disk access, latency, and disk space consumption.
9For example, the default block I/O scheduler for Ubuntu (http://www.ubuntu.com/)

is deadline.
10This causes O_DIRECT to be passed to open() internally.
11WANem allows configuring RTT/2 as its delay parameter. Values mentioned in this

thesis are thus two times the values passed to WANem.

http://github.com/openstack/swift
http://docs.openstack.org/developer/swift/development_saio.html
http://docs.openstack.org/developer/swift/development_saio.html
http://www.ubuntu.com/
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Latency values were chosen based on round trip times (RTT) to Amazon
data centres, as depicted in Figure 3.4. For WAN scenarios, we chose 50ms,
160ms, and 250ms. In particular, 50ms is the RTT we measured from Finland
to the data centre of Amazon in Ireland. Thus, it can be used to imitate the
latency under regular Internet environment. Additionally, we chose 0ms and
20ms to emulate LAN and cross country network, respectively.

It has been noted that variations in latency are common in the Internet [24,
35]. This variation is called jitter. Based on our measurements, we chose
±10ms12 as the jitter value when applicable.

Packet loss rate was varied among 0%, 0.1%, 1%, and 2.5%.
Whenever we mention “realistic network” in the rest of this thesis, we mean

100Mbps bandwidth, 50ms latency, 0.1% packet loss, and ±10ms jitter, as
shown in Table 3.1.

Bandwidth Latency Packet loss rate jitter
100Mbps 50ms 0.1% ±10ms

Table 3.1: Realistic network condition – our emulated Internet.

12WANem relies on NetEm facility of Linux kernel (tc-netem(8)) to emulate network
latency, loss, and jitter. The default distribution is normal distribution.
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(a) Round trip time measurements.
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(b) Data centre locations and mean round trip time (in milliseconds).

Figure 3.4: Round Trip Time to Amazon Web Services data centres measured
from test sites in Uusimaa region of Finland.
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Chapter 4

Microbenchmarking

We designed a custom benchmark which simulates an application conducting
file I/O via POSIX file API and a user giving commands via operating system
shell to study the performance of the three storage systems. In this chapter,
we introduce the design of the benchmark and discuss experiments related to
file I/O. Discussion on experiments related to metadata operations is deferred
to Chapter 5.

This chapter is organised as follows. We first introduce the design of the
benchmark in Section 4.1, then discuss two important parameters to POSIX
file API – form of access (Section 4.2) and access unit size (Section 4.3). Subse-
quently, the results of our experiments are discussed, in the order of: single file
access (Section 4.4), file access by a single threaded application (Section 4.5),
and file access by a multithreaded application (Section 4.6). Furthermore, we
investigate the impact of Linux block I/O schedulers (Section 4.6.3), ampli-
fication caused by ext4 file system (Section 4.7), and the effect of increasing
network bandwidth to 1Gbps (Section 4.8). In addition, a short summary of
our findings is provided in Section 4.9.

The metric used in this thesis is the transmission throughput observed by
an application. Previous study showed that the energy consumption of the
wireless communication component constitutes a major portion of that of the
whole mobile platform [9]. Others have shown that the energy consumption
of communication is highly related to the transmission throughput [50, 55].
Although CPU may become the power hog under heavy load [54], the CPU
utilisation remained below 10% in most of our experiments and we therefore
focus only on the throughput.

We started the study with an established UNIX system tool – dd. It allows
specifying the open() flags investigated in this thesis, file size, access unit size,
and many others. For Swift, we used the official command line tool swift.
With some scripting, we are able to mimic various sequential and parallel access
patterns and to perform parameter sweep test. However, overheads such as
process startup and process tear down turned out to be significant. Moreover,
we would like to have a POSIX file interface for Swift API to allow the same
benchmark to be used. The latter was solved by using CloudFuse.

We noticed that modern benchmarks are often complicated and some are
even expensive. Those who are free are often insufficiently documented. Conse-
quently, it is hard to control their exact access pattern for microbenchmarking.
Furthermore, at some point we need server side assistance to speed up the
benchmark.

17
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4.1 Benchmark design

This led to the construction of a custom benchmark suite which is capable
of generating sequential, parallel, and worker pool access patterns. Unlike
our preliminary experiments, whilst we typed the commands one after another
manually, our benchmark features certain degree of automation. It comprises a
program written in C which simulates a pool of worker threads servicing a given
set of file read or write operations and several of shell scripts which set up the
environment and drive the tests. Due to the large amount of variables we would
like to consider the complexity of the benchmark grew quickly. Considerable
effort was spent on testing, verification, and debugging. The benchmark saw
hundreds of revisions during the course of this study.

States such as current time, network interface counters, and CPU usage are
collected from relevant Linux kernel counters through C library routines, /proc
pseudo file system, or through system utilities such as date.

We do not restart the server or storage services, or re-mount file systems, as
Radkov et al. [58] did because such a fresh server is highly unlikely in reality.
In case that we have a newly connected storage target, we create, read, and
then delete, 100 files which are 1MiB in size to warm it up.

Potential bias exists in the benchmark as well as in the environment. The
most prominent sources are caching in Linux kernel and TCP slow start [1, 26,
32, 34]. TCP slow start causes extremely low throughput if the time frame of
measurement is too narrow. This problem mainly concerns batch experiments
and we defer its discussion to Section 4.5.

Under the influence of the Linux kernel caching, we end up benchmarking
the caching facility [40]. Since we would like to infer the energy consumption of
wireless network hardware from the measured throughput, we therefore would
like to have buffered operations transmitted over the network. This problem is
solved by flushing and dropping local kernel cache (Figure 4.1) after running
each test round.

$ sudo sh -c "echo 3 > /proc/sys/vm/ drop_caches "

Figure 4.1: Command to drop Linux kernel cache

While we assumed a cold cache on client machine, a warm cache on server
machine is assumed. To ensure this, we “reheat” the cache on server machine
by reading the same set of files involved in a reading round twice and measure
the second run. This does not necessarily guarantee a cache hit on the server
machine as the working set may be larger than the cache. The purpose is
to simulate reading recently accessed files. During this reheat phase, the net-
work emulator is disabled and the client connects to the server through 1Gbps
switched link.
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4.2 Forms of access
When a file is opened via open() system call for access, a flag indicating the
desired form of access can be passed. The flags of interest are O_SYNC and
O_DIRECT, which specify synchronous I/O and direct I/O, respectively. Ac-
cording to Linux Programmer’s Manual1, setting O_DIRECT tells the kernel
to try to minimise cache effects of I/O operations on the file being opened. It
tries to bypass caching facilities, such as the page cache, along the I/O path as
much as possible. Setting O_SYNC causes write() to block until relevant data
have reached the physical storage. We define three different forms of access:
direct, sync, and default. Their corresponding flags are listed in Table 4.1.

Form direct sync default
Flags O_DIRECT O_SYNC none

Table 4.1: Forms of access and open() flags applied.

In our environment, bypassing I/O cache entails that data must be read
from or written to remote storage upon request. Furthermore, no read ahead
or bundling is possible due to the absence of a buffer. The physical storage
with regard to our environment is the storage service on the server machine.
Whether the data are written to the physical storage on the server machine
is another matter and is beyond the scope of this thesis. In this regard, syn-
chronous I/O and direct I/O are similar for write operations. On the other
hand, synchronous read enjoys read ahead which is employed by both NFS and
ext4 file system to increase read performance.

A comparison of the performance of different storage systems using different
forms of access by accessing a large file in units of different sizes is illustrated
in Figure 4.2a and 4.2b. From the comparison we see that default read and
sync read for NFS are similar – both benefit from read ahead – whereas default
write is buffered and is only limited by link capacity. iSCSI behaves similarly
except that default write only writes to local buffer on the client machine.
Measuring iSCSI default write performance thus degenerates to measuring the
performance of in memory cache. Hence, we focus on sync and direct access
forms for NFS and iSCSI in the rest of this thesis.

Although Linux FUSE supports O_DIRECT and O_SYNC flags, Cloud-
Fuse does not take them into account when it operates on the local temporary
file. Our preliminary measurements showed that forms of access are indiffer-
ent2 for Swift/CloudFuse combination. We thus present only results of default
access form for Swift/CloudFuse.

The case where O_DIRECT and O_SYNC are set simultaneously is not
looked into in this thesis due to increased complexity. However, preliminary

1See manual page open(2). Issue man 2 open at command line to show it.
2They are different, even for local disks, see Appendix B. However, our bottleneck turns

out to be the network and the Swift service.
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Storage system Form of access Write Read

NFS
direct write-through read-through
sync read-ahead

default write-back

iSCSI
direct write-through read-through
sync read-ahead

default buffered

Swift + CloudFuse
direct
sync write-back read-ahead

default

Table 4.2: Writing and reading policies of different forms of access.

results suggest that read performance under such flag combination is similar to
that of direct and write performance is similar to that of sync.

4.3 Access unit size

In this section we discuss the impact of different access unit sizes3 which is
an important parameter when invoking POSIX file I/O routines. The smaller
the access unit size, the more the I/O requests generated. The experiment is
conducted by accessing a file which is 16MiB in size in units of 4KiB through
16MiB.

Before we conduct the write tests, we first write the whole test file once.
Similarly, the test file is read in whole once before read tests. The purpose is
to ensure a warm cache on the server machine and a warm file system cache on
the client machine. Kernel cache on the client machine is dropped before each
round of experiment.

A comparison of performance under different access unit sizes is illustrated
in Figure 4.2. It is clear from the figure that Swift performance is unaffected
by access unit size. This is because that Swift does not support random access
within an object and CloudFuse always read the whole file into a temporary file
in advance, or upload the whole temporary file after all local file operations.

Synchronised read for both NFS and iSCSI benefit from read ahead, as
can be seen from Figure 4.2a. However, it is revealed under 50ms network
latency that iSCSI read commands are issued in a synchronised fashion – next
command is issued only after the response for the previous command is received
– which caused the constant low performance in Figure 4.2c. Direct I/O read

3Corresponds to bs=, or block size, parameter of dd utility. For read() and write() this
corresponds to count argument.
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Figure 4.2: Performance comparison of different access unit sizes under different
network conditions. The test file is 16MiB large. Note the different scales.
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performance grows as the access unit size increases. This is because that local
cache is bypassed in direct I/O and data are read from the server at requested
size.

Write performance exhibits similar trend for both sync and direct access
forms, with iSCSI slightly outperforming NFS. Under both access forms, data
must be sent to the server before the operation completes. iSCSI direct write
is slightly faster than sync write. We conjecture that the difference is due to
the absence of local buffering.

From Figure 4.2e and 4.2f we see that packet loss has a significant impact
on the performance due to the time required by TCP to recover from loss.
This is especially prominent when the lost packet is the initiating command
of some operation. Adding 10ms of jitter to the network, which results in our
emulated Internet condition, degrades the performance further, as illustrated
in Figure 4.2g and 4.2h.

We note that small access unit may result in extremely poor performance
under direct access form or under network conditions like the Internet. It is
therefore suggested that the access unit be as large as possible. Hence, all
experiments in the rest of this chapter are conducted with access unit size
equal to the file size.

4.4 Single file access
In the preceding section we discussed the impact of access unit size on the
performance of reading and writing a large file. It is noted, however, that small
files are at least as common as large files in real life [15, 25, 59] and their access
could impact energy efficiency significantly [32]. In this section we discuss the
performance and other aspects of accessing one single file of different sizes. The
file size we tested range from 4KiB to 16MiB.

In Figure 4.3c we observe the same behaviour of iSCSI synchronised reads
as mentioned in Section 4.3 for files larger than 1MiB which require multiple
SCSI command cycles to read. Its performance is significantly impacted by
network latency since it waits for the response of the previous requests before
sending the next request.

From Figure 4.3e and 4.3f we see that loss impacted the performance of
reading and writing files larger than 4MiB significantly due to the increased
number of message exchange rounds.

The general trend observed in Figure 4.3 is that the larger the file, the
higher the throughput. Small files suffered because their transmission finished
while still in TCP slow start phase [15].
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Figure 4.3: Single file access under different network conditions. Note the
different scales.
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4.5 Batch operation
In this section we discuss batch operations where a set of files of the same
size is accessed sequentially. The file sizes we chose are: 4KiB, 1MiB, and
16MiB. This selection is based on observations made by previous studies which
suggest that files of these sizes are most common in practice [15, 25, 59] or their
transmission affects energy efficiency significantly [32].

As we mentioned earlier, if the file set is too small the resulting performance
would suffer from TCP slow start. We are interested in steady state perfor-
mance, or the highest sustainable throughput, of the whole system. To address
this problem we need to make the benchmark run long enough, which means
larger file set.

Preliminary experiments showed that reasonable throughput are obtained
after running the benchmark for approximately 20 seconds. Since the highest
sustainable throughput cannot be higher than the baseline throughput4 of the
underlying hard disk, we have

110MiB/s ∗ 20 s = 2200MiB ≈ 2048MiB = 2GiB

and thus select 2GiB as the total size of file sets.
This increase in file set size, however, raised two new problems. The first is

that under certain network conditions some test rounds took excessively long to
run. Consequently, we introduced a new parameter which limits the duration
for which a test round may run. This parameter is set to 90 seconds for all
batch experiments, including the multithreaded experiments discussed in the
following section.

The second problem is that if a large number of small files are placed in
a directory its relevant metadata grows enormously in size. Performance of
accessing 4KiB files thus suffer from amplification (see Section 4.7). Conse-
quently, we introduced another arrangement in which we distribute test files
into subdirectories each containing no more than 4096 files. In practice, only
the 4KiB file set which consists of 524288 files spanned multiple subdirectories.

We found from preliminary experiments that throughput of reading and
that of writing are highly asymmetric, as can be seen from Figure 4.4. To
address this asymmetry, we prepared file sets of different sizes on each storage
system for reading experiments, instead of reading the files created in writing
experiments.

It is also noted that there are occasionally failed operations, especially for
Swift. The exact reason is beyond the scope of this thesis. We exclude failed op-
erations from throughput calculation since they seldom happen and the portion
of failed operations is generally less than 1%. That is, we compute throughput
by dividing the total size of successfully transferred files by elapsed time.

Original CloudFuse backs off on most Swift errors (HTTP 4XX responses).
However, we found that HTTP404 responses are final and backing off would

4Refer to Appendix B for more details.
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only stall the benchmark. We therefore modified CloudFuse to disable backing
off and retrying on receiving HTTP404 responses and report failure immedi-
ately5.

For NFS and iSCSI, creating a new file involve different steps than overwrit-
ing an existing file. We delete all files created by previous writing test before
running another writing test. However, deleting large amount of files from
Swift is time consuming (see Chapter 5) and we find no noticeable difference
between creating a new file and overwriting an existing file. Thus, we do not
delete existing files for Swift and simply overwrite them instead.

The performance of of batch, single threaded access of file sets of different
file sizes is illustrated in Figure 4.4.

From Figure 4.4a and 4.4b we see that iSCSI excels under ideal network
condition and NFS performs slightly better than Swift. One interesting obser-
vation is that iSCSI direct write greatly outperforms sync write in Figure 4.4b.
We conjecture that this is due to the fact that direct I/O bypasses cache facility
and that there exist inherent latency in our testbed6.

We see from Figure 4.4c and 4.4d that iSCSI and NFS are severely im-
pacted by network latency. The peculiar levelling of synchronised iSCSI read
performance is due to the way it works, as discussed previously in Section 4.3.
Adding packet loss and jitter to the network further degrades the performance
of all three systems and increases the variation.

For file set of 16MiB files all three systems perform on the same level.
As a short summary, for single threaded application, iSCSI delivers the best

performance for small file access and all three systems perform on the same level
for large files.

5This modified version is available at https://github.com/zwuh/cloudfuse/tree/
timeout

6For example, caused by the Ethernet switch and network emulator.

https://github.com/zwuh/cloudfuse/tree/timeout
https://github.com/zwuh/cloudfuse/tree/timeout
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Figure 4.4: Performance of single threaded batch access. Note the different
scales.
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4.6 Multithreaded application
In this section we investigate multithreaded batch operations. File sets as de-
scribed in Section 4.5 are accessed sequentially but, different from the previous
section, file sets are accessed by multiple worker threads. This is to simulate
applications which employ multiple threads or child processes to service queued
I/O requests from the user. The number of worker threads range from 1 to 64,
in steps of powers of 2. We divide the discussion into subsections for small and
large files.

Generally, Swift is the best for read and iSCSI is the best for write due to
the aggregation of ext4 file system. For large files, Swift delivers outstanding
performance due to its capability of utilising concurrent TCP connections.

4.6.1 Small files
Performance of three storage systems accessing 4KiB files under different net-
work conditions is illustrated in Figure 4.5.

A trend similar to that in Figure 4.4 is observed. Under ideal network, iSCSI
reads much faster than NFS which is twice as fast as Swift. Performance of NFS
and Swift are limited by their protocol overhead. Latency impacts small file
performance significantly. With 50ms latency introduced, NFS performance
degrades severely and iSCSI is on the same level as Swift. Loss impacts their
performance further. Swift outperforms iSCSI after further adding loss. Adding
jitter on top of latency and loss affects only slightly. For write operations,
iSCSI excels under all network conditions and Swift delivers slightly better
performance than NFS.

From the figure we see that Swift and iSCSI throughput increases as the
number of threads increases. Swift performance grows up to 32 threads and
decreases slightly at 64 threads. The reason is likely due to coordination over-
head of multi tasking. iSCSI performance increases because access requests
from different threads are merged to form larger SCSI access. We also see that
iSCSI performance is strongly affected by network latency as it exhibits the
largest performance drop.
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Figure 4.5: Performance of multithreaded batch access of 4KiB files. Note the
different scales.
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4.6.2 Large files
Performance of three storage systems accessing files of size 1MiB and of size
16MiB are illustrated in Figure 4.6 and 4.7, respectively.

From the figures we see that under ideal network condition Swift reads
faster than NFS which is slightly faster than iSCSI when the file is very large
(16MiB, for example). iSCSI read performance is likely limited by the largest
access unit size per SCSI command which is 1MiB in our environment, whereas
Swift transmits the file in its entirety. On the other hand, Swift and NFS are
only comparable to iSCSI on write operation when the number of threads or the
size of the files is large. One possible reason is the higher processing overhead
on the server machine.

Adding 50ms latency impacts the performance of iSCSI and NFS signifi-
cantly. For reading of 1MiB files, Swift saturates the link, iSCSI is slightly
slower and NFS throughput nearly halved. Write operation showed similar
trend, though the performance is lower when the number of threads is small.
For reading of 16MiB files, Swift still saturates the link, NFS and iSCSI direct
are on par and slightly slower, and iSCSI sync delivers only one third of the
others (Figure 4.7c). This peculiarity is due to Linux block I/O schedulers and
is discussed in Section 4.6.3. For writing, iSCSI performance remained steady
and NFS performance converges to that of iSCSI. Swift performance rises to
link capacity as the number of threads grows.

While operated under loss and jitter, Swift delivers outstanding perfor-
mance, saturating the link capacity, whereas others achieve less than 4MiB/s.
Compared to small files, latency has a smaller impact. The TCP window is
able to enlarge and there are more packets in transit. On the contrary, loss
has a higher significance. By monitoring the network traffic and examining the
implementations, we found that iSCSI and NFS use only one TCP connection,
whereas CloudFuse, our VFS adaptor to Swift, is capable of using multiple
TCP connections. If one of the TCP connections backed off after loss, oth-
ers can still flow through the link as normal. Jitter affects performance only
slightly.
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Figure 4.6: Performance of multithreaded batch access of 1MiB files. Note the
different scales.
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Figure 4.7: Performance of multithreaded batch access of 16MiB files. Note
the different scales.
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4.6.3 Linux block I/O scheduling
As mentioned in the previous section, an abnormally low throughput for large
file reads is observed for iSCSI sync under network latency (Figure 4.7c). We
found that Linux block I/O scheduling [2, 39, 57] has an essential influence.
In this subsection, we briefly introduce two commonly employed block I/O
schedulers of Linux kernel – deadline and CFQ – and briefly compare their
effect on iSCSI performance under unideal network conditions.

The deadline scheduler is the default for recent Ubuntu distribution. It
sorts and serves block I/O requests in the order of logical block address (LBA).
Two other first-in first-out (FIFO) queues are maintained, one for read requests
and one for write requests, based on their arrival time. Normally requests are
served, or submitted to the block device, in the order of LBA. However, if a
request at one of the FIFO queues has waited longer than a certain amount of
time (the “deadline”), it switches to serve some requests from that queue before
switching back. Thus, the deadline scheduler tries to avoid missing deadlines
too much.

The Completely Fair Queuing (CFQ) is the default for Fedora distribution.
It aims to fairly divide I/O bandwidth among processes. In Linux, writes to a
block device are carried out by the pdflush kernel thread of the corresponding
device. Thus, CFQ in practice divides only read bandwidth among processes.

The difference, in terms of throughput, between CFQ and deadline is not
so obvious in Figure 4.8a because the file size is only 4KiB, which requires one
round of command exchange to read anyway. However, the difference become
significant in other figures.

Threads, such as the ones created by our benchmark using pthread library,
are light weight processes (LWPs) and each receives its own share of read
bandwidth from CFQ. However, under the effect of network latency, a large
portion of each time slice was wasted on waiting for the response from iSCSI
target, leading to the aforementioned low throughput. We see in Figure 4.8c
that deadline scheduler does not have such problem.

We also note that deadline scheduler is able to submit multiple I/O requests,
possibly from different processes, in the same batch to the iSCSI target. dead-
line scheduler thus achieves higher throughput than CFQ in writing, as shown
in Figure 4.8b and 4.8d.

We conclude from the aforementioned observations that block I/O sched-
uler plays an important role in iSCSI based storage systems, particularly for
synchronised file operations.
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Figure 4.8: Performance comparison of different block I/O schedulers. 50ms
network latency. Note the different scales.

4.7 Amplification

Another interesting phenomenon we observed is the huge volume of trans-
mission incurred by iSCSI when the file is small, sometimes saturating the
100Mbps link while delivering low throughput. This is the read and write am-
plification caused by ext4 metadata and journaling [11]. It is rarely reported
in literature in the past as file systems, such as ext4, are generally used on
direct attached storage (DAS) or SAN over high bandwidth, low latency con-
nections. Write amplification has become an issue only after the emergence of
flash memory based solid state storage devices whose lifespan is limited by a
comparably small number of erase cycles [41].

The amplification ratio, computed by dividing total transmission in both
directions by file size for single file access and by dividing the sum of line rates in
both directions by throughput for batch operations, of different storage systems
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is illustrated in Figure 4.9.
iSCSI incurs high overhead for single file operations, as is evident in Fig-

ure 4.9a and 4.9b. Examination of captured packets showed that NFS overhead
consists of protocol messages and is approximately several KiBs in size. Swift
requires only a few HTTP requests and thus incur the lowest overhead.

For iSCSI reads, we find that in addition to the file itself, there are always
additional 40 + 92 KiBs read. After reading the file, 8 + 4 + 4 = 16 KiBs were
written back. These are likely the ext4 metadata. For iSCSI writes, we find
that there are additionally 4 ∗ 37 = 148 KiBs read and 28 + 7 ∗ 4 = 56 KiBs
written. These are metadata and journal entries.

We thus have the following estimations for iSCSI amplification ratio:

Aread
iSCSI(s) = 148 + s

s
for read

and
Awrite

iSCSI(s) = 204 + s

s
for write,

where s is the size of the file in KiBs. Note that these are the values observed in
our testbed. It is anticipated that different system configurations, file system,
and file system options affect the values.

From Figure 4.9c through 4.9f we see that iSCSI overhead become much
lower under batch operations. This is because that metadata read from the
disk are shared by many files. We also note from Figure 4.9d and 4.9f that
iSCSI direct write overhead is very low. We found from the traffic capture that
iSCSI direct writes metadata and journal in large batches, around 2MiB per
10000 files. On the contrary, iSCSI sync writes metadata and journal for each
file written7, around 23KiBs per file.

To sum up, we find that Swift incurs the lowest overhead and NFS in-
curs moderate overhead. On the contrary, iSCSI suffers from the amplification
caused by ext4 file system for small files and for write operation.

7See Section 4.2 for more details.
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Figure 4.9: Overhead of file access. Ideal network. Amplification ratio is
computed by dividing total transmission in both directions by file size for single
file access and by dividing the sum of line rates in both directions by throughput
for others. Note that two iSCSI lines coincide in all read plots and the different
scales.
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4.8 Increased bandwidth
In this section we briefly examine the effect of increasing bandwidth to 1Gbps.
Such links will become available in the near future through Fibre to the Home
(FTTH) or LTE-Advanced [71] subscriptions, or through IEEE 802.11ac [33]
networks at home or in office. Furthermore, the larger bandwidth delay prod-
uct (BDP) resulted may amplify the effects of network complexities on the
performance [28, 77].

Comparing Figure 4.10b to Figure 4.10a, we see that the curves become
steeper when the bandwidth increased to 1Gbps. The only exception is Swift
which remained relatively constant at a medium level. This showed that iSCSI
is more capable of “filling the pipe”, or allows more outstanding requests than
NFS. As mentioned in Section 4.6.2, CloudFuse is capable of using multiple
TCP connections each having its own congestion window. Swift/CloudFuse
thus suffered the least from increased BDP.

Larger BDP also amplified the difference between different block I/O sched-
ulers concerning iSCSI based storage (see Section 4.6.3). Figure 4.10d and 4.10c
suggests that, since deadline scheduler allows more outstanding requests, it is
more resistant to network latency and increased BDP. Similar phenomenon
is also observed in Figure 4.10e (compared to Figure 4.8c) and Figure 4.10f
(compared to Figure 4.8d).

Overall, we find that iSCSI with deadline block I/O scheduler and the con-
current TCP connections of Swift/CloudFuse are highly resistant to the in-
creased BDP.
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Figure 4.10: Effect of increased bandwidth. Note the different scales.
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4.9 Summary
In this chapter, we introduced the design of our microbenchmark in Section 4.1
and discussed two important parameters to POSIX file API – form of access
(Section 4.2) and access unit size (Section 4.3). Single file access experiments
are discussed in Section 4.4. We found that the larger the file and the access
unit, the higher the throughput. Moreover, network latency has a great effect
on throughput and network loss impacts the access of large files severely.

Discussion on batch file access are divided into two parts – single threaded
application (Section 4.5) and multithreaded application (Section 4.6). Gen-
erally, iSCSI excels under ideal network condition. All of NFS, iSCSI, and
Swift, are severely impacted by network latency. Network loss and jitter fur-
ther degrades performance. In particular, performance of iSCSI in synchronised
operation stopped increasing for files larger than 4MiB.

For single threaded application, iSCSI delivers the best performance for
small file access and all three systems perform on the same level for large files.
For multithreaded application and small files, Swift is the best for read and
iSCSI is the best for write due to the aggregation of ext4 file system. For large
files, Swift delivers outstanding performance due to its capability of utilising
concurrent TCP connections.

The impact of Linux block I/O schedulers is discussed in Section 4.6.3. We
found that block I/O scheduler plays an important role in iSCSI based storage
systems, particularly for synchronised file operations.

Transmission overhead, or amplification, is investigated in Section 4.7). It is
found that Swift incurs the lowest overhead and NFS incurs moderate overhead.
On the contrary, iSCSI suffers from the amplification caused by ext4 file system
for small files and for write operation.

In Section 4.8 we investigated the impact of increasing network bandwidth
to 1Gbps. We found that iSCSI with deadline block I/O scheduler and the
concurrent TCP connections of Swift/CloudFuse are highly resistant to the
increased BDP.



Chapter 5

Metadata Operations

In this chapter, we compare the performance of three storage systems on meta-
data operations. The benchmark simulates a user giving commands via oper-
ating system shell. It creates n directories with mkdir in the working directory,
then creates n empty files with touch, then lists the contents of current direc-
tory with ls, and then deletes the files with unlink and the directories with
rmdir. The working directory is initially empty. Command sync is issued and
after that local kernel cache is cleaned (see Figure 4.1) between different op-
eration runs, such as after n rmdir’s and before n unlink’s. Completion time
and traffic volume are measured from the beginning of the first operation of
the same kind until the completion of the corresponding sync.

We experimented with 100Mbps bandwidth and 1Gbps bandwidth and
found no noticeable difference. This is because that metadata operations are
not data intensive. Therefore, we report only the results from experiments with
100Mbps link. We found that the performance of mkdir,touch,unlink, and
rmdir all show the same trend. On the other hand, ls performance is similar
to reading files with a small access unit size (Section 4.3).

5.1 Completion time
In this section, we compare the performance based on the time required to com-
plete a given number of metadata operations. The completion time of mkdir
operations and the effect of network latency and network loss are illustrated in
Figure 5.1.

We see from Figure 5.1a that iSCSI and NFS are comparable under ideal
network condition, whereas Swift is an order of magnitude slower. The rea-
son turned out to be internal coordination of different Swift components (see
Section 2.3). Each request requires approximately 30ms to complete. When
latency and other complexities are added to the network, as illustrated in Fig-
ure 5.1b, round trip time (RTT) began to dominate the completion time.

Another interesting finding from the same figure is that the completion
time of NFS soared after the introduction of network complexities. We found,
by examining the traffic capture, that NFS requires two round trips for each
metadata operation – a CREATE operation followed by an ACCESS operation.
It is noted that the ACCESS RPC is used extensively in NFSv4 [58].

Figure 5.1c illustrates the effect of network latency on completion time.
Completion time of NFS and Swift are proportional to RTT, whereas iSCSI
is only slightly affected due to the aggregation of ext4 file system [58]. In our
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Figure 5.1: Completion time of mkdir operations. 1000 operations were carried
out in (c) and (d). Loss is 0% for latency plots and latency is 0ms for loss plots.
Note the different scales.

emulated Internet, the mean RTT is 50ms, so each operation on Swift requires
approximately

TSwift = Tinternal + RTT = 30 + 50 = 80ms

to complete and each operation on NFS requires approximately

TNFS = 2 ∗ RTT = 100ms

to complete.
The impact of network loss on completion time is illustrated in Figure 5.1d.

Packet capture revealed that approximately 3% of the packets of NFS and
Swift are retransmissions under 2.5% packet loss. This results in approximately
120 retransmissions each causing 0.2 s extra latency and sums up to 24 seconds
in the completion time. On the other hand, approximately 7% of the packets
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of iSCSI are related to TCP retransmission. However, iSCSI completion time
only increased slightly because that, due to ext4 aggregation, the transmission
is longer and thus benefits from TCP fast retransmit.

5.2 Network traffic
In this section, we examine the network traffic incurred by a given set of meta-
data operations. The number of packets, mean packet size, and the effect of
network latency and network loss are illustrated in Figure 5.2.

From Figure 5.2a and 5.2b we see that, since individual operations on NFS
and Swift are independent, the number of packets increases linearly as the
number of operations increases while the packet size remained constant. On
the other hand, due to the caching and aggregation of ext4 file system on
iSCSI disk [58], traffic overhead is substantial when the number of operations
is small. This is similar to the overhead incurred by batch operations of small
files (Section 4.7). Mean packet size of iSCSI increased slightly in Figure 5.2b
as the size of batch transmission increased.

From Figure 5.2c and 5.2d we see that network latency affects only mini-
mally. We note that the increased number of packets in Figure 5.2c is due to
other background activities on the testbed during the prolonged observation
period.

The effect of network loss on traffic is illustrated in Figure 5.2e and 5.2f.
From Figure 5.2e we see that, since the traffic volume of iSCSI is several times
higher than others, the resulting retransmission and thus the increase in number
of packets is also higher under the same loss rate. Meanwhile, iSCSI benefits
from TCP fast retransmit, packets involved are mostly duplicate ACKs which
are small, thus lowered the mean packet size, as illustrated in Figure 5.2f.

On the other hand, NFS and Swift operations fit into one single TCP packet.
Their retransmissions involve mostly self contained RPCs or HTTP requests.
Therefore, although the number of packets increases due to retransmission, the
mean packet size remains the same.
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(f) Effect of loss; mean packet size.

Figure 5.2: Network traffic of metadata operations. 1000 operations in total.
Loss is 0% for latency plots and latency is 0ms for loss plots. Note the different
scales.
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Macrobenchmarking

In microbenchmarking experiments discussed in previous chapters, we simu-
lated an application accessing the storage service in a batch pattern. Our
macrobenchmarking experiments, in contrast, simulate the behaviours of some
typical applications which access the storage service interactively.

We used PostMark [36] and FileBench [67] for macrobenchmarking exper-
iments to evaluate the performance of the storage systems under workloads
similar to real applications. Both PostMark and FileBench are configurable
to simulate a wide range of application workloads and are frequently used in
research works. They are configured to simulate the behaviours of some typical
applications which an individual user might use.

The metric in macrobenchmarking experiments is completion time for Post-
Mark and IOPS for FileBench. TCP offload engines remain disabled in this
chapter.

6.1 PostMark
PostMark is a single threaded workload generator, originally developed by Jef-
frey Katcher of NetApp, Inc. in 19971. It measures the performance of file
system using a configurable workload which consists of many short lived, small
files.

PostMark first prepares a pool of files, then performs a mixture of file create,
file read, file append, file write, and file delete operations on the pool. This
access pattern is similar to that of a typical mail server or a heavy user of e-mail.
After finishing the assigned amount of transactions, it deletes the remaining
pool.

Our workload configuration is as follows: 500 files, ranging from 5 KiB to
512 KiB in size; a total of 25000 transactions; and using unbuffered I/O. All
other parameters are left as default. The results from tests under different
network conditions are summarised in Table 6.1.

1We used version 1.53 from Launchpad in this thesis. It is available at https:
//launchpad.net/ubuntu/+source/postmark
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Network NFS iSCSI CFQ iSCSI deadline Swift
IOPS Time IOPS Time IOPS Time IOPS Time

100Mbps ideal 15 1642 1176 23 1242 20 6 3781
added 50ms latency 2 11681 1250 22 1190 22 2 15506
added 0.1% loss 1 14248 1230 22 1230 21 1 19005
Realistic network 1 15643 1210 22 1210 21 2 11841

1 Gbps ideal 24 1062 1293 20 1293 19 8 2756
added 50ms latency 2 10856 1026 26 1138 22 1 16951
added 0.1% loss 2 12117 749 52 1163 22 1 24624
Realistic network 1 16352 630 188 1220 22 0 26866

Table 6.1: PostMark results. Completion time is in seconds.

It is clear from the results that iSCSI benefits greatly from aggregation of
ext4 file system. On the contrary, NFS and Swift suffer severely from network
latency. By examining the log files and network traffic, we find that NFS and
Swift require several message exchanges to complete each operation. It is thus
highly sensitive to network latency [76].

The difference in resistance against increased BDP between different block
I/O schedulers is again highlighted. When network bandwidth is increased to
1Gbps, iSCSI performance halved in the case of lossy and realistic network
when CFQ scheduler is used, whereas the performance remained almost unaf-
fected with deadline scheduler.

What caused the variation in Swift completion time under 100Mbps band-
width is unclear, but we believe that it is due to Swift internal cooperation,
TCP internals, and the interaction between CloudFuse and Linux FUSE.

From these results we conclude that special attention must be paid when
storing data such as mailbox or web browser cache over network storage.
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6.2 FileBench
FileBench is a flexible workload generator which can theoretically be pro-
grammed to simulate workloads of any application. FileBench was originally
developed by SUN Microsystems in 2004 and the version used in this section is
1.4.9.1. In this section, we investigate the performance of three storage systems
under two different workloads2.

In the work flow of FileBench, it first prepares a set of files with given
characteristic, then performs the test. Performance measurements are reported
after a specified length of time.

For the sake of timeliness, we disable network emulator during the prepara-
tion phase and re-enable it before the testing phase3. All measurements were
made after running the test for 120 seconds.

6.2.1 varmail workload
This workload simulates the access pattern of a simple mail server which stores
each mail in a separate file. It consists of 1000 files with average size 16KiB,
80% of which are prepared beforehand into a flat directory. File operations are
a mix of create-append-sync, read-append-sync, read, and delete operations
from 16 worker threads. Average append size is 16KiB and access unit size is
1MiB.

From the results summarised in Table 6.2 we see that the general trend is
similar to our other experiments. Due to the numerous, small, synchronised
operations, the performance is impacted more by network latency than by
network loss, as illustrated in Figure 6.1. Increasing bandwidth to 1Gbps
increases BDP and amplifies the effects.

However, compared to PostMark results, the difference between NFS and
iSCSI narrowed significantly and Swift throughput remained relatively con-
stant. This is likely due to the increased data activity.

2personality in FileBench terminology.
3A tiny modification to FileBench was made. Invocation of relevant commands are in-

serted into fileset_createsets() in fileset.c.
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Network NFS iSCSI CFQ iSCSI deadline Swift
100Mbps ideal 463 3783 3817 161
added 50ms latency 41 626 629 102
added 0.1% loss 40 318 362 104
Realistic network 37 291 348 99
1Gbps ideal 461 14813 15175 158
added 50ms latency 41 633 647 104
added 0.1% loss 40 405 457 104
Realistic network 38 196 205 102

Table 6.2: FileBench varmail results. Run time: 120 s. Unit: IOPS.
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Figure 6.1: Effects of network latency and loss. FileBench varmail workload.
Run time: 120 s. Unit: IOPS. Loss is 0% for latency plots and latency is 0ms
for loss plots. Note the different scales.
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6.2.2 fileserver workload
This workload simulates the I/O activity of a simple file server. It consists of
10000 files with average size 128KiB, 80% of which are prepared before other
operations into a directory tree of average width 20. File operations are a mix
of file create, read, write, append, and delete, from 50 worker threads. Average
append size is 16KiB and access unit size is 1MiB.

From the results summarised in Table 6.3 and illustrated in Figure 6.2 we
see that its performance is less sensitive to network latency. Compared to
varmail workload, fileserver workload is composed of larger asynchronous
file access. The increased data intensity is also confirmed by the difference
in performance between iSCSI with CFQ scheduler and iSCSI with deadline
scheduler.

Multiple round trips required for NFS operations still limited its perfor-
mance, despite the increased data intensity. On the other hand, Swift through-
put is dominated by whole object transmissions and remains relatively constant.
We conjecture that the increased IOPS when loss is introduced is likely due to
TCP internals.

Network NFS iSCSI CFQ iSCSI deadline Swift
100Mbps ideal 322 2121 2166 98
added 50ms latency 35 1416 1776 98
added 0.1% loss 31 377 419 104
Realistic network 29 384 367 98
1Gbps ideal 342 12678 12104 111
added 50ms latency 35 3341 5120 87
added 0.1% loss 32 621 558 92
Realistic network 25 293 314 89

Table 6.3: FileBench fileserver results. Run time: 120 s. Unit: IOPS.
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Figure 6.2: Effect of network latency and loss. FileBench fileserver work-
load. Loss is 0% for latency plots and latency is 0ms for loss plots. Run time:
120 s. Unit: IOPS. Note the different scales.
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Discussion

Generally speaking, under an ideal network condition to which LANs are often
similar, we find that iSCSI outperforms NFS and Swift. This result is foresee-
able since iSCSI encapsulates SCSI commands whose main usage is to exchange
data between host computer and peripheral devices over near ideal interconnec-
tions. Furthermore, iSCSI based storage systems work at block level and thus
benefit from aggregation and caching by the file system, especially for small
files and metadata. Note, however, that there is a potential tradeoff between
consistency and performance pertaining to it – iSCSI may acknowledge comple-
tion immediately to achieve performance at the risk of failure before relevant
blocks are written back to the remote storage.

On the contrary, NFS and Swift work at file level. Each whole file operation
entails at least one request-response round trip, regardless of the size of the file
accessed. Thus, they deliver similar and worse than iSCSI performance. They
are therefore unsuitable to replace iSCSI in performance critical environments.
However, taking into account the features of cloud storage, such as resilience
and elasticity, a properly deployed installation of Swift is a viable replacement
for NFS.

Network complexities, such as latency, packet loss, and jitter, are present in
realistic network environments, such as the Internet. We see from Section 4.6.2
that Swift excels under unideal network conditions for large file transmissions.
Swift is designed to allow parallel access to objects stored in the cloud storage
over the Internet. Network complexities were taken into consideration from the
very beginning and the use of multiple TCP connections are supported. The use
of concurrent TCP connections substantially improved the throughput when
faced with network complexities.

Our Swift implementation was continuously updated during the course of
this thesis. As mentioned by Cooper et al. [13], different versions may exhibit
different behaviours and deliver different performance. This is mitigated by
repeating the experiments over the time. The variance was found to be small
and we thus believe the bias contributed by continuous update to be minimal.

7.1 Recommendations
Our microbenchmarking results suggest that bundling small requests into larger
ones and breaking very large requests into moderately sized ones are likely
to improve performance. Similar approaches are also proposed by Drago et
al. [15, 16]. Moreover, access unit should be as large as possible. For iSCSI this
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also implies increasing maximum data segment length per iSCSI command1 and
largest access unit size per SCSI command. Furthermore, larger transmission
unit would also improve energy efficiency in next generation access network [32].

Thanks to the capability of utilising concurrent TCP connections, Swift ex-
hibited outstanding endurance against network complexities. NFS and iSCSI
can arguably benefit from the use of multiple TCP connections as well. How-
ever, due to the increased complexity, such capability is generally available only
in commercial implementations.

For iSCSI based storage systems, factors such as Linux block I/O sched-
ulers [2] and local file system [64] play important roles. They deserve attention
and shall be carefully configured according to the expected workload, the net-
work condition, and the system architecture [6, 57]. Such effort may be relieved
with the assistance from machine learning [78].

7.2 Future research directions

7.2.1 Feature
Hacker et al [27] studied the effect of concurrent TCP connections on per-
formance in a lossy network. Using an appropriate number of connections
improves performance as it speeds up the recovery from loss. However, an ex-
cessive amount of connections may cause congestion in the bottleneck link and
thus have negative effect. Depending on the loss distribution, RTT, and MTU,
the optimal number of concurrent TCP connections differs. They also men-
tioned that using multiple TCP connections may have an impact on fairness
and that determining the right number of connections in advance is difficult.
The suggested way is to collect statistics on the fly and adjust dynamically.

Another problem may arise is that whether this would bring too much load
to the server side. This happens when there are many clients utilising multiple
TCP connections being served by the same server.

Server side CPU utilisation and others may be of interest as well. Sehgal
et al. [64] found that the file system used, format parameters, and mount
options have a significant impact on the performance and energy efficiency of
storage systems. Default options generally lead to suboptimal performance.
Appropriate options must be determined according to expected workload and
by testing.

Our results in Chapter 5 suggests that coalescing more NFS operations
into one single COMPOUND operation could improve performance. However,
as Pawlowski et al. [56] mentioned, combining unrelated operations into one
COMPOUND operation may increase the complexity of error handling and
recovery, as the process of the COMPOUND operation halts as soon as an
error is encountered when processing constituent operations in it. Neverthe-

1Up to 16MiB should be possible since DataSegmentLength is 3 bytes long.
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less, the possibility to coalesce the seemly redundant ACCESS operation with
corresponding CREATE operation can still be investigated.

In preliminary experiments we launched multiple processes deleting files
from the same Swift container and found the performance to be the same as
a single process. Swift log indicates that the requests from parallel clients are
processed sequentially. We conjecture that the underlying SQLite database is
the most likely bottleneck.

We observed 30ms processing time for each operation caused by internal
coordination of Swift in Section 5.1. It is anticipated that in a fully distributed
and replicated Swift installation, such internal coordination would take longer.
For Swift to be useful for metadata intensive workloads, its internal mechanism
and the design of the application require further consideration.

It can be argued, though, that applications written for cloud services such
as Swift may not require a POSIX file interface at all. In this thesis, we
tried to investigate the possibility of replacing traditional storage with cloud
based object storage with minimal modification to the application. It is, of
course, possible to construct, to extend2, or to adapt an existing application
or benchmark to evaluate traditional storage systems and cloud based object
storage services using their native interfaces.

7.2.2 Depth
We have seen in Figure 4.2 and 4.4b that write operation of iSCSI under direct
I/O is much faster than under synchronised I/O. At the moment we conjecture
that the difference is due to the absence of local buffering.

The block size of our iSCSI target is configured to 1024 bytes instead of
512 bytes of the underlying hard disk. Whether this block size emulation has
an impact on performance or not is yet to be investigated.

As mentioned earlier in Section 3.2, Swift occasionally returns HTTP404
for some requests. Although we conjecture that this is due to cooperation
between Swift components, the exact nature is unclear and could be further
investigated. Our modification to CloudFuse was more a preventive measure.
Furthermore, the occasional failures of NFS and iSCSI mentioned in Section 4.5
are yet to be investigated as well.

In Section 4.6 we found that Swift outperforms NFS and iSCSI for large
files under unideal network condition. More insights may be gained by disabling
multithreading support of CloudFuse. In addition, NFS performance stopped
increasing between 8 to 16 threads (sec 4.6). The bottleneck is likely a small
sized queue in some layer.

We observed tremendous and counter-intuitive variation in Swift perfor-
mance under 100Mbps bandwidth in Section 6.1. Furthermore, in Table 6.3
we see that the performance of Swift increased slightly when packet loss is

2This would be easier for benchmarks which allow different back end interface modules
to be plugged in easily [13].
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introduced. The reason is unclear and we conjecture that it is due to Swift
internal cooperation, TCP internals, and the interaction between CloudFuse
and Linux FUSE.

Since we are studying network storage systems and all of them use TCP
for transport, the protocol itself could also be examined further. For example,
the distribution of packet size, variation of TCP congestion window size, and
whether Nagle’s algorithm [48] has an effect on the performance, to name a
few.

7.2.3 Scope
This thesis is limited to NFS of Linux kernel, Intel iSCSI, and OpenStack Swift
with CloudFuse only. To further generalise the comparison to NAS, SAN, and
cloud storage, more samples and implementations from each family of storage
systems have to be examined.

Other metrics, such as performance per euro (e), availability, reliability,
and elasticity, may be more of interest in evaluating the viability of replacing
NAS or SAN with cloud storage. This could be further augmented by increasing
the complexity of the scenario, such as to inject crashes into storage systems,
inject outages and load spikes into the network.

Preliminary experiments with wireless interface showed asymmetry between
download and upload link capacity. Moreover, we found that by replacing the
home router with another one this phenomenon vanishes. This could be further
investigated as well.

As Feeney et al. [20] indicated, energy consumption of wireless interface
in ad hoc scenarios cannot be determined by transmission throughput. The
applicability of our results in wireless environments is thus limited to those
with a base station.

7.2.4 Methodology
As discussed in Section 4.5, our benchmark has to be run long enough to obtain
steady state performance. Dukkipati et al. [17] suggested that increasing TCP
initial window size overcomes slow start. This could relieve or even remove the
need to run the benchmark long enough.

It has been noted that much effort could be saved with automation. Such as
automating the process of sweeping through parameter space [66] or adjusting
the workload according to the environment and the capacity of the platform
under test [12].

It may be beneficial to the storage community by constructing mathematical
models for storage systems and benchmarks [23] or formulating the system and
corresponding measurements as inverse problems. That way, the performance
and the configuration can be studied mathematically.
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Conclusions

Mobile platforms with access to high speed wireless network have become ubiq-
uitous. Advancements in network technology and consumer electronics have
brought traditional storage systems into offices and homes. Services based
on cloud technologies, including object based storage, have gained popular-
ity among both private users and enterprises. However, battery capacity has
seen only limited improvement. Energy efficiency has thus become the salient
concern in mobile computing.

Studies indicate that energy consumption of a mobile platform depends
greatly on the transmission throughput of wireless interface. In this thesis,
we evaluated the performance of three popular storage systems, namely NFS,
iSCSI, and OpenStack Swift, which can potentially be used by mobile platforms
over wireless network.

We built a testbed and an in house, ad hoc microbenchmark to study
the impact of network complexities and access behaviours of an application.
In addition, we employed two widely used macrobenchmarks, PostMark and
FileBench, to simulate the interactive workloads of typical applications. Ap-
plication throughput is the primary metric in this thesis.

Under our assumption of exclusive access from single user, we found that
iSCSI excels in networks whose condition is as good as LAN, whereas NFS
and Swift are more suitable for complex networks such as wireless network and
WAN. Furthermore, we found Swift to be a viable replacement for NFS in all
investigated scenarios.

Note, however, that system configuration on the client side impacts stor-
age performance significantly and deserves adequate attention. Based on our
observations, we made recommendations to storage system implementors and
operators as well as application developers. Moreover, we pointed out numerous
possible directions for future research.

As the final remark, we found that there is no “silver bullet”, or “one fits
all” storage solution.
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Appendix A

Cloud storage examples

Service/Software License Website
115 Cloud drive Proprietary http://www.115.com/

Amazon S3 Proprietary http://aws.amazon.com/s3/

Apple iCloud Proprietary https://www.icloud.com/

ASUS WebStorage Proprietary http://asuswebstorage.com/

Baidu Cloud Storage Proprietary http://pan.baidu.com/

Dropbox Proprietary http://dropbox.com/

Google Drive Proprietary http://drive.google.com/

KuaiPan Proprietary http://kuaipan.cn/

OneDrive Proprietary http://onedrive.live.com/

Saunalahti Pilvilinna Proprietary http://saunalahti.fi/pilvilinna/

OpenStack Swift Apache License https://wiki.openstack.org/Swift

ownCloud GNU AGPLv3 https://owncloud.org/

pCloud Proprietary https://www.pcloud.com/

Seafile GNU GPLv3 http://seafile.com/

Table A.1: Cloud storage examples. For most of them the server side is pro-
prietary and cannot be set up in a laboratory environment.
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Appendix B

Baseline performance

The baseline throughput of the hard disks, as mentioned in Section 3.3, mea-
sured by conducting sequential read and write using dd system tool with direct
flag set1 is 110MiB/s for read and 100MiB/s for write.

Baseline performance of macrobenchmarks and macrobenchmarks when run
on the server machine is illustrated in the following figures and table.
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Figure B.1: Baseline – Microbenchmark – Single file access.
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Figure B.2: Baseline – Microbenchmark – Effect of access unit size.

1This causes O_DIRECT to be passed to open() internally.
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Figure B.3: Baseline – Microbenchmark – Single threaded operation.
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Figure B.4: Baseline – Microbenchmark – Metadata operations. Note the
different scales.

Benchmark Configuration IOPS Time
PostMark Section 6.1 1176.5 21.25
FileBench fileserver 6703.62 120 (fixed)
FileBench varmail 816.165 120 (fixed)

Table B.1: Baseline – Macrobenchmarks.
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(c) Reading 1MiB files.
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(d) Writing 1MiB files.
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Figure B.5: Baseline – Microbenchmark – Multithreaded operation. Note the
different scales.
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