4,853 research outputs found

    Analysis of LoRaWAN Uplink with Multiple Demodulating Paths and Capture Effect

    Full text link
    Low power wide area networks (LPWANs), such as the ones based on the LoRaWAN protocol, are seen as enablers of large number of IoT applications and services. In this work, we assess the scalability of LoRaWAN by analyzing the frame success probability (FSP) of a LoRa frame while taking into account the capture effect and the number of parallel demodulation paths of the receiving gateway. We have based our model on the commonly used {SX1301 gateway chipset}, which is capable of demodulating {up to} eight frames simultaneously; however, the results of the model can be generalized to architectures with arbitrary number of demodulation paths. We have also introduced and investigated {three} policies for Spreading Factor (SF) allocation. Each policy is evaluated in terms of coverage {probability}, {FSP}, and {throughput}. The overall conclusion is that the presence of multiple demodulation paths introduces a significant change in the analysis and performance of the LoRa random access schemes

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    A role-based software architecture to support mobile service computing in IoT scenarios

    Get PDF
    The interaction among components of an IoT-based system usually requires using low latency or real time for message delivery, depending on the application needs and the quality of the communication links among the components. Moreover, in some cases, this interaction should consider the use of communication links with poor or uncertain Quality of Service (QoS). Research efforts in communication support for IoT scenarios have overlooked the challenge of providing real-time interaction support in unstable links, making these systems use dedicated networks that are expensive and usually limited in terms of physical coverage and robustness. This paper presents an alternative to address such a communication challenge, through the use of a model that allows soft real-time interaction among components of an IoT-based system. The behavior of the proposed model was validated using state machine theory, opening an opportunity to explore a whole new branch of smart distributed solutions and to extend the state-of-the-art and the-state-of-the-practice in this particular IoT study scenario.Peer ReviewedPostprint (published version

    An Analysis of Packet Fragmentation Impact in LPWAN

    Full text link
    Packet fragmentation has mostly been addressed in the literature when referring to splitting data that does not fit a frame. It has received attention in the IoT community after the 6LoWPAN working group of IETF started studying the fragmentation headers to allow IPv6 1280 B MTU to be sent over IEEE 802.15.4 networks supporting a 127 B MTU. In this paper, and following some of the recent directions taken by the IETF LPWAN WG, an analysis of packet fragmentation in LPWANs has been done. We aim to identify the impact of sending the data in smaller fragments considering the restrictions of industrial duty-cycled networks. The analyzed parameters were the energy consumption, throughput, goodput and end to end delay introduced by fragmentation. The results of our analysis show that packet fragmentation can increase the reliability of the communication in duty-cycle restricted networks. This is of especial relevance when densifying the network. We observed relevant impact in energy consumption and extra latency, and identified the need for acknowledgements from the gateway/sink to exploit some of the benefits raised by fragmentation.Comment: paper accepted and presented at IEEE Wireless Communications and Networking Conference, 15-18 April, Barcelona, Spai

    Long-Range Communications in Unlicensed Bands: the Rising Stars in the IoT and Smart City Scenarios

    Full text link
    Connectivity is probably the most basic building block of the Internet of Things (IoT) paradigm. Up to know, the two main approaches to provide data access to the \emph{things} have been based either on multi-hop mesh networks using short-range communication technologies in the unlicensed spectrum, or on long-range, legacy cellular technologies, mainly 2G/GSM, operating in the corresponding licensed frequency bands. Recently, these reference models have been challenged by a new type of wireless connectivity, characterized by low-rate, long-range transmission technologies in the unlicensed sub-GHz frequency bands, used to realize access networks with star topology which are referred to a \emph{Low-Power Wide Area Networks} (LPWANs). In this paper, we introduce this new approach to provide connectivity in the IoT scenario, discussing its advantages over the established paradigms in terms of efficiency, effectiveness, and architectural design, in particular for the typical Smart Cities applications
    • …
    corecore