3,337 research outputs found

    Design methodology for general enhancement of a single-stage self-compensated folded-cascode operational transconductance amplifiers in 65 nm CMOS process

    Get PDF
    The problems resulting from the use of nano-MOSFETs in the design of operational trans-conductance amplifiers (OTAs) lead to an urgent need for new design techniques to produce high-performance metrics OTAs suitable for very high-frequency applications. In this paper, the enhancement techniques and design equations for the proposed single-stage folded-cascode operational trans-conductance amplifiers (FCOTA) are presented for the enhancement of its various performance metrics. The proposed single-stage FCOTA adopts the folded-cascode (FC) current sources with cascode current mirrors (CCMs) load. Using 65 nm complementary metal-oxide semiconductor (CMOS) process from predictive technology model (PTM), the HSPICE2019-based simulation results show that the designed single-stage FCOTA can achieve a high open-loop differential-mode DC voltage gain of 65.64 dB, very high unity-gain bandwidth of 263 MHz, very high stability with phase-margin of 73°, low power dissipation of 0.97 mW, very low DC input-offset voltage of 0.14 uV, high swing-output voltages from −0.97 to 0.91 V, very low equivalent input-referred noise of 15.8 nV/Hz, very high common-mode rejection ratio of 190.64 dB, very high positive/negative slew-rates of 157.5/58.3 V⁄us, very fast settling-time of 5.1 ns, high extension input common-mode range voltages from −0.44to 1 V, and high positive/negative power-supply rejection ratios of 75.5/68.8 dB. The values of the small/large-signal figures-of-merits (s) are the highest when compared to other reported FCOTAs in the literature

    High bandwidth low power operational amplifier design and compensation techniques

    Get PDF
    The need for high bandwidth operational amplifiers (op amp) exists for numerous applications. This need requires research in the area of Op Amp bandwidth extension. The exploited method in this thesis uses a class of compensation called Indirect Feedback Frequency Compensation in which the compensation current is fed back indirectly from the output to an internal high impedance node, to extend the bandwidth of an Op Amp. Among various compensation methods for operational amplifiers, indirect compensation offers potentially large benefits in regards to power to speed trade-off. The indirect compensated Op Amps can exhibit significant improvements in speed over traditional Miller compensated Op Amps and result in much smaller layout size and lower power consumption. However the technique has not been widely used in practice due to a lack of clear design procedure. This thesis develops an analytical description of how indirect compensation works and derives key trade off equations among various specifications. These results provide the insight needed for practically designing operational amplifiers with this technique. Based on the results, a step-by-step design procedure is proposed for an operational amplifier using indirect compensation. To demonstrate the proposed design procedure, a two stage Op Amp is designed. The Op Amp achieved a 2 MHz gain-bandwidth product (GBW) driving a large capacitive load (100 pF). The GBW of the Op Amp was improved by a factor of 10 times compared to the miller compensation scheme. The amplifier documented in this thesis achieved a higher simulated figures-of-merit (FoMs) compared to the state-of-art and can be directly used in integrated systems to achieve higher performance

    Amplifier performance enhancement methods using positive feedback techniques

    Get PDF
    The dramatic growth in the hi-tech sector of consumer market has created many unprecedented challenges in the area of integrated circuits. The present and future communication and entertainment systems including high speed cable and DSL modems, broadband wired and wireless systems, and high definition visual products require very fast and high accuracy amplifiers, data converters and filters. Analog design in the new digital CMOS submicron processes is becoming an economical necessity in the industry. The task of building fast Op-Amp with very high DC-gain is already a very difficult problem, and this task has become more difficult using these new submicron digital processes, where traditional gain enhancement techniques are loosing their ability to deliver amplifiers with sufficient gain. In this work three new methods of implementing the internal positive-feedback to build very high DC-gain amplifiers with very low gain sensitivity to signal swings are presented. Amplifiers proposed in the first method have very high current-controlled gain. A DC gain larger than 100dB is possible without limiting the speed of the amplifier. Amplifiers proposed in the second method exhibit both enhanced speed, i.e., unity gain frequency, and enhanced gain. Amplifiers proposed in the third method have self-adjusting gain without extra control block. An implementation of a 3 bit multiplying DAC in a 9-bit 165MS/s pipeline ADC built in a 1.8V, 0.21mu digital CMOS process using one of the proposed amplifiers is described. Test results show high gain with very fast settling

    Low-power low-voltage VLSI operational amplifier cells

    Full text link

    On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation

    Get PDF
    Microbubble generation by a novel fluidic oscillator driven approach is analyzed, with a view to identifying the key design elements and their differences from standard approaches to airlift loop bioreactor design. The microbubble generation mechanism has been shown to achieve high mass transfer rates by the decrease of the bubble diameter, by hydrodynamic stabilization that avoids coalescence increasing the bubble diameter, and by longer residence times offsetting slower convection. The fluidic oscillator approach also decreases the friction losses in pipe networks and in nozzles/diffusers due to boundary layer disruption, so there is actually an energetic consumption savings in using this approach over steady flow. These dual advantages make the microbubble generation approach a promising component of a novel airlift loop bioreactor whose design is presented here. The equipment, control system for flow and temperature, and the optimization of the nozzle bank for the gas distribution system are presented. (C) 2009 The Institution of Chemical Engineers. Published by Elsevier B.V All rights reserved

    Analog/RF Circuit Design Techniques for Nanometerscale IC Technologies

    Get PDF
    CMOS evolution introduces several problems in analog design. Gate-leakage mismatch exceeds conventional matching tolerances requiring active cancellation techniques or alternative architectures. One strategy to deal with the use of lower supply voltages is to operate critical parts at higher supply voltages, by exploiting combinations of thin- and thick-oxide transistors. Alternatively, low voltage circuit techniques are successfully developed. In order to benefit from nanometer scale CMOS technology, more functionality is shifted to the digital domain, including parts of the RF circuits. At the same time, analog control for digital and digital control for analog emerges to deal with current and upcoming imperfections

    Electronic dispersion compensation using full optical-field reconstruction in 10Gbit/s OOK based systems

    Get PDF
    We investigate the design of electronic dispersion compensation (EDC) using full optical-field reconstruction in 10Gbit/s on-off keyed transmission systems limited by optical signal-to-noise ratio (OSNR). By effectively suppressing the impairment due to low- frequency component amplification in phase reconstruction, properly designing the transmission system configuration to combat fiber nonlinearity, and successfully reducing the vulnerability to thermal noise, a 4.8dB OSNR margin can be achieved for 2160km single-mode fiber transmission without any optical dispersion compensation. We also investigate the performance sensitivity of the scheme to various system parameters, and propose a novel method to greatly enhance the tolerance to differential phase misalignment of the asymmetric Mach-Zehnder interferometer. This numerical study provides important design guidelines which will enable full optical-field EDC to become a cost-effective dispersion compensation solution for future transparent optical networks

    Design of a Comparator and an Amplifier in CMOS using standard logic gates

    Get PDF
    Using standard logic gates in CMOS, or standard-cells, has the advantage of full synthe- sizability, as well as the voltage scalability between technologies. In this work a general pur- pose standard-cell-based voltage comparator and amplifier are presented. The objective is to design a general purpose standard-cell-based comparator and ampli- fier in 130 nm CMOS by optimizing the already existing topologies with the aim of improving some of the specifications of the studied topologies. Various simulation testbenches were made to test the studied topologies of comparators and amplifiers, in which the results were compared. The top performing standard-cell com- parator and amplifier were then modified. After successfully designing the comparator, it was used in the design of an opamp-less Sigma-Delta modulator (ΣΔM). The proposed comparator is an OR-AND-Inverter-based comparator with dual inputs and outputs, achieving a delay of 109 ps, static input offset of 591 μV, and random offset of 10.42 μV, while dissipating 890 μW, when clocked at 1.5 GHz. The proposed amplifier is a single-path three-stage inverter-based operational transcon- ductance amplifier (OTA) with active common-mode feedback loop, achieving a DC gain of 63 dB, 1444 MHz of unity-gain bandwidth, 51º of phase margin while dissipating 1098 μW, considering a load of 1 pF. The proposed comparator was employed in the ΣΔM with a standard-cell based edge- triggered flip-flop. The ΣΔM, with a sampling frequency of 2 MHz and a signal bandwidth of 2.5 kHz, achieved a peak SNDR of 69 dB while dissipating only 136.7 μW.Utilizando portas lógicas básicas em CMOS oferece a vantagem de um circuito comple- tamente sintetizável, tal como o escalamento de tensão entre tecnologias. Neste trabalho são apresentados um comparador de tensão e um amplificador utilizando portas lógicas. O objetivo deste trabalho é desenhar um comparador e um amplificador utilizando por- tas lógicas através do estudo e otimização de topologias já existentes com a finalidade de me- lhoramento de algumas das especificações das mesmas. Foram realizados vários bancos de teste para testar as topologias estudadas de compa- radores e amplificadores, em que os resultados foram comparados. As topologias de compa- radores e amplificadores de portas lógicas com melhor performance foram então modificadas. Após o comparador ter sido projetado com sucesso, foi utilizado na projeção de um modula- dor Sigma-Delta (ΣΔM) opamp-less. O comparador proposto é um OR-AND-Inversor com duas entradas e saídas, que apre- senta um atraso de 109 ps, offset estático na entrada de 591 μV, offset aleatório de 10.42 μV, enquanto dissipando 890 μW, utilizando uma frequência de relógio de 1.5 GHz O amplificador proposto é um amplificador operacional de transcondutância single- path three-stage inverter-based com um loop ativo de realimentação do modo-comum, que apresenta um ganho DC de 63 dB, 1444 MHz de ganho-unitário de largura de banda, 51º de margem de fase e dissipando 1098 μW, considerando uma carga de 1 pF. O comparador proposto foi aplicado no ΣΔM com um flip-flop edge-triggered baseado em portas lógicas. O ΣΔM, com uma frequência de amostragem de 2 MHz e uma largura de banda de 2.5 kHz, apresentou um SNDR máximo de 69 dB enquanto dissipando apenas 136.7 μW

    UWB Circuits and Sub-Systems for Aerospace, Defence and Security Applications

    Get PDF
    In order to maintain technological superiority over other systems, modern equipment for aerospace, defence and security (ADS) applications require advanced integrated circuits operating at microwave and millimetre wave frequencies. High integration is necessary to obtain low SWaP-C features thus enabling the installation of this category of equipment in unfriendly environments: compact spaces, and subject to heavy mechanical loads and temperature stress. This chapter reviews the topology, technology and trends of microwave circuits in UWB systems for ADS applications. Amplification at high frequency is a crucial function: high power amplifiers in the transmit (Tx) chain and low-noise amplifiers in the receive (Rx) chain will be revised, in addition to medium-power (gain) amps. Signal conditioning and routing is also essential: MIMO architecture are becoming the standard and therefore switching and signal phasing and attenuation is increasingly needed, to obtain the desired beam steering and shaping. Each type of circuits leverages the benefits of either gallium nitride (GaN) or gallium arsenide (GaAs), and the role of the semiconductor will be explained. Finally, an outline on multi-functional circuits (single-chip front-ends and core-chips) will be presented: the trend is to realize the whole microwave section of a Tx/Rx module with only to MMICs that perform all the functionalities requested at microwave frequencies
    corecore