10,498 research outputs found

    Evolutionary programming with q-Gaussian mutation for dynamic optimization problems

    Get PDF
    This article is posted here with permission from IEEE - Copyright @ 2008 IEEEThe use of evolutionary programming algorithms with self-adaptation of the mutation distribution for dynamic optimization problems is investigated in this paper. In the proposed method, the q-Gaussian distribution is employed to generate new candidate solutions by mutation. A real parameter q, which defines the shape of the distribution, is encoded in the chromosome of individuals and is allowed to evolve. Algorithms with self-adapted mutation generated from isotropic and anisotropic distributions are presented. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutation on three dynamic optimization problems.This work was supported by Brazil FAPESP under Grant 04/04289-6 and UK EPSRC under Grant No. EP/E060722/01

    Self-adaptation of mutation distribution in evolutionary algorithms

    Get PDF
    This paper is posted here with permission from IEEE - Copyright @ 2007 IEEEThis paper proposes a self-adaptation method to control not only the mutation strength parameter, but also the mutation distribution for evolutionary algorithms. For this purpose, the isotropic g-Gaussian distribution is employed in the mutation operator. The g-Gaussian distribution allows to control the shape of the distribution by setting a real parameter g and can reproduce either finite second moment distributions or infinite second moment distributions. In the proposed method, the real parameter q of the g-Gaussian distribution is encoded in the chromosome of an individual and is allowed to evolve. An evolutionary programming algorithm with the proposed idea is presented. Experiments were carried out to study the performance of the proposed algorithm

    Multi-resolution dental image registration based on genetic algorithm

    Get PDF
    The Automated Dental Identification System (ADIS) is a Post Mortem Dental Identification System. This thesis presents dental image registration, required for the preprocessing steps of the image comparison component of ADIS. We proposed a multi resolution dental image registration based on genetic algorithms. The main objective of this research is to develop techniques for registration of extracted subject regions of interest with corresponding reference regions of interest.;We investigated and implemented registration using two multi resolution techniques namely image sub sampling and wavelet decomposition. Multi resolution techniques help in the reduction of search data since initial registration is carried at lower levels and results are updated as the levels of resolutions increase. We adopted edges as image features that needed to be aligned. Affine transformations were selected to transform the subject dental region of interest to achieve better alignment with the reference region of interest. These transformations are known to capture complex image distortions. The similarity between subject and reference image has been computed using Oriented Hausdorff Similarity measure that is robust to severe noise and image degradations. A genetic algorithm was adopted to search for the best transformation parameters that give maximum similarity score.;Testing results show that the developed registration algorithm yielded reasonable results in accuracy for dental test cases that contained slight misalignments. The relative percentage errors between the known and estimated transformation parameters were less than 20% with a termination criterion of a ten minute time limit. Further research is needed for dental cases that contain high degree of misalignment, noise and distortions

    LOCATOR: Low-power ORB accelerator for autonomous cars

    Get PDF
    Simultaneous Localization And Mapping (SLAM) is crucial for autonomous navigation. ORB-SLAM is a state-of-the-art Visual SLAM system based on cameras used for self-driving cars. In this paper, we propose a high-performance, energy-efficient, and functionally accurate hardware accelerator for ORB-SLAM, focusing on its most time-consuming stage: Oriented FAST and Rotated BRIEF (ORB) feature extraction. The Rotated BRIEF (rBRIEF) descriptor generation is the main bottleneck in ORB computation, as it exhibits highly irregular access patterns to local on-chip memories causing a high-performance penalty due to bank conflicts. We introduce a technique to find an optimal static pattern to perform parallel accesses to banks based on a genetic algorithm. Furthermore, we propose the combination of an rBRIEF pixel duplication cache, selective ports replication, and pipelining to reduce latency without compromising cost. The accelerator achieves a reduction in energy consumption of 14597× and 9609×, with respect to high-end CPU and GPU platforms, respectively.This work has been supported by the CoCoUnit ERC Advanced Grant of the EU’s Horizon 2020 program (grant No 833057), the Spanish State Research Agency (MCIN/AEI) under grant PID2020- 113172RB-I00, the ICREA Academia program and the FPU grant FPU18/04413Peer ReviewedPostprint (published version

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation explores three key facets of software algorithms for custom hardware ray tracing: primitive intersection, shading, and acceleration structure construction. For the first, primitive intersection, we show how nearly all of the existing direct three-dimensional (3D) ray-triangle intersection tests are mathematically equivalent. Based on this, a genetic algorithm can automatically tune a ray-triangle intersection test for maximum speed on a particular architecture. We also analyze the components of the intersection test to determine how much floating point precision is required and design a numerically robust intersection algorithm. Next, for shading, we deconstruct Perlin noise into its basic parts and show how these can be modified to produce a gradient noise algorithm that improves the visual appearance. This improved algorithm serves as the basis for a hardware noise unit. Lastly, we show how an existing bounding volume hierarchy can be postprocessed using tree rotations to further reduce the expected cost to traverse a ray through it. This postprocessing also serves as the basis for an efficient update algorithm for animated geometry. Together, these contributions should improve the efficiency of both software- and hardware-based ray tracers
    corecore