
Self-Adaptation of Mutation Distribution in Evolutionary
Algorithms

Renato Tinós and Shengxiang Yang

Abstract— This paper proposes a self-adaptation method to
control not only the mutation strength parameter, but also
the mutation distribution for evolutionary algorithms. For this
purpose, the isotropic q-Gaussian distribution is employed
in the mutation operator. The q-Gaussian distribution allows
to control the shape of the distribution by setting a real
parameter q and can reproduce either finite second moment
distributions or infinite second moment distributions. In the
proposed method, the real parameter q of the q-Gaussian
distribution is encoded in the chromosome of an individual and
is allowed to evolve. An evolutionary programming algorithm
with the proposed idea is presented. Experiments were carried
out to study the performance of the proposed algorithm.

I. INTRODUCTION

Stochastic search methods have been successfully applied
to a large number of optimization problems. One major
characteristics of stochastic search methods is that new
candidate solutions are randomly generated from a given
probability distribution. Evolutionary algorithms (EAs) are
among the most known stochastic search methods. EAs are
a class of meta-heuristic algorithms that are inspired by the
principles of natural evolution.

When EAs are applied in real-valued optimization, new
candidate solutions are traditionally generated employing
multivariate samples taken from isotropic Gaussian distribu-
tions [1]. The use of an isotropic Gaussian distribution is in-
teresting mainly because it maximizes the Boltzmann-Gibbs
entropy (and the differential entropy, i.e., the extension of the
Shannon’s concept of information entropy to the continuous
case) in unconstrained real-valued search spaces [10]. The
isotropic Gaussian distribution has a finite second moment
and does not favour any direction in the search space. In this
way, the generation of new candidate solutions by mutation
does not require the knowledge of any information about the
geometry of the search space.

However, in recent years, researchers have proposed the
use of distributions with longer tails and infinite second
moment in EAs. For example, in the Fast Evolutionary
Programming (FEP) [15], the Cauchy distribution is em-
ployed, while in the Evolutionary Programming with Lévy
mutation (LEP) [6], mutation based on Lévy distribution
is used. The Lévy distribution is a class of probability
distributions with infinite second moment, which includes
the Cauchy distribution, and allows to control the tail of the

Renato Tinós is with the Department of Physics and Mathematics,
FFCLRP, University of São Paulo (USP), 14040-901, Ribeirão Preto, SP,
Brazil (email: rtinos@ffclrp.usp.br).

Shengxiang Yang is with the Department of Computer Science, University
of Leicester, University Road, Leicester, LE1 7RH, United Kingdom, (email:
s.yang@mcs.le.ac.uk).

distribution by changing a scalar parameter α. In [6], the
authors proposed two schemes for LEP: in the first scheme
all offspring are generated from a distribution with a fixed α,
and in the second each parent generates five offspring, each
of which is generated from a distribution with a different
pre-defined value of α. All individuals in LEP use the same
pre-fixed values of α during the whole evolutionary process.

The use of mutation taken from heavy tail distributions
implies jumps of scale-free sizes, allowing to reach faster dis-
tant regions of the search space. This property is interesting
when EAs are applied to multimodal problems or dynamic
optimization problems as it allows the population to escape
faster from local optima. However, some controversy about
the benefits of the use of distributions with heavy tails in
EAs have appeared [4]. Most of the proposed algorithms
use heavy tail distributions that are anisotropic, i.e., some
directions of the mutation are privileged in the search space
[8]. Moreover, in several fitness landscapes, it is difficult to
reach a fair region of the search space from a long jump
because the probability to reach a point with a lower fitness
is generally much larger for a long jump [4].

There are mainly three classes of mutation strength pa-
rameter control in the literature [2]: deterministic, where
the parameters are changed by deterministic rules; adaptive,
where feedback from the optimization process is employed
for parameter control; and self-adaptive, where parameters
of the EA are encoded in the chromosome and allowed to
evolve. In most cases, only one mutation strength parameter
is updated for all individuals, like in the 1/5 success rule for
evolution strategies [1]. In some cases, one mutation strength
parameter for each individual [2] is changed.

In this paper, we propose to control the mutation distribu-
tion along the evolutionary process, instead of only control-
ling the mutation strength parameter that defines the spread
of a fixed distribution. Here, self-adaptation is employed,
not only to control the mutation strength parameter, but
also to control the mutation distribution. In this way, the
decision of which distribution to choose is more indicated for
a given problem and, at a given moment of the evolutionary
process, is minimized by letting the proposed algorithm
to decide which mutation distribution should be used. In
the proposed algorithm, a real parameter that defines the
distribution employed by the mutation operator is encoded
in the chromosome of an individual and is allowed to
evolve. For this purpose, the isotropic q-Gaussian distribution
[10] derived from the Tsallis generalized entropy [13] is
employed. The q-Gaussian distribution allows to control the
shape of the distribution by setting a real parameter q and

79

1-4244-1340-0/07$25.00 c©2007 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/338209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

can reproduce either finite second moment distributions, like
the Gaussian distribution, or infinite second moment distri-
butions, like the heavy tail Lévy distribution. The use of the
q-Gaussian mutation distribution in EAs is not new [7], [5].
However, in such algorithms like most other algorithms that
uses heavy tail distributions, the new candidate solutions are
produced by generating random deviates for each coordinate
of the individual, which implies anisotropic distributions.
Moreover, in such algorithms, the parameter q, which defines
the shape of the distribution, is fixed along the generations or
starts with a large value and decreases along the generations,
like the temperature control in simulated annealing. In this
way, the main contributions proposed in this paper are:
(i) a q-Gaussian isotropic distribution is employed in the
mutation operator, (ii) self-adaptation is employed to control
the parameter q, which allows changing the shape of the
distribution during the evolutionary process.

The rest of this paper is organized as follows. The q-
Gaussian distribution is briefly introduced in Section II.
In Section III, self-adaptation of the mutation distribution
is proposed, while an evolutionary programming algorithm
based on this idea is presented in Section IV. Experimental
study with a set of test functions is presented in Section V.
Finally, this article is concluded in Section VI.

II. THE q-GAUSSIAN DISTRIBUTION

One of the most interesting properties of the Gaussian
distribution is that it maximizes, under certain constraints,
the entropy in the form

S =

∫ +∞

−∞
p(x) ln

(
p(x)

)
dx, (1)

which is known as the Boltzman-Gibbs entropy. While the
Gaussian distribution is an attractor for independent systems
with a finite second moment, it does not represent well
correlated systems with an infinite second moment [10]. In
this concern, Tsallis [13] proposed a generalized entropy
form as follows:

Sq =
1− ∫ +∞

−∞ p(x)qdx

q − 1
, (2)

where q ∈ R. Eq. 2 recovers the entropy form given by Eq. 1
in the limit q → 1. The q-Gaussian distribution arises when
maximizing the generalized entropy form given by Eq. 2.
The q-Gaussian distribution has interesting properties. The
parameter q controls the shape of the q-Gaussian distribu-
tion. The second order moment is finite for q < 5/3 and
the q-Gaussian distribution reproduces the usual Gaussian
distribution for q = 1. When q < 1, the q-Gaussian
distribution has a compact form, and decays asymptotically
as a power law for 1 < q < 3. When q = 2, the q-Gaussian
distribution reproduces the Cauchy distribution, while for
q = (3 + m)/(1 + m) and 0 < m < ∞, it becomes a
Student’s t-distribution with m degrees of freedom [9].

When −∞ < q < 3, the q-Gaussian distribution density
[10] is given by

p(x; μ̄q, σ̄q) = Aq

√
Bqe

−Bq(x−μ̄q)2

q , (3)

where ex
q is the q-exponential function defined as

ex
q ≡

⎧⎨
⎩

(
1 + (1− q)x

) 1

1−q

if
(
1 + (1− q)x

)
≥ 0

0 otherwise
,

(4)
which reduces to the usual exponential function when q = 1.
The q-mean and the q-variance are defined as

μ̄q ≡
∫

xp(x)qdx∫
p(x)qdx

(5)

σ̄2
q ≡

∫
(x− μ̄q)

2p(x)qdx∫
p(x)qdx

(6)

and respectively reduce to the usual mean and variance when
q = 1. In Eq. 3, Aq is the normalization factor [10] and Bq

controls the width of the q-Gaussian distribution and is given
by

Bq =
(
(3− q)σ̄2

q

)−1

(7)

A random variable x taken from a q-Gaussian distri-
bution with q-mean μ̄q and q-variance σ̄2

q is denoted by
x ∼ Nq(μ̄q, σ̄q). In this paper, the generalized Box-Müller
method proposed in [10] is employed to generate q-Gaussian
random variables x ∼ Nq(0, 1). The generalized Box-Müller
method is very simple (see its pseudo-code in [10]) and
allows to generate q-Gaussian distributions for −∞ < q < 3.
Fig. 1 presents the empirical cumulative q-Gaussian distribu-
tion function for some values of q. It can be observed that
larger values of q result in longer tails of the q-Gaussian
distribution.

−15 −10 −5 0 5 10 15

0

0.2

0.4

0.6

0.8

1

x

E
m

pi
ric

al
 C

D
F

(x
)

q = 0.5

q = 1.0
q = 2.0

q = 2.5

q = 2.8

Fig. 1. Empirical cumulative distribution function (CDF) of 100000
observations of a q-Gaussian random variable x ∼ Nq(0, 1) for: q = 0.5,
q = 1.0 (Gaussian), q = 2.0 (Cauchy), q = 2.5, and q = 2.8.

III. SELF-ADAPTATION OF THE MUTATION

DISTRIBUTION

In the m-dimensional real-valued search space, a new
candidate solution is generated by the EA’s mutation operator
from the individual �xi, where i = 1, . . . , μ, as follows:

�̃xi = �xi + C �z, (8)

80 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Fig. 2. Two-dimensional points from: random vector �z ∼ Mm
q with anisotropic q-Gaussian distribution and q = 1.5, random vector �z ∼ Nm with

Gaussian distribution, and random vector �z ∼ √
2Nm

q with isotropic distribution q-Gaussian and q = 1.5.

where �z in an m-dimensional random vector generated
from a given multivariate distribution, and C is the matrix
which defines the mutation strength in each coordinate j =
1, . . . , m. In the most simple case,

C = σI, (9)

where I is the identity matrix and only one parameter, σ,
defines the mutation strength for all components of �xi. There
are some cases, however, where it is interesting to define one
different parameter σ(j) for each component of �xi. In this
way,

C = diag(�σ) (10)

i.e., C is diagonal matrix with the main diagonal
composed by the elements of the vector �σ =
[σ(1) σ(2) . . . σ(m)]T. In the most general situation,
e.g., in the covariance matrix adaptation evolution strategy
(CMA-ES) [3], C is an orthogonal rotation matrix which
indicates the correlation between the components of �z.

In EAs, the use of a multivariate Gaussian distribution is
generally employed to generate the m-dimensional vector �z
[1]. Here, an m-dimensional random vector generated from
the multivariate Gaussian distribution is denoted by �z ∼ Nm.
A Gaussian random vector Nm is generated by sampling m
independent Gaussian variables N (0, 1). It is important to
observe that when the same procedure is adopted to generate
multivariate random samples with heavy tail distribution,
some directions in the search space are more explored than
others, i.e., the distribution is anisotropic.

To the best of the authors’ knowledge, all stochastic search
algorithms with q-Gaussian mutation, like the Generalized
Simulated Annealing [12] and the Generalized Genetic Al-
gorithm [7], make use of anisotropic multivariate q-Gaussian
distributions. Most mutation operators for EAs that are based
on heavy tail distributions, e.g., Fast Evolution Strategies
[14], FEP [15], and LEP [6], make use of anisotropic
multivariate distributions too. The use of random variables
generated by sampling independent random variables taken
from a heavy tail distribution is interesting for optimization

problems with separable evaluation functions, as most of the
large steps occur close to the coordinate axis [8], [10] and
the optimization can be solved by m one-dimensional opti-
mization process parallel to the coordinate axes. However,
the performance of the optimization process can be strongly
affected for non-separable evaluation functions.

Obuchowicz [8] proposed a method to generate the random
mutation vector �z with an isotropic Cauchy distribution. For
this purpose, the random mutation vector �z is generated with:
i) a random direction uniformly distributed on the surface of
the m-dimensional unit hypersphere, and ii) an Euclidean
norm obtained from a Cauchy distribution.

Based on the work in [8] and [10], we propose to generate
the random mutation vector �z from an isotropic q-Gaussian
distribution as follows:

�z ∼ r�u, (11)

where r ∼ Nq(0, 1), i.e., a random variable with q-Gaussian
distribution, and �u is an uniform random vector obtained
by sampling a random vector with Gaussian distribution and
normalizing it to length one, i.e., �u = �v/‖�v‖ where �v ∼ Nm

and ‖�v‖ denotes the Euclidean norm of the vector �v. In this
paper, an m-dimensional random vector generated from the
multivariate isotropic q-Gaussian distribution is denoted by
�z ∼ Nm

q , while an m-dimensional random vector generated
by sampling m independent q-Gaussian random variables
Nq(0, 1), i.e., with the multivariate anisotropic q-Gaussian
distribution, is denoted by �z ∼ Mm

q . Fig. 2 presents two-
dimensional multivariate samples obtained from anisotropic
q-Gaussian distribution, Gaussian distribution, and isotropic
q-Gaussian distribution. It can be observed that, in the
anisotropic q-Gaussian distribution, larger steps occur more
often close to the coordinate axes. This effect is more evident
in high dimensional spaces and/or for larger values of q in
the interval 1 < q < 3.

We also propose to self-adapt the parameter q which
defines the shape of the distribution. Based on the mutation
strength self-adaptation [1], we propose to multiplicatively

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 81

Algorithm 1 EP with the isotropic q-Gaussian mutation (Alg. qGEP)
1: Initialize the population composed of individuals (�xi, �σi, qi) for i = 1, . . . , μ
2: while (stop criteria are not satisfied) do
3: for i← 1 to μ do
4: σ̃i(j) = σi(j) exp

(
τbN (0, 1) + τcN (0, 1)j

)
for j = 1 to m

5: q̃i = qi exp
(
τaN (0, 1)

)
6: �̃xi ← �xi + Ci Nm

q , where Nm
q is a random vector generated from an isotropic q-Gaussian distribution with

parameter q̃i and Ci = diag(�̃σ
T

i)
7: end for
8: Compute the fitness of the parents (�xi, �σi, qi) and offspring (�̃xi, �̃σi, q̃i) for i = 1, . . . , μ
9: Compute the winning function [6] of the population composed of μ parents and μ offspring

10: Select, to compose the new population, the μ individuals with the largest winning function from the population
composed of μ parents and μ offspring

11: end while

TABLE I

TEST FUNCTIONS.

Function f(�x) Range Dimension (m)

fa =
∑m

j=1 x2
j �x ∈ [−100, 100]m 30

fb =
∑m

j=1

(∑j
i=1 xi

)2
�x ∈ [−100, 100]m 30

fc = 1 + 1
4000

∑m
j=1 x2

j −
∏m

j=1 cos
(

xj√
j

)
�x ∈ [−600, 600]m 30

fd = 4x2
1 − 2.1x4

1 + x6
1/3 + x1x2 − 4x2

2 + 4x2
2 �x ∈ [−5, 5]m 2

fe =
∑m

j=1

(
x2

j − 10 cos(2πxj) + 10
)

�x ∈ [−5, 5]m 10
ff =

∑m
j=1

(
y2

j − 10 cos(2πyj) + 10
)
, where �y = M(�x) �x ∈ [−5, 5]m 10

update the parameter q in individual i as follows:

q̃i = qi exp
(
τaN (0, 1)

)
, (12)

where τa denotes the standard deviation of the Gaussian
distribution.

IV. EVOLUTIONARY PROGRAMMING ALGORITHM WITH

SELF-ADAPTATION OF THE MUTATION DISTRIBUTION

Self-adaptation of the mutation distribution, as presented
in last section, can be applied in EAs with real-valued
representation. Here, the evolutionary programming (EP)
algorithm presented in Alg. 1, called qGEP, is used to test
the ideas proposed in this paper. The main difference of
the EP algorithm presented in Alg. 1 from Gaussian EP,
FEP, and LEP [6] is that, in the proposed algorithm, the
isotropic q-Gaussian mutation is employed (step 6) instead of
the Gaussian (Gaussian EP), Cauchy (FEP), or Lévy (GEP)
mutation, and a procedure to adapt the q parameter is adopted
(step 5).

As suggested by theoretical and empirical work [1], the
parameters τb and τc are defined here as:

τb =
1√
2m

(13)

τc =
1√

2
√

m
(14)

In this work, we propose to define the parameter τa as

τa =
1√
m

(15)

V. EXPERIMENTAL STUDY

In order to evaluate the proposed EP algorithm with self-
adaptation of the mutation distribution, experiments with
six test functions were carried out. The results of three
approaches to define the parameter q in the EP algorithm
(step 5 in Algorithm 1) are presented here. Each approach
defines one algorithm as follows.

• Algorithm GEP (EP with Gaussian mutation): q = 1 for
all individuals, i.e., Gaussian mutation is employed;

• Algorithm ICEP (EP with isotropic Cauchy mutation):
q = 2 for all individuals, i.e., isotropic Cauchy mutation
is employed;

• Algorithm qGEP (EP with isotropic q-Gaussian muta-
tion): one changing q for each individual, i.e., Algorithm
1 (with step 5) described in last section is employed.

The six test functions used in this work are described
in Section V-A. The experimental design is presented in
Section V-B while the experimental results are presented and
analyzed in Section V-C.

A. Test Problems

Six functions (see Table I) are selected as the test suite for
the EP algorithms. The optimization process in this work is a
minimization task. In Table I, the matrix M is obtained by the

82 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

orthogonalization of a random matrix uniformly distributed
in the unit hypersphere.

While the functions fa and fb are unimodal, the function
fd has a few local minima and the remaining functions
are highly multimodal [6]. The functions fe and ff are,
respectively, the axis parallel and rotated Rastrigin functions.
The axis parallel Rastrigin function is separable, while the
rotated Rastrigin function is not separable.

B. Experimental Design

In order to compare the algorithms, each one was executed
30 times (with 30 random seeds) for each test function
described in Section V-A. For each run of an algorithm, the
individuals of the initial population were randomly chosen.
The population size (μ) was set to 100 individuals and
the tournament size was set to 10. The initial mutation
strength parameter σi(j) is equal to 3.0

√
m and the initial

q-Gaussian parameter q for Algorithm qGEP is equal to
1.0, i.e., the initial q-Gaussian distribution reproduces the
Gaussian distribution. In Algorithm qGEP, the minimum and
maximum values of the q-Gaussian parameter q are 0.9 and
2.5 respectively. In all algorithms, the minimum allowed
value of the mutation strength parameter σi(j) is 0.01.

C. Experimental Results

The experimental results of the fitness of the best in-
dividual in the last generation averaged over 30 runs in
the experiments are presented in Table II. In Table III, the
statistic comparison regarding Alg. qGEP - Alg. GEP, and
Alg. qGEP - Alg. ICEP is carried out by t-test with 58
degrees of freedom at a 0.1 level of significance regarding
the fitness of the best individual in the last generation.

TABLE II

EXPERIMENTAL RESULTS OF THE BEST-OF-GENERATION FITNESS

OBTAINED IN THE LAST GENERATION.

problem Alg. GEP Alg. ICEP Alg. qGEP

fa 9.0000E-007 2.0667E-006 9.3333E-007
fb 2.6400E-005 4.4800E-005 2.7533E-005
fc 3.2790E-001 1.3866E-001 1.2982E-001
fd -1.0308E+000 -1.0295E+000 -1.0305E+000
fe 8.4182E+000 8.8492E+000 9.0551E+000
ff 1.3593E+001 1.2599E+001 1.3476E+001

TABLE III

STATISTICAL COMPARISON OF THE BEST-OF-GENERATION FITNESS IN

THE LAST GENERATION FOR ALG. QGEP. THE RESULT REGARDING

ALG. X IS SHOWN AS ”+”, ”−”, OR ”∼” WHEN ALG. QGEP IS,

RESPECTIVELY, SIGNIFICANTLY BETTER THAN, SIGNIFICANTLY WORSE

THAN, OR STATISTICALLY EQUIVALENT TO ALG. X.

problem Alg. GEP Alg. ICEP

fa ∼ +
fb ∼ +
fc + ∼
fd ∼ +
fe ∼ ∼
ff ∼ ∼

Fig. 3 shows the results of the mean best-of-generation
fitness in the experiments. The mean Euclidean norm of the
mutation strength parameter vector and the mean distribution
parameter q of the current best individual are presented in
Fig. 4. From these tables and figures, some results can be
observed.

First, it is observable from Figs. 3(a) and (b) that the
algorithm with a Gaussian mutation (Alg. GEP) has a better
performance in the minimization of functions fa and fb,
when compared to the algorithm with an isotropic Cauchy
mutation (Alg. ICEP). A similar result was reported when
the Gaussian EP was compared to FEP [15], which uses
an anisotropic Cauchy distribution, and LEP [6] in the
minimization of fa. In an unimodal function, like fa and fb,
long jumps, which often occur when the isotropic Cauchy
mutation is employed, generally causes a degradation in
the performance of the algorithm in a later stage of the
evolution as less offspring are generated to explore the local
neighborhood.

It can be observed that the performance of the proposed
algorithm (Alg. qGEP), in the minimization of functions fa

and fb, is better when compared to the algorithm with an
isotropic Cauchy mutation (Alg. ICEP) and is similar to
the algorithm with a Gaussian mutation (Alg. GEP). These
results can be explained because, in general, the individuals
employed values of q close to 1 (Figs. 4(a) and (b)), i.e.,
the q-Gaussian mutation was similar to Gaussian mutation
in these problems. It can be observed that the norm of
the mutation strength parameter vector increases for all
algorithms in the initial stage of the evolution, allowing a
faster convergence in the initial steps. Similar results can be
observed in the minimization of function fd, which has few
local optima (Figs. 3 and 4(d)).

Second, while the algorithm with Gaussian mutation
(Alg. GEP) outperforms the algorithm with isotropic Cauchy
mutation (Alg. ICEP) in the unimodal function fa and fb, it
overperforms Alg. ICEP in the highly multimodal problem
fc (Fig. 3(c)). These results indicate that the long jumps
generated by the Cauchy mutation were benefical for the
individuals to escape from local optima, mainly in the later
stage of the evolution where the mutation strength parameters
converged to small values (Fig. 4(c)).

The proposed algorithm (Alg. qGEP) outperforms
Alg. GEP too, and is similar to Alg. ICEP. This result can
be explained because higher values of the q parameter were
employed on some occasions to allow longer jumps (see
Fig. 5, where the distribution parameter q of the current best
individual on the first trial of the experiment on function
fc is plotted against generation). It can be observed that, in
Fig. 4(c), the mean q parameter increases to a value close to
2 in the initial steps and, then, decreases to smaller values.
This does not occur in the minimization of function fe and
ff . One can remember that the size of the search space in
such problems is smaller (see the range of the solutions in
Table I) than in problem fc. Hence, long jumps may not be
beneficial.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 83

0 500 1000 1500 2000 2500 3000 3500 4000

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

(a)

generation

fit
ne

ss

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−6

10
−4

10
−2

10
0

10
2

10
4

10
6

(b)

generation

fit
ne

ss

0 500 1000 1500 2000 2500 3000
10

−1

10
0

10
1

10
2

10
3

(c)

generation

fit
ne

ss

0 5 10 15 20 25 30 35 40 45 50
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3
(d)

generation

fit
ne

ss

0 500 1000 1500 2000 2500 3000

10
1

10
2

(e)

generation

fit
ne

ss

0 500 1000 1500 2000 2500 3000
10

1

10
2

(f)

generation

fit
ne

ss

Fig. 3. Mean best-of-generation fitness on functions fa − ff . Alg. GEP: solid line; Alg. ICEP: dotted line; Alg. qGEP: dashed line.

84 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

generation

||
σ

 ||

(a)

500 1000 1500 2000 2500 3000 3500 4000

1

1.5

2

2.5

generation

q

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

generation

||
σ

 ||

(b)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1

1.5

2

2.5

generation

q

(b)

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400

generation

||
σ

 ||

(c)

500 1000 1500 2000 2500 3000

1

1.5

2

2.5

generation

q

(c)

0 5 10 15 20 25 30 35 40 45 50
2

3

4

5

6

7

generation
||

σ
 ||

(d)

5 10 15 20 25 30 35 40 45 50

1

1.5

2

2.5

generation

q

(d)

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

generation

||
σ

 ||

(e)

500 1000 1500 2000 2500 3000

1

1.5

2

2.5

generation

q

(e)

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

generation

||
σ

 ||

(f)

500 1000 1500 2000 2500 3000

1

1.5

2

2.5

generation

q

(f)

Fig. 4. Mean norm of the mutation strength parameter vector and mean distribution parameter q of the current best individual on functions fa − ff .
Alg. GEP: solid line; Alg. ICEP: dotted line; Alg. qGEP: dashed line.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 85

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

generation

||
σ

 ||

500 1000 1500 2000 2500 3000

1

1.5

2

2.5

generation

q

Fig. 5. Norm of the mutation strength parameter vector and distribution
parameter q of the current best individual of Alg. qGEP on the first trial of
the experiment on function fc.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the use of self-adaptation is proposed, not
only to control the mutation strength parameter, but also
to control the mutation distribution. For this purpose, the
isotropic q-Gaussian distribution is employed in the mutation
operator. The q-Gaussian distribution allows to control the
shape of the distribution by setting a real parameter q
and can reproduce either finite or infinite second moment
distributions. In the proposed algorithm, the real parameter q
of the q-Gaussian distribution, which defines the shape of the
distribution employed by the mutation operator, is encoded
in the chromosome of the individual and allowed to evolve.

In the proposed method, the decision of choosing which
distribution is more indicated for a given problem and at
a given moment of the evolutionary process is minimized
by letting the proposed algorithm to decide which mutation
distribution should be used. This property can be observed
in the experiments presented in Section V-C, where the
proposed q-Gaussian EP algorithm presents a performance
similar to the Gaussian EP algorithm when the Gaussian EP
was better than the EP with isotropic Cauchy mutation and
similar to the EP with isotropic Cauchy mutation when it
was better than the Gaussian EP.

Much work can be further done in this area. New algo-
rithms based on the ideas proposed here and other control
methods for the q parameter should be investigated, includ-
ing self-organization [11]. As a future work, the proposed
algorithm will be investigated in continuous dynamic opti-
mization problems.

ACKNOWLEDGMENTS

This work was supported by Brazil FAPESP (Proc.
04/04289-6) and UK EPSRC (No. EP/E060722/01).

REFERENCES

[1] H.-G. Beyer and H. S. Schwefel, “Evolution strategies: a comprehen-
sive introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.

[2] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in
evolutionary algorithms,” IEEE Trans. on Evolutionary Computation,
vol. 3, no. 2, pp. 124–141, 1999.

[3] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[4] N. Hansen, F. Gemperle, A. Auger, and P. Koumoutsakos, “When do
heavy-tail distributions help?” Proc. of the 9th Int. Conf. on Parallel
Problem Solving from Nature (PPSN IX), Lecture Notes in Computer
Science, vol. 4193, pp. 62–71, 2006.

[5] M. Iwamatsu, “Generalized evolutionary programming with levy-type
mutation,” Computer Physics Communications, vol. 147, no. 1-2,
pp. 729–732, 2002.

[6] C.-Y. Lee and X. Yao, “Evolutionary programming using mutations
based on the levy probability distribution,” IEEE Trans. on Evolution-
ary Computation, vol. 8, no. 1, pp. 1–13, 2004.

[7] M. A. Moret, P. G. Pascutti, P. M. Bisch, M. S. P. Mundim, and
K. C. Mundim, “Classical and quantum conformational analysis using
generalized genetic algorithm,” Physica A: Statistical Mechanics and
its Applications, vol. 363, no. 2, pp. 260–268, 2006.

[8] A. Obuchowicz, “Multidimensional mutations in evolutionary algo-
rithms based on real-valued representation,” Int. Journal of Systems
Science, vol. 34, no. 7, pp. 469–483, 2003.

[9] A. M. C. Souza and C. Tsallis, “Student’s t- and r-distributions:
Unified derivation from an entropic variational principle,” Physica A:
Statistical Mechanics and its Applications, vol. 236, no. 1-2, pp. 52–
57, 1997.

[10] W. Thistleton, J. A. Marsh, K. Nelson, and C. Tsallis, “General-
ized Box-Muller method for generating q-Gaussian random deviates,”
ArXiv Condensed Matter e-prints, May 2006.

[11] R. Tinós and S. Yang, “Self-organizing random immigrants genetic
algorithm for dynamic optimization problems,” Genetic Programming
and Evolvable Machines, vol. 8, no. 3, 2007.

[12] C. Tsallis and D. A. Stariolo, “Generalized simulated annealing,”
Physica A:, vol. 233, no. 1-2, pp. 395–406, 1996.

[13] C. Tsallis, “Possible generalization of boltzmann-gibbs statistics,”
Journal of Statistical Physics, vol. 52, pp. 479–487, 1988.

[14] X. Yao and Y. Liu, “Fast evolution strategies,” Control and Cybernet-
ics, vol. 26, no. 3, pp. 467–496, 1997.

[15] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Trans. on Evolutionary Computation, vol. 3, no. 2, pp. 82–102,
1999.

86 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

