
Journal of Parallel and Distributed Computing 174 (2023) 32–45

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

LOCATOR: Low-power ORB accelerator for autonomous cars

Raúl Taranco ∗, José-Maria Arnau, Antonio González

Computer Architecture Department, Universitat Politècnica de Catalunya, Barcelona, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 April 2022
Received in revised form 10 November 2022
Accepted 3 December 2022
Available online 9 December 2022

Keywords:
ORB
ORB-SLAM
Hardware accelerator

Simultaneous Localization And Mapping (SLAM) is crucial for autonomous navigation. ORB-SLAM is a 
state-of-the-art Visual SLAM system based on cameras used for self-driving cars. In this paper, we 
propose a high-performance, energy-efficient, and functionally accurate hardware accelerator for ORB-
SLAM, focusing on its most time-consuming stage: Oriented FAST and Rotated BRIEF (ORB) feature 
extraction. The Rotated BRIEF (rBRIEF) descriptor generation is the main bottleneck in ORB computation, 
as it exhibits highly irregular access patterns to local on-chip memories causing a high-performance 
penalty due to bank conflicts. We introduce a technique to find an optimal static pattern to perform 
parallel accesses to banks based on a genetic algorithm. Furthermore, we propose the combination of 
an rBRIEF pixel duplication cache, selective ports replication, and pipelining to reduce latency without 
compromising cost. The accelerator achieves a reduction in energy consumption of 14597× and 9609×, 
with respect to high-end CPU and GPU platforms, respectively.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Simultaneous Localization and Mapping (SLAM) [7][11] is a cru-
cial component in autonomous navigation systems and has at-
tracted much interest from both academia and industry in recent 
years. SLAM is a fundamental task for higher-level activities such 
as path planning or navigation, and it is widely used in applica-
tions such as self-driving cars [14]. SLAM techniques build a map 
of an unknown environment and localize the exploring agent in 
that map using the onboard sensors. Vision sensors are the most 
popular because cameras are inexpensive and compact, providing 
vast information about the environment. Other alternatives employ 
LIDAR [17] (laser) technology. The systems based on LIDAR have 
great precision, and there are efforts to accelerate the critical task 
to make it effective [28]. Other proposals employ hybrid systems 
that simultaneously fuse the information from multiple sensors 
such as cameras, LIDAR, or Inertial Measurement Units (IMUs) to 
improve the SLAM accuracy [3,4,37].

Among Visual SLAM solutions, feature-based ones have received 
particular attention because of their robustness to large motions 
and illumination changes compared to other approaches [8]. How-
ever, these methods present significant challenges mainly due to 
real-time inherent constraints and energy consumption budget 
available on potential targets [14].

* Corresponding author.
E-mail addresses: taranco@ac.upc.edu (R. Taranco), jose.maria.arnau@upc.edu

(J.-M. Arnau), antonio@ac.upc.edu (A. González).
https://doi.org/10.1016/j.jpdc.2022.12.005
0743-7315/© 2022 The Authors. Published by Elsevier Inc. This is an open access article
This work focuses on a state-of-the-art [8,12] SLAM solution 
that is one of the most popular modern methods due to its ro-
bustness: ORB-SLAM [18]. This system combines Features from Ac-
celerated Segment Test (FAST) [25] and Binary Robust Independent 
Elementary Features (BRIEF) [2]. The former identifies the features 
in an image, whereas the latter generates a robust descriptor for 
each feature. Together with an orientation estimator, these two 
parts give rise to Oriented FAST and Rotated BRIEF (ORB) [26]. 
These features identify corners on the processed images and ap-
ply a rotation to generate their descriptors to provide viewpoint 
and rotational-invariant properties. According to our experiments, 
ORB-SLAM spends more than 60% of the execution time (see Fig. 1) 
extracting features (ORB Extraction).

In this paper, we propose a heterogeneous architecture for ORB-
SLAM that combines LOCATOR: a Low-power ORB aCcelerator for
AuTonomOus caRs for feature extraction and a mobile CPU for the 
remaining tasks such as tracking, local mapping, and loop clos-
ing [18]. Due to the irregular memory access patterns, computing 
the Rotated BRIEF (rBRIEF) descriptor is the most challenging part. 
Once the system classifies a pixel as a corner (i.e., a feature in the 
image), it computes a 256-bit descriptor. The computation consists 
of 256 comparisons between pairs of pixels in the corner neigh-
borhood. The locations of the 256 pairs of pixels do not follow any 
regular pattern and change dynamically due to the rotation angle. 
Previous ORB accelerators modify the rBRIEF algorithm to obtain a 
more hardware-friendly version but at the cost of significant accu-
racy loss [15,30]. We believe that it is not an acceptable trade-off 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jpdc.2022.12.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.12.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:taranco@ac.upc.edu
mailto:jose.maria.arnau@upc.edu
mailto:antonio@ac.upc.edu
https://doi.org/10.1016/j.jpdc.2022.12.005
http://creativecommons.org/licenses/by/4.0/


R. Taranco, J.-M. Arnau and A. González Journal of Parallel and Distributed Computing 174 (2023) 32–45
Fig. 1. Average relative execution time of each part of ORB-SLAM running on a CPU. 
ORB feature extraction takes the majority of execution time.

in the context of self-driving cars, and hence, our approach obtains 
an accuracy comparable to the software-based solutions.

Our solution stores the neighbor pixels in a multi-banked mem-
ory in the rBRIEF unit, the hardware component that computes the 
descriptors. Instead of using complex logic to dynamically sched-
ule which pairs of pixels are accessed on each cycle, we develop a 
static scheduling method based on a genetic algorithm that min-
imizes the number of bank conflicts for any rotation angle. The 
system processes the 256 pairs of pixels in the order determined 
statically, reducing conflicts while requiring simple hardware. Note 
that for the matching between two descriptors to be valid, both 
must be generated using the same order since the metric used is 
the Hamming Distance.

Due to the low cost of the rBRIEF unit, it is possible to replicate 
it multiple times to achieve the target performance required to 
meet real-time constraints. We propose a specific combination of 
techniques to make a more effective replication. On the one hand, 
the rBRIEF pattern contains 26.75% of repeated pixels. It is possi-
ble to take advantage of this observation using a duplication cache 
mechanism that increases the number of banks with copies of the 
repeated pixels resulting in a potential conflict and latency reduc-
tion. Furthermore, we observe that the distribution of access to 
banks is not uniform, and some banks have low utilization. Our de-
sign selectively employs a different number of ports for each bank 
based on this observation, reducing the cost of replication with a 
controlled impact on latency penalization. Finally, the rBRIEF unit 
employs a multi-stage pipeline design that allows overlapping the 
conflict resolution with subsequent pixel accesses.

In this paper, we make the following contributions:

• We analyze the performance and energy consumption of ORB-
SLAM on a state-of-the-art CPU. Our results show that feature 
extraction is the primary performance and energy bottleneck.

• We propose a high-performance, energy-efficient, and func-
tionally accurate hardware accelerator called LOCATOR for ORB 
feature extraction, which is the main bottleneck of ORB-SLAM.

• We present a technique to generate a new rBRIEF static 
scheduling of the required operations that minimizes the num-
ber of conflicts when accessing the on-chip memory structures 
required for the descriptor computation. The genetic algorithm 
technique obtains a 1.3x speedup over the first version of the 
accelerator.

• We propose a combination of techniques to reduce the latency 
of the rBRIEF unit in the average and worst cases. These tech-
niques consist of the repeated rBRIEF pattern pixel duplication 
cache and pipelining. The increased cost of the unit in area 
and power due to these techniques is mitigated by selective 
port replication, based on the characteristic rBRIEF pattern uti-
lization of the memory structure. In general, these techniques 
reduce an extra 2.26% of the average feature extraction frame 
33
processing and a 10.42% of the worst-case execution time with 
negligible impact in area and energy.

• The experimental results obtained show that the accelerator 
achieves a reduction in energy consumption of 14597× and 
9609×, with respect to high-end CPU and GPU platforms, re-
spectively.

The remainder of the document is organized as follows: Sec-
tion 2 provides some background on ORB-SLAM. Section 3 de-
scribes the basic LOCATOR design. Section 5 presents the exper-
imental results. Section 6 reviews related work and, finally, Sec-
tion 7 sums up the main conclusions and future work.

2. Background

ORB-SLAM [20][19] is a localization system that estimates the 
actual trajectory of an agent equipped with a camera while build-
ing a representation of the surroundings by storing it in a map. We 
are interested in its performance in autonomous driving, where 
it has been ranked at the top of the available open-source algo-
rithms [9]. All the tasks needed to localize the agent are based 
solely on manipulating ORB [26] features. Fig. 1 shows the rela-
tive execution time broken down in various target ORB features to 
extract per frame. Since ORB extraction spends up to 60% of the 
total algorithm processing time, in this work, we focus on acceler-
ating it on an ASIC while the remaining tasks are performed on an 
embedded co-located processor.

ORB extraction can be divided into four main steps [26]: pyra-
mid building (subsection 2.1); FAST Keypoint Detection (subsec-
tion 2.2); orientation estimation (subsection 2.3) and rBRIEF gener-
ation (subsection 2.4). The next subsection provides further details 
on ORB feature extraction.

2.1. Pyramid building

FAST does not produce multi-scale features, but scale invariance 
is desirable. A scale pyramid of images is used to achieve it. The 
pyramid consists of several levels, with versions of the original im-
age reduced and smoothed.

2.2. FAST keypoint detection

Features From Accelerated Segment Test (FAST), first introduced 
in [24], is a corner detector that can extract feature points. FAST 
performs a test to classify a candidate pixel, p, as a corner/no cor-
ner using a 7 × 7 window centered around it. This test compares 
the intensity of p with the intensities of the 16 pixels forming a 
Bresenham circle around the candidate, as shown in Fig. 2a. A cor-
ner is detected at the candidate pixel p if the intensities of at least 
n = 12 contiguous pixels out of the 16 are all above or below the 
intensity of p by a threshold, t .

Finally, Non-Maximal Suppression (NMS) is applied as a post-
processing method that removes some corners based on a score. 
Only the corners with the local maximum score within a neigh-
borhood prevail (typically a fixed-sized square patch centered on 
the considered pixel).

2.3. oFAST: FAST keypoint orientation

ORB uses the intensity centroid [26] to compute the orientation 
component of FAST. The intensity centroid assumes that a corner’s 
intensity is offset from its center, and this vector can be used to 
impute an orientation.

The moment of a patch can be defined as [23]:

mpq =
∑

xp yq I(x, y) (1)

x,y



R. Taranco, J.-M. Arnau and A. González Journal of Parallel and Distributed Computing 174 (2023) 32–45
Fig. 2. (a) Bresenham circle of radius 3 showing the pixel access pattern for FAST 
around the candidate pixel P . (b) ORB pattern positions for a rotation of 0º. A line 
connects each pair of points required for an intensity test.

where I(x, y) is the pixel’s intensity at the relative position x, y
within the patch, and p and q are naturals indicating the moment 
order in each dimension. With this definition, it is possible to com-
pute the orientation centroid:

C = (
m01

m00
,

m10

m00
) (2)

And then, compute the angle of the vector formed between the 
center point of the corner, O , and the centroid C , �O C .

θ = atan2(m01,m10) (3)

Atan2 is the quadrant-aware version of the arctangent.
In addition, it is possible to compute the sin(θ) and cos(θ) us-

ing the moments in the following way:

sin(θ) = m10√
m2

01 + m2
10

, cos(θ) = m01√
m2

01 + m2
10

(4)

oFAST is the combination of the segment test that determines if a 
pixel is a corner and the orientation computation.

2.4. Rotation-aware BRIEF descriptor generation

The Rotation-Aware BRIEF (rBRIEF) descriptor [2] is a bit string 
description of an image patch constructed from a set of binary in-
tensity tests. A binary test, τ , is defined by:

τ (p1, p2) =
{

0 , I(p1) < I(p2)

1 , I(p1) ≥ I(p2)
(5)

where p1 and p2 are two 2D points and I(pi) is the intensity of 
the point pi . The feature is defined as a vector of n binary tests:

fn(p) =
∑

1≤i≤n

2i−1τ (p1i , p2i ) (6)

It is recommended to smooth the image before performing 
these tests, for example, with a Gaussian blur filter. The vector 
length usually is n = 256.

One of the most attractive features of ORB is its in-plane rota-
tion invariance. To this goal, the coordinates of the points required 
for the binary intensity tests of rBRIEF are rotated according to the 
orientation, θ , employing the corresponding rotation matrix, Rθ . 
Let us define a matrix of dimension 2 × n that contains the coor-
dinates of the n points (xi, yi) of the binary tests:

S =
(

x1, ..., xn

y1, ..., yn

)
(7)

Then, the coordinates of the locations of the pairs required to 
compute the descriptor after rotation are given by:

Sθ = Rθ S (8)
34
3. Hardware accelerated ORB

In this section, we describe the architecture of LOCATOR and its 
optimization for ORB feature extraction.

3.1. Hardware architecture overview

Fig. 3 shows the architecture of the proposed accelerator. The 
overall design employs streaming-based dataflow inspired by pre-
vious works in the field [13,35,15,30]. Note that our solution differs 
significantly from these previous proposals, as explained in Sec-
tion 6.

The accelerator processes a stream of input pixels from mem-
ory or image sensors fed at a ratio of one pixel per cycle in raster 
scan order. The FAST, NMS, Gauss Filter, rBRIEF, and Rotation units 
employ on-chip buffers that support image tiling and access to a 
sliding window of pixels, efficiently exploiting the temporal and 
spatial locality of the operations. The storage capacity for the tiles 
depends on the tile width (see Table 2) and the size of the cor-
responding sliding window. All sliding windows of these units are 
synchronized so that the center pixel of the NMS unit window cor-
responds to the center pixel of the rBRIEF unit.

When a new pixel arrives, the value follows two paths. The 
first component of the top path (see Fig. 3) is a Delay FIFO (D-
FIFO) queue that allows elements to leave the structure in FIFO 
order after a fixed number of cycles and is required to synchro-
nize the top and bottom paths. The output pixels of the D-FIFO 
structure flow through the FAST Detector unit. This unit maintains 
a window of pixels on which it performs the FAST segment test to 
detect corners and calculate its score. The NMS unit keeps a win-
dow with pixels’ scores that it filters to determine salient corners. 
Concurrently, input pixels feed the bottom path (see Fig. 3), flow-
ing through the Gauss Filter unit. The filtered pixels and their raw 
(unfiltered) version leave the Gauss Filter unit to feed the rBRIEF 
unit and the Rotation unit, respectively. The Rotation unit calcu-
lates the angle of an eventual feature. When the NMS detects a 
feature, it sends a signal to the rBRIEF unit, which begins the ORB 
descriptor computation process using the sine and cosine calcu-
lated in the Rotation unit and the gauss filtered window of pixels 
centered on the feature that the rBRIEF unit contains. The rBRIEF 
unit temporarily stores the descriptors in the ORB Output buffer.

3.2. Basic sliding window structure

The sliding window structure in our design is commonly used 
to support 2D convolutions in image processing hardware. This 
structure provides temporary storage and a synchronization mech-
anism. Fig. 4 illustrates a sliding window similar to the ones used 
by the FAST and Gauss Filter units, which in both cases require a 
kernel (window) of 7 × 7 pixels (fixed parameters used in ORB-
SLAM).

A sliding window stores W + (W − 1) × Cols elements, where 
W is the square window size (7 in the example) and Cols is the 
number of columns of the processed tile. The pixel stream flows 
through the elements organized according to the input data for-
mat. Initially, it takes a fixed number of cycles until the entire 
structure is filled and computations can begin. After this warm-up 
phase, the window of pixels shifts one position each cycle. When 
the window reaches the border of the tile, the structure takes a 
fixed number of cycles to realign the window to the next row.

3.3. rBRIEF unit

The rBRIEF unit is responsible for implementing the most chal-
lenging part of the ORB extraction. It requires providing memory 
accesses to 512 (see Fig. 2b) positions that depend on the feature 



R. Taranco, J.-M. Arnau and A. González Journal of Parallel and Distributed Computing 174 (2023) 32–45

Fig. 3. The basic architecture of LOCATOR.
Fig. 4. 7 × 7 sliding window structure.

angle to compute the rBRIEF descriptor, making it hard to find an 
optimal access schedule.

Fig. 5 shows the basic architecture of the rBRIEF unit. The 
implementation employs a 37 × 37 sliding window that holds 
the data required to perform each feature point candidate’s tests 
(Eq. (6)). This window size matches the size used in the ORB 
software implementation. The structure must support the sliding 
window dataflow mechanism and, at the same time, random ac-
cess to 512 points. The naive implementation allows one pair of 
accesses (two points) per cycle. Therefore, this design requires 256 
cycles to generate a descriptor, while the FAST datapath only needs 
one cycle to process each pixel. The solution presented in this pa-
per, which includes several optimizations, is 1.67× faster than the 
naive design while showing equivalent area and power consump-
tion.

Sliding window structure replication alleviates the rBRIEF bot-
tleneck by employing each replica to compute descriptors of dif-
ferent features in parallel. An Arbiter decides how to distribute 
the descriptor requests among the windows. The Coordinate Rota-
tion module computes the rotated coordinates using the 0º rBRIEF 
pattern coordinates (stored in a LUT), the sine, the cosine, and effi-
cient implementation of multiplications that utilizes just additions 
and shifts [32].

Although replication effectively reduces the rBRIEF latency and 
mitigates the accelerator’s bottleneck, it has a relevant impact on 
the area and power consumption. For this reason, we argue that 
it is necessary to consider alternatives that deliver the required 
performance at a much lower cost.

The following sections describe the design and the optimiza-
tions that we propose to increase the efficiency of the rBRIEF unit.

3.3.1. Exploiting parallelism
Replication can be used to reduce the latency of a single de-

scriptor computation by exploiting intra-descriptor Data Level Par-
allelism (DLP), that is, using each replica to compute a part of a 
single descriptor in parallel. When the FAST data path encounters a 
feature, it cannot continue processing the tile until the rBRIEF data 
35
Fig. 5. rBRIEF Unit architecture overview.

path finishes the descriptor computation. Our experiments show 
that dedicating replicas to compute different descriptors indepen-
dently to exploit inter-descriptor DLP is more effective because it 
enables decoupling the FAST and rBRIEF data paths. The FAST data 
path can continue processing the tile as long as there is at least 
one available replica not computing a descriptor. The fact that fea-
tures are typically sparse helps to hide a portion of the rBRIEF 
latency bottleneck effectively.

However, increasing the granularity of the exploited intra-
descriptor DLP is possible since the computation of each intensity 
test is entirely independent of the rest. Fig. 6 illustrates the basic 
architecture of our initial design that supports multiple pair ac-
cess per cycle. The initial design consists of a streaming-friendly 
architecture that segments the storage structure for each row in 
a separated bank of memory with two read ports. The Point Pair 
Generation module outputs multiple pair coordinates each cycle 
using the coordinate components received from the rBRIEF arbiter 
petition. A custom interconnection network is needed to route 
each point pair to the appropriate bank based on its coordinates, 
gather the results, and perform the intensity tests at the other end. 
With this approach, we could potentially access 37 × 2 points (or 
37 pairs) in one cycle, but the cost of the interconnection and rout-
ing for such a solution is prohibitive. Instead, we propose a design 
that allows parallel access to a group of pairs of a given size in 
each cycle. The appropriate group size was experimentally deter-
mined (see Section 5).

There may be a structural hazard or conflict if more than one 
pair has to access the same row bank and there are not enough 
ports. The control unit detects conflicts between pairs and orches-
trates sequential access to the conflicting banks, introducing a stall 
in the pipeline. Non-conflicting pairs can be routed directly to the 
appropriate row bank. Each operand required for the intensity tests 
is always read from the same bank port, reducing the interconnec-
tion infrastructure’s complexity.



R. Taranco, J.-M. Arnau and A. González Journal of Parallel and Distributed Computing 174 (2023) 32–45

Fig. 6. ORB Window architecture that allows parallel access to multiple pairs (stored in the banks shown in dark grey) per cycle.
3.3.2. Static pattern reordering
The number of conflicts varies according to the angle applied 

to the ORB pattern as it affects the composition of the pair groups 
and, hence, the static access scheduling. Since Hamming distance 
defines the metric space of the ORB descriptor set [26], statically 
rearranging the order of the pattern does not cause any issues 
with the quality or metric space of the descriptor. Finding an op-
timal order that minimizes the number of conflicts is an NP-Hard 
problem. For this reason, we propose to compute static scheduling 
based on an optimization performed with a genetic algorithm (GA). 
Even though other methods could have been used, a GA offers im-
portant advantages: it is highly adaptable to the problem, it is not 
necessary to have prior knowledge of the objective function, and it 
is easily parallelizable. These advantages allow us to integrate our 
expensive rBRIEF unit hardware models into the objective function 
and find pseudo-optimal solutions in hours.

The Static Pattern Schedule problem consists of a set of pairs 
P = {P1, P2, ..., P N}, and a set of groups G = {G1, G2, ..., G N

gsize
}, 

where gsize is a fixed parameter that indicates the size of the 
group of pairs. An assignment is represented by a tuple < P , G >. 
A solution consists of an assignment for every element of P .

Furthermore, we have two constraints: 1) No pair can be in 
more than one group, and 2) All groups must contain gsize number 
of pairs.

On the other hand, the objective function, F , is defined as the 
average latency of the unit for every possible rotation angle us-
ing the set of assignments as static scheduling. We assume an 
equiprobable distribution of angles and consider that the num-
ber of plausible angles is bound. According to OpenCV documen-
tation [1], the fastatan2, used in ORB-SLAM, uses a precision of 
“about 0.3 degrees”.

In order to apply a GA approach as a meta-heuristic, we need to 
encode a candidate solution as a chromosome representation and 
define the Initialization and genetic operators. The chromosome 
chosen to represent a Static Schedule solution is a one-dimensional 
array Ai , where 0 ≤ i < 256 such that each element of the array 
represents an element of P . The group assignment is determined 
by Ai , the position within the array, as: � i

gsize �.
The initial population is generated by choosing random permu-

tations of P . The genetic operators applied in each generation to 
this initial population are:

• Fitness Evaluation: In a biological sense, fitness is a quality 
value that measures the reproductive efficiency of chromo-
somes. We use the negation of the objective function, −F , 
since we want to minimize latency.

• Selection: We choose Tournament selection that involves run-
ning several “tournaments” among a few individuals chosen 
randomly from the population. The winner (fittest) of each 
tournament is selected for crossover.

• Crossover: Partially Matched Crossover (PMX) is chosen. This 
recombination operator generates two off-springs by match-
36
Table 1
Parameters used for the GA optimization of conflicts.

Parameter Value

Crossover probability 70%
Mutation probability 20%
Population size 300
Crossover Operator Partially Matched Crossover
Mutation Operator Partial Shuffle Mutation
Selection Operator Tournament Selection

Fig. 7. Example of convergence of the genetic algorithm to a local minimum for a 
gsize = 8.

ing pairs of values in a specific range of the two parents and 
swapping the values of those indexes [10].

• Mutation: The mutation is performed each generation, shuf-
fling each chromosome of individuals with a given probability. 
The mutation swaps pairs between groups.

Table 1 summarizes the parameters used for the GA. Fig. 7
shows the evolution of the fitness of the best individual of all and 
current generations. In the example, the GA converges to a local 
optimum in 500 iterations taking hours using an AMD Opteron 
6338P with 24 threads. The optimization achieves an 18% reduc-
tion in latency compared with a random ordering.

3.3.3. Point intensity duplication cache
An additional approach proposed to reduce conflicts is exploit-

ing the potential temporal locality of the points of the ORB pattern, 
as many are accessed more than once (not all points of the orig-
inal pattern are unique). The original ORB pattern is composed of 
375 unique points out of the 512 total points (256 pairs), giving 
room for a 26.75% reduction in the number of accesses. We lever-
age this observation by applying Point Intensity Bypass and Point 
Intensity Duplication Cache.

On the one hand, Point Intensity Bypass consists of a reformu-
lation of the definition of a conflict, taking into account the reuse 
of points. In this way, two pairs of a group conflict if they access 
the same bank but to a different address within it. If the address is 
the same, it is possible to save one access since the two accesses 
target the same point. The control unit must consider both point 



R. Taranco, J.-M. Arnau and A. González Journal of Parallel and Distributed Computing 174 (2023) 32–45

Fig. 8. The basic structure of the duplication cache (new cache banks shown filled with a line pattern) for a group size of 4 pairs. Note that only the first point of each pair 
P N1 is represented.
coordinates when detecting conflicts collapsing accesses to iden-
tical coordinates. The output routing sends the read value to the 
output registers that originated the collapsed access requests.

On the other hand, Point Intensity Duplication Cache adds a 
structure to store the repeated ORB pattern points. The rBRIEF 
unit suffers from structural conflicts due to the need to perform 
more reads than the available read ports allow. Thus, the cache in-
creases the read ports for repeated points, reducing the conflicts 
since many accesses will stop being made to the rows of the slid-
ing window and will be made to the duplication cache.

The implementation is based on adding one or more banks to 
the sliding window connected to the same interconnection net-
work and accessible through the usual bank mechanism. For sim-
plicity, the banks use the same memory structures as the rows of 
the sliding window. The cache is accessed using coordinates out-
side the range of the sliding window (without spatial meaning).

When a repeated point is accessed for the first time, the read 
value is used to process the rBRIEF descriptor, and at the same 
time, it is stored in a duplication cache bank. The static ORB pat-
tern stored in the unit needs two new fields to implement this 
functionality: a bit to indicate whether the point is repeated and 
is the first time accessed in the pattern and the coordinates of the 
duplication cache banks in which the point will be stored. These 
fields depend on the specific rBRIEF pattern and are calculated of-
fline using a coordinate assignment method. Fig. 8 shows the basic 
structure required to access the new banks that act as duplication 
cache. The tables shown represent the information of two repeated 
points read in the cycle illustrated in the figure. Cache X is the ad-
dress inside the cache, and Cache Y is used to select between the 
two banks of the available caches. The multiplexers that select be-
tween the values of the four pixels read in each cycle are operated 
with a selection signal generated by the control unit. The control 
unit tracks the code of each of the four possible inputs.

The coordinate assignment method statically enforces the 
placement and replacement policies of the cache since we can sim-
ulate its behavior for a particular ORB pattern and know the future 
access to repeated points. In addition, there is no hit/miss man-
agement since the correct operation is guaranteed by construction, 
reducing the cost of the solution. During execution, the unit only 
has to read the cache coordinates of each pattern element from a 
pre-computed table and store the point value in the corresponding 
37
position of the duplication cache if it is the first time the repeated 
point is accessed.

There are potential cache bank conflicts if more than one pair 
in a group with repeated points are assigned to the same dupli-
cation cache bank and port. In such a case, it is possible to apply 
optimization to minimize conflicts when applying the placement 
policy during the offline execution of the coordinate assignment al-
gorithm. One way would be to distribute the points in the different 
banks taking into account the number of repeated points contained 
in the groups of the rBRIEF pattern. However, we have left this ex-
ploration for future work. In addition, we believe that an increase 
in conflicts and, thus, latency may signal unpromising solutions 
to the genetic algorithm described in subsection 3.3.2. Therefore, 
the generic algorithm will tend to penalize solutions with groups 
containing multiple conflicting repeated pairs, promoting solutions 
with repeated points better distributed among the pair groups.

The maximum required size for the cache is 137 bytes which 
could be stored in 4 banks of 37 bytes. Since all repeated points 
would fit in the cache, no replacement policy would be needed. 
However, it is possible to determine a perfect replacement policy 
that reduces the number of banks needed, taking into account that 
it is possible to statically determine which points will no longer be 
used in the future computation of the rBRIEF descriptor. This way, 
after the last access to a repeated point, its position in the cache is 
available to store other values. According to our experiments, the 
working set of repeated points fits within two banks.

The last step to implement this proposal consists of applying a 
static renaming mechanism of the coordinates of the rBRIEF pat-
tern. The renaming is applied to the coordinates of the repeated 
points that are not the first accesses. The coordinates of the orig-
inal pattern are replaced with coordinates from the duplication 
cache for non-first accesses instead of using the original pattern 
coordinates, potentially avoiding conflicts with other points. Fig. 9
illustrates an example of the described renaming scheme.

3.3.4. Selective replication of ports
The first design used for each sliding window replica has 37 

banks which become 39 by applying the Point Intensity Duplica-
tion Cache optimization. Using two ports per bank, each of which 
is pinned to the same operand of the pairs, simplifies the design 
since it is not necessary to verify conflicts between points of the 



R. Taranco, J.-M. Arnau and A. González Journal of Parallel and Distributed Computing 174 (2023) 32–45

Fig. 9. rBRIEF pattern renaming example. The left table shows a segment of the original rBRIEF pattern where points with ID 0 and 4 are repeated. The assignation algorithm 
determined that the coordinates to store the value of the ID 0 point in the duplication cache are (0, 37). Thus, the static renaming changes the coordinates for the subsequent 
non-first accesses, such as ID 4, to point to these coordinates (right table). The renaming avoids points ID 4 and ID 5 conflict in the original pattern (marked in red).

Fig. 10. (a) Percentage of total conflicts (Y-axis) generated for each bank on average for all angles. The X-axis shows the index of the banks in the range [-18, 17]. The bank 
with an index of zero is the central bank. (b) The slowdown of the average access latency of a replica when increasing the number of external single-ported banks. The 
parallel access group had a size of 4 pairs in this experiment.
same pair or operands of different pairs pinned to the opposite 
port.

However, the ports are not used evenly, leading to the distribu-
tion of conflicts illustrated in Fig. 10a. The rBRIEF pattern, shown in 
Fig. 2b, is rotated according to the angle of the features found dur-
ing the accelerator operation. The Y coordinate of the banks that 
a point can occupy ranges from [−r, r − 1] where r is the radius 
or integer distance to the center of the patch, (0, 0). The radii of 
action of the points with a larger radius overlap those of smaller 
ones, and since the points of the rBRIEF pattern are distributed 
roughly uniformly throughout the patch, the number of accesses 
to the inner banks will be greater than that of the outer banks. As 
corner examples, a point with a radius of 16 pixels will potentially 
access all banks, and one with a radius of 0 will always access the 
central bank.

To take advantage of this observation, we propose to selectively 
determine the number of ports used in each bank based on the 
conflict distribution observed. In this way, the outer banks can pro-
vide a single port, decreasing the area and power consumption of 
the sliding window replica. It would also be possible to add more 
ports to central banks to reduce the conflicts from accessing these 
banks. However, to simplify the implementation, we have decided 
to support banks with single or dual-port capability.

Reducing the number of ports of some banks increases the 
number of conflicts affecting performance. Fig. 10b shows the per-
38
formance slowdown of the replicas depending on the number of 
banks with only one port. The slowdown is the relative measure-
ment obtained by normalizing the average latency of each single-
ported configuration with the baseline (without single-port banks) 
latency. Note that the affected ports are distributed symmetrically. 
If we eliminate two ports, the affected banks are the outermost 
ones with Y coordinates -18 and 17, those with coordinates -17 
and 16, etc.

Leaving the banks with a single port implies having to modify 
the control unit. Access to these ports can generate conflicts, even 
from the same point pair. Nonetheless, the cost incurred is rea-
sonable due to the small number of external single-ported banks 
employed. In addition, the single-ported banks are connected to a 
multiplexer that the control unit operates to select one of the two 
requests that can arrive from the interconnection network.

Changing the outer four banks from dual to single ported mem-
ories allows adding new banks for the Point Intensity Duplication 
Cache without increasing the cost of the solution. Section 5 shows 
the resulting performance improvement and energy efficiency bal-
ance obtained by combining the duplication cache and the tech-
nique presented in this subsection.

3.3.5. Pipelining
When a bank access conflict occurs in the baseline, the conflict-

ing bank accesses are serialized while all other accesses for the 



R. Taranco, J.-M. Arnau and A. González Journal of Parallel and Distributed Computing 174 (2023) 32–45
Fig. 11. The proposed stages and pipeline mechanism of each replica of the rBRIEF. 
The FIFOs between the stages have a length of 2.

pair group being processed are performed in parallel. The serial-
ized accesses to the conflicting bank determine the latency neces-
sary to process that group of pairs, and, in addition, the following 
groups are not processed until the conflicts are resolved. During 
the cycles of conflict resolution, there is an underutilization of re-
sources since other pairs could be accessed using the free ports of 
the replica where there were no conflicts in the previous cycle.

To exploit the existing parallelism between the computations of 
different groups and hide the penalty incurred due to conflicts, we 
have explored using a pipelining mechanism by adding blocking 
FIFOS between the stages that we have determined in the design. 
Fig. 11 shows a diagram of the architecture of this solution with 
three stages: access to banks, read pixels, and descriptor computation
stages.

In the access to banks stage, the banks are accessed, selecting 
those that will be retrieved employing the X and Y coordinate of 
each point. In the read pixels stage, the intensity values are read 
from the banks and stored in the corresponding FIFOs. Finally, in 
the descriptor computation stage, the pixels are read from the FIFOs 
when both points of each pair are available and the output FIFO 
has space left.

With the proposed design, each replica in the rBRIEF unit can 
be seen as an in-order statically-scheduled superscalar processing 
element that can issue multiple pair accesses with banks being a 
single shared resource. Each pair issue is independent since there 
are no data dependencies between the pixels of the pairs. Fur-
thermore, the stages of the pipeline are synchronized through the 
status of the FIFOs.

When the FIFO is full, the previous stage must stall. A stage 
can process the input data if the head of all the necessary FIFOs 
(depending on the stage) contains valid data and if it can write 
to the output FIFO. For example, the description computation stage 
can compute a new bit if the FIFOs of the two operands (the pair) 
with which to perform the intensity comparison contain an ele-
ment, and the output FIFO has space. The rest of the FIFOs of the 
other operands do not have to be processed or do not belong to 
the same group. In addition, in the access to banks stage, a priority 
system is established in which the group that has been processed 
the longest has the highest priority. In this way, we ensure that the 
pixels are processed in the correct order generating valid descrip-
tors. At the same time, this simple design enables the exploitation 
of the parallelism between the accesses of different pairs of groups 
and the overlapping between accesses and conflict resolution.

We have performed an experimental exploration to determine 
the length of the FIFOs that retain state between stages. Fig. 12a 
shows the replication latency for different length values for the 
FIFOs. According to our results, we opt to use FIFOs that allow 
queuing the state of each stage in flight two times. This result 
seems reasonable since, after genetic optimization, it is rare to find 
groups with more than one conflict.

Each element of the FIFO between the Read Pixels Stage and the 
Descriptor Computation Stage contains the pairs of pixels (2 ×8 bits) 
read for each group (i.e., 64 bits for G4 and 128 for G8). The ele-
39
ments stored in the output FIFO contain one descriptor bit for each 
group (i.e., 4 and 8 bits for G4 and G6, respectively).

Finally, it is worth noting some details about integrating the 
pipelining mechanism with the duplication cache optimization dis-
cussed in the subsection 3.3.3. When applying the duplication 
cache technique, it is necessary to guarantee the coherence of the 
replication cache data and the renaming of the banks for a given 
rBRIEF pattern.

There can be more than one group being processed in flight 
by the replica due to pipelining. Thus, pixels can be stored in the 
duplication cache at the wrong time. To address the potential is-
sues, we opt to follow a conservative approach that is statically 
applied. The renaming algorithm will only change the bank of a 
repeated pixel if, for every angle, the value in the cache is correct. 
The method employs a functional model of the replica to check it. 
Genetic optimization will be able to bring out the solutions that 
make the best use of the duplication cache.

3.4. FAST detector unit

Fig. 13 illustrates the architecture of the FAST unit. The module 
employs a Sliding Window structure with the required patch size 
of 7 × 7 (see Subsection 2.2), achieving a throughput of one pixel 
tested per cycle. The FAST implementation used by ORB-SLAM ap-
plies an adjustment of the threshold at run-time, increasing the 
sensibility if no features are found inside a region of size 30 × 30. 
The module detects corners speculatively with the MinThr until at 
least one corner of IniThr is found (if any) inside each region. If 
at least one corner with the default threshold is found, the de-
scriptors generated in that region with the MinThr are discarded. 
The Dynamic Threshold module keeps track of the status of each 
region and is responsible for setting the dirty bit high when an 
IniThr corner is detected.

To perform the segment test and score computation, we use a 
similar solution as other works [29]. Each pixel intensity of the 
Bresenham circumference is compared with the central pixel ob-
taining a 16-bit value. An AND tree with a depth of ten levels 
searches for a sub-string with 12 consecutive set bits to classify 
the candidate pixel as a corner.

3.5. Non-maximal suppression unit

A 3 × 3 Sliding Window is used to filter the FAST features. The 
sliding window is fed with the FAST scores. In each cycle, the cen-
ter pixel of the window is compared with the eight surrounding 
pixels to determine if it is the local maximum. This operation is 
implemented with eight comparators and an AND reduction.

3.6. Gauss unit

The patch around the feature point must be smoothed before 
computing the intensity tests to generate the rBRIEF descriptor. 
The Gauss Filter Unit generates every cycle a pixel and its Gaussian 
smoothed version. We employ fixed-point arithmetic to represent 
the values of the Gaussian kernel (8 bits for the integer part and 
4 for the fractional one) and intermediate results (24 bits) before 
rounding to obtain the filtered value (8 bits).

3.7. Rotation unit

The rotation unit is in charge of calculating the sine and the 
cosine of the angle of the vector formed joining the centroid and 
the candidate feature point. This angle is required to rotate the 
coordinates of the ORB pattern applying Equation (8). The precision 
of the calculations is key since errors in the rotation of the points 



R. Taranco, J.-M. Arnau and A. González Journal of Parallel and Distributed Computing 174 (2023) 32–45

Fig. 12. (a) Sensitivity to the length of the FIFOs in the replica pipelining stages of the rBRIEF unit for a group size of 4 (G4) and 8 (G8) pairs processed in parallel. (b) The 
pipelined architecture of the Rotation Unit.
Fig. 13. Architecture of the FAST unit.

in the ORB pattern produce severe degradation of the quality of 
the generated descriptors.

We propose the use of the inverse square root to compute it 
instead of a LUT of pre-computed values used in state-of-the-art 
solutions [35,22,30]. The unit uses a 37 × 37 Sliding Window syn-
chronized with the rBRIEF unit. In addition, the unit is pipelined 
into several stages, as shown in Fig. 12b that compute an accurate 
estimation of the sine and cosine computation per cycle.

The first pipeline stage of the Rotation Unit computes the mo-
ment of a window. In order to do it efficiently, Equation (1) can be 
reformulated as follows:

m01n+1 = m01n + 18 × (Cn + Cn−37) − Sn,

m10n+1 = m10n + xCn − xCn−37,

m00n+1 = m00n + Cn − Cn−37,

(9)

where,

Sn+1 = Sn + Cn − Cn−36,

Cn =
∑

1≤x≤37

px,n,

xCn =
∑

1≤x≤18

x × (p38−x,n − px,n),

(10)

and px,n is the pixel’s intensity at the coordinates within the patch 
indicated by row x and col n. The moment computation consists 
of an adder tree used to compute Cn . Furthermore, an optimized 
Multiple Constant Block [32] (MCM) is used to compute xCn .

The following two stages perform the centroid division. Image 
moments, m01 and m10, computed in the previous stage, could be 
directly used to determine the trigonometric functions. However, 
we divide these values by m00 reducing the number of bits for 
the image moment components representation and, therefore, the 
cost of its manipulation in later stages. Efficient division circuits 
40
are employed for integer and fixed-point division, with a precision 
of 1

32 . The accelerator computes the moment components using 
20 bits, but after the normalization with m00, the values fit into 
10 bits (5 bits for the integer part and the other 5 bits for the 
fractional one).

The next stage is the summation of squares and estimation 
computation. A first estimation of the inverse square root is per-
formed considering the Most Significant Bit (MSB) of the previous 
square sum. This results in a good estimation considering the fol-
lowing:

log2(
1√

x
) = −1

2
log2(x) (11)

Next, the fast inverse square root is computed in three stages. 
The inverse square root of x, the summation of squares previ-
ously determined, is computed using an approximation based on 
the Newton–Raphson method. Three iterations of the following for-
mula are employed using as y0 the MSB-based estimation:

yn+1 = yn(
3

2
− x

2
yn

2) (12)

The final stage computes the sine and cosine, applying Equa-
tion (4) and updating the signs of the final values. The fixed-point 
representation of the trigonometric values uses 16 bits for the frac-
tional part.

4. Evaluation methodology

We have developed Register-Transfer-Level (RTL) models of 
the ORB accelerator described in Section 3 by leveraging the 
PyMTL [16] framework. We tested different versions of the archi-
tecture, varying the number of rBRIEF window replicas and com-
paring the results with the improved architecture and the modi-
fications detailed in the previous section. Table 2 shows the pa-
rameters employed in the experiments. In order to estimate area 
and critical path delay, we translate the PyMTL models into Ver-
ilog and synthesize them using Yosys [36] with the open-source 
45 nm FreePDK45 1.4 [27]. Moreover, we obtain the power dissi-
pation of the gate-level netlist of the accelerator using Synopsys 
Design Compiler [31].

As the software baseline, we use an open-source ORB-SLAM 
implementation [20]. We measure the performance of this imple-
mentation on a CPU and a GPU platform with parameters shown 
in Table 2. We use Intel RAPL [33] and the Nvidia System Manage-
ment Interface (nvidia-smi) to measure CPU and GPU energy con-
sumption, respectively. The GPU evaluation employs the OpenCV 



R. Taranco, J.-M. Arnau and A. González Journal of Parallel and Distributed Computing 174 (2023) 32–45

Fig. 14. (a) rBRIEF replica speedup respect to the baseline implementation (G1). GN refers to the maximum number of pairs accessed in parallel. (b) Box plot representing 
the distribution of LOCATOR processing latencies (Cycles Per Pixel) of the frames of KITTI sequences for different versions of the accelerator.
Table 2
Hardware parameters for LOCATOR, CPU, and GPU platforms.

Parameter Value

LO
CA

TO
R Technology, Frequency 45 nm, 400 MHz

Tile width 210 columns
Target number of features 2000

CP
U

Model Intel(R) Core(TM) i7-7700K
Number of cores / threads 4 / 8
Technology, Frequency 14 nm, 4.2 GHz
L1, L2, L3 0.25 MiB, 1 MiB, 8 MiB
Thermal Design Power 91 W

G
P

U

Model GeForce GTX1080
CUDA cores 2560
Memory 8 GB
Thermal Design Power 180 W

ORB CUDA implementation we manually instrument to measure 
its performance.

On the other hand, we perform the experimental evaluation us-
ing the KITTI data set [9]. We use the odometry benchmark that 
comprises various recordings from drivings around the city of Karl-
sruhe. This benchmark consists of 22 grayscale stereo sequences.

Finally, we use an evolutionary computation framework for 
rapid prototyping and testing of ideas called DEAP [6] to imple-
ment the genetic algorithm described in Section 3.3.2.

5. Experimental results

In this section, we compare the CPU’s and GPU’s performance, 
energy consumption, and different LOCATOR versions with all the 
optimizations presented in Section 3. The configuration labeled as 
CPU corresponds to the high-performance OpenCV [1] software im-
plementation of ORB feature extraction running on a CPU with 
parameters shown in Table 2. The ORB implementation contains a 
version optimized by explicit vectorization using SSE2 instructions 
for FAST detection. On the other hand, the configuration labeled 
as GPU corresponds to the high-performance OpenCV software im-
plementation of ORB that leverages CUDA on the GPU described 
in Table 2 to speed up computations. Configurations labeled with 
LOCATOR represent different versions of the accelerator. We use 
the following nomenclature: LOCATOR-GN-RM, where N indicates 
the group size for BRIEF descriptor computation and M shows the 
degree of replication. For example, LOCATOR-G4-R2 indicates a con-
figuration of the ORB accelerator with a group size of 4, i.e., 4 bits 
of the BRIEF descriptor are computed at a time, whereas the entire 
rBRIEF unit is replicated two times. We run the same workloads 
in the CPU and the different LOCATOR configurations, employing 
41
the same images and algorithmic parameters such as window size, 
thresholds, etc.

On the one hand, Fig. 14a shows the speedup of a single replica 
of the rBRIEF unit compared to other versions. The speedup is cal-
culated taking into account the latency of the G1 case in which 
the unit takes 256 cycles to perform the computations to generate 
an rBRIEF descriptor. We have considered parallel access groups of 
1, 4, and 8 pairs. The figure illustrates the impact of the Selective 
Replication of banks (SR), Point intensity Cache (PC), and Pipelining 
(PL) techniques compared to only using the Genetic Algorithm (GA) 
optimization. The G4 and G8 versions obtain a 1.12× and 1.25×
speedup, respectively, against the corresponding version in which 
only the GA technique is used. The speedup in G8 is more signifi-
cant than in the G4 case. The number of conflicts increases as the 
group size grows, implying more opportunities for the PC and PL 
techniques to reduce structural conflicts within groups that the GA 
technique cannot avoid based on rearranging the accesses order.

On the other hand, Fig. 14b shows a box plot chart for differ-
ent versions of LOCATOR. The figure depicts how the optimizations 
consistently improve the processing time when all the optimiza-
tions are combined. LOCATOR-G8-R2 reduces the average process-
ing time per frame by 2.26%. Moreover, the box plot shows how 
the new techniques shift the distribution of processing latencies 
towards lower values and reduce its range and dispersion. Note 
that a configuration with two replicas provides enough ports to ac-
cess four pairs per cycle with few conflicts, implying that the tech-
niques proposed in this paper have little work to do. For clarity, 
we omitted its evaluation, only presenting results for the scenario 
with groups of eight pairs (LOCATOR-G8-R2).

In the context of self-driving cars, the tail latency of the ex-
ecuted tasks is essential since it can affect the worst case and 
cause a critical system failure. Fig. 15a details the 99th tail la-
tency of the different versions of the previously selected accel-
erator with the added improvements. All LOCATOR versions take 
advantage of the proposed optimization strategies improving tail 
latency compared to the baseline (BASELINE-G1-R1). In particular, 
LOCATOR-G8-R2 99th percentile latency is 82.77% lower compared 
with BASELINE-G1-R1.

In addition to the above analysis, we have evaluated LOCATOR’s 
worst-case latency. The worst case has been tested by generating 
synthetic frames in which there is a maximum density of features, 
and their orientation is the one that implies the maximum pro-
cessing time by the replicas of the rBRIEF unit. The maximum 
density with non-maximal suppression enabled is 0.25 features 
per pixel, or one feature every two pixels per dimension. Fig. 15b 
shows the results of our experiments.



R. Taranco, J.-M. Arnau and A. González Journal of Parallel and Distributed Computing 174 (2023) 32–45

Fig. 15. (a) 99th Percentile Latency measured in Cycles Per Pixel (CPP) with all the optimizations proposed applied when processing the KITTI dataset. (b) LOCATOR speedup 
in the worst-case scenario compared to the baseline. The red dotted line indicates the minimum speedup threshold needed to reach our real-time consideration.
Fig. 16. Average number of penalty cycles due to bank conflicts when computing 
an rBRIEF descriptor. The results correspond to the latency incurred when accessing 
the baseline implementation with and without the GA optimization.

All versions of the accelerator get a substantial worst-case per-
formance speedup. Due to the high density of features, the pos-
sibility of processing the FAST extraction and the description gen-
eration in parallel is very advantageous. It explains the great re-
sults obtained by LOCATOR versions with more than one replica. 
LOCATOR-G8-R2 gets a speedup of 9.32×.

The red line in the Fig. 15b indicates the minimum speedup 
that must be obtained compared to the baseline performance to 
perform the ORB extraction in Full HD frames in 100 ms or less 
(that is, 10FPS). We consider this condition to classify the perfor-
mance as real-time. Therefore, some versions of LOCATOR can pro-
cess frames satisfying the real-time constraint even in the worst 
case. In addition, this real-time threshold is exceeded, leaving more 
slack for other tasks within the localization process.

Besides, Fig. 16 reports the effectiveness of the genetic algo-
rithm (Section 3.3.2) to reduce bank conflicts. The figure shows the 
number of penalty cycles due to bank conflicts. To compute the 
extra cycles, we define a lower bound for the latency estimated 
as the number of accesses of the bank with the most accesses 
(critical) and assume that the rest of the accesses can be done in 
parallel. The lower bound is not guaranteed to be a feasible global 
optimum, but it allows us to know how much room for improve-
ment could be. Our static scheduling technique (GA label in the 
figure) reduces the penalty cycles due to conflicts by 51.8% and 
40.9% for group sizes of 4 and 8 pairs, respectively, as shown in 
Fig. 16.

Fig. 17a shows the speedup achieved by the ORB GPU imple-
mentation and LOCATOR with respect to the CPU. All versions of 
42
the accelerator employ all the optimizations proposed in this work. 
Additionally, all systems achieve real-time performance.

The ORB GPU implementation obtains 5.81× speedup. Config-
urations LOCATOR-G1-R4 and LOCATOR-G1-R8 achieve speedups of 
4.8× and 8.1× respectively. On the other hand, LOCATOR-G4-R1
and LOCATOR-G8-R1 deliver 4.82× and 5.66× speedups, respec-
tively. Finally, LOCATOR-G8-R2 obtains a 8× speedup with respect 
to the CPU and a 1.37× speedup against the GPU. The accelera-
tor’s performance is higher as it has a pipeline tailored to the re-
quirements of the ORB feature extraction algorithm. Increasing the 
group size and rescheduling the pixel pairs for BRIEF computation 
based on static ordering provides significant benefits, alleviating 
the need to replicate hardware and its incurred cost. For exam-
ple, LOCATOR-G8-R2 is only 1.23% slower than LOCATOR-G1-R8 with 
four times fewer number of replicas. It also obtains 1.66× speedup 
compared with LOCATOR-G1-R4 with half replicas.

The accelerator significantly reduces power dissipation, as illus-
trated in Fig. 17b. This huge power reduction is due to several rea-
sons. First, the accelerator includes a specifically designed stream-
ing architecture for ORB extraction that exhibits high through-
put and large data reuse. Second, the improved rBRIEF unit with 
the combination of techniques exploited in this work further im-
proves power dissipation by reducing the required on-chip struc-
tures, avoiding conflicts between pairs of pixels, and decreasing 
the underlying data movements. The power reduction and the per-
formance speedup imply significant energy reductions. LOCATOR-
G8-R2 achieves a 14597×, 9609×, and 1.64× average reduction of 
energy consumption per frame compared with the CPU, the GPU, 
and the baseline accelerator, respectively. Moreover, LOCATOR-G8-
R2 consumes 7.7% less energy per frame on average than LOCATOR-
G1-R8, a more expensive configuration that presents a high repli-
cation degree.

To conclude, the experimental results show the benefits of the 
proposed architecture and the combination of techniques to op-
timize the rBRIEF unit. The impact of the new optimizations in 
energy consumption and area is negligible since the selective repli-
cation of ports counteracts their costs, obtaining a more energy-
efficient final result. Although the impact on average latency is 
modest, there is an improvement in tail latency and worst-case 
scenario latency without needing as high a replication level as in 
other versions of LOCATOR.

LOCATOR-G8-R2 is the best configuration tested in our exper-
iments since it is only 1.23% slower than LOCATOR-G1-R8, the 
most performant configuration tested, requiring four times fewer 
replicas. It also achieves significantly lower power and area foot-
print. The combination of optimizations presented translates into 
a 1.67× speedup against the CPU in the overall execution time. 
The accelerator achieves 9609× average reduction of energy con-



R. Taranco, J.-M. Arnau and A. González Journal of Parallel and Distributed Computing 174 (2023) 32–45

Fig. 17. (a) speedup achieved by the accelerator compared with the CPU. (b) Power dissipation of the CPU and the accelerator.

Table 3
Comparison with previous works. PPW stands for Performance Per Watt.

Work Algorithm Implementation Performance mW PPW

[21] FAST-BRIEF ASIC, 130 nm, 78.3 k gates, 128 kB SRAM 122 fps, FHD, 200 MHz 182 670
[38] ORB-like ASIC, 65 nm, 127 k gates, 205 kB MEM 135 fps, FHD, 200 MHz 87.5 1542
[35] ORB FPGA, Arria V GX, 449 DPS, 206000 LEs, 

231973 REGs, 1047 kB BRAM
110.9 fps, FHD, 230 MHz 5340 20

[5] ORB FPGA, Stratix V, 8 DPS, 25648 LUTs, 21791 
REGs, 1208 kB BRAM

67 fps, VGA, 203 MHz 4559 14

[13] FAST-BRIEF ASIC, 65 nm, 28 kB SRAM 2170 fps, VGA 1131 1918
[30] ORB FPGA, XCZU9EG, 33 DPS, 28168 LUTs, 9528 

REGs, 188 kB BRAM
108 fps, FHD, 200 MHz 873 123

[15] FAST+RS-BRIEF FPGA, XCZ7045, 111 DPS, 56954 LUTs, 
67809 REGs, 78 BRAM

55.87 fps, VGA, 100 MHz 1963 28

This work ORB ASIC, 45 nm, 32 kB SRAM 120 fps, FHD, 400 MHz 10.84 15260
sumption per frame compared with the ORB GPU implementation. 
Finally, LOCATOR-G8-R2 reduces 99th percentile latency an 82.77%
and obtains a speedup of 9.32× in the worst-case scenario com-
pared with the baseline accelerator, achieving real-time even in 
critical circumstances.

6. Related work

Table 3 provides a quantitative comparison with previous 
works. Our solution achieves high performance and shows the best 
energy efficiency, achieving a large improvement in Performance 
Per Watt (PPW).

Prior research used stream-based implementations on FP-
GAs. Work in [34,35] propose a streaming architecture similar 
to LOCATOR-G1-R4, without selective replication, the duplication 
cache, and the pipelining techniques, to extract ORB features using 
Harris-Stephens corners. Moreover, they propose an architecture 
for multilevel feature extraction with a replicated version of the 
accelerator per pyramid level. The rBRIEF bottleneck is solved 
through replicas with a different replication factor depending on 
the pyramid level. This solution employs an angle discretization 
of 64 values per sector. Our solution is different as it is based on 
an ASIC instead of an FPGA, and we avoid angle discretization to 
preserve accuracy.

Work in [22] proposes a streaming architecture for rBRIEF on 
FPGA, leveraging replication of window buffers to reduce latency 
of descriptor generation. Our proposal avoids replication to a large 
extent and exploits parallelism in the computation of the rBRIEF 
descriptor by processing multiple pairs of pixels at a time.

A SLAM accelerated solution is introduced in [15], proposing an 
architecture for feature extraction and matching on an FPGA while 
the rest of the components of SLAM run on a CPU. The authors 
propose a hardware-friendly pattern to generate BRIEF descriptors. 
43
This pattern reduces the rotation operation to a bit vector rota-
tion operation instead of a costly trigonometric calculation. The 
drawback of this approach is the accuracy degradation and the un-
predictable effects derived from changing the functional properties 
of rBRIEF.

Another architecture for ORB extraction is proposed in [29,30]. 
The architecture comprises a streaming front-end to generate the 
image scale pyramid and feature detection. The rBRIEF generation 
is carried out by a non-streaming back-end. This back-end consists 
of a four-issue super-scalar architecture that dynamically schedules 
points to compute the descriptor bits. However, a large discretiza-
tion of the angles is used. Our solution is different as we do not 
sacrifice accuracy to simplify the hardware implementation. We 
solve the issues with rBRIEF computation by combining a static 
ordering generated with a genetic algorithm, a duplication cache, 
selective ports replication, and pipelining.

7. Conclusions and future work

7.1. Conclusions

In this paper, we propose LOCATOR: a Low-power ORB aCcelera-
tor for AuTonomOus caRs for feature extraction, a key compo-
nent of camera-based localization for self-driving cars. We propose 
a novel solution to implement rBRIEF descriptor computation in 
hardware that, unlike previous proposals, achieves the same ac-
curacy as reference software implementations, avoiding accuracy 
loss for the sake of simpler hardware. The pipelined design of the 
rBRIEF unit evaluates multiple pairs of pixels simultaneously fol-
lowing an order based on static scheduling that minimizes the 
bank conflicts for any angle. LOCATOR hides the conflicts of pair 
accesses with pipelining and avoids them through a statically man-
aged duplication cache whose cost is mitigated by applying se-



R. Taranco, J.-M. Arnau and A. González Journal of Parallel and Distributed Computing 174 (2023) 32–45
lective replication of ports. Our experimental results show that 
LOCATOR achieves a speedup of 8× and a reduction in energy con-
sumption of 14597× and 9609×, with respect to high-end CPU 
and GPU platforms, respectively.

7.2. Future work

There are several extensions of the presented work whose ex-
ploration could be fruitful in future works. The accelerator pro-
posal only processes one tile of the Gaussian pyramid of images 
at a time. We believe that exploring the challenges and trade-
offs of the on-chip descriptor generation of the pyramid could 
be a promising line of research. There is also potential to study 
the communication pattern of the accelerator with the host. Fur-
thermore, future research should also consider the hardware pro-
grammability aspect more carefully. Programmability is a funda-
mental characteristic since it allows the hardware to be flexible 
and adaptable to algorithm changes. In an environment such as au-
tonomous driving undergoing intense development, there may be 
significant changes in the algorithms, the parameters used, and the 
input data scale. We believe that providing an instruction reper-
toire that abstracts the accelerator’s particularities could also be 
exciting.

CRediT authorship contribution statement

Raúl Taranco: Conceptualization, Investigation, Methodology, 
Software, Writing – original draft, Writing – review & editing. José-
Maria Arnau: Conceptualization, Methodology, Writing – original 
draft, Writing – review & editing. Antonio González: Conceptual-
ization, Funding acquisition, Methodology, Project administration, 
Supervision, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work has been supported by the CoCoUnit ERC Advanced 
Grant of the EU’s Horizon 2020 program (grant No 833057), the 
Spanish State Research Agency (MCIN/AEI) under grant PID2020-
113172RB-I00, the ICREA Academia program and the FPU grant 
FPU18/04413.

References

[1] G. Bradski, The OpenCV Library, Dr. Dobb’s J. Softw. Tools (2000).
[2] M. Calonder, V. Lepetit, C. Strecha, P. Fua, Brief: binary robust independent ele-

mentary features, in: European Conference on Computer Vision, Springer, 2010, 
pp. 778–792.

[3] L. Caltagirone, M. Bellone, L. Svensson, M. Wahde, LIDAR–camera fusion for 
road detection using fully convolutional neural networks, Robot. Auton. Syst. 
111 (2019) 125–131.

[4] Z. Chen, J. Zhang, D. Tao, Progressive lidar adaptation for road detection, 
IEEE/CAA J. Autom. Sin. 6 (2019) 693–702.

[5] W. Fang, Y. Zhang, B. Yu, S. Liu, FPGA-based orb feature extraction for real-
time visual SLAM, in: 2017 International Conference on Field Programmable 
Technology (ICFPT), IEEE, 2017, pp. 275–278.

[6] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, C. Gagné, DEAP: 
evolutionary algorithms made easy, J. Mach. Learn. Res. 13 (2012) 2171–2175.

[7] J. Fuentes-Pacheco, J. Ruiz-Ascencio, J.M. Rendón-Mancha, Visual simultaneous 
localization and mapping: a survey, Artif. Intell. Rev. 43 (2015) 55–81.
44
[8] B. Gao, H. Lang, J. Ren, Stereo visual slam for autonomous vehicles: a review, in: 
2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 
IEEE, 2020, pp. 1316–1322.

[9] A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving? The KITTI 
vision benchmark suite, in: 2012 IEEE Conference on Computer Vision and Pat-
tern Recognition, IEEE, 2012, pp. 3354–3361.

[10] D.E. Goldberg, R. Lingle, et al., Alleles, loci, and the traveling salesman problem, 
in: Proceedings of an International Conference on Genetic Algorithms and Their 
Applications, vol. 154, Lawrence Erlbaum, Hillsdale, NJ, 1985, pp. 154–159.

[11] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, T. Hamada, An open 
approach to autonomous vehicles, IEEE MICRO 35 (2015) 60–68.

[12] I.A. Kazerouni, L. Fitzgerald, G. Dooly, D. Toal, A survey of state-of-the-art on 
visual slam, Expert Syst. Appl. (2022) 117734.

[13] S.-K. Lam, G. Jiang, M. Wu, B. Cao, Area-time efficient streaming architecture 
for fast and brief detector, IEEE Trans. Circuits Syst. II, Express Briefs 66 (2018) 
282–286.

[14] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M.E. Haque, L. Tang, J. Mars, The ar-
chitectural implications of autonomous driving, ACM SIGPLAN Not. 53 (2018) 
751–766.

[15] R. Liu, J. Yang, Y. Chen, W. Zhao, ESLAM: an energy-efficient accelerator for real-
time ORB-SLAM on FPGA platform, in: Proceedings of the 56th Annual Design 
Automation Conference 2019, 2019, pp. 1–6.

[16] D. Lockhart, G. Zibrat, C. Batten, PyMTL: a unified framework for vertically 
integrated computer architecture research, in: 47th IEEE/ACM Int’l Symp. on 
Microarchitecture (MICRO), 2014, pp. 280–292.

[17] M. Magnusson, A. Lilienthal, T. Duckett, Scan registration for autonomous min-
ing vehicles using 3d-ndt, J. Field Robot. 24 (2007) 803–827.

[18] R. Mur-Artal, J.D. Tardos, ORB-SLAM2: an open-source SLAM system for monoc-
ular, stereo, and RGB-d cameras, IEEE Trans. Robot. 33 (2017) 1255–1262.

[19] R. Mur-Artal, J.D. Tardós, Visual-inertial monocular SLAM with map reuse, IEEE 
Robot. Autom. Lett. 2 (2017) 796–803.

[20] R. Mur-Artal, J.M.M. Montiel, J.D. Tardos, Orb-slam: a versatile and accurate 
monocular SLAM system, IEEE Trans. Robot. 31 (2015) 1147–1163.

[21] J.-S. Park, H.-E. Kim, L.-S. Kim, A 182 mw 94.3 f/s in full hd pattern-matching 
based image recognition accelerator for an embedded vision system in 0.13-um 
cmos technology, IEEE Trans. Circuits Syst. Video Technol. 23 (2012) 832–845.

[22] T.H. Pham, P. Tran, S.-K. Lam, High-throughput and area-optimized architecture 
for rBRIEF feature extraction, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 
27 (2018) 747–756.

[23] P.L. Rosin, Measuring corner properties, Comput. Vis. Image Underst. 73 (1999) 
291–307.

[24] E. Rosten, T. Drummond, Fusing points and lines for high performance tracking, 
in: ICCV, vol. 2, Citeseer, 2005, pp. 1508–1515.

[25] E. Rosten, T. Drummond, Machine learning for high-speed corner detection, in: 
European Conference on Computer Vision, Springer, 2006, pp. 430–443.

[26] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, ORB: an efficient alternative to 
sift or surf, in: 2011 International Conference on Computer Vision, IEEE, 2011, 
pp. 2564–2571.

[27] J.E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W.R. Davis, P.D. Franzon, 
M. Bucher, S. Basavarajaiah, J. Oh, et al., FreePDK: an open-source variation-
aware design kit, in: 2007 IEEE International Conference on Microelectronic 
Systems Education (MSE’07), IEEE, 2007, pp. 173–174.

[28] K. Sugiura, H. Matsutani, A universal lidar slam accelerator system on low-cost 
FPGA, IEEE Access 10 (2022) 26931–26947.

[29] R. Sun, P. Liu, J. Wang, C. Accetti, A.A. Naqvi, A 42fps full-hd orb feature extrac-
tion accelerator with reduced memory overhead, in: 2017 International Con-
ference on Field Programmable Technology (ICFPT), IEEE, 2017, pp. 183–190.

[30] R. Sun, J. Qian, R.H. Jose, Z. Gong, R. Miao, W. Xue, P. Liu, A flexible and ef-
ficient real-time orb-based full-hd image feature extraction accelerator, IEEE 
Trans. Very Large Scale Integr. (VLSI) Syst. (2019).

[31] Synopsys, Synopsys suite, https://www.synopsys .com/, T-2022-03-SP1 version.
[32] Y. Voronenko, M. Püschel, Multiplierless multiple constant multiplication, ACM 

Trans. Algorithms 3 (2007), 11–es.
[33] V.M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terpstra, 

S. Moore, Measuring energy and power with papi, in: 2012 41st International 
Conference on Parallel Processing Workshops, IEEE, 2012, pp. 262–268.

[34] J. Weberruss, L. Kleeman, T. Drummond, ORB feature extraction and matching 
in hardware, in: Australasian Conference on Robotics and Automation, 2015, 
pp. 2–4.

[35] J. Weberruss, L. Kleeman, D. Boland, T. Drummond, Fpga acceleration of mul-
tilevel orb feature extraction for computer vision, in: 2017 27th International 
Conference on Field Programmable Logic and Applications (FPL), IEEE, 2017, 
pp. 1–8.

[36] C. Wolf, Yosys open synthesis suite, http://www.clifford .at /yosys/, 0.2 version.
[37] X. Zeng, Z. Wang, Y. Hu, Enabling efficient deep convolutional neural network-

based sensor fusion for autonomous driving, arXiv preprint, arXiv:2202 .11231, 
2022.

[38] W. Zhu, L. Liu, G. Jiang, S. Yin, S. Wei, A 135-frames/s 1080p 87.5-mw binary-
descriptor-based image feature extraction accelerator, IEEE Trans. Circuits Syst. 
Video Technol. 26 (2015) 1532–1543.

http://refhub.elsevier.com/S0743-7315(22)00250-7/bibB97E16D42E8BD97DEC3274D56535153Es1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibD51749101DD08BEBF0DA532DBB6AC929s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibD51749101DD08BEBF0DA532DBB6AC929s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibD51749101DD08BEBF0DA532DBB6AC929s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib2B3D4D8D546008E33DCAD957E8D52761s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib2B3D4D8D546008E33DCAD957E8D52761s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib2B3D4D8D546008E33DCAD957E8D52761s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib911826A541AEA9E19872971F116F57BCs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib911826A541AEA9E19872971F116F57BCs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib51BFA35A6452DA300764DC2CDFAA2B68s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib51BFA35A6452DA300764DC2CDFAA2B68s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib51BFA35A6452DA300764DC2CDFAA2B68s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib14FF5582C2891F188297173D698E7013s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib14FF5582C2891F188297173D698E7013s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib1E16F1DC7FBCB2D611C936A4616EAB5Bs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib1E16F1DC7FBCB2D611C936A4616EAB5Bs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib40B8F7057F2F0539A46F839BA00E180Ds1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib40B8F7057F2F0539A46F839BA00E180Ds1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib40B8F7057F2F0539A46F839BA00E180Ds1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibC40B6C9F5AAEA71ED0B59553D16963A3s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibC40B6C9F5AAEA71ED0B59553D16963A3s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibC40B6C9F5AAEA71ED0B59553D16963A3s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib2B9C6C55E19C1D422F5851159A0AAA8Bs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib2B9C6C55E19C1D422F5851159A0AAA8Bs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib2B9C6C55E19C1D422F5851159A0AAA8Bs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib7C1EA0E4542B46CF04C300ABB765CA24s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib7C1EA0E4542B46CF04C300ABB765CA24s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibBB43E977F4F3228D80A1CD520875E6ACs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibBB43E977F4F3228D80A1CD520875E6ACs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibABE2022532C63FBAC2D65D042ABDE4CEs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibABE2022532C63FBAC2D65D042ABDE4CEs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibABE2022532C63FBAC2D65D042ABDE4CEs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib50D0873678A54A746492AA9651B23E9Es1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib50D0873678A54A746492AA9651B23E9Es1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib50D0873678A54A746492AA9651B23E9Es1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib588D4F69FC7EC417DD88945984E15E0Es1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib588D4F69FC7EC417DD88945984E15E0Es1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib588D4F69FC7EC417DD88945984E15E0Es1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib5A413C990AFE65E635835D06785F9A16s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib5A413C990AFE65E635835D06785F9A16s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib5A413C990AFE65E635835D06785F9A16s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib955CD0D9CB7FB891F50D5E06279D0668s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib955CD0D9CB7FB891F50D5E06279D0668s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib89825C66D0282D6527E28A3612DC0FABs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib89825C66D0282D6527E28A3612DC0FABs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib1E7BED4622EC20897F601E07942F74E4s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib1E7BED4622EC20897F601E07942F74E4s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib23D31B86DA23B3DB54DDB9448F4D6AA0s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib23D31B86DA23B3DB54DDB9448F4D6AA0s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib83ED318F66059AE787266C7AAE0E4850s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib83ED318F66059AE787266C7AAE0E4850s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib83ED318F66059AE787266C7AAE0E4850s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibA3A20A7E4A7718389DF32ACFD001C52Fs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibA3A20A7E4A7718389DF32ACFD001C52Fs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibA3A20A7E4A7718389DF32ACFD001C52Fs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib3F1748987BE12050B2B15D8E2A00A65Es1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib3F1748987BE12050B2B15D8E2A00A65Es1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibFFFA6E2FCD4AF0C88C5F5FE026BB2F99s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibFFFA6E2FCD4AF0C88C5F5FE026BB2F99s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib648D180F96691750B86A3B8850955ECFs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib648D180F96691750B86A3B8850955ECFs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibFD0547D8DB427E768A019DCBB999F0D1s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibFD0547D8DB427E768A019DCBB999F0D1s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibFD0547D8DB427E768A019DCBB999F0D1s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib56D4C657536CB1EE5084EEFFBCE919ADs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib56D4C657536CB1EE5084EEFFBCE919ADs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib56D4C657536CB1EE5084EEFFBCE919ADs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib56D4C657536CB1EE5084EEFFBCE919ADs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib048012096153254E614046735906DAB9s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib048012096153254E614046735906DAB9s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibBE214EE7DC49D221ACE11AE560EDF541s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibBE214EE7DC49D221ACE11AE560EDF541s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibBE214EE7DC49D221ACE11AE560EDF541s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib80C47EE8D8847FE56CEB5826DC436F5Cs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib80C47EE8D8847FE56CEB5826DC436F5Cs1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib80C47EE8D8847FE56CEB5826DC436F5Cs1
https://www.synopsys.com/
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibFAB900443DBDF015D986A7F124AE2CB6s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibFAB900443DBDF015D986A7F124AE2CB6s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib83B847EEB9B2346650604EA862F47068s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib83B847EEB9B2346650604EA862F47068s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib83B847EEB9B2346650604EA862F47068s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibCE03CCB9326ACD1A5893524C3AD19E53s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibCE03CCB9326ACD1A5893524C3AD19E53s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibCE03CCB9326ACD1A5893524C3AD19E53s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibEB72773EA70406D417A686B5C01E7477s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibEB72773EA70406D417A686B5C01E7477s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibEB72773EA70406D417A686B5C01E7477s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bibEB72773EA70406D417A686B5C01E7477s1
http://www.clifford.at/yosys/
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib8DC7E5D1E19E3983655DF52CF5111D8Ds1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib8DC7E5D1E19E3983655DF52CF5111D8Ds1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib8DC7E5D1E19E3983655DF52CF5111D8Ds1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib57DF364128BF38B305544B48FB5AC366s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib57DF364128BF38B305544B48FB5AC366s1
http://refhub.elsevier.com/S0743-7315(22)00250-7/bib57DF364128BF38B305544B48FB5AC366s1


R. Taranco, J.-M. Arnau and A. González Journal of Parallel and Distributed Computing 174 (2023) 32–45
Raúl Taranco received his BSc degree in Computer 
Engineering in 2017 from Universidad de Cantabria 
(UC) and his MSc degree in High-Performance Com-
puting in 2019 from Universitat Politècnica de
Catalunya (UPC). Since 2018, he is part of UPC’s Ar-
chitecture and Compilers research group, where he is 
currently pursuing his Ph.D. His research mainly fo-
cuses on energy-efficient and high-performance hard-
ware for autonomous driving systems. Contact him at 
taranco @ac .upc .edu.

Jose-Maria Arnau received Ph.D. on Computer 
Architecture from the Universitat Politècnica de
Catalunya (UPC) in 2015. Next, he worked as a post-
doctoral researcher at UPC in the area of energy-
efficient architectures for cognitive computing. He 
joined Semidynamics in 2021, where he works as a 
hardware engineer developing RISC-V cores. Contact 
him at jose .maria .arnau @upc .edu.
45
Antonio González (PhD 1989) is a Full Professor 
at the Computer Architecture Department of the Uni-
versitat Politècnica de Catalunya, Barcelona (Spain), 
and the director of the Architecture and Compilers 
research group. He was the founding director of the 
Intel Barcelona Research Center from 2002 to 2014. 
His research has focused on computer architecture 
and compilers, with a special emphasis on cognitive 
computing systems and graphics processors in recent 

years. He has published over 400 papers, and has served as associate ed-
itor of five IEEE and ACM journals, program chair for ISCA, MICRO, HPCA, 
ICS and ISPASS, and general chair for MICRO and HPCA. He is a Fellow of 
IEEE and ACM.

mailto:taranco@ac.upc.edu
mailto:jose.maria.arnau@upc.edu

	LOCATOR: Low-power ORB accelerator for autonomous cars
	1 Introduction
	2 Background
	2.1 Pyramid building
	2.2 FAST keypoint detection
	2.3 oFAST: FAST keypoint orientation
	2.4 Rotation-aware BRIEF descriptor generation

	3 Hardware accelerated ORB
	3.1 Hardware architecture overview
	3.2 Basic sliding window structure
	3.3 rBRIEF unit
	3.3.1 Exploiting parallelism
	3.3.2 Static pattern reordering
	3.3.3 Point intensity duplication cache
	3.3.4 Selective replication of ports
	3.3.5 Pipelining

	3.4 FAST detector unit
	3.5 Non-maximal suppression unit
	3.6 Gauss unit
	3.7 Rotation unit

	4 Evaluation methodology
	5 Experimental results
	6 Related work
	7 Conclusions and future work
	7.1 Conclusions
	7.2 Future work

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


