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ABSTRACT

This dissertation explores three key facets of software algorithms for custom

hardware ray tracing: primitive intersection, shading, and acceleration structure

construction. For the first, primitive intersection, we show how nearly all of the

existing direct three-dimensional (3D) ray-triangle intersection tests are mathe-

matically equivalent. Based on this, a genetic algorithm can automatically tune

a ray-triangle intersection test for maximum speed on a particular architecture.

We also analyze the components of the intersection test to determine how much

floating point precision is required and design a numerically robust intersection

algorithm. Next, for shading, we deconstruct Perlin noise into its basic parts

and show how these can be modified to produce a gradient noise algorithm

that improves the visual appearance. This improved algorithm serves as the

basis for a hardware noise unit. Lastly, we show how an existing bounding

volume hierarchy can be postprocessed using tree rotations to further reduce the

expected cost to traverse a ray through it. This postprocessing also serves as the

basis for an efficient update algorithm for animated geometry. Together, these

contributions should improve the efficiency of both software- and hardware-

based ray tracers.
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CHAPTER 1

INTRODUCTION

Automatic computers have been ray tracing geometric optics almost from the

beginning of their history [35]. These early computers performed ray tracing to

assist lens makers with designing new lenses. Before that, lens makers had

to resort to tedious hand computations to trace light paths through their lens

designs. One such early system took 115 seconds to trace a path through eleven

surfaces [36].

Ray queries, the core concept of ray tracing is relatively simple in principle:

for a given position and direction (a ray), look through the database and de-

termine the closest point along the ray that it intersects with the surface of an

object. Broadly speaking, rays in a ray tracer move through four phases: ray

generation, acceleration structure traversal, primitive intersection, and shading.

Ray generation creates the rays for each pixel in the image and determines their

origin and direction. Acceleration structure traversal produces candidate sets

of primitives that may have intersections with each ray. Primitive intersection

tests the rays against these candidates to determine the nearest intersection, if

any. Finally, shading determines how the ray’s state affects the appearance of

the image, and may in fact, generate new rays.

Rasterization is the major alternative to ray tracing. A rasterizer takes each

primitive and projects it onto the image. For each pixel that the primitive covers,

it checks to see if the primitive would be visible at that point (i.e., closer than

any opaque surfaces that might hide it) and if so it updates the pixel. The

classic rasterization method for polygons begins by clipping each polygon to the

viewing frustum, performs scanline conversion to determine spans of covered
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pixels and then uses the Z-buffer algorithm to test visibility at each pixel.

The Reyes algorithm [18] is a more advanced form of rasterization. It es-

timates the projected area on the image for each primitive. If the primitive is

completely outside of the image it discards it. If the area is above a certain

threshold then it recursively splits it and projects the halves onto the image.

When the pieces are small enough, it dices them into grids of subpixel sized

micropolygons and sends them to an A-buffer [14] to test their visibility and

add their contribution to the image.

In their purest forms, ray tracers and rasterizers are duals of each other:

a ray tracer’s outer loop processes pixels and its inner loop searches through

primitives. In a rasterizer these loops are exchanged: its outer loop processes

primitives and its inner loop searches through pixels.

Rasterization’s inner loop is highly efficient at updating pixels on the screen

which has made it the algorithm of choice for commercial graphics processing

units (GPUs). Its major drawback is that it can only directly handle local light

transport effects. There are ways of achieving effects such as shadows, planar

reflections, and so forth, but they can take significant effort and combining

these techniques is nontrivial. In contrast, a ray tracer is well tuned for the

searches through the primitives. This makes it a useful component for rendering

global effects such as specular reflections and refractions, soft shadows, diffuse

interreflections, caustics, and depth of field. Furthermore, ray tracing allows

all of these effects to be combined cleanly. Even systems based on rasterization

for the primary visibility method can benefit from the addition of ray tracing to

provide these global effects.

While such hybrid rendering systems are moderately common for software-

based batch renderers, they are quite uncommon in hardware accelerated in-

teractive systems; today’s GPUs are principally designed to rasterization and

require a number of tricks to render global effects. Extending this model into a

hybrid system by the addition of new circuitry designed to accelerate ray queries

should offer the best of both worlds.
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Custom hardware affords us the opportunity to rethink the ray tracing soft-

ware that we write. Are there ways to improve the speed of ray-triangle in-

tersections or acceleration structure traversal? Can we reduce the memory

traffic between the host system and the rendering device? We believe that

the answer is yes, and we will explore three areas for improvements: basic

ray-triangle intersection, noise-based procedural texturing, and the optimization

and maintenance of bounding volume hierarchy (BVH) trees. Each of these has

mathematical properties that offer an avenue of attack.

1.1 Thesis Statement
Exploring the mathematical structure of frequently performed operations in

ray tracing kernels can lead to improved algorithms for ray-triangle intersection

and scene BVH construction by employing stochastic optimization algorithms.

Analyzing Perlin noise in the frequency domain can lead to higher visual quality

for procedural textures by controlling aliasing and structured artifacts. These

algorithms improve the efficiency of software- and hardware-based ray tracers.

1.2 Motivation
The work on triangle intersection algorithms grew from dissatisfaction with

the existing direct 3D ray-triangle tests. With so many to choose from, how

could we be sure that we hadn’t missed a better one? After discovering the

fundamental mathematical equivalence of a good number of these test, the next

step was to try to explore as much as possible of the unified design space for

these algorithms.

The Utah Hardware Ray Tracing group’s TRaX project has been the principal

motivation for the work on noise algorithms and tree rotations. The research

into noise started from the observation that ray tracing hardware would likely

be limited by main memory bandwidth. One way to reduce that was to reduce

the amount of image-based textures by relying more on procedural texturing,

which led naturally to the desire for a hardware noise unit. The initial study

in this area led not to more efficient hardware, but rather to a slightly slower
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software algorithm that improved on the visual quality. The understanding

gained from this intermediate step finally led to the design of hardware unit.

The work on tree rotations began with the question of how close the surface

area heuristic (SAH) based BVH construction algorithm was to optimal and

whether there was any way to build a BVH and then feed back the infor-

mation derived from the construction of that tree to to produce a better one.

The subsequent work on tree rotations for animated scenes was done with the

goal of producing an update algorithm that could run efficiently on the TRaX

architecture.



CHAPTER 2

BACKGROUND AND RELATED WORK

The first part of this chapter provides an overview of interactive ray tracing.

Step-by-step it presents the source code for a small, but working interactive ray

tracer and explains how it works in terms of the basic algorithms used in ray

tracing.

Following this is a broad overview of related work on the general topics of

ray tracing and interactive ray tracing. The following three chapters will all also

discuss more specific areas of related work.

2.1 A Simple Ray Tracer
In order to illustrate in detail how interactive ray tracing works, we will

present and describe the code for Mirth, a miniature interactive ray tracer.

Though compact at approximately 350 lines of readable, portable C++, it can

render the 69,451 triangle Stanford Bunny model at up to 11 frames per second

on a 2.8 GHz Core 2 Duo processor with the bunny nearly filling the 512× 512

frame.

We will describe the code piece by piece. The first part simply includes the

headers and defines two data types:

1 #include <float.h>
2 #include <math.h>
3 #include <fstream>
4 #include <algorithm>
5 #ifdef __APPLE__
6 #include <GLUT/glut.h>
7 #else
8 #include <GL/glut.h>
9 #endif

10 using namespace std;
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11
12 struct vec {
13 float data[3];
14 inline vec() {}
15 inline vec(float const x, float const y, float const z) {
16 data[0] = x; data[1] = y; data[2] = z;

17 }

18 inline float &operator[](int const index) {
19 return data[index];
20 }

21 inline float const &operator[](int const index) const {
22 return data[index];
23 }

24 inline vec operator+(vec const &right) const {
25 return vec(data[0] + right[0],
26 data[1] + right[1],

27 data[2] + right[2]);

28 }

29 inline vec operator-(vec const &right) const {
30 return vec(data[0] - right[0],
31 data[1] - right[1],

32 data[2] - right[2]);

33 }

34 inline vec operator*(float const right) const {
35 return vec(data[0]*right, data[1]*right, data[2]*right);
36 }

37 inline vec minimum(vec const &right) const {
38 return vec(min(data[0], right[0]),
39 min(data[1], right[1]),

40 min(data[2], right[2]));

41 }

42 inline vec maximum(vec const &right) const {
43 return vec(max(data[0], right[0]),
44 max(data[1], right[1]),

45 max(data[2], right[2]));

46 }

47 inline float dot(vec const &right) const {
48 return data[0]*right[0] + data[1]*right[1] + data[2]*right[2];
49 }

50 inline vec cross(vec const &right) const {
51 return vec(data[1]*right[2] - data[2]*right[1],
52 data[2]*right[0] - data[0]*right[2],

53 data[0]*right[1] - data[1]*right[0]);

54 }

55 inline vec normalize() const {
56 return *this*(1.0f / sqrt(dot(*this)));
57 }

58 };

59
60 typedef vec rgb;
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The first data type, vec, is a three-dimensional vector class. Operator over-

loading is used for indexing components, vector addition, subtraction, and

scaling. It also defines methods for finding the component-wise minimum

and maximums, computing the dot product, computing the cross product, and

normalizing the vector to unit length.

The second type defined, rgb, is used to represents colors. It is just an alias

for the vector type.

Next, we have the code for handling the model to render:

62 struct tri {
63 vec edge_0, edge_1, corner;

64 rgb color;

65 inline tri() {}
66 } *tris;

67
68 int read_model(char const *filename) {
69 ifstream in(filename);

70 int num_tris;
71 in >> num_tris;

72 tris = new tri[num_tris];
73 for (int t = 0; t < num_tris; ++t) {
74 vec verts[3];

75 for (int v = 0; v < 3; ++v)
76 for (int c = 0; c < 3; ++c)
77 in >> verts[v][c];

78 tris[t].edge_0 = verts[1] - verts[0];

79 tris[t].edge_1 = verts[2] - verts[0];

80 tris[t].corner = verts[0];

81 for (int c = 0; c < 3; ++c)
82 in >> tris[t].color[c];

83 }

84 return num_tris;
85 }

Mirth uses triangles as its sole rendering primitive. Triangles, represented by

the tri class, are stored with two edges pointing away from a commmon corner.

They also store the color that the triangle should appear in. A model is simply

stored as a flat array of tri objects accessible the tris pointer.

The read model() function reads in the model to render from a simple text

file. The first number given in the file is an integer count of the number of
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triangles to follow. Each following triangle is given by twelve floating point

numbers: three for each of the three corners, followed by three more between

zero and one giving the red, green and blue values for the triangle’s color. The

read model() function allocates enough space to hold all of these, and points

tris to the list of triangles that it read.

Given that this is a ray tracer, we also need to define what a ray is:

87 struct ray {
88 vec orig, dir, inv;

89 int signs[3];
90 float t;
91 int tri_index;
92 rgb color;

93 };

Rays are defined parametrically with a point and a direction: p = o+ td. The

point, o, defines where the ray begins, and is called the origin. The direction,

d, determines which way the ray points towards. Points along the ray are

numbered by the ray parameter, t. The core function of a ray tracer is finding the

smallest positive t that marks a point on the surface of one of the objects in the

scene. The orig and dir fields store the ray origin and direction, respectively,

and the ray parameter of any intersection found is stored in t.

Figure 2.1 illustrates this. After testing this ray for intersections with the

scene geometry, point (a) at t = 2 would be returned as the closest intersection.

While point (b) with t = 3 would also be considered a “hit,” it would not be

returned because it was farther along the ray than (a). At point (c), the ray

comes close to the sphere but misses it. Intersection (d) at t = −1 would also be

reported as a miss because the point is behind the ray origin.

The inv vector and signs array store information about the ray’s direction

vector. The inv vector contains the reciprocals of each component of the ray

direction. The signs array corresponds to the direction and stores a one for

a negative component and a zero for a nonnegative component. These are

precomputed and cached to speed up the intersection tests.
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Figure 2.1. Geometry of a ray.

If the ray should hit a triangle, then in addition to updating t, the tri index

is updated with the index of the intersected triangle in the triangle list. The

shading process uses both of those to compute the color and intensity of the

light returned along the ray and stores the result in the color field.

Before that, however, we still have to find the closest intersection with a ray:

95 static float const epsilon = 0.001f;
96
97 inline void ray_tri_int(ray *rays, int const num_rays,
98 int const first, int const last) {
99 for (int ti = first; ti < last; ++ti) {

100 tri const &t(tris[ti]);
101 vec norm(t.edge_0.cross(t.edge_1));

102 for (int ri = 0; ri < num_rays; ++ri) {
103 ray &r(rays[ri]);

104 float det = r.dir.dot(norm);
105 vec offset(r.orig - t.corner);

106 vec cross(r.dir.cross(offset));

107 float u = t.edge_1.dot(cross);
108 float v = t.edge_0.dot(cross);
109 if (u*det < 0.0f || v*det > 0.0f || fabs(u - v) > fabs(det))
110 continue;
111 float recip = 1.0f / det;
112 float t_val = offset.dot(norm)*-recip;
113 if (t_val > epsilon && t_val < r.t) {
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114 r.t = t_val;

115 r.tri_index = ti;

116 }

117 }

118 }

119 }

To find the intersection of a ray with a triangle, p0p1p2, we can define points

in space as a weighted sum of the triangle’s vertices: p = αp0 + βp1 + γp2.

The weights, α, β and γ are known as barycentric coordinates and for points

on the triangle they are nonnegative and sum to one. The later constraint lets

us eliminate one of the barycentric coordinates: α = 1 − β − γ. Taking the

intersection as the point that lies on both the triangle and on the ray gives:

(1− β− γ)p0 + βp1 + γp2 = o + td.

A bit of rearrangement and expansion produces a 3× 3 linear system to solve:p1x − p0x p2x − p0x −dx
p1y − p0y p2y − p0y −dy

p1z − p0z p2z − p0z −dz

β
γ
t

 =

ox − p0x
oy − p0y
oz − p0z


We can solve this numerically using Cramer’s rule. For conciseness, we

compute the matrix determinants using the scalar triple product. From there we

simply check that the barycentric coordinates define a point inside the triangle

(i.e., β ≥ 0, γ ≥ 0, and β + γ ≤ 1), and that the ray parameter is positive. This

is the essence of the Möller-Trumbore [63] algorithm. Solving this linear system

efficiently and robustly is the topic of Chapter 3.

The code for ray tri int() takes a list of rays and a range of triangles, and

tests each ray against each triangle. When it finds a valid intersection closer than

the closest one already found, it updates the ray’s t and tri index fields. Note

that we make sure that the ray parameter is greater than a small constant, ε.

This prevents rays leaving a surface from immediately intersecting that surface

again. Without this, the ray tracer can produce an artifact known as surface

acne.
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Using ray tri int() to test every ray against every triangle is sufficient, but

slow. To make it quick, we need to use an acceleration structure. These are

auxillary data structures that are precomputed once for the model and then

used to quickly derive a small set of candidate triangles. Figure 2.2 shows the

three acceleration structures most commonly used today.

Bounding volume hierarchies, or BVHs [84], use a primitive that is cheap

to test for intersection, such as a box, as a proxy for a piece of the actual

model [17]. The proxy, or bounding volume, completely encloses its piece of

the model; if the ray misses the bounding volume, then it obviously misses the

actual model inside. If it hits, then we may need to test the ray against the

actual geometry. BVHs nest these bounding volumes within each other like

a set of matryoshka dolls. Together these form a tree of bounding volumes,

with the model’s primitives at the leaves. The BVH is an “object subdivision”

acceleration structure – every object belongs to a single leaf, but a point in space

can belong to multiple nodes.

Instead of subdividing the objects, however, we can form a tree by sub-

dividing the space itself. This is how the kd-tree [9], a “spatial subdivision”

structure works. The space itself is subdivided into smaller and smaller pieces

by axis-aligned planes. Each point in space belongs to a single node, but now

the scene primitives can belong to multiple nodes. To trace a ray, we find the

(a) BVH (b) kd-tree (c) Grid

Figure 2.2. Three common acceleration structures
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node that contains the ray’s origin and then walk the tree, moving up and down

as the ray crosses the planar partitions between regions. At each leaf we test the

ray for intersections with any associated primitives that overlap the region.

The grid [30] is another spatial subdivision acceleration structure, but it is

nonhierarchical. In a uniform grid, space is divided up into fixed, regular sized

cells that store a list of primitives that touch it. To trace a ray through the grid,

we simply step along the ray through the grid, cell by cell, beginning with the

cell closest to the origin. At each step, we look up any primitives attached to the

cell and test them against the ray for intersections.

Each of these makes the typical cost to intersect a ray with the scene sublinear

with respect to the number of primitives. This is one of the great advantages

that ray tracing has when scene database gets very large.

Of these three acceleration structures, Mirth uses the BVH with axis-aligned

boxes as the bounding volume. First, we will define a short helper function that

operates on the triangle list:

121 inline int partition(int first, int last,
122 int const axis, float const position) {
123 for (--first; ;) {
124 for (++first;
125 (tris[first].corner[axis] +

126 (tris[first].edge_0[axis] +

127 tris[first].edge_1[axis]) / 3.0f <= position &&

128 first < last);

129 ++first);

130 for (--last;
131 (tris[last].corner[axis] +

132 (tris[last].edge_0[axis] +

133 tris[last].edge_1[axis]) / 3.0f >= position &&

134 first < last);

135 --last);

136 if (first >= last)
137 return first;
138 tri const t(tris[first]);
139 tris[first] = tris[last];

140 tris[last] = t;

141 }

142 }
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This interesting function is almost identical to the partition function used in

the classic quicksort algorithm. Rather than a scalar pivot, however, it uses

an axis-aligned plane, specified by axis and position. After a call to this

partition() function, all of the triangles in the list between first, inclusive,

and last, exclusive, will be partitioned in-place into two groups based on which

side of an axis-aligned plane their centroids fall on. Triangles with centroids

having a smaller value on the axis will be moved towards the beginning of the

range, while those with a greater value will be moved towards the end. The

function returns the index of the triangle that begins this second group.

The partition() function is used by the code to construct the bounding

volume hierarchy:

144 struct node {
145 vec box[2];

146 unsigned int index;
147 unsigned int last : 29;
148 unsigned int axis : 2;
149 bool leaf : 1;
150 } *bvh;

151
152 static int const max_tris_per_leaf = 4;
153
154 int build_bvh(int const index, int const size,
155 int const first, int const last) {
156 node &n(bvh[index]);

157 n.box[0] = tris[first].corner;

158 n.box[1] = tris[first].corner;

159 for (int t = first; t < last; ++t) {
160 n.box[0] = n.box[0].minimum(tris[t].corner)

161 .minimum(tris[t].corner + tris[t].edge_0)

162 .minimum(tris[t].corner + tris[t].edge_1);

163 n.box[1] = n.box[1].maximum(tris[t].corner)

164 .maximum(tris[t].corner + tris[t].edge_0)

165 .maximum(tris[t].corner + tris[t].edge_1);

166 }

167 if (last - first < max_tris_per_leaf) {
168 n.index = first;

169 n.last = last;

170 n.leaf = true;
171 return size;
172 }

173 vec diag(n.box[1] - n.box[0]);

174 n.axis = ((diag[0] > diag[1] &&
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175 diag[0] > diag[2]) ? 0 :

176 (diag[1] > diag[2]) ? 1 : 2);

177 float position = (n.box[0][n.axis] + n.box[1][n.axis])*0.5f;
178 int split = partition(first, last, n.axis, position);
179 if (split == first || split == last)
180 split = (first + last) / 2;

181 n.index = size;

182 n.leaf = false;
183 int new_size = build_bvh(size, size + 2, first, split);
184 new_size = build_bvh(size + 1, new_size, split, last);

185 return new_size;
186 }

The BVH construction is recursive. To build a node for a range of triangles,

we start by finding the smallest axis-aligned box that contains all of the triangles.

The box is represented by a pair of opposite corners, stored in the box. If there

are fewer than max tris per leaf in this node, we flag it as a leaf, and store

the indices to the triangles in index and last.

Otherwise, we find and store the axis that the box is longest in, locate the

box’s midway point along that axis, and call partition() to subdivide the

triangles into two sets – one to each side of that midway point. We mark the

node as an interior node, set index to the index of the next free BVH node

and recursively call build bvh() to build the child nodes for each group. If the

partition function failed to subdivide the group for some reason, it arbitrarily

splits the triangle list in half and hopes to do better on the children.

This particularly strategy for subdividing the primitives at a node is some-

times called the longest-axis spatial-median split algorithm. It is quite simple

and moderately effective. Chapter 5 will discuss a more sophisticated BVH

construction strategy known as the surface area heuristic.

The next function, ray box int() tests a set of rays against a node to see if

any of them intersect its box:

188 inline bool ray_box_int(ray *&rays, int &num_rays, int const index) {
189 node const &n(bvh[index]);
190 for (int ri = 0; ri < num_rays; ++ri) {
191 ray const &r(rays[ri]);
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192 float max_min = epsilon;
193 float min_max = r.t;
194 float x_min = (n.box[r.signs[0]][0] - r.orig[0])*r.inv[0];
195 float x_max = (n.box[1 - r.signs[0]][0] - r.orig[0])*r.inv[0];
196 float y_min = (n.box[r.signs[1]][1] - r.orig[1])*r.inv[1];
197 float y_max = (n.box[1 - r.signs[1]][1] - r.orig[1])*r.inv[1];
198 float z_min = (n.box[r.signs[2]][2] - r.orig[2])*r.inv[2];
199 float z_max = (n.box[1 - r.signs[2]][2] - r.orig[2])*r.inv[2];
200 if (min_max < x_min || x_max < max_min)
201 continue;
202 min_max = min(min_max, x_max);

203 max_min = max(max_min, x_min);

204 if (min_max < y_min || y_max < max_min)
205 continue;
206 min_max = min(min_max, y_max);

207 max_min = max(max_min, y_min);

208 if (min_max >= z_min && z_max >= max_min) {
209 rays += ri;

210 num_rays -= ri;

211 return true;
212 }

213 }

214 return false;
215 }

Each of face of the box defines a plane, and each of the planes defines a

half-space. The box is simply the intersection of all six half spaces. If we think

of the planes in terms of three pairs, one for each axis, the intersection of a

pair of half-spaces forms a “slab” in space. A ray that intersects the slab will

enter by one face and leave from the other, defining an interval of ray parameter

values where it is inside the slab. The intersection of the three intervals gives the

interval in which the ray passes inside the box. If the intersection is null then

the ray misses the box. This implementation also test to see that intersection

overlaps the interval between epsilon and the preexisting closest hit. If the

ray’s intersection with the box is behind the origin, or if the closest point is

farther than a hit we have already found, there is no need to pursue that node

of the BVH further.

The implementation used here is based on the Williams et al. [104] algorithm.

The implementation here puts it in a loop over a set of rays and borrows an idea

from Wald et al. [97] – when it finds a ray that strikes the box, it reduces the
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range of rays that it was passed by the number of rays that failed to hit it. This

way, it will not waste any more time testing those rays again as it descends the

BVH during traversal:

217 inline void intersect(ray *rays, int num_rays, int const index) {
218 if (!ray_box_int(rays, num_rays, index))
219 return;
220 node const &n(bvh[index]);
221 if (n.leaf)
222 ray_tri_int(rays, num_rays, n.index, n.last);

223 else {
224 intersect(rays, num_rays, n.index + rays[0].signs[n.axis]);

225 intersect(rays, num_rays, n.index + 1 - rays[0].signs[n.axis]);

226 }

227 }

With the machinery for ray/triangle and ray/box intersection set up before,

traversing a ray through the BVH is almost trivial. The intersect() function

simply recurses throught the BVH. If all of the rays miss the box around the node

then it stops there and returns. Otherwise, depending on whether the node is a

leaf or not, it either tests the rays against the triangles, or recursively calls itself

on the two children. Note that it checks the sign of one of the components of

the ray direction to determine which to visit first. If it can find an intersection

in the nearer child, it may not have to decend much into the further child.

Once intersect() returns, all of the rays will have had their t and tri index

fields set to the closest valid intersection. The next step is to use this information

to compute a color for each ray:

229 inline void set_ray(ray &r, float const max_t,
230 vec const &orig, vec const &dir) {
231 r.t = max_t;

232 r.orig = orig;

233 r.dir = dir;

234 r.inv = vec(1.0f / dir[0], 1.0f / dir[1], 1.0f / dir[2]);

235 for (int c = 0; c < 3; ++c)
236 r.signs[c] = dir[c] < 0.0f;

237 }

238
239 vec light(0.9f, 0.9f, 3.0f);
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240
241 static int const packet_width = 2;
242
243 inline void shade(ray *rays, int const num_rays) {
244 int map[packet_width*packet_width], num = 0;
245 ray s[packet_width*packet_width];

246 for (int ri = 0; ri < num_rays; ++ri) {
247 ray &r(rays[ri]);

248 r.color = rgb(0.0f, 0.0f, 0.0f);

249 if (r.t >= FLT_MAX)
250 continue;
251 tri const &t(tris[r.tri_index]);
252 r.color = t.color*0.1f;

253 vec norm(t.edge_0.cross(t.edge_1));

254 vec hit_pos(r.orig + r.dir*r.t);

255 vec light_dir(light - hit_pos);

256 float illum = norm.dot(light_dir);
257 if (illum < 0.0f)
258 continue;
259 illum /= sqrt(light_dir.dot(light_dir))*sqrt(norm.dot(norm));

260 map[num] = ri;

261 set_ray(s[num], 1.0f, hit_pos, light_dir);

262 s[num++].color = t.color*(illum*0.9f);

263 }

264 intersect(s, num, 0);

265 for (int ri = 0; ri < num; ++ri)
266 if (s[ri].t >= 1.0f - epsilon)
267 rays[map[ri]].color = rays[map[ri]].color + s[ri].color;

268 }

The shade() function implements the Lambertian model,

C(Kd max(0,
L ·N
|L||N| ) + Ka),

where C is the base color of the surface defined by the hit triangle’s color

field, N is the triangle’s surface normal, and L is the vector from the hit point

towards the light source at position light. The Kd coefficient, fixed at 0.9 here,

controls the contribution from the diffuse term, and the Ka coefficient, fixed at

0.1, controls the ambient.

While this program uses a constant surface color, C, for each triangle, a more

advanced renderer would use the barycentric coordinates of the triangle at the

intersection to vary the color across the triangle. Procedural texturing computes
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the color algorithmically and often uses a noise function as a building block.

Noise functions will be discussed in detail in Chapter 4.

The implementation here is relatively straight forward, looping over each ray

and computing the terms. The only unusual part is that for each ray whose hit

point faces towards the light source, we use set ray() to build a new ray from

the hit point towards the light source and record the diffuse term in new ray.

Then we call intersect() on this new bundle of rays and for each of these that

makes it to the light source without an intersection, we add the stored diffuse

term to the original ray’s color. This way, we trace additional rays to perform

the visibility test for hard shadows.

The packet width constant is only used by shade() to ensure that it statically

allocates enough space to be able trace a shadow ray for each ray in the group

that it recieves from the render() function:

270 vec eye(0.0f, 0.0f, 0.0f), look_at(0.02f, 0.0f, 0.1f);

271 float yaw(0.0f), pitch(0.0f), track(0.3f), fov(35.0f);
272 rgb *image;

273 int mouse_x, mouse_y, buttons;
274
275 static int const image_size = 512;
276 static int const packets_per_row = image_size / packet_width;
277
278 void render() {
279 light = vec(light[0]*cos(0.1f) + light[1]*sin(0.1f),

280 light[0]*-sin(0.1f) + light[1]*cos(0.1f),

281 light[2]);

282 float scale = 2.0f*tan(0.5f*fov*3.14159265349f/180.0f) / image_size;
283 vec w((look_at - eye).normalize());

284 vec u(w.cross(vec(0.0f, 0.0f, 1.0f)).normalize()*scale);

285 vec v(u.cross(w).normalize()*scale);

286 vec c(w - (u + v)*image_size*0.5f);

287 #pragma omp parallel for schedule(dynamic)
288 for (int pi = 0; pi < packets_per_row*packets_per_row; ++pi) {
289 ray rays[packet_width*packet_width];

290 int y = pi/packets_per_row*packet_width;
291 int x = pi%packets_per_row*packet_width;
292 for (int py = y, r = 0; py < y + packet_width; ++py)
293 for (int px = x; px < x + packet_width; ++px, ++r)
294 set_ray(rays[r], FLT_MAX, eye, c + u*px + v*py);

295 intersect(rays, packet_width*packet_width, 0);

296 shade(rays, packet_width*packet_width);

297 for (int py = y, r = 0; py < y + packet_width; ++py)
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298 for (int px = x; px < x + packet_width; ++px, ++r)
299 image[py*image_size + px] = rays[r].color;

300 }

301 glDrawPixels(image_size, image_size, GL_RGB, GL_FLOAT, image);

302 glFlush();

303 }

The render() function simulates a pinhole camera, controlled by the eye

point, look at point, and field-of-view angle (fov) variables. Using these, it

essentially sets up an orthogonal basis that maps pixel positions in the image to

ray directions.

The image itself is square with image size pixels to a side. In turn, the

image is subdivided into a much finer group of set of squares, packet width

pixels to a side. For each of these small squares, render() assembles a small

group, or “packet,” of rays [100, 101] which it sends to the intersect() and

shade() phases. Figure 2.3 shows how the packet is assembled.

Processing rays in packets like this allows an interactive ray tracer to reduce

overhead, improve cache efficiency, and exploit instruction level parallelism. For

eye

fov

look at

c

w

uu
vv

image width
packet width

Figure 2.3. Pinhole camera model and assembly of a ray packet.
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example, the ray tri intersect routine only needs to recompute a triangle’s

normal once per packet rather than once per ray. If the packets have other

properties such as a common origin or common direction, even greater benefits

are possible, as discussed in Chapter 3. More sophisticated ray tracers can also

cull entire packets against nodes in the acceleration structure [83, 11], greatly

reducing the incremental cost to adding additional rays to a packet.

Packets also improve cache efficiency by ammortizing the cost of a cache

miss over all of the rays in the packet. Provided that the rays in the packet

are “coherent,” if any of the rays needs to use an acceleration structure node

or scene primitive, there’s a good chance that other rays in the packet will too.

After the first ray in the group touches an acceleration structure node, or a scene

primitive, it will be available in the cache for the rest of the group to use.

While Mirth uses simple scalar loops to process each ray in its packets, more

sophisticated systems take advantage of modern processor’s vector instruction

sets such as SSE or Altivec to perform the computations on the rays with fine-

grained instruction level parallelism.

Most interactive ray tracers also use coarser, thread level parallelism where

each rendering thread processes packets as units of work. Ray tracing is con-

sidered “embarassingly parallel”; normally no communication between threads

is necessary other than assigning packets and synchronizing between frames.

This allows it to scale efficiently with multiple cores. In this case, Mirth uses

OpenMP [70] with dynamic scheduling to handle threading and the distribution

of work.

The last bit of code in Mirth just handles user interaction, sets up OpenGL

and GLUT and puts everything into action:

305 void reshape(int const width, int const height) {
306 glViewport(0, 0, image_size, image_size);

307 }

308
309 void mouse(int const button, int const state,
310 int const x, int const y) {
311 if (state == GLUT_DOWN && button == GLUT_LEFT_BUTTON)



21

312 buttons |= 1;

313 else if (state == GLUT_DOWN && button == GLUT_RIGHT_BUTTON)
314 buttons |= 2;

315 if (state == GLUT_UP && button == GLUT_LEFT_BUTTON)
316 buttons &= ˜1;

317 else if (state == GLUT_UP && button == GLUT_RIGHT_BUTTON)
318 buttons &= ˜2;

319 mouse_x = x;

320 mouse_y = y;

321 }

322
323 void motion(int const x, int const y) {
324 if (buttons & 1) {
325 yaw += (x - mouse_x)*0.01f;

326 pitch += (y - mouse_y)*0.01f;

327 } else if (buttons & 2)
328 track += (y - mouse_y)*0.01f;

329 eye = vec(cos(pitch)*sin(yaw),

330 cos(pitch)*cos(yaw),

331 sin(pitch))*track + look_at;

332 mouse_x = x;

333 mouse_y = y;

334 }

335
336 int main(int argc, char **argv) {
337 glutInit(&argc, argv);

338 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE);

339 glutInitWindowSize(image_size, image_size);

340 glutCreateWindow("Mirth");

341 glutIdleFunc(glutPostRedisplay);

342 glutDisplayFunc(render);

343 glutReshapeFunc(reshape);

344 glutMouseFunc(mouse);

345 glutMotionFunc(motion);

346 int num_tris = read_model(argv[1]);
347 bvh = new node[num_tris*2];
348 build_bvh(0, 1, 0, num_tris);

349 image = new vec[image_size*image_size];
350 motion(0, 0);

351 glutMainLoop();

352 }

2.2 Noninteractive Ray Tracing
The initial efforts to apply ray tracing to visual synthesis produced systems

were far too slow for interactive use. The first of these was by Appel [5], who

used it to add half toning to wireframe drawings of polygonal surfaces produced
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with a plotter. His technique sampled the image plane along a half tone pattern,

tracing rays to determine the hit point on the closest polygon and then tracing

an additional ray to determine whether the point was in shadow. Based on this,

the plotter drew a plus mark of variable size, depending on the amount of light

received at the hit point.

Goldstein and Nagel [33] eliminated the wireframe and relied purely on

ray tracing for hidden surface removal. Their system extended ray tracing

beyond polygons to other primitives such as spheres, cylinders and cones. These

primitives could be combined into more complex objects through combinatorial

solid geometry (CSG). Instead of using a plotter, a high resolution grey scale

raster CRT displayed the computed images in the frame.

Kay and Greenberg [45] implemented refraction for transparent surfaces

through an early hybrid method that combined rasterization with simple ray

tracing. Their method rasterized the surfaces in the scene in order from back to

front. When rendering a transparent surface the technique used ray tracing and

projection to determine the image space offset due to refraction, and mapped the

current color from the offset point in the image buffer to pixel being rendered.

Whitted [103] demonstrated the first fully general rendering algorithm based

on recursive ray tracing with global scene information. Instead of simply tracing

a primary ray into the scene and terminating when the nearest intersection

was found, his algorithm could trace additional rays starting from the inter-

section point to determine light obstructions for shadows, specular reflection

and specular refraction. Specular rays could, in turn, cause additional shadow

and specular rays to be traced. With this, he introduced the concept of the ray

tree, a set of rays that contribute illumination to a single sample.

Cook et al. [20] introduced distribution ray tracing by extending Whitted’s

ray tracing algorithm with Monte Carlo techniques. By stochastically sampling

in time and space according to various distributions they were able to extend

ray tracing to incorporate the effects of motion blur, depth of field, soft shadows,

translucency and glossy reflections. More importantly, distribution ray tracing
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could combine all of these effects quite cleanly.

Kajiya [44] further extended this idea with the introduction of path tracing.

This technique collapsed the ray tree by probabilistically following a single path

through it from the eye point to the light sources. By continuing to follow light

paths that bounced off of diffuse surfaces path tracing could compute diffuse

interreflections in addition to the effects made possible with distribution ray

tracing. This made path tracing a rather general technique for generating images

that account for most of the global illumination within a scene. Its primary

limitations are firstly that it is normally quite slow, requiring many samples

per pixel to converge to an image that is free from the appearance of noise.

Secondly, it can only account for effects of geometric optics; polarization and

diffraction are still ignored. Related techniques such as bidirectional ray trac-

ing [53], Metropolis light transport [93], and adjoint photons [64] can improve

the statistical efficiency of path tracing, but do not increase the range of images

that it can render.

2.3 Interactive Ray Tracing
As the speed and realism of ray tracing-based rendering systems increased,

attention also turned towards making it interactive. One early attempt at this

was made by Muuss [67] in 1992, who exploited the embarrassingly parallel

nature of ray tracing to distribute the rendering of each frame across a a single

12-CPU node of an SGI Power Challenge Array supercomputer. This allowed

him to achieve up to 1.49 fps for a small CSG scene with six solids in it, and 0.61

fps for a scene with 1126 solids. While borderline interactive, these experiments

suggested that truly interactive ray tracing would soon be possible – at least on

expensive supercomputers.

Three years later, Parker et al. [73] created a truly interactive ray tracing

system. Through careful implementation of a brute-force ray tracing system,

they were able to achieve approximately 10 fps while rendering isosurfaces of

the full resolution (1GB) Visible Woman dataset on an SGI Reality Monster. This
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system directly intersected rays against the isosurface and took advantage of

the superior scaling of ray tracing on very large data sets to outperform what

would have been possible through conventional polygonal isosurface extraction

and rasterization at the time.

Subsequent work by Parker’s group [72] extended their system into a more

general, full-featured Whitted-style ray tracer, called *-Ray or RTRT. This ex-

tended system supported a much larger set of primitives including NURBS

surfaces, quadrics and polygonal meshes. It could also render using a variety

of material that included diffuse, metal, dielectric and coupled models. This

system could render 512 × 512 images of a dataset consisting of 35 million

spheres at approximately 15 fps, though this occupied 60 CPUs of an SGI Origin

2000.

While these systems succeeded at realizing interactive ray tracing, they re-

quired large, expensive shared memory supercomputers. Subsequent efforts

began to look at making interactive ray tracing possible with inexpensive clus-

ters of workstations. Wald’s group [100, 99] produced a distributed system that

subdivided the scene database (including geometry, acceleration structure, and

shading data) into pieces called voxels. Each cluster node explicitely requested

voxels from the central server as needed and managed its own cache of them.

In order to hide latency, a node suspended rays that induced voxel request and

continued processing other rays until the data arrived.

The DIRT project from DeMarle et al. [22] extended Parker’s RTRT to also

run on clusters, allowing for the visualization of volume datasets too large to

fit within the memory of a single workstation. Where Wald’s system used a

central server to service request for voxels, DIRT divided the scene data evenly

among the cluster nodes and used a peer-to-peer style system to pass scene data

between them. Unlike the explicit cache management used by Wald’s system,

DIRT added a software distributed shared memory system to transparently

generate and process the request for blocks of data. This automatic approach

sacrificed the ability to hide the latency for these requests, however.
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Wald’s group [101] had also demonstrated that with careful attention to ray

coherence, even a single workstation could ray trace at interactive frame rates

for some scenes. Combining small groups of rays into “packets” allowed such a

ray tracer to exploit the instruction level parallelism offered by Intel’s Streaming

SIMD Extensions (SSE) and to improve cache use by ammortizing the cost of

cache misses over multiple rays. Thus, ray coherence could lead to more efficient

use of hardware resources.

Dmitriev et al. [24] then showed that coherence could also lead to improve-

ments in algorithmic efficiency. In particular, a tight “beam” or frustum bound-

ing the rays in a packet could be used as a proxy for rapid rejection tests when

intersecting a ray with a triangle. If the frustum for a set of rays falls entirely

to beyond one of the triangle’s edges, then there is no need to continue testing

individual rays in the proxied group against the triangle. While ray tracing has

traditionally been considered to scale sublinearly with the size of the scene and

linearly with the size of the display, ray coherence could allow for sublinear

scaling with the size of the display or the density of the samples as well.

Reshetov et al. [83] extended this idea to acceleration structure traversal.

They achieved a very fast kd-tree [9] traversal algorithm for coherent ray packets

by the culling branches of the kd-tree that fell outside of the ray frusta. Because

the test between the kd-tree node and the ray frusta can be computed in constant

time, this leads to a system that scales very well.

Wald et al. [97] used a similar idea for traversing bounding volume hierar-

chies [84]. Instead of bounding the rays in the packet with frusta, they computed

intervals for each component of the ray’s origins and directions and then used

interval arithmetic [11] to perform the culling test. The effect is the same,

however, in that the traversal algorithm can cull complete sub branches without

having to check each individual ray against the node.

The third major acceleration structure, uniform grids [30], have also seen

significant benefit from coherent ray tracing. Wald et al. [98] developed an

algorithm that used the frustum bounding a packet to choose which cell to
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traverse, and checked the primitives in those cells against all rays in the packet.

With efficient implementation [101] of mail boxing [50], plus Dmitriev’s SIMD

triangle culling, they were able to see significant gains over tracing single rays

at a time when the rays were coherent.

2.4 Custom Hardware for Interactive Ray Tracing
Custom hardware for interactive ray tracing is somewhat more rare. Schmit-

tler et al. [85, 86] proposed the first major design, the SaarCOR, which led to

the Ray Processing Unit (RPU) [105]. The first, SaarCOR, used fixed function

hardware. The RPU lifted this restriction and offered programmable material,

geometry and lighting computations while maintaining dedicated function units

for acceleration structure traversal. The RPU offered four-way vector arithmetic,

similar to Intel’s SSE, and processed each ray in its own thread. Threads were

grouped together into synchronous “chunks” and executed in lock step in SIMD

fashion. Multiple chunks, however, could be processed independently.

Fender and Rose [28] also developed a fix-function system for an FPGA.

Their system used triangles as the primitive, with an unusual three-level BVH

of oriented bounding boxes as the acceleration structure. Their system does not

appear to have used any kind of threading, though the hardware ray-triangle

intersector could intersect one triangle with three rays every three cycles.

The Copernicus architecture [34] (designed to run the Razor software [23])

is completely programmable and offers a four-wide SIMD instruction set based

on SSE. Each in-order core would run two to eight threads, and eight of these

cores would form a tile with a shared L2. Govindaraju et al. estimate that 16 of

the tiles could fit on a 240 mm2 chip in a 22 nm technology and reach 74 million

rays per second when run at 4GHz.

The TRaX [91] architecture takes a somewhat different approach. It com-

pletely dispenses with any sort of SIMD and instead relies completely on ef-

ficient execution of large numbers of threads. By reverting to a single-ray

programming model, it loses some of the speed benefits offered by ray packets
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for primary rays. However, it makes up for this by handling secondary rays

nearly as efficiently as primary rays – something that packet and SIMD style ray

tracers struggle with [52]. Spjut et al. estimate that the TRaX architecture could

reach 50 million rays per second whith a 500 MHz 200 mm2 chip in a 130 nm

process and 177 million rays per second with a 65 nm process.

In the commercial realm, Caustic Graphics has recently demonstrated a ray

tracing accelerator [16]. Relatively little about the architecture has been revealed

other than that it currently relies on the CPU to perform the shading. It currently

exist in FPGA form.

Intel’s Larrabee architecture, though not specifically designed for ray trac-

ing has nonetheless been designed with interactive ray tracing in mind as an

important application [87]. Larrabee uses a set of in-order x86 cores connected

via a ring network to each other and to a set of fixed function units to texture

sampling. Rather than the standard 4-wide SSE, however, Larrabees cores use

extended 16-wide vector instructions. Seiler et al. estimate that with 32 cores

running at 1GHz, Larrabee could achieve 70 frames per second on a scene

requiring four million rays per frame.



CHAPTER 3

OPTIMIZING RAY-TRIANGLE INTERSECTION

VIA AUTOMATED SEARCH

This work is based on an earlier work c© 2006 IEEE. Reprinted, with permission,

from Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing, Optimizing

Ray-Triangle Intersection via Automated Search, Andrew Kensler and Peter Shirley.

In this chapter, we examine existing direct 3D ray-triangle intersection tests

(i.e., those that do not first do a ray-plane test followed by a 2D test) for ray trac-

ing triangles and show how the majority of them are mathematically equivalent.

We then use these equivalencies to attempt faster intersection tests for single

rays, ray packets with common origins, and general ray packets. We use two

approaches, the first of which counts operations, and the second of which uses

benchmarking on various processors as the fitness function of an optimization

procedure. Combining the approaches by using the operation-counting method

to further optimize the code produced via the fitness function produces an

efficient ray-triangle test for ray packets.

Following that, we turn from designing a ray-triangle test for pure speed to

designing one for numerical robustness. We begin with an exploration of how

the size and distribution of bits in a floating point format affects the computa-

tions in direct intersection algorithms. Based on this, we design an extremely

stable ray-triangle intersection algorithm and show how it produces renderings

with fewer artifacts at very lower floating point precisions.
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3.1 Introduction
Ray-object intersection is one of the kernel operations in any ray tracer [103],

and a different function is implemented for each type of geometric primitive.

Triangles are one of the most ubiquitous rendering primitives in use. They

typically find use as a “lowest common denominator” between modelers and

renderers, due to their simplicity, uniformity and the ease of tessellating more

complex primitives into triangles. Many renderers even use triangles as their

sole primitives for these reasons. Thus, high performance when rendering

triangles is a key feature in nearly every renderer.

There are three basic classes of ray-triangle tests commonly in use (see [59]

for a thorough list and empirical comparison for single ray tests). The first

intersects the ray with the plane containing the triangle, and then does a 2D

point-in-triangle test in the plane of the triangle (e.g., [95, 8]). The second

does a direct 3D test based on some algebraic or geometric observation such

as provided in Cramer’s rule (e.g., Möller-Trumbore [63]), matrix inversion [6]),

ratios of tetrahedral volumes [71], triple products, ratios of determinants, or

Plücker coordinates (e.g., [2]). A third class that is uncommon today recursively

subdivides the triangle to determine if the ray hits the triangle and where [94].

Dammertz and Keller [21] used a recursive subdivision scheme to compute

numerically robust intersection. This chapter examines only the direct 3D test,

and observes that “under the hood” these methods are all taking ratios of

volumes, and differ mainly in what volumes are computed.

For these 3D methods we optimize ray-triangle intersection in two different

ways. First we do explicit operation counting for the cases of single rays, packets

of rays with common origins, and general packets of rays. Next we do code eval-

uation by letting a genetic algorithm modify the code using profiling on various

computers as a fitness function. The implementation is based on SIMD and ray

packets to improve the chances of relevance for modern implementations.
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3.2 Signed Volumes
The signed area of the parallelogram shown in the left of Figure 3.1 is given

by

area =

∣∣∣∣xa xb
ya yb

∣∣∣∣ .

If we were to switch a and b, the sign would change. The sign is positive when

the second vector is in the counterclockwise direction from the first. There is

a similar signed volume rule for parallelepipeds such as the one shown in the

right of Figure 3.1:

volume =

∣∣∣∣∣∣
xa xb xc
ya yb yc
za zb zc

∣∣∣∣∣∣ .

This volume is positive if the vectors form a right-handed basis, and negative

otherwise. The volume of the tetrahedron defined by the three vectors is one-

sixth that of the parallelepiped’s.

The volume formula can be used to compute 2D triangle area by embedding

the triangle in 3D with the three vertices on the z = 1 plane as shown in

Figure 3.2:

triangle area =
1
2

∣∣∣∣∣∣
x0 x1 x2
y0 y1 y2
1 1 1

∣∣∣∣∣∣ . (3.1)

Figure 3.1. Determinants and signed areas or volumes. The signed area or
volume of these objects are given by determinants with the Cartesian coordinates
of the vectors as matrix rows or columns. The sign of each of these examples is
positive via right hand rules.
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(x0, y0, 1)

(x1, y1, 1)

(x2, y2, 1)

Figure 3.2. Homegenous coordinates and triangle area. The area of the triangle
can be computed from the volume of the parallelepiped determinants with the
Cartesian coordinates of the vectors as matrix rows or columns. The sign of each
of this example is positive via right-hand rules.

The reason for the first one-half is that the area of the triangle is three times the

volume of the tetrahedron defined by the three column vectors in the matrix,

and the determinant is six times the volume of that tetrahedron. We can also

use the determinant rule to observe:

triangle area =
1
2

∣∣∣∣x1 − x0 x2 − x0
y1 − y0 y2 − y0

∣∣∣∣ .

This second (2D) determinant is the area of the parallelogram defined by the

two 2D edge vectors of the triangle, and has the same value as the determinant

in Equation 3.1, although this is not algebraically obvious. This is an example

of why interpreting determinants as area/volume computations can be better,

especially for geometric thinkers.

The volume of a tetrahedron defined by four vertices pi can be found by

taking the determinant of three of the vectors along its edges, or by a 4D

determinant on a w = 1 plane:

volume = −1
6

∣∣∣∣∣∣∣∣
x0 x1 x2 x3
y0 y1 y2 y3
z0 z1 z2 z3
1 1 1 1

∣∣∣∣∣∣∣∣ =
1
6

∣∣∣∣∣∣
x1 − x0 x2 − x0 x3 − x0
y1 − y0 y2 − y0 y3 − y0
z1 − z0 z2 − z0 z3 − z0

∣∣∣∣∣∣ .
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The minus sign before the first determinant is not a mistake. Some care must be

taken on the ordering rules for different matrix forms in the various dimensions;

the odd dimensions have a sign change between the edge-vector based method

and the w = 1 hypervolume method.

There are two other ways by which signed volumes are often computed in

3D. The first is the triple product (equivalent to a determinant in 3D):

volume =
1
6
[(p1 − p0)× (p2 − p0)] · (p3 − p0).

Another method for computing a signed volume uses the Plücker inner product

for the directed line segments p0p1 and p2p3. This is algebraically the same as

the determinant and triple product methods [43].

3.3 Using Signed Volumes For Intersection
The basic signed volume idea has been used by several researchers for ray-

triangle intersection, and the equivalence between Plücker inner products, triple

products, and determinants for intersection has been pointed out by O’Rourke [71].

For example, consider the configuration in Figure 3.3. The signed volume of the

tetrahedron abp2p0 is given by:

V1 =
1
6
[(p2 − a)× (p0 − a)] · (b− a).

If this sign is negative, then the ray is to the “inside” side of the edge. The

magnitude of V1 is proportional to the area of the shaded triangle. Similarly,

areas V0 and V2 can be computed with respect to the edges opposite p0 and p2

(see Figure 3.4). If all three Vi are the same sign, then the infinite line through a

and b hits the triangle. The barycentric coordinates can also be recovered. For

example:

α =
V0

V0 + V1 + V2
, β =

V1

V0 + V1 + V2
.

The segment hits the triangle if the signed volume of the tetrahedron p0p1p2a

and p0p1p2b have the opposite signs. If these volumes are Va and Vb, and Va is

positive, then the ray parameter is given by:

t =
Va

Va −Vb
.
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Figure 3.3. Geometry for a ray edge test.
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p2

p1
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V1

Figure 3.4. Volumes for all ray edge tests.

Note that you could also compute the volume of V0 + V1 + V2 directly:

V = V0 + V1 + V2 =
1
6
[(p1 − p0)× (p2 − p0)] · (b− a).

Note also that that is the denominator in Cramer’s Rule test, which under-the-

hood is computing volumes.

If volumes are to be used, there are several degrees of freedom which can be

exploited to yield different tests. For example, one can compute the inside/out-

side test for the whole ray in several ways:

1. compute V0, V1, V2, test for same sign;

2. compute α = V0/V, β = V1/V, γ = 1− α− β, test for all in [0, 1].

3. compute α = V0/V, β = V1/V, γ = V2/V, test for all in [0, 1].
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In addition, each of the volumes can be computed via several different edge

tests. For example, the volume V1 has six edges, any of which can be followed

in either direction. Any three edges that are not all mutually coplanar will

yield the same volume, though possibly with the opposite sign. For a volume

defined by four points, there are 384 unique ways to compute the same signed

volume. Given three points and a direction vector, there are 36 ways to compute

the same signed volume. The one above allows a ray packet to precompute the

cross product if the ray origin is shared. This may or may not be useful for

sharing computations (i.e., subexpressions).

For the ray parameter test, V = Va − Vb is in fact the same V as above.

Overall, a test must directly compute at least two of V0, V1, V2, and at least one

of Va and Vb. Finally one of the remaining three volumes must be computed

directly.

3.4 Minimizing Total Operation Counts
In this section we try to use the equations that minimize the total number of

operations. Because of the large number of possible equations, we use a brute

force searching method to examine all cases. In the next section we use a more

sophisticated and empirical method to optimize performance on real processors.

Volume-based triangle tests require the computation of at least four volumes

for a successful intersection. These are generally either one of V0 or V, plus

V1, V2 and Va. The exhaustive search considered every possible set of four

scalar triple products to compute these volumes and for each of these sets,

the total number of floating point operations, taking into account common

subexpressions.

For possibilities, our program makes a list of the cost in number of arithmetic

operations associated with each subexpression. For the example expression c =

((p1 − p0)× (p0 − p2)) · (po − a), (p1 − p0), (p0 − p2), (p0 − a) count as three

subtractions each. ((p1 − p0) × (p0 − p2)) counts as six multiplies and three

subtractions (since p1 − p0 and p0 − p2 will already have been counted). The
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whole expression for c costs three multiplies and two additions since, again, the

subexpressions for the dot product were counted elsewhere.

With these lists in hand, the program looks at every combination of scalar

triple products for the volumes. For example, if the ray stores d = b − a, it

would examine:

V = (d× (p2 − p0)) · (p1 − p0)

Va = ((a− p0)× (p1 − p0)) · (p2 − p0)

V1 = (d× (p2 − p0)) · (a− p0)

V2 = ((a− p0)× (p1 − p0)) · d. (3.2)

while checking every combination of scalar triple products for calculating each

of the four volumes (i.e., 36*384*36*36 possibilities).

So for each of these combinations of expressions, it counts the number of

operations, but duplicate operations are only counted once each. With the

example above, it would count (p2 − p0) for three subtractions the first time

it appeared but not the two subsequent times and d× (p2 − p0)) would count

only once (not twice) for six multiplies and three subtractions, etc. Given this,

it counts up a total number of arithmetic operations under the assumption that

all subexpressions are computed once and then the results are saved. The result

of this is a list of sets of each set of expressions for the volumes with the lowest

cost found.

The program also had a few switches to consider different cases. These

mainly affected how the cost was computed. For example, for packets, any

subexpression that does not involve d or a is independent of the ray, and counts

at 1/64th the normal cost (i.e., as though it were amortized over an 8x8 packet.)

The exact divisor does not matter hugely since the total flops in the best expres-

sions sets already total well below 64. The sum of these amortized computations

in these best cases never totals above 1.0, which means that it will not cause it to

beat out cases where it does not choose to amortize. But the fraction does serve
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as a tie-breaker to get it to minimize the amount of per-triangle precomputation

that it does.

For the general case of single rays and choosing to find V instead of V0,

there were six optimal formulations requiring a total of 47 operations. Three

of these were symmetric cases of the other three with triangle edges reversed

and appropriate adjustments made to preserve signs. One of these formulations

corresponds to the Möller-Trumbore algorithm [63], and was already given in

Equations 3.2. When V0 is used instead of V, the case is similar and there are

still just six analogous best formulations, each requiring 47 operations.

With ray packets, however, all computations involving only the triangle ver-

tices can be amortized over all of the rays in the packet. Assuming that the

number of rays in the packet is large enough that all computations that can be

amortized over the packet are essentially “free” (though not with zero cost), and

that we again choose to use V instead of V0, there were exactly two optimal

formulations, each symmetric with the other:

V = ((p1 − p0)× (p0 − p2)) · d

Va = ((p1 − p0)× (p0 − p2)) · (p0 − a)

V1 = ((p0 − a)× d) · (p0 − p2)

V2 = ((p0 − a)× d) · (p1 − p0).

This formulation requires just over 32 operations per ray plus the amortized

per-triangle operations. Note that the per-triangle computation simply involves

finding two edges plus the unscaled normal of the triangle.

If all of the rays in the packet share a common origin, as is typical for

primary rays and shadow rays for point light sources, it is possible to do far

better yet. For these cases, all computations involving only the triangle vertices

and a are amortized over the packet. There are 12 optimal formulations (six

being symmetrical with the other six), and requiring just over 15 operations per

ray to find the volumes in the inner loop. At this point, Va may be amortized

entirely as well as all of the cross products, leaving only the three dot products:
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V = ((p1 − p0)× (p0 − p2)) · d

Va = ((p1 − p0)× (p0 − p2)) · (p0 − a)

V1 = ((p0 − p2)× (p0 − a)) · d

V2 = ((p1 − p0)× (p0 − a)) · d.

When V0 is used instead of V, the case is similar and there are still just 12

analogous best formulations, each requiring 15 operations. This property has

been used to advantage by Benthin in his dissertation, although he derived it

through Plücker coordinates. [8]

3.5 A Genetic Algorithm for Improved Performance
While operation counts are correlated to performance, the increasingly com-

plex hardware and compiler technology makes optimization largely an empir-

ical process. Since the number of possibilities is so large for how code can be

written, exhaustive search by hand is not a good option. In this section we

use genetic algorithms to improve our choices among coding options in a spirit

similar to that shown effective for sorting [58].

Before applying any genetic search, we first formalize the space of choices

we have. For example, we can compute V0, V1, and V2 and derive V, or we

could compute V0, V1 and V derive V2. Another option is whether to test for

early exit if a given variable is outside its allowed range. This test must of course

come after that variable is computed. On the other hand, some quantities can

be computed in any order. This suggests a dependency graph.

For the ray-triangle intersection tests, we used a dependency graph with

1294 nodes. The allowed parameter space included all legitimate choices for

the signed-volume computations for the t-value, V, V0, V1, and V2, the choice

between computing Vdirectly with a single signed volume computation or by

summation of the three, how long to postpone the division, whether to use

a barycentric in/out test or to test in/outness by comparing the signs of the

volumes, whether and where to use early exits if all four rays in an SSE bundle

are known to miss, etc.
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The genetic algorithm approach used to sort among these options consists

of three parts: the main genetic algorithm driver, the benchmark, the code

generator.

The main genetic algorithm implementation is an evolution algorithm very

similar to that used by Li et al. [58]. In this, the best individuals in each gener-

ation survive to the next generation entirely unchanged. Genetic recombination

applies only to creating the new offspring to replace the least fit individuals.

These are also subject to occasional random mutations. As with their system,

we used a population of 50 individuals through 100 generations. At each gener-

ation, the 20 most fit were kept unchanged while the 30 least fit were replaced

with pairs of offspring created through recombination from two parents with

a two-point crossover from the parent generation (a random middle segment

from one parent is replaced with those values in the order that they appear in

the other parent, and vice versa, to produce a pair of offspring that are still

permutations. The reason that genomes must be permutations is due to the way

they control code emission and is explained later.) The parents were chosen with

probability proportional to their fitness. After this, two mutations were applied

to the offspring at random, by swapping a random pair of values in their genetic

sequence.

After this, the new generation is evaluated for fitness, which in this case

consists of using each genome to output code for a ray-triangle intersection

test combined with a benchmark for speed. The created program consists of

a fixed, handwritten template for the benchmark with the genetically derived

intersection test inserted into the template. This is compiled and executed, and

the measured speed in millions of intersections per second becomes the fitness

value for that individual. The benchmark code measures the performance of

20000 random triangles each intersected by 400 packets of 64 random rays each.

The positions of the rays and triangles are chosen such that the intersection

probability is approximately 25%. This probability was chosen to mimic the case

for a good acceleration structure where rays that reach the point of intersecting
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a triangle have a high probability of success. Fifty percent is a best case for

this due to the typical tessellation of quads into pairs of triangles, where each

triangle in the pair will typically have significantly overlapping bounding boxes

but only a 50% or so chance of hitting, once a ray reaches the bounding box.

The code generation from the genomes is the most complex part of our

process and is inspired by the approach in Fang et al. [26]. Each individ-

ual’s genome encodes the algorithm as a permutation of the first 1294 natural

numbers. A DAG of dependencies, starting with a goal node gives the list

of possible code chunks to output (generally at the level of a single scalar or

vector operation) along with any dependencies that must be satisfied before

the chunk can be output. These dependencies take two forms: ”required” and

”optional” dependencies. For each chunk, all required dependencies must be

satisfied before the a statement can be output, while only one or more of the

optional dependencies needs to be. This distinction means that any generated

program that satisfies this dependency graph will have the freedom to choose

from alternative code paths where necessary, but will also be constrained to

always generate legal programs that will compile and execute correctly. For

example, computing a barycentric coordinate may be done through any of the

numerous choices for computing the signed volume, but an early exit test based

on the coordinate always requires the coordinate computation as a prerequisite.

Output from this dependency graph is guided by each individuals genome.

The genome, as a permutation of the whole numbers, gives the priority for

each node in the dependency graph. Code is emitted by applying a modified

topological sort to the dependency graph where ties for which statement to emit

next are broken according to the priority given in the genome. If an optional

dependency has not already been satisfied due to another node, the optional

dependency with the highest priority is chosen. An initial depth-first walk of

the dependency graph from the goal node marks live nodes, so that only these

are considered for output during the topological sort. Thus, so long as each

genome remains a proper permutation of the first n natural numbers, where n
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in this case is 1294 – the number of nodes in the dependency graph – the code

generator will always emit a valid and nearly minimal code sequence for it. The

genetic algorithm still has tremendous freedom in choosing the relative order of

the statements, and through careful encoding in the dependency graph nearly

any choices for valid code may be given to the genetic algorithm.

We ran the genetic algorithm both for general and common origin packets.

We implemented the code in C++ with SSE extensions. The best program for

both packet conditions was then hand optimized making minor performance

improvements.

The hand tuning was quite minimal. We examined the code from the genetic

algorithm to determine what choices it made for how to compute the signed vol-

umes. Then, we examined the list of optimal operation-count expressions from

the exhaustive search in the previous section and found the most similar set of

expressions to that from the genetic algorithm. We then changed the code from

the genetic algorithm to use the expressions from the optimal search, trying to

change the code and especially the basic structure as little as possible. Typically

this involved reversing the direction of an edge here and changing the operands

for a dot or cross product there. Next we cleaned up the dead code left over

from the previous step, since taking better advantage of common subexpressions

meant that some of the former computations were now extraneous. Lastly, we

cleaned up the artifacts from the genetic algorithm – for example, as the final

SIMD mask is the result of ANDing the masks from several tests, and these may

be done in any order, the mask is initially set to all true before being ANDed

with the first test. The obvious optimization, however, is to initialize the mask

to the result of the first test. There were one or two similar cases where artifacts

from the genetic algorithm could be cleaned up by the compiler’s optimizer.

We simply applied the same transformations to streamline source. Overall, the

changes we made were quite mechanical and not large.

The code from the genetic algorithm (GA) and the hand-tuned code (tuned

GA) were tested against a direct ray packet and SIMD adaptation of Möller-
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Trumbore test as indicated in Table 3.1. As can be seen, significant speedups are

possible.

3.6 General Packet Code
This annotated code shows our best performing code (derived by hand-

tuning the output of the genetic algorithm) for general packets, and shows in

detail how we tested its performance.

1 #include <mmintrin.h>
2 #include <xmmintrin.h>
3 #include <emmintrin.h>
4 #include <stdlib.h>
5 #include <time.h>
6 #include <sys/time.h>
7 #include <fstream>
8 #include <iostream>
9 using namespace std;

10 static const int packet_size = 64;
11 static const int number_of_packets = 400;
12 static const int number_of_triangles = 20000;
13 static const float eye_range = 3.0f;

Table 3.1. Performance comparison of ray-triangle intersection algorithms.
Numbers measure indicate millions of rays intersected per second measured
on a single core. Compiler target and test platforms are a 2.4GHz Dual Core
Opteron (Opt), 3.2GHz Dual Core Xeon (X), 3.0GHz Canterwood Pentium 4
(P4), and a 1.83GHz Core Duo (C).

Möller- General Packets Shared Origin
Compiler Target Test Trumbore GA Tuned GA GA Tuned GA

GCC 4.02 Opt Opt 82.0 158.7 164.7 201.2 190.9
GCC 4.02 P4 Opt 71.5 115.5 141.7 158.8 182.1
ICC 9.0 P4 Opt 104.5 135.4 158.8 182.2 203.3

GCC 3.35 X X 89.0 158.8 173.0 189.3 216.1
ICC 9.0 P4 X 124.7 163.4 180.3 207.3 228.4

GCC 4.02 P4 P4 66.9 97.1 102.6 173.5 158.0
ICC 9.0 P4 P4 115.6 167.8 191.0 205.9 229.3

GCC 4.01 C C 53.6 81.6 106.3 112.8 125.2

Average 88.5 134.8 152.3 178.9 191.7
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14 static const float target_range = 0.6f;
15 static const float ray_jitter = 0.04f;
16 // Triangle vertex positions

17 float p0xf[number_of_triangles];
18 float p0yf[number_of_triangles];
19 float p0zf[number_of_triangles];
20 float p1xf[number_of_triangles];
21 float p1yf[number_of_triangles];
22 float p1zf[number_of_triangles];
23 float p2xf[number_of_triangles];
24 float p2yf[number_of_triangles];
25 float p2zf[number_of_triangles];
26 // Ray origins, directions and best t-value

27 float oxf[number_of_packets][packet_size];
28 float oyf[number_of_packets][packet_size];
29 float ozf[number_of_packets][packet_size];
30 float dxf[number_of_packets][packet_size];
31 float dyf[number_of_packets][packet_size];
32 float dzf[number_of_packets][packet_size];
33 float rtf[number_of_packets][packet_size];
34 int main(int argc, char **argv) {
35 int seed_time = time(0);
36 unsigned short seeds[] = {
37 static_cast<unsigned short>(seed_time & 0xffff),
38 static_cast<unsigned short>((seed_time >> 8) & 0xffff),
39 static_cast<unsigned short>((seed_time >> 16) & 0xffff) };
40 seed48(seeds);

41 // Setup tests with random triangles and packets

42 for (int ti = 0; ti < number_of_triangles; ++ti) {
43 p0xf[ti] = drand48() - drand48();

44 p0yf[ti] = drand48() - drand48();

45 p0zf[ti] = drand48() - drand48();

46 p1xf[ti] = drand48() - drand48();

47 p1yf[ti] = drand48() - drand48();

48 p1zf[ti] = drand48() - drand48();

49 p2xf[ti] = drand48() - drand48();

50 p2yf[ti] = drand48() - drand48();

51 p2zf[ti] = drand48() - drand48();

52 float mx = (p0xf[ti] + p1xf[ti] + p2xf[ti]) / 3.0f;
53 float my = (p0yf[ti] + p1yf[ti] + p2yf[ti]) / 3.0f;
54 float mz = (p0zf[ti] + p1zf[ti] + p2zf[ti]) / 3.0f;
55 p0xf[ti] -= mx;

56 p0yf[ti] -= my;

57 p0zf[ti] -= mz;

58 p1xf[ti] -= mx;

59 p1yf[ti] -= my;

60 p1zf[ti] -= mz;

61 p2xf[ti] -= mx;

62 p2yf[ti] -= my;

63 p2zf[ti] -= mz;

64 }

65 for (int pi = 0; pi < number_of_packets; ++pi) {
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66 float ex = (drand48() - drand48()) * eye_range;
67 float ey = (drand48() - drand48()) * eye_range;
68 float ez = (drand48() - drand48()) * eye_range;
69 float tx = (drand48() - drand48()) * target_range;
70 float ty = (drand48() - drand48()) * target_range;
71 float tz = (drand48() - drand48()) * target_range;
72 for (int ri = 0; ri < packet_size; ++ri) {
73 oxf[pi][ri] = ex + (drand48() - drand48()) * ray_jitter;

74 oyf[pi][ri] = ey + (drand48() - drand48()) * ray_jitter;

75 ozf[pi][ri] = ez + (drand48() - drand48()) * ray_jitter;

76 dxf[pi][ri] = tx - ex +

77 (drand48() - drand48()) * ray_jitter;

78 dyf[pi][ri] = ty - ey +

79 (drand48() - drand48()) * ray_jitter;

80 dzf[pi][ri] = tz - ez +

81 (drand48() - drand48()) * ray_jitter;

82 rtf[pi][ri] = 1000000.0f;

83 }

84 }

85 timeval start;

86 gettimeofday(&start, 0);

87 // Intersection test begins here

88 for (int pi = 0; pi < number_of_packets; ++pi) {
89 for (int ti = 0; ti < number_of_triangles; ++ti) {
90 // Get triangle corners, compute two edges and normal.

91 // (Alternatively, can precompute and store them)

92 const __m128 p1x = _mm_set_ps1(p1xf[ti]);
93 const __m128 p1y = _mm_set_ps1(p1yf[ti]);
94 const __m128 p1z = _mm_set_ps1(p1zf[ti]);
95 const __m128 p0x = _mm_set_ps1(p0xf[ti]);
96 const __m128 p0y = _mm_set_ps1(p0yf[ti]);
97 const __m128 p0z = _mm_set_ps1(p0zf[ti]);
98 const __m128 edge0x = _mm_sub_ps(p1x, p0x);
99 const __m128 edge0y = _mm_sub_ps(p1y, p0y);

100 const __m128 edge0z = _mm_sub_ps(p1z, p0z);
101 const __m128 p2x = _mm_set_ps1(p2xf[ti]);
102 const __m128 p2y = _mm_set_ps1(p2yf[ti]);
103 const __m128 p2z = _mm_set_ps1(p2zf[ti]);
104 const __m128 edge1x = _mm_sub_ps(p0x, p2x);
105 const __m128 edge1y = _mm_sub_ps(p0y, p2y);
106 const __m128 edge1z = _mm_sub_ps(p0z, p2z);
107 const __m128 normalx = _mm_sub_ps(
108 _mm_mul_ps(edge0y, edge1z),

109 _mm_mul_ps(edge0z, edge1y));

110 const __m128 normaly = _mm_sub_ps(
111 _mm_mul_ps(edge0z, edge1x),

112 _mm_mul_ps(edge0x, edge1z));

113 const __m128 normalz = _mm_sub_ps(
114 _mm_mul_ps(edge0x, edge1y),

115 _mm_mul_ps(edge0y, edge1x));

116 const __m128 zeroes = _mm_setzero_ps();
117 // Loop over "packlets," computing four rays at a time
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118 for (int ri = 0; ri < packet_size; ri += 4) {
119 // Load origin, current t-value and direction

120 const __m128 ox = _mm_load_ps(&oxf[pi][ri]);
121 const __m128 oy = _mm_load_ps(&oyf[pi][ri]);
122 const __m128 oz = _mm_load_ps(&ozf[pi][ri]);
123 const __m128 oldt = _mm_load_ps(&rtf[pi][ri]);
124 const __m128 dx = _mm_load_ps(&dxf[pi][ri]);
125 const __m128 dy = _mm_load_ps(&dyf[pi][ri]);
126 const __m128 dz = _mm_load_ps(&dzf[pi][ri]);
127 // Compute volume V, the denominator

128 const __m128 v = _mm_add_ps(_mm_add_ps(
129 _mm_mul_ps(normalx, dx),

130 _mm_mul_ps(normaly, dy)),

131 _mm_mul_ps(normalz, dz));

132 // Reciprocal estimate of V with one round of Newton

133 const __m128 rcpi = _mm_rcp_ps(v);
134 const __m128 rcp = _mm_sub_ps(
135 _mm_add_ps(rcpi, rcpi),

136 _mm_mul_ps(_mm_mul_ps(rcpi, rcpi),

137 v));

138 // Edge from ray origin to first triangle vertex

139 const __m128 edge2x = _mm_sub_ps(p0x, ox);
140 const __m128 edge2y = _mm_sub_ps(p0y, oy);
141 const __m128 edge2z = _mm_sub_ps(p0z, oz);
142 // Compute volume Va

143 const __m128 va = _mm_add_ps(_mm_add_ps(
144 _mm_mul_ps(normalx, edge2x),

145 _mm_mul_ps(normaly, edge2y)),

146 _mm_mul_ps(normalz, edge2z));

147 // Find Va/V to get t-value

148 const __m128 t = _mm_mul_ps(rcp, va);
149 const __m128 tmaskb = _mm_cmplt_ps(t, oldt);
150 const __m128 tmaska = _mm_cmpgt_ps(t, zeroes);
151 __m128 mask = _mm_and_ps(tmaska, tmaskb);

152 if (_mm_movemask_ps(mask) == 0x0) continue;
153 // Compute the single intermediate cross product

154 const __m128 intermx = _mm_sub_ps(
155 _mm_mul_ps(edge2y, dz),

156 _mm_mul_ps(edge2z, dy));

157 const __m128 intermy = _mm_sub_ps(
158 _mm_mul_ps(edge2z, dx),

159 _mm_mul_ps(edge2x, dz));

160 const __m128 intermz = _mm_sub_ps(
161 _mm_mul_ps(edge2x, dy),

162 _mm_mul_ps(edge2y, dx));

163 // Compute volume V1

164 const __m128 v1 = _mm_add_ps(_mm_add_ps(
165 _mm_mul_ps(intermx, edge1x),

166 _mm_mul_ps(intermy, edge1y)),

167 _mm_mul_ps(intermz, edge1z));

168 // Find V1/V to get barycentric beta

169 const __m128 beta = _mm_mul_ps(rcp, v1);
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170 const __m128 bmask = _mm_cmpge_ps(beta, zeroes);
171 mask = _mm_and_ps(mask, bmask);

172 if (_mm_movemask_ps(mask) == 0x0) continue;
173 // Compute volume V2

174 const __m128 v2 = _mm_add_ps(_mm_add_ps(
175 _mm_mul_ps(intermx, edge0x),

176 _mm_mul_ps(intermy, edge0y)),

177 _mm_mul_ps(intermz, edge0z));

178 // Test if alpha > 0

179 const __m128 v1plusv2 = _mm_add_ps(v1, v2);
180 const __m128 v12mask = _mm_cmple_ps(
181 _mm_mul_ps(v1plusv2, v),

182 _mm_mul_ps(v, v));

183 // Find V2/V to get barycentric gamma

184 const __m128 gamma = _mm_mul_ps(rcp, v2);
185 const __m128 gmask = _mm_cmpge_ps(gamma, zeroes);
186 mask = _mm_and_ps(mask, v12mask);

187 mask = _mm_and_ps(mask, gmask);

188 if (_mm_movemask_ps(mask) == 0x0) continue;
189 // Update stored t-value for closest hits

190 _mm_store_ps(&rtf[pi][ri],

191 _mm_or_ps(_mm_and_ps(mask, t),

192 _mm_andnot_ps(mask, oldt)));

193 // Optionally store barycentric beta and gamma too

194 }

195 }

196 }

197 // Show speed in millions of intersections per second

198 timeval now;

199 gettimeofday(&now, 0);

200 float elapsed =
201 (static_cast<float>(now.tv_sec - start.tv_sec) +
202 static_cast<float>(now.tv_usec - start.tv_usec) /
203 1000000.0f);

204 if (argc > 1) {
205 ofstream out(argv[1], ios::out);

206 out << (number_of_packets * packet_size

207 * number_of_triangles

208 / elapsed / 1000000);

209 }

210 else
211 cout << (number_of_packets * packet_size

212 * number_of_triangles

213 / elapsed / 1000000) << endl;

214 return 0;
215 }
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3.7 Numerical Robustness
While raw speed is certainly an important criteria for a ray-triangle inter-

section algorithm meant for use in an interactive ray tracing, it is not the only

consideration. Numerical robustness can also be important. Obviously, a more

robust intersection algorithm can improve visual quality by producing fewer

artifacts such as surface acne, mesh cracks, or z-fighting. However, it can also

have an effect on the speed of a hardware based interactive ray tracer. By

choosing a more robust algorithm, we may potentially be able to use smaller,

lower precision numbers in the computations. This could lead to smaller, faster

functional units performing the calculations, and better cache use by reducing

the number of bytes each value takes. An important question, however, is: how

many bits in our floating point values do we actually need?

IEEE 754 binary floating point values are represented in the form (−1)s ×
f × 2e using three parts, stored together in a bit field: a sign bit, s, a fractional

value or significand, f , and an exponent, e. The sign bit indicates that the value

is positive if it is clear, and negative if set. The exponent is stored as an unsigned

integer, but biased. If eight bits are allocated to the exponent, the value 127 is

added to the exponent before storing it and 1023 is added to a 10-bit exponent.

The significand normally stores the bits of a fraction between one inclusive, and

two exclusive, where the single bit to the left of the radix point is assumed to

be a one and is not stored. Each arithmetic operation on floating point numbers

normalizes the result to preserve this implicit bit. When the stored exponent

is zero, but the significand is nonzero, this represents a subnormal value that

is gradually underflowing. If all bits in the exponent are set, it represents a

special value; with all bits in the significand clear, it indicates either a positive

or negative infinity (±INF). However, if any bits in the significand are set, it

represents an invalid number, or NaN.

To determine how many bits in the exponent and significand we actually

need, and evaluate how reduced precision arithmetic affects ray-triangle inter-

section, we began by modifying the Manta interactive ray tracer [10] to be able
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to produce a trace of all ray-triangle pairs tested for intersection while rendering

a frame. This produced files with simple records of 15 single precision floating

point values – three coordinates each for a, d, p0, p1, and p2. We collected

these for path trace renderings of the Happy Buddha, conference room, fairy

forest, gargoyle statue, power plant section 16, Soda Hall, and Sponza Atrium.

Concatenated together, these provided data for 12,237,461 ray-triangle pairs.

Note that these are all pairs that passed initial culling by the BVH acceleration

structure. They represent realistic candidates for primitive intersection testing.

Next, we developed a reduced precision library that can simulate IEEE 754

style floating point arithmetic for smaller significand and exponent widths.

Internally, this library stores values as double and uses the hardware FPU to

compute with them. After each operation, however, it examines the bits in the

significand and exponent. The least significant significand bits are forced to zero

through rounding, and the exponent is checked to ensure that its value could

be represented adequately at the narrower size. If the exponent is too small,

additional bits of the significand may be rounded to simulate subnormals, or

the value may be forced to zero entirely. If the exponent is too big, the value is

set to ±INF.

Initially, we also developed an corresponding fixed point library to explore

how the numbers of bits in the integer and fractional parts affects the ray-

triangle intersection tests. However, we quickly found that no combination of

field widths totalling to 32 bits (the same size as a single precision floating point

number) or fewer was suitable for directly computing the ray-triangle intersec-

tions from our test data. Either too few bits were allocated to the fractional

part in the case of direction vectors and coordinates for scenes with small scales,

or else the integer part overflowed for scenes with larger scales. Figure 3.5

shows the distribution of the numbers in the data by the base-2 exponent in their

floating point representation. Every exponent between -33 and 18, inclusive, is

represented, for a span of values covering 52 orders in binary magnitude. This

span is simply infeasible for a fixed point representation using a machine word
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Figure 3.5. Distribution of values by floating point exponent. Taken from
183,561,915 floating point numbers representing the coordinates for the ray
origins, ray directions, and triangle vertices. The smallest nonzero absolute
value was 2.332× 10−18 and the largest was 316,290.

or less, unless the scenes are first rescaled to an appropriate size.

Floating point numbers represent these values well, however, and using our

reduced precision floating point library, we created a program to read in the ray-

triangle pairs from the trace file and, using lower precision arithmetic, evaluate

each of the 36+ 384+ 36+ 36+ 36 = 528 scalar triple products that compute the

V, Va, V0, V1, and V2 signed volumes, respectively. While each set of scalar triple

products is geometrically equivalent, in practice, they may have wildly different

characteristics due to catastrophic cancellation and other forms of numeric loss.

One of our goals was to find the scalar triple product in each set that minimizes

this. Note that we used the standard factored form for evaluating the scalar

triple products rather than distributing the dot or cross products. Distributing

leads not just to more operations to evaluate, thus making it slower, but also to

more terms to sum which increases the potential for cancellation.
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To evaluate the quality of these values, we also computed the five signed

volumes using the rational arithmetic module of the GNU Multiple Precision

Arithmetic Library [29]. Because the floating point values in the records can

be losslessly converted to large rationals, and the computation of the signed

volumes uses only addition, subtraction and multiplication which is exact with

rations, we can compute a perfect “gold standard” for what these values should

be.

Losslessly converting the low precision values to rationals and taking the

difference from the reference values allows us to accurately measure the error.

For a given exponent and significand width, we measured the average relative

error (relative error being the absolute value of the difference divided by the

true value) for each scalar triple when computed with the reduced precision

arithmetic. In the case of positive or negative INFs, we handled them by con-

verting them to the largest or smallest representable numbers when calculating

the relative error.

3.8 Significand and Exponent Widths
Tables 3.2, 3.3, and 3.4 show the results, with the average relative error for

the best scalar triple products for computing the determinant, V, the volume for

computing the ray parameter, Va, and the volumes for computing the barycentric

coordinates, V0...2, respectively. Note that these last are considered together

because cycling the triangle vertices has the effect of cycling the barycentric

coordinates. The entries with eight bits of exponent and 23 bits of significand

correspond to standard single-precision floating point arithmetic.

One important thing revealed by this analysis is that the width of the expo-

nent has no effect on the error rate once the exponent field has sufficient range

to avoid overflowing or underflowing during the computations. While single

precision numbers use eight-bit exponents, seven bits appear to be perfectly

sufficient for the scenes that we tested. Six bits or less is too few, however.

With sufficient exponent bits, the dominant factor in the error rate is the
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Table 3.2. Relative error for determinant by significand and exponent widths.
Each value shows the lowest average relative error for the volume V for a given
significand and exponent width from among all the scalar triple products that
compute it.

Exponent
Significand 6 7 8 9 10 11

8 0.0041931 0.0041931 0.0041931 0.0041931 0.0041931
9 0.0723670 0.0023152 0.0023152 0.0023152 0.0023152 0.0023152

10 0.0685687 0.0014908 0.0014908 0.0014908 0.0014908 0.0014908
11 0.0806531 0.0007918 0.0007918 0.0007918 0.0007918 0.0007918
12 0.0681592 0.0008845 0.0008845 0.0008845 0.0008845 0.0008845
13 0.0673424 0.0002177 0.0002177 0.0002177 0.0002177 0.0002177
14 0.0657871 0.0001257 0.0001257 0.0001257 0.0001257 0.0001257
15 0.0692937 0.0000522 0.0000522 0.0000522 0.0000522 0.0000522
16 0.0666937 0.0000290 0.0000290 0.0000290 0.0000290 0.0000290
17 0.0666923 0.0000173 0.0000173 0.0000173 0.0000173 0.0000173
18 0.0664176 0.0000085 0.0000085 0.0000085 0.0000085 0.0000085
19 0.0663998 0.0000039 0.0000039 0.0000039 0.0000039 0.0000039
20 0.0663904 0.0000020 0.0000020 0.0000020 0.0000020 0.0000020
21 0.0663843 0.0000012 0.0000012 0.0000012 0.0000012
22 0.0663836 0.0000005 0.0000005 0.0000005
23 0.0663804 0.0000003 0.0000003
24 0.0663800 0.0000001
25 0.0663797
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Table 3.3. Relative error for distance by significand and exponent widths. Each
value shows the lowest average relative error for the volume Va for a given
significand and exponent width from among all the scalar triple products that
compute it.

Exponent
Significand 6 7 8 9 10 11

8 0.0565310 0.0565309 0.0565309 0.0565309 0.0565309
9 0.2535980 0.0310891 0.0310889 0.0310889 0.0310889 0.0310889
10 0.2252270 0.0035108 0.0035108 0.0035108 0.0035108 0.0035108
11 0.3035140 0.0032066 0.0032066 0.0032066 0.0032066 0.0032066
12 0.4292930 0.0022818 0.0022818 0.0022818 0.0022818 0.0022818
13 0.9842460 0.0018787 0.0018787 0.0018787 0.0018787 0.0018787
14 1.1524700 0.0017955 0.0017955 0.0017955 0.0017955 0.0017955
15 1.8469000 0.0023425 0.0023425 0.0023425 0.0023425 0.0023425
16 3.9446000 0.0019844 0.0019844 0.0019844 0.0019844 0.0019844
17 6.2982300 0.0016163 0.0016163 0.0016163 0.0016163 0.0016163
18 8.9045900 0.0018556 0.0018556 0.0018556 0.0018556 0.0018556
19 16.6392000 0.0017347 0.0017347 0.0017347 0.0017347 0.0017347
20 41.9825000 0.0015805 0.0015805 0.0015805 0.0015805 0.0015805
21 80.0268000 0.0014150 0.0014150 0.0014150 0.0014150
22 188.3990000 0.0013232 0.0013232 0.0013232
23 395.6200000 0.0007361 0.0007361
24 395.6200000 0.0004270
25 395.6200000
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Table 3.4. Relative error for barycentrics by significand and exponent widths.
Each value shows the lowest average relative error for the volumes V0, V1, and
V2 for a given significand and exponent width from among all the scalar triple
products that compute it.

Exponent
Significand 6 7 8 9 10 11

8 0.0376633 0.0376633 0.0376633 0.0376633 0.0376633
9 0.0876891 0.0286147 0.0286147 0.0286147 0.0286147 0.0286147

10 0.0755282 0.0144344 0.0144344 0.0144344 0.0144344 0.0144344
11 0.0703083 0.0068975 0.0068975 0.0068975 0.0068975 0.0068975
12 0.0805000 0.0033597 0.0033597 0.0033597 0.0033597 0.0033597
13 0.0737002 0.0019055 0.0019055 0.0019055 0.0019055 0.0019055
14 0.0712016 0.0010664 0.0010664 0.0010664 0.0010664 0.0010664
15 0.0726447 0.0003917 0.0003917 0.0003917 0.0003917 0.0003917
16 0.0756132 0.0002467 0.0002467 0.0002467 0.0002467 0.0002467
17 0.0712252 0.0001681 0.0001681 0.0001681 0.0001681 0.0001681
18 0.0700354 0.0000577 0.0000577 0.0000577 0.0000577 0.0000577
19 0.0711816 0.0000355 0.0000355 0.0000355 0.0000355 0.0000355
20 0.0753862 0.0000141 0.0000141 0.0000141 0.0000141 0.0000141
21 0.0695343 0.0000098 0.0000098 0.0000098 0.0000098
22 0.0704502 0.0000033 0.0000033 0.0000033
23 0.0701544 0.0000035 0.0000035
24 0.0701527 0.0000021
25 0.0701514
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number of bits in the significand. Each additional bit added to the significand

appears to roughly halve the error rate. The determinant, volume V, is the most

robust value to compute with few bits, followed by the volumes V0...2 for the

barycentric coordinates. The ray parameter (distance) calculation, Va, is by far

the most sensitive.

3.9 Robustly Computing Signed Volumes
For computing V, we found that the lowest average relative error was pro-

duced by the formula

V = [(p2 − p0)× (p1 − p2)] · d (3.3)

and the three equivalent formulas produced by reversing edges and/or com-

muting the cross product. Reversing edges commutes the operands to the

subtractions which IEEE 754 guarantees affects only the sign of the outcome.

Commuting the cross product commutes operands to multiplications, but IEEE

754 also guarantees that multiplication is commutative. Note that addition is

not associative under IEEE 754; we evaluated all dot products by summing

the products of the x and y components first, then adding the products of

the z components. The worst formulas were anywhere from 6.7 to 25.8 times

worse, depending on the significand size and all had the ray direction vector,

d inside the cross product. We would have expected variations of the best

formula produced by cycling the triangle vertices to have produced similarly

good results. Interestingly, there was considerable variation here, with the other

two orders being 1.7 and 4.7 times worse. This may indicate a bias in how the

models were tesselated into triangles.

For the ray parameter volume, Va, we found the best results were produced

by the formula:

Va = [(p2 − p0)× (p2 − p1)] · (a− p2) (3.4)

and the seven equivalent formulas produced by reversing edges and/or com-

muting the cross product. The superiority of these expressions were not as
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clear cut as for the determinant, but these appeared most often when examining

the formulas with the lowest error rates. Amazingly, we found that the worst

formulas were 17.0 times worse with 24 bits of significand, and were nearly

910.6 times worse with 11 bits of significand (and produced numeric overflows

at ten bits or fewer when using a seven bit exponent.) One common feature of

the bad formulas was that they used tetrahedral edges ending at the ray origin,

a, on both the inside and the outside of the dot product.

Finally, for computing the volumes V0...2 determining the barycentric coordi-

nates, the lowest error rates were most commonly produced by the formulas:

V0 = [(a− p2)× d] · (p1 − p2)

V1 = [(a− p0)× d] · (p2 − p0)

V2 = [(a− p1)× d] · (p0 − p1) (3.5)

and the three equivalent formulas for each one produced by reversing edges

and/or commuting the cross product. The variant formulas:

V0 = [(a− p1)× d] · (p1 − p2)

V1 = [(a− p2)× d] · (p2 − p0)

V2 = [(a− p0)× d] · (p0 − p1) (3.6)

and their equivalents also produced the best results for certain significand widths,

though not as commonly as the first set. Unlike computing the determinant,

keeping the ray direction, d, inside the cross product proves beneficial, so long

as the ray origin, a, is also there. Here the ratio in error rate between the worst

and the best ranged from 66.7 to 332.2. Using nine bits or fewer in the significand

result in overflows when using a seven-bit exponent. Similar to the computing

the ray parameter, the worst formulas all had tetrahedral edges ending at the

ray origin on both the inside and the outside of the dot product.

Another important aspect for the computation of the barycentric-related vol-

umes is their signs, given that one method of performing the inside/outside

test is examining the three barycentric coordinates for consistent signs. Out of
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36,711,852 barycentric-related volumes computed, the formulas above erred on

the sign only two and four times, respectively, when computed with a seven-bit

exponent and 24-bit significand. The worst formula erred 237 times.

3.10 Designing a Robust Algorithm
Equations 3.5 and 3.6 show remarkable similarity. Each corresponding scalar

triple product in them involves the ray direction, an edge of the triangle, and

vector from one of the end points of that edge to the ray origin. The only

difference is in which end point is used – both are valid, leaving freedom to

choose which end point to use.

When two triangles share an edge, if we choose the same end point when

evaluating the two barycentric coordinate volumes associated with that edge

then except for the sign, we will always get exactly the same value for a given

ray. Essentially, both triangles will perform identical arithmetic for the shared

edge. Even if there is numerical loss, the tests for both triangles will agree on

the value.

We can exploit this by defining an ordering for the triangle vertices. Define

min(l, r) to return the lexicographically smaller of its two operands:

min(l, r) =



l if lx < rx

r else if lx > rx

l else if ly < ry

r else if ly > ry

l else if lz < rz

r else if lz > rz

l otherwise

and use this to choose between Equations 3.5 and 3.6 for computing each of

the barycentric coordinate volumes. Compute volumes V0, V1, and V2 this way

and then compare the signs. If all three have the same sign then ray passes

inside the triangle and the determinant and ray parameter can be computed with

Equations 3.3 and 3.4. Figure 3.6 shows the complete algorithm in pseudocode.
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function RayTriangle(a, d, p0, p1, p2)
V0 ← [(a−min(p1, p2))× d] · (p1 − p2)
V1 ← [(a−min(p2, p0))× d] · (p2 − p0)
V2 ← [(a−min(p0, p1))× d] · (p0 − p1)
if (V0 < 0 or V1 < 0 or V2 < 0) and (V0 > 0 or V1 > 0 or V2 > 0) then

return miss
N← (p2 − p0)× (p1 − p2)
V ← N · d
if V0 = 0 and p1 = min(p1, p2) or . Optional test for unusual cases

V1 = 0 and p2 = min(p2, p0) or
V2 = 0 and p0 = min(p0, p1) or
|V| < ε then
return miss

Va ← N · (p2 − a)
t← Va/V
β← V1/V
γ← V2/V
return hit, t, β, γ

Figure 3.6. Pseudocode for robust ray-triangle intersection algorithm.

By using the signs of V0...2 for the inside/outside test and computing them

consistently across shared triangle edges, the algorithm ensures that if a ray

passes to the side of a shared edge, the tests for the two triangles will always see

it as passing on the same side. The ray can intersect one triangle, but not both.

Nor can it fall between them, unless a volume is exactly zero.

The optional test noted in the pseudocode handles this subtle case by giving

priority to one of the triangles based on the winding of the triangle vertices.

These cases are so rare however, as to not be worth the special handling.

The test for the case |V| < ε when the ray hits the triangle nearly edge-on is

also unnecessary in practice. If t is positive, it will grow quite large in this case

(possibly to INF), and the intersection will tend to be discarded as being behind

other primitives or beyond the end of the valid ray parameter interval.

They key benefit to this algorithm is that it emphasizes correct handling of

shared edges between triangles. The vast majority of edges are shared this way

in triangle mesh models, making this a desirable property. Furthermore, by
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using the inside/outside test to ensure that a ray can hit only one of a pair of

adjacent triangles, it downplays the role of the ray parameter in deciding which

of the two triangles has the closest intersection when the ray passes near the

common edge. Given that Table 3.3 shows that the ray parameter is by far the

least accurate value from the ray-triangle intersection, this is a useful property.

In terms of arithmetic operation counts versus the Möller-Trumbore algo-

rithm, we estimate that an efficient implementation of this robust algorithm is

35 to 42% more expensive to compute. This may be worth the trade off, however,

for batch renderers that wish to avoid artifacts and in custom hardware systems

that use this to compensate for smaller, faster floating point functional units.

Tables 3.5 and 3.6 show how this algorithm performs on rendering the Stan-

ford Bunny and Sponza Atrium models for different significand widths from

8 to 22 bits, and a seven bit exponent. We produced these images by mod-

ifying a small ray tracer to use our reduced precision library throughout in

every place where standard floating point types had been used. Though the

Möller-Trumbore algorithm is considered fairly stable numerically, our new

robust ray-triangle intersection algorithm matches or exceeds it in every case.

Note that the reduced precision library was also used in the the construction

of a median-split BVH and in traversal with the Williams et al. ray/box inter-

section algorithm [104] for rendering these images. Part of the reason for this

was wanting to see how far we could reduce the precision of the floating point

arithmetic throughout a ray tracer while still getting acceptable results. Single

precision IEEE 754 floats, at four bytes with 23 bits of significand and eight bits

of exponent appear to be more than adequate for these scenes. “Half-precision”

two byte values with ten bits of significand and five bits of exponent are clearly

to small. Our results, however, suggest that a three byte floating point format

with a 16-bit significand and seven bit exponent may be a suitable compromise

for low precision interactive ray tracing.
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Table 3.5. Comparison on Stanford Bunny with various significand widths.
Pixels more than 10% different in color from the corresponding pixels when
rendered with standard double precision arithmetic count as errors.

Möller-Trumbore Robust Algorithm
Width Render Errors PSNR Render Errors PSNR

8 3083 20.1 1464 23.6

10 590 27.5 161 32.5

12 186 32.8 45 37.5

14 37 40.9 11 42.7

16 13 47.5 3 53.1

18 1 62.2 0 75.3

20 0 82.5 0 81.0

22 0 92.1 0 92.1
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Table 3.6. Comparison on Sponza Atrium with various significand widths.
Pixels more than 10% different in color from the corresponding pixels when
rendered with standard double precision arithmetic count as errors.

Möller-Trumbore Robust Algorithm
Width Render Errors PSNR Render Errors PSNR

8 6248 17.1 5259 17.8

10 3681 19.3 2197 22.2

12 391 30.9 197 34.8

14 135 35.0 98 36.5

16 22 44.0 11 46.5

18 10 43.8 7 46.6

20 2 60.8 1 62.6

22 0 92.1 0 92.1
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3.11 Conclusion
We have presented two methods for optimizing ray triangle intersection for

speed. Both of these differ from most previous approaches in that they are

targeted toward implementations with ray packets. The first is based on simple

operation counts. The second uses a more empirical approach and is probably

more practical given the complexities of modern processors and compilers. In

addition, the second uses knowledge from the first to improve performance

further. An interesting question is whether the genetic algorithm approach can

be extended to other components of ray tracing programs. Another question is

whether the direct 3D approach examined here is not as efficient as the hit plane

and 2D approach.

We have also explored the issue of numerical robustness with respect to the

direct 3D approach and used it to design an algorithm that is more robust

against errors introduced by low precision arithmetic. We expect that this al-

gorithm will have two applications: first, in production batch renderers that can

not afford to have any artifacts, and second, in custom ray tracing hardware

with low precision floating circuitry.



CHAPTER 4

BETTER GRADIENT NOISE

This work is based on an earlier work: Hardware-Accelerated Gradient Noise for

Graphics, in Proceedings of the 19th ACM Great Lakes symposium on VLSI, c© ACM,

2009. http://doi.acm.org/10.1145/1531542.1531647.

A synthetic noise function is a key component of most computer graphics

rendering systems. This pseudo-random noise function is used to create a wide

variety of natural looking textures that are applied to objects in the scene. To be

useful, the generated noise should be repeatable while exhibiting no discernible

periodicity, anisotropy, or aliasing. However, noise with these qualities is com-

putationally expensive and results in a significant fraction of the run time for

scenes with rich visual complexity.

We propose three modifications to the standard algorithm for computing

synthetic noise that improve the visual quality of the noise. First, a small change

in the permutation hash function combined with separate pseudorandom tables

yields significantly better axial decorrelation. Second, a modification to the

reconstruction kernel approximating a global higher-order differencing operator

produces better bandlimitation. Lastly, the quality of 2D surfaces using solid

3D noise is improved by reconstructing the stencil as projected onto the plane

of the sample point and surface normal. These three techniques are mutually

orthogonal, generalize to higher dimensions, and are applicable to nearly any

gradient noise, including simplex noise. Combining them yields a desirable

Fourier spectrum for graphics applications.

Next, we present a parallel hardware implementation of this improved noise

function that allows the use of reduced precision arithmetic during the noise
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computation. The result is a special-purpose function unit for producing syn-

thetic noise that computes high-quality noise values approximately two orders

of magnitude faster than software techniques. The circuit, using a commer-

cial CMOS cell library in a 65nm process, would run at 1GHz and consume

325µm× 325µm of chip area.

The noise hardware proposed in this chapter has been explored as part

of a special-purpose hardware architecture called TRaX [91], a multithreaded

many-core processor designed for ray tracing [88, 103]. In this architecture many

thread processors share larger special-purpose functional units (such as inv-sqrt,

FP-mult, and noise) to increase performance and to amortize hardware costs.

That architecture is specifically targeted at ray tracing, but our noise hardware

could also be used in any graphics system where high-quality noise is used

for shading calculations. Including noise hardware on an existing commodity

graphics chip (GPU), could greatly increase performance for procedural textur-

ing on those systems.

4.1 Introduction
Procedural methods have many advantages in computer graphics. By tweak-

ing only a handful of parameters, a digital artist can quickly populate a scene

with massive amounts of rich detail. Each object or texture generated this

way may have a unique appearance without any obvious repetition (e.g., tiling

a hand-drawn texture.) Moreover, procedural techniques trade computation

for memory. This is important since as process technology scales, compute

resources will increasingly outstrip memory speeds. For texturing surfaces,

the memory reduction can be two-fold: first there is the simple reduction in

texture memory itself. Second, 3D or “solid” procedural textures can eliminate

the need for explicit texture coordinates to be stored with the models. However,

in order to avoid uniformity and produce visual richness, a simple, repeatable,

pseudo-random function is required. Noise functions meet this need.

Simply described, a noise function in computer graphics is an RN → R
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mapping used to introduce irregularity into an otherwise regular pattern. With

the introduction of his noise function, Perlin [75, 80] enumerated several ideal

qualities for such a function. Ideally, a noise function should have (1) a narrow

bandpass limit in the texture space, and (2) a statistical character that is both

stationary (translation invariant) and isotropic (rotation invariant). Peachey [74],

in his excellent overview of noise, added: (3) be a repeatable pseudo-random

function for a given input, (4) have a known range of outputs, and (5) avoid

exhibiting obvious periodicity.

Noise has been used to simulate an incredible variety of appearances. Pub-

lished examples of noise-based procedural shaders include cumulus clouds,

hurricanes, clouds with coriolis effects, fire, water ripples, wavy water, sedi-

mentary rock, and moons with rayed craters [66], marble, oak wood, brick walls,

ceramic tiles, volumetric smoke, and lens flares [4]. (Figure 4.1 shows a simple

example demonstrating some of these.) Higher dimensional noise allows for

time-varying animations. Noise has even been used to compute velocity fields

to emulate the appearance of turbulent fluid flow [12]. High-end movie graphics

also makes extensive use of noise: rendered effects for “The Perfect Storm”

were said to have averaged approximately 200 noise evaluations per shading

sample [76]. Noise is ubiquitous in movie imagery and as a result, Ken Perlin

was awarded a Technical Academy Award for Perlin Noise in 1997.

4.2 Noise in Graphics
Peachey [74] provides a good survey of noise functions. Many of these

can be seen ideally as filtered white noise, produced from the convolution of

a kernel function with a sampled random noise process where the strength of

each impulse is uncorrelated. In each case, the choice of the kernel function and

sample distribution may vary.

One of the simplest possible noise functions for computer graphics is value

noise. Conceptually, this is produced by randomly sampling a white noise

function and then using a reconstruction filter kernel to interpolate between
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Figure 4.1. Rendered scene exhibiting noise-based procedural textures. Perlin
noise was used to generate the wood grain pattern, the marble pattern, and the
irregularities in the bricks and to control the density of the volumetric smoke.
1.3 billion noise evaluations were computed to render this image, averaging 552
per shading sample. The renderer spent 37.2% of its execution time evaluating
noise.
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the samples. Lewis’s sparse convolution noise [56] is one such example.

For kernels, common choices include separable tent filters (for bilinear or

trilinear interpolation), radial Catmull-Rom splines, and radial Gaussians. In

each case, so long as the samples of the random noise process are properly

uncorrelated, the shape of the noise function’s spectrum will be dominated by

the kernel.

For efficiency, most implementations use samples taken along a regular lat-

tice and a simple interpolating reconstruction filter. Each lattice vertex within

the range of the reconstruction filter’s support around the input point is mapped

to a sample value by hashing its coordinates, and then these values are interpo-

lated at the input point to compute the noise function’s value. A good hash

function can provide a very large volume of noise without obvious periodicity,

while reducing memory capacity requirements. Value noise is simple to under-

stand and can be efficient for low-order interpolants. However, it tends to suffer

from a blocky, anisotropic appearance (Figure 4.2a), even with a more expensive

higher-order interpolant.

To overcome this, Perlin [75, 80] introduced gradient noise. Though not

immediately apparent from the usual formulation, gradient noises such as Perlin

noise can also be understood in terms of this convolution. Instead of using

the product of the reconstruction filter with a random scalar value at each

sample point, the product of the filter with a randomly oriented linear gradient

is employed. The lattice coordinates are hashed to a unit vector, and the dot

product of this vector with the vector from the lattice point to the input point

is used to multiply the value from the filter. Because the dot product is linear,

we can partition the noise into a sum of convolutions, one per dimension. Each

filter becomes the product of a smoothing function with the gradient along an

axis. For 2D Perlin noise, this gives hx ∗Gx + hy ∗Gy where Gx and Gy are jointly

distributed and where the kernels are defined as hx = s(x)s(y)x, hy = s(x)s(y)y.

Original Perlin noise [75] applies a clamped cubic Hermite curve for each s(t);

Perlin’s improved noise [80] employs a fifth-order polynomial.
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This effectively creates a set of overlapping, randomly oriented dipole func-

tions (“surflets” in Perlin’s terminology). Though the vector operations increase

the computational complexity, the gradients eliminate much of the blockiness

and a narrower filter over fewer samples can be used. (Figure 4.2b) Nonetheless,

it still exhibits noticeable anisotropy.

In 2001, Perlin [77] noted the advantage of understanding noise as convolu-

tion with a clean separation between signal and reconstruction in allowing us

to better understand its behavior, and more easily formulate variations. To this

(a) Value noise

(b) Perlin’s gradient noise

Figure 4.2. Value noise and Perlin’s gradient noise. To the left is the the
reconstruction filter and an example of an oriented dipole, respectively. Gray
represents zero, white indicates positive, and black is used for negative values.
The grid overlay shows unit lengths in texture space. Arrows indicate gradient
directions.
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end, he introduced a more hardware-amenable variant of gradient noise known

as simplex noise. Traditional implementations of Perlin noise had interleaved

the sampling and reconstruction steps via interpolation. With simplex noise,

Perlin made the noise more isotropic by substituting a radial reconstruction

filter, h = s(
√

x2 + y2), for the previous separable one. The second change was

to switch from a cubic lattice to a simplex lattice, thereby reducing the number

of sample points evaluated during the reconstruction. The simplicial grid is also

far more efficient for higher-dimensional noise. Finally, he introduced the idea

of only using -1, 0 and 1 as components of the gradients in order to eliminate

the multiplications in the dot products. However, this reduction in samples

and simplification of the gradient calculations gives simplex noise a noticeably

different visual quality.

In 2002, Perlin [78] returned to a more traditional noise function (with cu-

bic grid and separable filter) with small adjustments to the interpolant and a

clarification of simplified gradients from simplex noise. First, he switched to a

higher-order polynomial for the interpolant in order to improve the appearance

when Perlin noise is used for displacement mapping. Second, by changing

from a table of random unit vectors to a set of vectors based on the midpoints

of the edges of a cube, he further reduced the effective number of gradients

to twelve. The regular distribution also eliminates the problem of clumping.

An alternate solution would have been to apply a relaxation algorithm to the

randomly generated unit vectors as a preprocess [79]. While improvements,

these changed do not remove the axial correlation responsible for most of the

anisotropy, and neither significantly attenuates lower frequencies (Figure 4.3a).

Cook and DeRose [19] noted that Perlin’s noise still had several flaws and

introduced an alternative to gradient noise, wavelet noise, to overcome these

issues. The essence of their algorithm is to initially create an image of random

noise, down-sample to half size, up-sample back to full size, and then subtract

this result from the original. To evaluate the noise at a point, they filter the

image with a uniform quadratic B-spline, in a process similar to evaluating value



68

noise. The initial construction of wavelet noise produces tighter band limits

in its frequency distribution, both at the lower and at the upper limits. The

result is orthogonal bands that allow for better spectral control. They also note

the Fourier slice theorem is responsible for low frequencies “leaking” in when

evaluating 2D slices embedded in a higher 3D noise volume. They solve this

problem with a modification to the filtering step based on projection along the

surface normal. Wavelet noise [19] succeeds in avoiding the axially-correlated

periodicity of the traditional hash function, and ensures a desirable bandlimited

spectrum. In practice, however, it is more costly than improved Perlin noise, and

exhibits anisotropy in the lower bandlimit which may affect visual appearance

when viewed closely (Figure 4.3b). To be efficient, wavelet noise also requires

significantly more memory to store the complete preprocessed noise volume,

whereas Perlin noise relies on a simple hashing scheme to generate the volume.

In the Sections 4.4 through 4.7, we propose several orthogonal improvements

to standard gradient Perlin noise that combine the best features of each of these

noise functions. We first improve both the generation of precomputed gradients

and the spatial hash function to decrease axial bias. We then suggest a wider

filter that greatly improves bandlimits as in wavelet noise, while preserving the

visual characteristics of classic Perlin noise. Finally, we show how to take 2D

projections of 3D Perlin noise to achieve desirable visual properties (Figure 4.3c).

4.3 Noise in Hardware
There has been some work published on hardware noise implementations [38,

69, 79]. This work does not actually propose special hardware for computing

noise, instead it describes details to implement Perlin style noise using GPUs by

mapping the lookup tables to texture memory. They are software adaptations of

a noise algorithm to run on GPU hardware. While this approach is useful, it is

quite different from our approach to hardware noise.

Our noise implementation is an actual parallel hardware implementation of

noise as a custom circuit for use as a co-processor or as a functional unit to
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(a) Perlin noise (b) Wavelet noise (c) Our noise

Figure 4.3. Simple scene comparing three noise algorithms. Sphere, box, and
plane textured with (a) Perlin’s improved noise function, (b) wavelet noise with
projection to the surface normal, and (c) our modified noise function with
improved gradient table, hash function, filter kernel and projection method.
Our noise has a smoother look, appearing more isotropic close up and more
even from mid to far.
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be included in future designs. While this approach does not leverage existing

high performance architectures like GPUs, it does have the potential to be used

in GPUs to further increase the performance and quality of these kinds of

computations.

As described in Section 4.2 Perlin designed his simplex noise to be more

amenable to hardware acceleration by using a set of twelve fixed vectors with

unit components to reduce the computation needed for the dot products. While

this does reduce the required computation somewhat, it also creates some ad-

ditional artifacts in the image that are quite apparent and which we wanted to

avoid in our noise algorithm.

4.4 Gradient Vectors
Perlin’s original noise function [80] used a table, G, of random gradient vec-

tors that were uniformly distributed on the unit sphere. These were constructed

through the common rejection method of repeatedly picking random values

from [−1, 1] for each of the x, y, z components until the chosen vector had unit

length or less. Once the table was filled, the vectors were normalized to unit

length.

Later, Perlin observed that this tended towards clumping due to directional

biases from the cubic grid [78]. To correct this, he introduced a fixed set of 12

gradient vectors formed from connecting the center of a cube to the center of

each edge. For efficiency, four vectors that form a tetrahedron are duplicated to

pad the table to 16 entries.

These new vectors lead to other artifacts, however, due to the symmetries

between them. Axis-aligned planar cross sections of the 3D noise function will

use only eight unique gradients due to four pairs of gradient vectors projecting

to the same vector on the plane. Coupled with the duplicate vectors for padding,

this can produce strong biases in a limited choice of gradient directions, as

shown in Figure 4.4a. This leads to artifacts at 45◦ angles that highlight the

underlying grid.
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Instead, we use a larger table with Perlin’s relaxation idea [79] to solve

the clumping problem. Beginning with the original gradient vector generation

method, we then treat each of the vectors as a charged particle on the surface of

a sphere [25]. Each particle representing a gradient vector, G[i], experiences a

repulsive Coulumb force,

F =
G[i]−G[j]

|G[i]−G[j]|3
,

from each of the other particles j 6= i. Simulating a series of time-steps to

convergence that apply these forces to update the gradient vectors while con-

fining them to the surface of the unit sphere produces a well-distributed table

of gradient that avoids clumping and samples the surface of the unit sphere

quite evenly. The improvements from the relaxation step can be quite subtle

when the number of gradient vectors is large; nonetheless, as it can be done

in a preprocess it is essentially free. Figure 4.4b shows noise with gradient

vectors from a 256-entry table. Using a larger table avoids the quantization and

symmetry effects of the cubic edge-center set and also provides an additional

degree of randomization beyond that of the hash function.

4.5 Hash Function
Perlin [80] generates random unit vectors on the 3D integer lattice indexed

as i, j, k. To achieve finite storage, a single table P of N randomly permuted

integers 0 . . . (N − 1) is hashed successively using each axial coordinate, Hijk =

P[P[P[i] + j] + k], where indices are assumed to be modulo the table length. This

provides the index into another table G (modulo the size of G) containing the

gradient vectors.

The purpose of the hash is to decorrelate the indices. However, if i and j

are held constant and steps are taken along k, this will unfortunately produce

successive entries in P. For any values of {i, j, k} that hash to P[0], the adjacent

lattice point {i, j, k + 1} will always produce P[1]. In fact, each column will

produce exactly the same sequence of hash values as any other – the copies will

simply be shifted. This breaks the fundamental assumption that the samples of
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(a) Cubic edge-center vectors

(b) Relaxed vectors

Figure 4.4. Projections of 3D gradient vectors onto planar cross section. Sections
of axis-aligned 2D slices from a 3D noise volume with the grid and the gradient
vectors projected onto the plane for (a) Perlin’s set of 16 cubic edge-center
vectors, and (b) 256 random vectors distributed via repulsion. Larger sets help
avoid biases that can produce runs.
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the random noise process are uncorrelated. Given a sufficiently large sampling

of Perlin noise, the spectrum manifests strong striations perpendicular to the

preferred axis, shown in Figure 4.5a.

To fix this, we use a separate (power of two sized) permutation table for each

dimension, Px, Py, Pz, and take the exclusive-or of the value from each:

Hijk = Px[i]⊕ Py[j]⊕ Pz[k].

Figure 4.5b shows the improvement to the spectrum that this produces.

While requiring a slight increase in memory, this has the advantage of elimi-

nating dependent permutation table lookups and reducing the total number of

those lookups from 14 to 6 in the case of 3D Perlin noise. In the case of ND

noise, the number of lookups is reduced from 2N+1 − 2 to 2N.

Note that if the set of gradient vectors is well-ordered, as in Perlin’s newer

16-vector set, then an additional permutation table may be required to pro-

vide further scrambling of the index into G. The random ordering of the

vectors generated by the rejection and point repulsion methods provides this

final scrambling inherently.

4.6 Filter Kernel
Though our hashing scheme spectrum fixes most of the anisotropy of the

Fourier spectrum, the bandlimits are quite weak: both low and high frequencies

remain. Provided that the random noise process is truly uncorrelated, the overall

shape of the frequency spectrum is determined by the reconstruction kernel.

When considered in one dimension, Perlin noise uses an antisymmetric ker-

nel of the form s(x)x where s(x) is either an Hermite cubic polynomial [80] or a

quintic polynomial [78]. The latter produces a pair of lobes with opposite signs

that peak at a distance of approximately 0.80 from each other and then fall to

zero beyond that.

We note that the separable Perlin filter very closely resembles a continuous

(smoothed) version of the discrete impulse response of a first-order (forward or

backward) difference operator. Moreover, successive application of a difference
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(a) Standard hash function

(b) xor hash function

Figure 4.5. Traditional and xor hash functions. Detail of images and associated
Fourier transforms of (a) 2D Perlin noise with standard hash function, quintic
interpolant and 256-entry gradient table, (b) 2D Perlin noise with our xor hash
function. Our xor hash eliminates the striations in the Fourier transform.



75

operator k times to a given impulse causes an impulse response of the k + 1 set

of binomial coefficients with alternating signs. Applied as a filter, this scales

frequency f by (2 sin(π f ))k [40]. Effectively, differencing attenuates the lower

third of the Nyquist interval and amplifies the upper two-thirds, explaining

the strong presence of high frequencies and the near-linear attenuation of low

frequencies in the Perlin noise spectrum. The smoothing component isolates

the first replica and eliminates the higher order harmonics. Thus, higher order

differencing with smoothing ensures better bandlimits, but at the cost of a wider

filter.

Kernels with opposing lobes, such as a Sobel filter or Catmull-Rom spline,

are common solutions to bias from discrete signal reconstruction. While Perlin’s

filter is shaped correctly, it lacks sufficient support width to bandlimit as de-

sired. The lowest support k for which the stencil encloses the next immediately

neighboring samples is k = 3, a four-point stencil on [−2, 2]. The binomial

coefficients of third-order forward differencing are 1,-3,3,-1, so we desire addi-

tional opposing lobes one unit away and 1/3 the amplitude of the inner pair.

For computational efficiency our filter approximates this as a polynomial s(x);

which is again applied to the antisymmetric Perlin noise kernel of the form

s(x)x. In choosing s(x) we seek a symmetric (even-degree) polynomial that

makes s(x)x satisfy the previous constraint on the lobes, and has s′ = s′′ = 0 at

the stencil endpoints. We find that the following meets these criteria:

s(x) = (2− x)4(2 + x)4(1− x)(1 + x)/256

= 4(1− x2/4)5 − 3(1− x2/4)4.

We implement the function in the second form for efficiency. Figure 4.6 com-

pares this with Perlin’s quintic. Combining the radial filter kernel with our new

hash function in 2D noises produces the results shown in Figure 4.7, in which

high frequencies are effectively attenuated. The disadvantage of our method is

that the four-point stencil is costly, requiring 16 lookups in 2D and 64 in 3D.

However, this larger kernel allows contributions from the additional grid points
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(a) Perlin’s quintic kernel (b) Our radial kernel

Figure 4.6. Separable and radial filter kernels. Images and associated Fourier
transforms of (a) filter kernel from Perlin’s improved quintic polynomial, and
(b) our higher-order radial kernel with secondary lobes.

Figure 4.7. Gradient noise with extended reconstruction kernel. Detail of image
and associated Fourier transform of 2D noise with 256 well-distributed gradient
vectors and our xor hash function and extended reconstruction kernel.

to eliminate the regular zeroes of both classic Perlin noise and simplex noise,

and is clearly effective in producing a band-pass spectrum.

4.7 Projection to 2D
In their use as solid textures, 3D noises are frequently sampled along 2D

surfaces. However, Cook and DeRose [19] showed that even if a noise is 3D

bandlimited, a planar slice will not be bandlimited due to the consequences
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of the Fourier slice theorem. Instead, low frequencies will be present and the

Fourier transform will appear as a solid disk (Figure 4.8). To solve this problem,

they project the wavelet noise onto a surface by performing a weighted line

integral along the surface normal under the assumption that the curvature is

weak at the scale of the noise. Inspired by their method, we propose a simple

projection technique applicable to gradient noises.

Our method projects each of the neighboring points onto the plane tangent to

the surface, and evaluates the kernel at those projected points instead of at their

original positions (Figure 4.9). Because of the radial nature of the kernel this

results in a planar slice using a convolution kernel equivalent to the 2D kernel

when evaluating the noise along a surface with low curvature. To compensate

for the projection and avoid popping, we weight the contribution from each

neighboring point with a cubic Hermite curve that falls off with the distance

from the plane. Figure 4.10 shows our result: low frequencies are attenuated

isotropically, yielding a more radially symmetric spectrum than wavelet noise.

Figure 4.8. Low frequencies in planar slice. Detail of images and associated
Fourier transforms of a slice of our 3D noise along plane normal to x = y = z.
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Figure 4.9. Projecting the lattice points. Without projection (left), cross sections
of noise will produce off-center slices through the filter kernel. By projecting
the lattice points onto the plane tangent to the surface normal (right) before
evaluating the contribution, the slices pass through the kernel center.

Figure 4.10. Low frequencies removed by projection. Detail of images and asso-
ciated Fourier transforms of the same slice as in Figure 4.8 with the projection
method applied.
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4.8 Software Algorithm
Figure 4.11 displays complete pseudocode that employs our hash, filter, and

projection method (given coordinate X and unit-length surface normal N). In-

dices into each table are assumed to be modulo table size.

We have shown how to improve the spectral properties of Perlin noise with

relatively minor changes. Distributing the gradient vectors evenly over the

sphere has no run-time or memory cost. The hash method of Section 4.5 im-

proves both visual quality and runtime (about 5%) with only a modest increase

in storage; we believe all noise implementations should adopt these changes.

The kernel and projection method yield a bandlimited spectrum attenuating

high and low frequencies. Timings of 3D noise on a 2.5 GHz G5 indicate

that these methods are more expensive to evaluate than standard Perlin noise

(about 5.9× and 13.8×, respectively), thus their use should be restricted to

applications where the visual benefits merit the penalty. GPU implementations

show consistent ratios.

function ProjectedNoise(X, N)
I← {bXxc, bXyc, bXzc}
F← X− I
v← 0
for k← −1 to 2 do . 4-point stencil

for j← −1 to 2 do
for i← −1 to 2 do

D← F− {i, j, k} . vector from lattice point
o ← D ·N . offset from plane
A← D− oN . projection onto plane
d← A ·A . squared distance to projection
o ← 1− |o|
if d < 4 and o > 0 then

a← 3o2 − 2o3 . attenuation for offset
h← Px[Ix + i]⊕ Py[Iy + j]⊕ Pz[Iz + k]
t← 1− d/4
v← v + (A ·G[h])(4t5 − 3t4)a

return v

Figure 4.11. Pseudocode for the complete noise algorithm.
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Our algorithm compares favorably against wavelet noise while providing

many of its visual benefits. Tests against the provided sample code for Wavelet

noise indicate that our modified noise is 3.4× faster without projection and

at least 4.5× faster with it (significantly so in the nonaxis-aligned case). Our

algorithm is also more parsimonious with memory: a 1283 tile of noise requires

128MB of storage for wavelet noise and 4KB with our algorithm (with 256-entry

gradient table and 128-entry permutation tables.) Furthermore, the memory

needed for wavelet noise grows with the volume of the tile while the memory

for ours grows linearly with the length of the sides.

While we have focused on visual quality, we note that with our method

we can trade some visual appearance for speed and still retain the isotropic

bandlimits by sampling the grid at half-resolution—i.e., using only the integer

lattice points with even-valued coordinates (Figure 4.12). This variant is well

suited to summations over multiple octaves and effectively returns to a two-

point stencil and with projection it has an evaluation cost of only 2.4× relative

to Perlin noise. In either case, the fewer dependent lookups needed for the new

hashing scheme implies opportunities for optimization.

4.9 Hardware Gradient Noise
We have used this modified gradient noise algorithm as the basis for our

hardware noise implementation. We implemented the new hashing scheme,

the new radial polynomial with the coarser grid evaluation, and generated the

vectors in the gradient tables with the relaxation technique.

As a data point, one straightforward implementation of Perlin noise that

we have measured requires 120 floating point operations to compute one noise

value. Our higher quality noise requires as many as 172 operations in software,

though many of these operations are independent of each other. Clearly if we

can parallelize this process we can achieve a much faster noise implementation.

An overview of the parallel hardware implementation of our improved noise

algorithm can be seen in Figure 4.13. As mentioned above, our improved noise
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Figure 4.12. Noise evaluated on half-resolution grid. Detail of image and
associated Fourier transform of same planar slice and projection method with
faster half-resolution grid.

uses a gradient table to provide better results than either simplex noise or value

noise. This improvement in quality comes at a cost of increased circuit size (to

hold the table and to perform the full dot products). We believe it is a good

trade off considering the improvement in quality. Additionally, we use reduced

precision fixed point arithmetic to save area, energy and delay. We also achieved

additional savings by reducing the sizes of the gradient and hash tables. As

can be seen from Figures 4.1 and 4.14, our fixed point implementation, while

distinguishable as being a different image, does not have a noticeable difference

in quality from the standard floating point implementation used in software.

For our circuits we used standard cells from Artisan targeted to a 65nm

CMOS process. We used Synopsys Design Compiler as a synthesis front end and

Cadence SOC Encounter for back-end place and route. For table comparisons

between standard cells and ROMs we used Artisan via-ROM generators for the

same 65nm CMOS process.

The typical application for noise is generating images with an eight bit rep-

resentation per color channel. This allows us to use much lower precision in
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Figure 4.14. Rendered scene with fixed point version of our noise. Compare
with Figure 4.1. All noise evaluations were performed with eight fractional bits
and a 64-entry gradient table. While not identical, this shows that the modified
algorithm with reduced precision can be a viable alternative to floating point
Perlin noise.
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our circuits than would be used in a traditional software implementation of

noise. Even when the software version, or the GPU version, of noise does the

full computation in 32 bit floating point most of the precision is thrown out in

the end. We leverage this to use eight bit fixed point computations in our noise

circuits which results in tremendous savings in area, power, and latency with

no discernible visual artifacts. While multiplication operations do lose some

precision due to truncation of the lower bits, the deepest chain of arithmetic

operations contains just five multiplies.

4.10 Lookup Tables
There are a number of lookup tables used in our improved noise algorithm

(permutation tables and gradient tables) and we explored a few options for

implementing them. We first used the ROM generator, but the results required a

fairly large area. We found that by implementing the lookups as case statements

in Verilog and synthesizing to standard cells we were able to decrease the area

needed for the lookup tables by a factor of 3.3. The latency through the ROM

was also worse and forced us to latch the value at the output instead of allowing

us to perform register retiming through the lookup tables. We believe this is

because the lookup tables we are using are at the smallest possible size for the

ROM generator, and the amortized ROM overhead is relatively large.

We also analyzed the tradeoff between a full 256 entry gradient table de-

scribed in Section 4.4 and a much smaller 64 entry gradient table which we be-

lieve is the smallest size that generates results that are visually indistinguishable

from the larger table sizes. Because we replicate this table eight times to allow

for parallel lookups, the area savings are considerable. We opted to shrink the

table rather than pipeline the lookups in the table for simplicity and parallelism.

In addition, this reduction in the size of the gradient tables allowed us to shrink

the bit width of the 256 entry hash tables as we only need six bits to find the

gradient. In each case, the gradient values used in our tables were generated

using the point repulsion technique described in Section 4.4.
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4.11 Pipelining
Our initial design was entirely combinational where it was assumed that a

full computation of noise would be performed in a single cycle. We compared

that design to a pipelined design with up to four stages and found that we

could meet our goal of 1GHz frequency with four pipeline stages where the

nonpipelined version would only reach 344MHz. The pipelined version was

generated by first synthesizing the entire combinational circuit to meet the com-

binational timing requirement. Design Compiler was then run on the synthe-

sized circuit to perform register retiming and distribute the registers throughout

the circuit resulting in a pipelined implementation. Register retiming can create

circuits of very different sizes depending on where the registers are placed in

the final retimed version.

To explore the design space we synthesized a few different pipeline depths

as part of our design process. The results of these synthesis runs are detailed

in Table 4.1. While we were also able to achieve a 1GHz clock frequency with a

three stage pipeline, the size of the three stage design was larger than the four

stage design because a larger combinational circuit is needed to meet the timing

requirements. We therefore chose the smaller design since throughput is more

important than latency for this application.

Table 4.1. Cell area and performance of synthesized noise module. Determined
from synthesis before place and route.

Cell Area (µm2)
Pipeline stages Clock (MHz) Combinational Sequential Total

0 (combinational) 344 60350 0 60350
1 (not retimed) 337 57052 2470 59522
3 (retimed) 1000 76256 11980 88236
4 (retimed) 1000 58090 11470 69560
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4.12 Physical Implementation
Figure 4.13 shows the computational flow of information for a single noise

calculation. A three-space point (vector) is input and the result is a single

noise value which is used in the shading computations. From this diagram

the parallelism in the algorithm is apparent, and would be difficult to exploit in

software. The thick lines in the diagram are vectors (typically three elements of

eight bits each) and the thin lines are single eight bit values. The boxes labeled

“Hash” and “Grad” are the hash lookups and the gradient tables described in

Section 4.10. Section 4.6 also describes the polynomial operation (radial filter)

performed by the “Poly” boxes.

The arithmetic implemented in the magnitude, dot product, and polynomial

computations, as well as the multipliers and adders, is all fixed point. The

range of values for the fractional inputs is in the range [0, 1] and only the most

significant bits really matter, which is why fixed point is sufficient and beneficial

to our design. Our design retains all the bits needed to encode the exponent in

a floating point number and also results in smaller circuits because of the fixed

point representation. The arithmetic circuits were described with behavioral

verilog and synthesized with Synopsis.

While this design was not fabricated, the final circuit after synthesis and

place and route can be seen in Figure 4.15. The size of this final layout is 105kµm2

(325µm× 325µm). For comparison, and also in the context of the TRaX processor,

we produced other more well-known circuits using the same standard cells and

the same 65nm technology. A single-precision floating-point three-element dot

product takes an area of 111kµm2. A double-precision floating-point multiplier

consumes 73kµm2, while a single-precision floating-point ALU (performing add,

subtract or multiply) uses 34kµm2 in this technology.

Our circuit is smaller than a single-precision dot product, despite containing

eight dot product operations because we use lower precision arithmetic in our

circuit. While this reduced precision is not appropriate for every potential

application of noise, we believe it is sufficient for our intended application of
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Figure 4.15. Placed and routed circuit implementing our improved noise. This
image is a screen capture from Cadence SOC Encounter and shows only metal
routing layers of the four-stage pipeline circuit (105kµm2).

shading in graphics. It would also map well to any other application that ends

up truncating the precision when using the results of the noise.

4.13 Conclusion
Our improved noise algorithm results in high quality noise that avoids the

downfalls of periodicity, anisotropy, and aliasing. This functional unit per-

forms this operation quickly and requires only a relatively small die area. We
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reached our target of a 1 GHz clock frequency with a four stage pipelined design

which produces one noise value per clock once the pipeline is full. This can be

compared to a straightforward software implementation of Perlin noise which

requires 120 floating point operations and peaks at 16.7M evaluations per second

on a single core of 2.8GHz Core 2 Duo. Our final design uses three 256 entry

hash tables where, to avoid additional adders, each table entry encodes the hash

value for the input, and for the input plus one (see Figure 4.13). We also use

eight copies of a 64 entry gradient table, where each gradient is a three-element

vector of fixed point values.

As graphics pipelines demand more and more memory bandwidth we be-

lieve that providing a method for high quality textures through a hardware

accelerated noise function provides a good trade-off. Much of the bandwidth

of high-performance graphics chips is devoted to image-based (lookup) textur-

ing. Procedural textures using noise offer an alternative that trades memory

bandwidth for computation. The scene in Figure 4.1 is an example that uses an

average of 552 calls to the noise function per shading sample. 37.2% of the total

execution time for rendering the image was spent in the evaluation of noise for

various aspects of the image. The textures on all of the surfaces and the smoke

use noise to improve visual quality. The use of image-based textures would

require far more memory bandwidth than our approach.

Admittedly, many applications would see more modest improvements in

performance than the specific scene used here which is designed to demonstrate

heavy use of noise-based textures. However, any time noise is used there would

be a speedup using our hardware over a software implementation. At least

one place where this could encourage visually complex images at a reduced

memory bandwidth requirement would be video games. Games typically use

very large image textures to avoid the appearance of repetition. While we do

not have specific projections of memory bandwidth savings, it is well known

that the large image textures are a significant fraction of the memory bandwidth

in video games. Our design could increase the performance of applications that
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use noise by as much as 50% and would be a good step toward high quality

procedural texture generation and could become a viable real-time alternative

to image-based texturing.



CHAPTER 5

IMPROVING BOUNDING VOLUME HIERARCHIES

THROUGH TREE ROTATIONS

This work is based on an earlier work c© 2008 IEEE. Reprinted, with permission,

from Proceedings of the 2008 IEEE Symposium on Interactive Ray Tracing, Tree Rota-

tions for Improving Bounding Volume Hierarchies, Andrew Kensler.

Current top-down algorithms for constructing bounding volume hierarchies

(BVHs) using the surface area heuristic (SAH) rely on an estimate of the cost of

the potential subtrees to determine how to partition the primitives. After a tree

has been fully built, however, the true cost value at each node can be computed.

We present two related algorithms that use this information to reduce the tree’s

total cost through a series of local adjustments (tree rotations) to its structure.

The first algorithm uses a fast and simple hill climbing method and the second

uses simulated annealing to obtain greater improvements by avoiding local

minima. Both algorithms are easy to add to existing BVH implementations and

are suitable for preprocessing static geometry for interactive ray tracing.

Bounding volume hierarchies are also a popular choice for ray tracing an-

imated scenes, due to the relative simplicity of refitting bounding volumes

around moving geometry. However, the quality of such a tree can rapidly

degrade and thus some degree of rebuilding is still necessary. We show how

animations can benefit by combining efficiently combining refitting with tree

rotations. The result is a fast, lightweight, incremental update algorithm that

requires negligible memory, has tractable update times and parallelizes easily,

yet avoids significant degradation in tree quality or the need for rebuilding while

maintaining low rendering times.
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On average, our incremental tree-update takes slightly less than double the

time for refitting alone while producing BVHs that are only 1.4×more expensive

to render than those produced by completely rebuilding with a high quality

sweeping SAH algorithm for each frame.

5.1 Introduction
Bounding volumes [17] are a relatively simple idea: find a simple object –

axis aligned boxes are currently the most popular – that completely contains,

or bounds, a more complex object. If the bounding volume is not visible, then

nor is the object that it contains. In the context of ray tracing, we perform a

ray intersection test against the complex (expensive to intersect) object if the ray

intersects the bounding volume. This reduces the overall computation if the

rays miss enough of the time. Whitted’s original ray tracer [103] used bounding

volumes this way. Rubin and Whitted [84] improved on this by organizing

the bounding volumes into a hierarchical tree structure, the bounding volume

hierarchy (BVH). Weghorst et al. [102] noted the importance of considering the

projected “void area,” and proposed the idea of a cost model for selecting

bounding volumes. Kay and Kajiya [46] introduced a top-down method for

automatically creating bounding volume hierarchies from collections of objects

by recursively sorting their medians along an axis and then subdividing them.

Goldsmith and Salmon [32] gave the basis for a cost function that is known

today as the surface area heurisitic (SAH), and used it to build BVHs from the

bottom-up, but inserting new primitives into the tree one-by-one. MacDonald

and Booth [60] applied the idea to spatial acceleration structures known as KD-

trees [9], and used it in what is nearly its modern form [41] to choose splitting

planes for the KD-trees. Their algorithm worked top-down and recursively

divided the objects and space, greedily choosing the split plane that minimized

the SAH at each level. Müller and Fellner [65] modified this for use in BVHs

and gave a similar top-down SAH-based construction algorithm for BVHs. The

algorithm scans along the list of primitives that have been sorted along an axis by
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centroid and seeks to divide the list into two pieces such that the SAH function

is minimal. Mahovsky [61] noted that the benefits from the surface area heuristic

are similar for kd-trees and BVHs. SAH-based algorithms domininate the state

of the art in construction algorithms for both acceleration structures.

The surface area heuristic provides a cost model for the average time that

a ray will take to traverse down the tree and intersect candidate primitives at

the leaf notes. In its basic form as used for binary tree BVHs constructed over

triangle meshes, it says that the cost, C, of a node is

C =

{
Ct + CiN for leaf nodes
Ct +

SLCL+SRCR
S for interior nodes,

where Ct and Ci, respectively, represent the relative costs for a traversal step and

for a primitive intersection step in the rendering implementation and N is the

number of primitives at a leaf node. SL, SR, S give the respective surface areas of

the bounding volumes of the left child, right child and current node. Similarly,

CL and CR give the computed costs for the left and right children.

The SAH algorithm for constructing BVHs proceeds in top-down fashion.

At each node it considers a set of candidate partitionings of the primitives

and greedily chooses the one that minimizes its estimate of the node’s cost.

Typically, “exact” SAH algorithms form these candidate partitionings by using

the planes from each of the six sides of each primitive’s axis-aligned bounding

box. These partitionings appoint each primitive to a group based on which side

of the plane the primitives’ centroid falls on. Once the best partition has been

found, these groups become the current node’s children and then the process

continues recursively down until the number of primitives assigned to a node

falls below some threshold at which point that node becomes a leaf.

Approximate SAH construction algorithms for BVHs [96] work similarly, ex-

cept that they use binning to sample a smaller number of potential partitions—

often by simply choosing axis-aligned planes at regular intervals rather than the

sides of the primitives’ bounding boxes. From these, they fit a simple curve to

the cost estimates and use the curve’s minimum to choose the best plane along
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which to partition the primitives. Thus, the approximate algorithms attempt to

build a tree with a quality close to those of the exact algorithms’ but in a fraction

of the time.

One notable characteristic of all top-down construction algorithms based on

the SAH is that they are not minimizing the true value of the C but only an

estimate because CL and CR can only be computed with certainty after their

corresponding subtrees have been fully constructed. Instead, they estimate

CL and CR either linearly or logarithmically from the number of primitives

potentially assigned to each child.

After fully constructing the tree, however, one can compute the true cost

value both for the tree as a whole and for each node. With this additional infor-

mation it may be possible to produce an improved tree with a lower cost. Ng

and Trifonov [68] partially explored stochastic algorithms for this by repeatedly

building BVH trees with jittered splitting plane locations, and then preserving

the tree that yields the lowest true cost. This method failed to produce better

trees than the standard greedy algorithm. Inspired by the use of genetic al-

gorithms for constructing binary space partition (BSP) trees in [15], they also

explored extending Goldsmith and Salmon’s [32] bottom-up BVH construction

method with a genetic algorithm to optimize the order of primitive insertion.

Despite the improvements yielded by the genetic algorithm, they found that the

standard top-down greedy build algorithm still produced superior trees.

In the first half of this chapter we explore an alternate method based on

starting with an already existing BVH such as one produced by the usual top-

down greedy algorithm and then using local tree rotations—similar to those

used for balancing binary search trees—and hill climbing to improve it. Then we

show how to combine this with stochastic global optimization via a simulated

annealing algorithm [51, 92] to attempt to avoid local minima. Following that,

we explore the application of tree rotations to maintaining up-to-date BVHs for

animations.

Acceleration structure maintenance is a crucial component in any interactive
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ray tracing system with dynamic scenes. As the geometry changes from frame

to frame, the existing acceleration structure must be either updated or replaced

with a new one. An ideal update algorithm should produce an acceleration

structure that is as efficient to render as an acceleration structure produced by

a high quality, offline build algorithm for the same frame, yet produce it in as

little time as possible.

In the past few years, bounding volume hierarchies have been popular sub-

jects of research for efficient update algorithms. They are relatively quick to

render and there is a very simple update algorithm which uses refitting [97].

Refitting works by performing a postorder traversal of the nodes BVH tree. Each

leaf is updated with a new, tight bounding volume over its corresponding ge-

ometry and then interior nodes combine these to form a tight volume enclosing

their children. With a binary tree and axis-aligned bounding boxes, this process

is fast and reasonably effective for small deformations to the underlying geome-

try. However, it can degrade rapidly when the geometry moves incoherently or

undergoes large topological changes.

Full rebuild algorithms overcome this by replacing the BVH tree with a new

one before the degradation becomes too significant. Lauterbach et al. [55] took

the approach of measuring the degradation and performing the rebuild on de-

mand. Ize et al. [42] created a system that continuously performs a rebuild asyn-

chronously and substitutes the new tree on completion. Wald’s [96] program

completely avoids degradation by using a fast build algorithm to completely

rebuild the tree for every frame.

Alternatively, hybrid algorithms combine refitting with heuristics to deter-

mine when to perform a partial rebuild or restructuring of a subtree. Yoon et

al. [106], for example, implement a cost/benefit estimate of the culling efficiency

of ray intersection tests to restructure pairs of nodes, while Garanzha’s [31] algo-

rithm looks for nodes whose children undergo divergent motion. Both of these

algorithms use multiple phases to first identify candidates for restructuring and

then to reconstruct them.
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In the second half of this chapter, we describe a much simpler, yet still

effective approach based on tree rotations. Combining refitting with tree ro-

tations and produces a fast incremental update algorithm that achieves much

of the simplicity and speed offered by refitting alone while attaining rendering

performance closer to full rebuilding algorithms.

5.2 Tree Rotations
Self-balancing binary search trees such as AVL [1] and red-black [7] trees

use tree rotations as the fundamental operation for re-balancing the tree after

an insertion or deletion. Splay trees [89] also use tree rotations, but apply them

after a lookup in order to improve future access times when it needs that element

again soon.

Tree rotations are local operations involving the root of a subtree and its

immediate children and grandchildren and come in two symmetric forms: left-

rotations and right-rotations. By altering the linkage of nodes within the tree,

one of the children moves up to take the place of the root of the subtree, while

the original root descends to become a child of the new root (Figure 5.1). Which

child ascends and which descends depends on whether a left-rotation or a right-

rotation is being applied. In either case, a rotation will undo the effects of its

opposite. Furthermore, rotations always preserve the search ordering of the

original tree and it is possible to transform any two binary search trees with the

same nodes into the each other through a sequence of rotations.

left

right

β

x

y

γ

α

α

x

β

y

γ

Figure 5.1. Left- and right-rotations on ordered binary trees
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We can apply a similar idea to modifying BVHs. Because the BVH has no

order property and the interior nodes carry no inherent information of their

own—only the links to their children and the union of their children’s bounding

volumes—the rotation operations are slightly different, however. The rotations

reduce to simply swapping a child with a grandchild from the other side. Fig-

ure 5.2 shows the four possible pairs to exchange. As with the rotations for

binary search trees these result in elevating one subtree, rooted at the grand-

child, while demoting another, rooted at the child.

Note that these exchanges do not affect the bounding volume at the subtree’s

root—only its children’s bounding volumes will change. Because of this, an

exchange will not affect the bounding volume of any node in the tree above the

subtree’s root and so the denominators in the computations of the SAH costs

for these upper nodes will remain unchanged. Consequently, any rotation that

increases or decreases the subtree root’s cost must produce a corresponding,

monotonic change to the global cost of the BVH for the entire scene. Applying a

rotation that improves the subtree’s cost will always improve the scene’s global

cost and choosing the rotation that produces the greatest reduction to the local

cost will produce the greatest reduction to the global cost. Moreover, computing

the local effect of a rotation is a constant-time operation if the costs and surface

areas of the children and grandchildren are available.

(a) (b)

(c) (d)

Figure 5.2. Nodes to exchange for each possible rotation
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5.3 Hill Climbing
This leads to a very straightforward, efficient, hill climbing algorithm for

improving the cost of a BVH after it has been constructed: recurse over the tree

and visit each node. If the node is a leaf node, simply compute its cost and

return. If the node is an interior node, visit its children first and then recompute

its current cost. Next, determine which rotations the node is eligible to be the

root for and compute the new costs that the node would have if the rotations

were applied. If any of them yield an improvement over the current cost, then

apply the rotation that produces the greatest improvement, update the node’s

cost and return. Otherwise, leave the node unchanged and return to the parent.

Repeat these passes through the tree until no new beneficial rotations can be

found.

One improvement that we have found beneficial is to allow for direct swaps

between the grandchildren of a node. While not true rotations, the procedure

for updating the tree and computing the effect of these swaps on the node’s cost

is nearly identical to that for true rotations. Though a sequence of rotations can

produce the same effect, the intermediate steps may temporarily increase the

tree’s cost and thus the hill climbing algorithm would overlook them.

Figure 5.3 demonstrates this algorithm applied to the standard conference

room scene. Starting with the initial global SAH cost after the tree’s construction,

each pass of our algorithm progressively lowers the cost until it cannot reduce

it any further.

5.4 Simulated Annealing
While the algorithm described above will never increase the global SAH

cost of a BVH it tends to quickly settle into local minima. To remedy this we

used the simulated annealing algorithm [51, 92], a variant of the Metropolis

algorithm [62]. Inspired by the annealing methods for growing large crystals,

simulated annealing uses the concept of a global temperature to control moves

that worsen the solution but also allow it to escape the minima.
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Figure 5.3. Progressive lowering of SAH cost for conference room

The algorithm requires several pieces: an energy function to compute the en-

ergy of a particular state, a way to propose candidate transitions to neighboring

states, an acceptance probability function, and an annealing (cooling) schedule

that defines how the temperature changes over time. The algorithm works by

repeatedly proposing changes that the energy function measures the effect of. It

always accepts changes that decrease the energy but for changes that increase

the energy, the acceptance probability function uses the measured difference in

energy and the current temperature from the annealing schedule to compute a

probability. It accepts the proposed change if a random number in [0, 1) is less

than this probability and rejects them otherwise. After each iteration, it adjusts

the current temperature according to the annealing schedule. Finally, there is

often a “quench” phase after the annealing schedule ends. This phase moves to

the local minimum by only accepting changes that reduce the systems energy.

Mapping this to the BVH tree rotation algorithm is straightforward. The

SAH metric provides the energy function, while the set of rotations possible at
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each node provides the proposed state transitions. For the acceptance proba-

bility function, we use the standard Boltzmann factor used by most simulated

annealing implementations,

P(∆e, T) =
{

min(e−∆e/T, 1) T > 0
0 T = 0,

where ∆e is the change in energy produced by the proposed change and T

is the current temperature. Through experimentation we have found that a

clamped and linearly ramped sine function makes a reasonably good annealing

schedule. We used T(i) = max(0,− sin(i2π/ f ))(N − i)h/N, where i is the

current iteration over the tree, f is the sine function’s frequency, h is the hottest

temperature allowed, and N is the schedule’s length, defined as the total number

of iterations to run. In our tests, we used N = 1250, f = 50 and 0.8 ≤ h ≤ 2.2,

depending on the scene.

To implement this, we start with the previous hill climbing algorithm that

recurses over the tree and at each node test each possible rotation and swap to

determine which one lowers the local cost of the node the most. However while

trying to find the minimum if a proposed exchange would increase the node’s

local cost relative to the currently best found exchange then instead of outright

rejecting it as before, we pick a random number ξ in [0, 1) and test if P(∆e, T) < ξ

and use the difference in local cost as ∆e. If this test succeeds then we accept

this as the currently best found exchange anyway. After all valid rotations and

swaps around a node have been tested this way, we apply the best one, if any.

After the recursion has finished processing all the nodes this way, we update

the temperature for the next pass and begin walking the tree again. Because

we define P(∆e, T) to always be zero when T = 0, the simulated annealing

algorithm reduces to the original hill climbing algorithm for the phases of the

annealing schedule when T = 0. At the end of the schedule, we quench the

system by leaving T = 0 and continue to make passes until the global cost of

the BVH tree converges to a local minimum. Optionally, we can retain a copy

of the best tree found as the optimization progresses and replace it whenever
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a pass ends with an improvement to it, then return that tree as the simulated

annealing algorithm’s result. If the annealing schedule starts out with T = 0 for

enough iterations with this option then in the worst case the simulated annealing

algorithm will at least match the hill climbing algorithm.

Figure 5.4 shows how the simulated annealing algorithm reduces the global

SAH cost for the Soda Hall scene. The annealing schedule begins with a phase

where the temperature is zero and so it will initially lower the global cost for

the scene as with the hill climbing algorithm before. After a few iterations, the

temperature rises and the algorithm makes changes to the tree that result in

increasing the tree’s cost. By cycling through these heating and cooling phases

while gradually diminishing the strength of the heating phases, the BVH for the

scene is brought to a lower global SAH cost than would be possible with the hill

climbing algorithm alone (left plateau on the graph.)

Note that for any two trees with the same leaves and the same number of

interior nodes, there is a sequence of rotations that will transform one into the
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Figure 5.4. Simulated annealing applied to the Soda Hall model
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other. Because the number of leaf nodes determines the number of interior

nodes, the best possible BVH (as defined by global SAH cost) for a given set of

leaves is always reachable from any other state. With this property, the probabil-

ity of the simulated annealing algorithm coming across the best possible BVH

approaches one as the annealing schedule grows [3]. While this will require

an infeasible amount of computation in practice, the algorithm is nonetheless

theoretically sound.

5.5 Performance on Static Geometry
We have implemented our optimization algorithm in the Manta interactive

ray tracer [10]. The BVH code in Manta evolved from a port of the code from the

DynBVH system [97]. We have kept the existing BVH construction and traversal

code otherwise unmodified and simply hooked in our tree optimization to run

after the BVH’s initial construction. For all tests, we used the exact SAH build

algorithm rather than the approximate binning algorithm.

For interior nodes, the BVH traversal code tries to improve the chances of

early ray termination by choosing which child of an interior node to process first

based on the split axis recorded for that node and the ray direction’s sign along

that axis. Because the optimization process effectively destroys this information,

we have added a final pass over the BVH tree to try recreate this. At each interior

node, this checks the bounding box of the children and determines which axis

provides the greatest separation between the end of the one child’s extent and

the beginning of the other child’s extent. It records this as the node’s split axis

and the orders the children accordingly. If there is no such axis that separates

the bounding boxes’ extents then it uses the axis with the least overlap of the

extents instead.

We benchmarked the performance impact of the changes on rendering with

a single core on a 2.8GHz Core 2 Duo machine so as to avoid jitter and overhead

from threading synchronization. For our tests for static geometry, we used two

different rendering modes: first, we tested with pure ray casting (primary rays
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only), traced in packets of 8 × 8 rays each and with the SSE code paths and

culling via interval arithmetic [97] enabled. This represents state of the art

SIMD packet traversal with highly coherent rays. To test the opposite end of

the spectrum, we also measured the performance on two-bounce path tracing

with the SSE code paths turned off, packets of a single ray each and 1024 samples

per pixel. This test emulates classic single ray rendering with rays diverging to

traverse the scene from many directions.

Table 5.1 shows the results of these test on several common models along

with the times required by each algorithm to optimize them. The rows showing

ray cast and path trace times list the average time in seconds needed to render

a single frame. In both cases, the percentages indicate the time needed to

render with optimization relative to the time to render without optimization.

Similarly, the percentages given in the rows for the SAH cost compare the global

SAH cost for the scene after optimization to the cost before. Thus for all rows

lower percentages indicate greater benefits from the optimization. The table also

provides the time each method spent on optimizing the trees.

As shown in Table 5.1, the simulated annealing algorithm required signifi-

cantly more time to process the BVH tree than the hill climbing algorithm but

achieved a better reduction in the scenes’ SAH costs. The number of iterations

to run the simulated annealing is a user controllable parameter, however, and

thus it is possible to control the trade-off between the processing time and the

degree of improvement to the tree.

Several things are noteworthy about these results. First, scenes with densely

tessellated models such as the Happy Buddha, the Dragon, and even to some

extent the Fairy Forest, present the greatest difficulty with respect to optimiza-

tion. While it is still possible for the optimizer to find small improvements that

lower the SAH cost of these scenes, the improvements made tend to be quite

small and may even be slightly detrimental to the rendering times. The majority

of the iterations of the simulated annealing algorithm for these scenes ended

with the computed SAH cost of the scene greater than it was initially.
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Interestingly, this suggests that the top-down greedy construction algorithm

succeeds at producing good trees for these scenes despite using only an ap-

proximation to the true cost of the subtrees. At the very least, these trees seem

to be close to strong local optima if not the global optimum. This confirms

that the greedy approach and the approximations to the subtree costs are valid

approaches for these models.

For scenes with triangles of heterogeneous sizes such as the architectural

scenes, the optimization seems to fair much better. Here, the simulated anneal-

ing algorithm is able to achieve a 15.5% reduction to the cost of the Conference

Room scene and a corresponding 17.6% improvement to the path trace rendering

time. For these types of scenes, the top-down greedy build does not come as

close to building trees near the local optima as it does for the finely tessellated

scenes and thus the tree optimizations succeed better at lowering the cost.

Also notable is the degree of correlation between the changes in the SAH cost

and the changes in the rendering times. In particular, the correlation between the

cost value and the time for packetized ray casting appears to be much weaker

than it is between the cost value and the time to path trace with single rays.

While this is not surprising, as the surface area heuristic was developed based

on the assumption of tracing single rays with well distributed directions, this

does suggest the need for an improved heuristic that takes into account the

amortization afforded by ray packets with culling. We believe that this would

be a valuable area of future work.

5.6 Update Algorithm
The core of our incremental update algorithm for dynamic scenes is a straight-

forward combination of refitting and tree rotations, with the two intertwined

into a single pass. For each frame, the scene geometry is first interpolated to its

new position. Next, a postorder recursive pass refits the bounding box for each

to enclose the geometry in its new position. After finding the new bounding

box for a node the algorithm checks the children and grandchildren for possible
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local exchanges of nodes (“tree rotations”) that might reduce the SAH cost of

the subtree and thereby improve the overall quality of the scene BVH.

Figure 5.2 showed the four tree rotations that the algorithm considers. Each

of the four rotations are primitive and involve exchanging a direct child of the

node with a grandchild on the opposite side. This has the effect of raising

one subtree at the expense of lowering the other. It also considers the two

compound moves – direct swaps between “cousins” – that can be composed

through sequences of the upper basic four rotations. Adding in these two

compound moves, however, gives the tree rotation algorithm freedom to find

improvements that it might miss due to the intermediate steps raising the SAH

cost of the node.

For each node, the algorithm always greedily performs the rotation that

minimizes the local cost of the node. If a rotation is found that reduces the

cost, then the exchange is made and it refits the bounding box of the affected

children and recomputes their new costs. Otherwise, if no rotation reduces the

existing cost then the nodes are left as-is. This is essentially a single step of the

basic hill-climbing algorithm described above.

One subtlety of our algorithm is in the recomputation of the SAH cost at

each point. To decide on a rotation, the algorithm needs to compare the new

cost of an interior node after refitting with the potential costs after each of the six

possible rotations. Computing these costs involves dividing by the surface area

of the node, but we can defer this division until after the selection of a rotation.

Moreover, expanding out the cost formulas for each case leads to a number of

common terms which help to reduce the expense of these cost computations.

Secondly, note that computation of the SAH costs requires no additional heap

storage when updating the entire tree on each frame; evaluating a node for tree

rotations requires the costs only at the children and grandchildren. With care,

this information can be maintained entirely on the stack.

This algorithm is also easy to make faster through parallelization for mul-

ticore systems. Because the modifications to the tree structure are local and
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incremental, we can divide the work up near the root of the tree and assign

subtrees to each thread. Each thread performs a single pass over its subtrees to

refit the bounding boxes, compute the costs, and perform any rotations. After

a barrier, one thread handles this for the remaining nodes at the very top of the

tree.

The biggest caveat of implementing our algorithm involves the handling of

the primitives and the leaf nodes during the initial construction of the tree.

Primitives whose motion may diverge need to be placed in separate leaf nodes.

In practice, this means that our implementation builds the initial tree down

to the level of a single primitive per leaf node, leading to larger trees. A

smarter construction algorithm with a priori knowledge of how primitives move

together [37] could improve on this.

5.7 Performance on Animations
As with the implementation of tree rotations for static geometry, we evalu-

ated the performance of our update algorithm by implementing it in the Manta

interactive ray tracer [10]. Starting with the existing recursive refitting code,

we extended this to also maintain cost evaluations and to perform the most

beneficial tree rotations as each node is visited. As before, we benchmarked it

on a 2.8GHz Core 2 Duo, ray casting a 1024× 1024 image using 8× 8 packets.

However, we ran Manta with two rendering threads this time.

We measured the performance on each animation for three cases: refitting-

only, refitting with tree rotations, and doing a complete rebuild on each frame.

Comparing against refitting-only gives an idea of the lower bound on the time to

update the scene for each animation. This case produces very fast tree updates

at the expense of the render time degradation as the animation progresses. At

the other extreme, by performing a full, from-scratch rebuild of the tree using a

high quality sweeping SAH construction algorithm [97] on every frame we get

an idealized measurement of how low the render time could be if there were no

degradation at all.
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To calibrate the comparison between the different methods, we ran each ani-

mation with a fixed step size between frames, regardless of the actual wall-clock

time required to update the BVH tree and render it. Each scene was run for 100

frames except for the Toasters scene which was run for 250 frames.

Table 5.2 shows the statistics for a set of animations. Each number, except

for the triangles in the scene, is taken as the average over all frames during five

runs. From left to right, this shows the number of triangles in the scene, average

number of rotation operations per frame, and average time spent updating the

tree using the refitting-only and refitting with tree rotation methods, followed

by the average time spent rendering the updated frame after using the refitting-

only update, full rebuild, and refitting with tree rotation methods. The last two

numbers give the the average frame rates for updating and rendering with the

refit-only and refitting with tree rotation algorithms.

Figures 5.5 and 5.6 show more detail on the relative performance of the

DragBun scene. This scene is interesting for having two phases: it begins with

the geometry moving very coherently and follows this with extreme topolog-

ical deformations. The first graph compares the three update methods by the

render time for each frame. It also shows the SAH costs of the frames for each

method. The second graph goes into more depth on the refit with tree rotations

algorithm, and shows the amount of time spent on refitting, cost evaluation and

tree rotations, and rendering, along with the actual number of tree rotations

performed.

As shown, adding tree rotations to refitting less than doubles the typical

update time for a tree, while avoiding most of the tree degradation inherent

to refitting alone. The ClothBall scene, which demonstrates relatively coherent

motion is the only scene for which the addition of tree rotations to the update

process is detrimental to the overall performance. Other scenes show modest im-

provements at worst, and the scenes with drastic deformations show significant

improvements – almost ten-fold in the case of the hard body Balls16 simulation

scene.
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Figure 5.5. Render times and SAH costs on the DragBun animation. This
compares refitting only, refitting with tree rotations, and completely rebuilding
for every frame.
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Part of the low overhead of adding refitting comes from the simplicity of

the algorithm. Each refitting and tree rotation operation is simple, uniform and

local. Because the combined algorithm accomplishes everything in a single pass

over the tree, the penalty of cache misses is amortized between the refitting and

tree rotation parts.

A second aspect of the low overhead is that only the interior nodes (amount-

ing to half the nodes) require the full SAH formula to evaluate their costs.

Moreover, only nodes with grandchildren can be candidates for tree rotations,

reducing the number still more to a quarter of the nodes. Of these, the rotations

statistic in Table 5.2 shows that only a small percentage of the nodes actually

require rotation operations on any given frame – the BART museum scene

requires the most with 8.2% of the nodes per frame on average. Most other

scenes show closer to 1%.

One important question is how the update algorithm handles rapid scene

changes. Because interactive animations typically choose an update step based

on wall clock time, the update algorithms may have to cope with large steps. To

test this, we examined the render times for the three algorithms on the BART

museum scene with both long and short animations over 200 and 20 frames,

respectively. Figure 5.7 shows the relative performance of the three methods in

this case.

In this case, the rendering performance and quality of the tree does degrade

somewhat. However, as soon as the animation reaches a more quiescent period

the combined algorithm begins to catch up.

5.8 Modifying the Scene Graph
We envision the tree rotation update algorithm as a core component in a

larger scheme for efficiently maintaining a high quality BVH acceleration struc-

ture in correspondence to a changing scene graph. The combination of refitting

with tree rotations handles the case of updates for objects in the scene graph

undergoing transformations, deformations or other movement.
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To handle the addition of new objects to a scene graph, each potential object

could have its own small prebuilt BVH tree for the object in a basic rest pose.

When the object is added to the scene graph, we would make a complete copy

of the object’s BVH and geometry, in the process applying any transformations

and placing the geometry in world space if necessary. Next, the root of this

copied BVH would be anchored next to a leaf in the existing scene BVH in the

manner of [32]: beginning at the root of the scene BVH, walk down to a leaf,

always choosing the child whose costs would increase the least as a result of the

addition. This would provide a reasonable initial change to the tree, after which

refitting and tree rotation would update the copied bounding boxes and begin

better integrating the new object into the scene’s BVH.

Deletion is slightly more difficult. To delete an object, perform a postorder

traversal of the tree. At each leaf node, check to see whether it corresponds

to a scene graph object flagged for deletion. If so, overwrite its parent node

with its sibling’s node data and move the leaf and its sibling to a free list for

later reallocation. Effectively, this always deletes a leaf node together with an

interior node (thus deleting the same total number of interior and leaf nodes

as originally inserted for the object). However, the actual memory reclaimed

is of a pair of sibling nodes, allowing implementations that allocate siblings

in pairs to also recycle them together. Note that these deletion steps can be

combined with refitting and tree rotations into a single pass for efficiency on

frames where objects must be deleted. Following this pass, the memory for the

object’s geometry can be freed and the object removed from the scene graph.

Ultimately, we believe that these techniques together would be sufficient

to incrementally maintain a high quality BVH tree for interactive rendering,

particularly in the case of games or other systems that allow the user to manip-

ulate the scene. The relative simplicity of our proposed techniques also makes

them candidates for implementation on a GPU or custom ray tracing hardware

where maintaining an up-to-date acceleration structure in device memory could

significantly reduce host-to-device bandwidth.
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5.9 Conclusion
In this chapter, we have presented two novel algorithms for improving the

SAH cost of an existing static BVH tree. Both algorithms are easy to add

to existing BVH implementations and are suitable for preprocessing the static

content of scenes before rendering, with architectural environments seeing the

best improvement. The hill climbing algorithm can yield modest improvements

to a scene with millions of primitives in a few seconds, while the simulated

annealing algorithm can produce greater improvements given more time.

We have also described a simple and easy to implement technique for main-

taining high quality BVH trees for dynamic animations based on a combination

of refitting with tree rotations. This lightweight approach is efficient and incre-

mental, uses a tractable amount of time to update the tree and requires no ad-

ditional heap storage – properties that also make it excellent for parallelization.

Our algorithm more than compensates for the increase to the tree update time

with its improvements on render time, tending towards the quality of the trees

produced by a complete tree rebuild on every frame. Together, these qualities

make it a desirable alternative in any case where refitting alone is currently

used.



CHAPTER 6

CONCLUSION

In this work we have provided contributions to three major areas related

to interactive ray tracing on custom hardware: primitive intersection with ray-

triangle intersection tests, shading with procedural texturing, and acceleration

structure construction and maintenance with bounding volume heirarchies.

In Chapter 3 we showed how the mathematical structure of direct 3D ray-

triangle intersection tests can be exploited by stochastic optimization algorithms

to derive improved algorithms and higher performing implementations on mod-

ern processors for packet based ray tracers.

The new intersection test created with the assistance of our genetic algorithm

has already improved the efficiency of at least one software ray tracer: it is one

of the two triangle intersection algorithms available in the Manta interactive ray

tracer [10]. Compared to the other test in Manta, Wald’s 2D point-in-triangle

algorithm [95] it is slower on static scenes that allow for the preprocesing that

Wald’s algorithm requires. For animations, however, where the geometry is

changing from frame to frame, the lack of precomputation makes our algorithm

the faster of the two.

We also showed how the structure of the ray-triangle tests could be exploited

for a slightly different purpose: the derivation of a highly robust algorithm.

Although we did not use a stochastic search algorithm to derive this test, col-

lection of a large set of test data and an exhaustive automated search through

the possible expressions was crucial to determine which expressions were the

most stable. We also performed an automated sensitivity analysis to suggest

that a “three-quarters precision” floating point type may be suitable for custom
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hardware for ray tracing. With regard to software ray tracing, we believe that

our robust algorithm is ideal for production batch renderers for which artifacts

are unnacceptable.

Chapter 4 deconstructed Perlin’s noise algorithm and explored how each

component – the gradient table, the hash function, and the filter kernel – con-

tributed to its spectral qualities in the frequency domain. Based on this analysis

we were able to incrementally modify the algorithm to produce a new version

with improved visual quality.

Using a larger table of well-distributed gradient vectors avoided certain bi-

ases that appear as artifacts in the form of runs. Using a slightly different hash

function with a table for each dimension instead of a single table used for all

dimensions avoids the effect where each row of noise is repeatedly regularly but

with a permuted shift, producing a strong striation on the Fourier transform.

The third major change replaced Perlin’s separable reconstruction filter with a

new radial one. This produced tighter bandlimits on the noise’s spectrum.

We also showed how a simple projection technique could be applied gradient

noise to rectify the defect shown by Cook and DeRose [19]. This projection tech-

nique preserves our gradient noises improved spectral qualities when sampling

on a surface embedded in a higher dimensional noise. For typical surfaces

textured with a 3D volume of noise, this reduces a “splotchy” appearance that

traditional 3D Perlin noise exhibits. Together, these changes reduce the appear-

ance of structured artifacts leading to higher quality images for software ray

tracing with procedural texturing.

With respect to hardware ray tracing, we also demonstrated how certain of

our changes, such as the improved hash function and the way we compute the

radial filter, actually increase the possibilities for fine grained parallelism. Based

on this, we designed and synthesized a hardware noise unit that can evaluate

noise with a short, three-cycle pipeline at a 1GHz clockrate. Our unit is designed

to be embedded as a functional unit in a larger hardware ray tracing system. By

replacing image texturing with procedural texturing where possible, a hardware
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ray tracer could reduce some of its memory bandwidth.

In Chapter 5 we showed how tree rotations when applied to a bounding

volume heirarchy took the form of local swaps between the nodes. Thanks

to the recursively defined surface area metric we could quantify the relative

effectiveness of each possible tree rotation around a node with respect to the

estimated cost to trace a random ray through the BVH.

Using a simple hill-climbing algorithm to choose and apply tree rotations

we were able to produce reasonable improvements to trees produced by a high

quality SAH-based BVH construction algorithm. This established that the com-

mon greedy build algorithm while good, was not globally optimal.

We also tested stochastic optimization of the BVH by using simulated anneal-

ing instead of hill-climbing. While taking much longer to optimize a tree, this

produced greater improvements. Both software- and hardware-based ray tracers

could benefit from this algorithm by using stored, prebuilt, preoptimized trees

for the static geometry in a scene.

Finally, we explored the application of tree rotations to dynamic geometry.

By combining a fast implementation of a single step of the hill-climbing algo-

rithm with refitting we were able to create a simple BVH update algorithm that

avoided most of the degradation associated with refitting alone. Subtrees can

be processed independently, making it easy to parallelize, and it can be imple-

mented without additional heap storage which should make it particularly well

suited to implementation on a programmable hardware ray tracing system such

as TRaX. Maintaining an up-to-date acceleration structure on the ray tracing

device should also help with reducing memory traffic between the device and

its host.

6.1 Subsequent Work
Following the publication of our fast ray-triangle algorithm, Reshetov [82]

has since compared against this algorithm and used the testing harness as a

basis for measuring his own work on culling triangles to obtain even faster

average intersection times.
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Since the original publication our noise algorithm, Lagae et al. [54] have

explored many of these ideas and produced a new noise algorithm that offers

even finer spectral control over the noise function. It is not yet clear how their

noise function compares to ours in terms of performance, however.

The research on tree rotations for static model BVHs recieved some discus-

sion in the most recent issue of Ray Tracing News [39]. The discussion concerned

how it would handle two particularly tricky test cases.

6.2 Future Work
The genetic algorithm framework described in Chapter 3 is fairly general.

One interesting area to explore would be modifying the genetic algorithm to

generate Verilog code to synthesize fixed function hardware units for ray-triangle

intersection. As with the software implementation, maximizing speed could be

one goal for the system. A potentially more interesting goal, however, would be

minimizing chip area.

While ray-triangle intersection test are certainly an important component,

ray-box test are also quite useful due to the prevalence of axis-aligned bounding

boxes. These are the most common bounding volumes in BVHs and even a

system that uses a different acceleration structure may use boxes as an initial test

before complicated primitives. Unlike triangles with the scalar triple products,

boxes do not lend themselves to quite the same variety of equivalent intersection

tests. Nonetheless, a genetic algorithm could prove useful to determine how to

schedule the computations and which early exit tests should be used where.

Similiarly the effect of reduced precision floating point on ray-box tests is

worth exploring. Mahovsky’s dissertation [61] discussed reduced precision BVHs

at length, including a compact node representation and using low-precision

integer arithmetic for the ray-box test. To our knowledge, no one has yet

quantified the effect that different exponent and significand widths have on

ray-box tests.

With regards to procedural texturing, the noise algorithm is but one compo-

nent. Typically Perlin noise is called repeatedly in spectral summation loops. It
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may be worth exploring to see how to compute the results of these higher level

loops more efficiently. The work of Lagae et al. [54] is a good step in this regard

but spectral summations can still handle a wider range of texture frequencies.

Similarly, a higher level procedural texturing hardware unit that manages

one or more noise units to efficiently compute the results of these summations

with filtering for antialiasing may be worth pursuing. After setting up the

parameters, such a unit might generate a variety of complex textures such as

marble, wood, granite or sky.

With regards to acceleration structures, we envision our tree rotation algo-

rithm as one element of a complete system for maintaining a BVH acceleration

structure in the face of an ever changing scene graph. While tree rotations have

been shown to work for handling deforming geometry, extending the system to

handle additions and deletions remains to be done.

Testing the dynamic tree rotations algorithm on a highly parallel system such

as TRaX would also be a worthwhile test both of the algorithm and of the TRaX

architecture.

A rather different application for the dynamic tree rotation algorithm could

be for distribution ray tracing with motion blur. Fatahalian et al. [27] observe

that partitioning the time into intervals and rendering in multiple passes allows

for tighter bounds on the geometry within each interval. The tree rotation

update algorithm for animated scenes should also work as a more efficient way

to update the acceleration structure between intervals.

Lastly, from the tree rotations work on static scenes we noticed that a lower

surface area metric did not always correlate to lower rendering times in practice

for packet-based ray tracing. The assumptions made by the BVH version of

the surface area heuristic are based mainly on single-ray behaviour. This raises

the question of how the surface area metric might be improved on to better

model the behaviour of modern packet style ray tracers. One very interesting

project would be to use a genetic algorithm to explore alternate cost functions

to control the construction of the BVHs. The fitness of each candidate would
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be evaluated by using it to construct a BVH for a scene and then measuring

the time that it takes to render with that BVH. This might lead to empirically

derived alternatives to the standard surface area metric that map better to how

state of the art packet-based ray tracers actually behave in practice.
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