55 research outputs found

    On the Performance of SR and FR Protocols for OSTBC based AF-MIMO Relay System with Channel and Noise Correlations

    Get PDF
    This paper proposes selection relaying (SR) protocol for a cooperative multiple-input multiple-output (MIMO) relay system that consists of a direct link between a source and a destination. The system has only receive-side channel state information (CSI), spatially correlated MIMO channels, and the receiver nodes observe spatially correlated noise. The transmit nodes employ orthogonal space-time block codes (OSTBC), whereas the receiver nodes employ optimum minimum mean-square-error (MMSE) detection. The SR protocol, which transmits via the relay only when the direct link between the source and destination is in outage, is compared with the fixed relaying (FR) protocol which always uses the relay. By deriving novel asymptotic expressions of the outage probabilities, it is analytically shown that both protocols provide the same diversity gain. However, the coding gain (CG) of the SR protocol can be much better than that of the FR protocol. In particular, when all MIMO links have the same effective rank, irrespective of its value, the SR protocol provides better CG than the FR scheme if the target information rate is greater than ln2(3) bits per channel use. Simulation results support theoretical analysis and show that the SR scheme can significantly outperform FR method, which may justify the increased complexity due to one-bit feedback requirement in the SR protocol

    On the Performance of SR and FR Protocols for OSTBC based AF-MIMO Relay System with Channel and Noise Correlations

    Get PDF
    This paper proposes selection relaying (SR) protocol for a cooperative multiple-input multiple-output (MIMO) relay system that consists of a direct link between a source and a destination. The system has only receive-side channel state information (CSI), spatially correlated MIMO channels, and the receiver nodes observe spatially correlated noise. The transmit nodes employ orthogonal space-time block codes (OSTBC), whereas the receiver nodes employ optimum minimum mean-square-error (MMSE) detection. The SR protocol, which transmits via the relay only when the direct link between the source and destination is in outage, is compared with the fixed relaying (FR) protocol which always uses the relay. By deriving novel asymptotic expressions of the outage probabilities, it is analytically shown that both protocols provide the same diversity gain. However, the coding gain (CG) of the SR protocol can be much better than that of the FR protocol. In particular, when all MIMO links have the same effective rank, irrespective of its value, the SR protocol provides better CG than the FR scheme if the target information rate is greater than ln2(3) bits per channel use. Simulation results support theoretical analysis and show that the SR scheme can significantly outperform FR method, which may justify the increased complexity due to one-bit feedback requirement in the SR protocol

    Statistical analysis of the capacity of mobile radio channels

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, Grimstad, 201

    Performance Enhancement in SU and MU MIMO-OFDM Technique for Wireless Communication: A Review

    Get PDF
    The consistent demand for higher data rates and need to send giant volumes of data while not compromising the quality of communication has led the development of a new generations of wireless systems. But range and data rate limitations are there in wireless devices. In an attempt to beat these limitations, Multi Input Multi Output (MIMO) systems will be used which also increase diversity and improve the bit error rate (BER) performance of wireless systems. They additionally increase the channel capacity, increase the transmitted data rate through spatial multiplexing, and/or reduce interference from other users. MIMO systems therefore create a promising communication system because of their high transmission rates without additional bandwidth or transmit power and robustness against multipath fading. This paper provides the overview of Multiuser MIMO system. A detailed review on how to increase performance of system and reduce the bit error rate (BER) in different fading environment e.g. Rayleigh fading, Rician fading, Nakagami fading, composite fading

    Uncoded space-time labelling diversity : data rate & reliability enhancements and application to real-world satellite broadcasting.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Abstract available in PDF

    Spatial diversity in MIMO communication systems with distributed or co-located antennas

    Get PDF
    The use of multiple antennas in wireless communication systems has gained much attention during the last decade. It was shown that such multiple-input multiple-output (MIMO) systems offer huge advantages over single-antenna systems. Typically, quite restrictive assumptions are made concerning the spacing of the individual antenna elements. On the one hand, it is typically assumed that the antenna elements at transmitter and receiver are co-located, i.e., they belong to some sort of antenna array. On the other hand, it is often assumed that the antenna spacings are sufficiently large, so as to justify the assumption of independent fading. In this thesis, the above assumptions are relaxed. In the first part, it is shown that MIMO systems with distributed antennas and MIMO systems with co-located antennas can be treated in a single, unifying framework. In the second part this fact is utilized, in order to develop appropriate transmit power allocation strategies for co-located and distributed MIMO systems. Finally, the third part focuses on specific synchronization problems that are of interest for distributed MIMO systems
    • …
    corecore