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On the Performance of SR and FR Protocols for
OSTBC based AF-MIMO Relay System with

Channel and Noise Correlations
Batu K. Chalise, Senior Member, IEEE

Abstract— This paper proposes selection relaying (SR) pro-
tocol for a cooperative multiple-input multiple-output (MIMO)
relay system that consists of a direct link between a source
and a destination. The system has only receive-side channel
state information (CSI), spatially correlated MIMO channels,
and the receiver nodes observe spatially correlated noise. The
transmit nodes employ orthogonal space-time block codes (OS-
TBC), whereas the receiver nodes employ optimum minimum
mean-square-error (MMSE) detection. The SR protocol, which
transmits via the relay only when the direct link between the
source and destination is in outage, is compared with the fixed
relaying (FR) protocol which always uses the relay. By deriving
novel asymptotic expressions of the outage probabilities, it is
analytically shown that both protocols provide the same diversity
gain. However, the coding gain (CG) of the SR protocol can be
much better than that of the FR protocol. In particular, when
all MIMO links have the same effective rank, irrespective of its
value, the SR protocol provides better CG than the FR scheme if
the target information rate is greater than ln2(3) bits per channel
use. Simulation results support theoretical analysis and show that
the SR scheme can significantly outperform FR method, which
may justify the increased complexity due to one-bit feedback
requirement in the SR protocol.

Index Terms— MIMO relay, channel state information, OS-
TBC, selection and fixed relaying, outage probability, MMSE
receivers

I. INTRODUCTION

In recent years, cooperative communications with both
single-antenna and multiple-input multiple-output (MIMO)
relays have garnered significant interests [1]-[4]. Cooperative
relays are also expected to be a part of heterogeneous networks
in fifth generation communication systems [5]. By employing
precoding and decoding techniques, cooperative systems with
MIMO nodes provide both spatial multiplexing and diversity
gains. However, precoding requires a transmitter to have
channel state information (CSI) which is generally obtained
via feedback from the receiver. In order to minimize the
cost of CSI feedback and simplify the system design without
compromising with the system diversity gain, the transmitter
often employs orthogonal space-time block codes (OSTBC)
[6]-[8]. Because of the optimal decoding at low complexity
and the promising diversity gains, OSTBC based designs
are also deployed in LTE systems, where full-rate OSTBCs,
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namely the Alamouti codes are employed in frequency domain
for the transmitters with two and four antennas [9].

The OSTBC-based dual-hop non-coherent amplify-and-
forward (AF) MIMO relay system is proposed in [10] and
[11] for Rayleigh and Ricean fading channels, respectively.
In both papers, source employs OSTBC encoding and the
relay does not have receive-side CSI. On the other hand,
performance analysis of the OSTBC-based dual-hop coherent
AF relay system is proposed for Nakagami-m correlated
channels in [12] and [13], where single-antenna and multi-
antenna relay are considered, respectively. In [13], both source
and relay nodes use OSTBC, whereas direct link between
the source and destination is not considered in [10]-[13]. The
closed-form expression of the exact outage probability and the
corresponding asymptotic expression are derived in [14] for a
coherent MIMO relay system that uses decode-and-forward
relay protocol, OSTBCs at the source and relay nodes, and
has the direct link. In [15], the performance of the OSTBC-
based coherent AF MIMO relay network is analyzed, in which
the relays estimate the source signal and forward it to the
destination without decoding. This work is extended in [16]
to MIMO channels with spatial correlation and the direct link
with the keyhole effect. The works in [14]-[16] consider a fixed
relaying (FR) scheme where the relay is always employed and
the system follows a two-phase transmission, i.e., in the first
phase the source transmits and in the second phase the relay
transmits. Moreover, noise at both the relay and destination
nodes are spatially uncorrelated.

In practice, spatial channel correlations and coupling
among receiver antennas can make the received signal and
noise to become correlated [17]-[18]. Many prior works have
analyzed the effects of correlated noise (and colored inter-
ference) on the system design and performance for different
applications. In [19], the authors determine the MIMO channel
capacity in the presence of correlated noise, whereas in [20],
coordinated beamforming technique is proposed for a broad-
cast channel with signal and noise correlation at the receiver,
where correlation occurs in the presence of receiver mutual
coupling. The optimum design of relay processing coefficients
is proposed in [21] for an AF relay system where the noise
among distributed single-antenna relays is assumed to be
correlated, for example, due to common interference observed
by the relays. In [22], the effects of spatial channel correlation,
antenna coupling, superdirectivity and noise correlation are
taken into account while designing the AF-MIMO relay for
a system with multiple single-antenna sources and a multi-



antenna destination. As in [10]-[16], both designs, [21] and
[22], consider the FR protocol.

However, in the presence of the direct link between the
source and destination, it is known from [23] that selection
relaying (SR) for the AF relay system simplifies the joint
design of the beamformers and performs better than the joint
beamformer design based on FR protocol. In the SR approach,
the AF relay is used only if the direct link fails to support the
targeted information rate. Moreover, the source changes the
modulation order in a way that the effective rate of information
transmission via the relay remains same as that corresponding
to the direct link. Motivated from [23]1, we propose SR
protocol for an OSTBC-based cooperative coherent MIMO
relay system that has a direct link, only receive-side CSI, and is
subject to spatially correlated channels and noise. According
to our best source of knowledge, neither such a system has
been investigated nor the FR and SR protocols have been
analytically compared in terms of diversity and coding gains
(CG)2.

In this paper, we consider a cooperative MIMO relay
system where the relay and destination nodes observe spatially
correlated noise and the MIMO channels are subject to spatial
correlation3. The source encodes its signal using OSTBC. The
relay employs a general linear receiver such as the minimum
mean-square error (MMSE) receiver to estimate the source
signal and forwards the resulting signal to the destination after
OSTBC encoding. The destination also uses MMSE receiver to
estimate and decode the source signal, received via the source-
destination (S-D) and the two hop source-relay-destination (S-
R-D) links. The orthogonality property of OSTBC is exploited
to obtain the symbol estimates, and the signal-to-noise ratios
(SNRs) corresponding to the S-D and S-R-D links.

Using a single-bit feedback from the destination, the SR
protocol employs MIMO relay only if the S-D link is in
outage which is defined as an instant in which the supported
information rate is below the rate targeted by the source.
Since it is difficult to obtain sufficient insights from the exact
outage probability expressions, novel asymptotic expressions
are derived to obtain the coding and diversity gains of the SR
and FR protocols. It is shown that the performance depends
not only on the transmit and receive-side channel correlation

1Although the SR protocol for the AF MIMO relay system, to the best of
our knowledge, was first proposed in [23] as an improved alternative approach
to the FR protocol, there are two vital differences between [23] and this paper.
First, the system models of [23] and this paper are completely different. In
particular, [23] considers the relay system where MIMO channels and noise at
receive nodes are spatially uncorrelated, and transmit-receive beamforming is
employed, i.e., the knowledge of transmit-side CSI is also available. Second,
[23] lacks a theoretical analysis for explaining the performance gains of the
SR protocol over the FR protocol, which in fact were only evident from
simulation results therein.

2It should be emphasized that the proposed analysis can also be extended
to correlated Nakagami-m fading channels. In such a case, the resulting exact
and approximated outage probability expressions for the SR and FR protocols,
respectively, appear to be much more complicated than those in correlated
Rayleigh fading channels. As such, neither a comprehensive asymptotic
comparison between two methods can be proposed with sufficient conciseness
nor such comparison provides important insights on their relative performance
difference. Therefore, we keep our proposed analysis to correlated Rayleigh
fading case.

3The modeling and calculation of noise and channel correlation matrices
depend on underlying physical phenomena [17]-[22].

Fig. 1. OSTBC based MIMO relay system

matrices but also on the covariance matrices of noise at the
receiver nodes. Although both protocols achieve the same
diversity, the CG of the SR protocol can be much better
than that of the FR protocol, especially for larger values of
target information. In particular, when all MIMO links have
the same effective rank4, irrespective of its exact value, the SR
protocol provides better CG than the FR protocol for the target
rates greater than ln2(3) bits per channel use (b.p.c.u). This
performance improvement may justify the latter’s increased
complexity due to one-bit feedback requirement.

The remainder of this paper is organized as follows. The
system model and relaying protocols are described in Section
II. The SNRs for the direct and dual-hop links are derived in
Section III. In Section IV, performance analysis of the SR and
FR protocols is presented along with the derivations for the
diversity gains. The CGs of the two protocols are compared
in Section V. Simulation results are presented in Section VI
and conclusions are drawn in Section VII. Notations: Upper
(lower) bold face letters will be used for matrices (vectors);
(·)T , (·)H , E {·}, In and diag(x) denote the transpose, Hermi-
tian transpose, mathematical expectation, n×n identity matrix
and the diagonal matrix formed from x, respectively. R(·),
I(·), vec(X), tr( ), C/RM×M , ⊗, and ([X]k,:) denote the real
part, imaginary part, vectorized form of the matrix X, matrix
trace operator, space of M ×M matrices with complex/real
entries, the Kronecker product, and the kth row of the matrix
X, respectively. The following relations for matrix operations
are often used in this paper [24].

Re(AB) = [Re(A),−Im(A)][Re(B)T , Im(B)T ]T (1a)
Im(AB) = [Im(A),Re(A)][Re(B)T , Im(B)T ]T (1b)
tr(ATB) = vec(A)Tvec(B) (1c)
vec(AXB) = (BT ⊗A)vec(X) (1d)
(A⊗B)(C⊗D) = (AC⊗BD) (1e)

II. SYSTEM MODEL AND RELAYING PROTOCOLS

We consider a cooperative MIMO relay system where a
source, a relay and a destination are respectively equipped with
Ns, Nr and Nd antennas. The block diagram of the system is
shown in Fig. 1. The source and relay do not have transmit-
side CSI. The source-relay (S-R), relay-destination (R-D) and
S-D MIMO channels are assumed to be flat fading spatially
correlated Rayleigh channels. The relay is a coherent AF relay,
operates in a half-duplex mode and follows either the standard

4The effective rank is the function of channel as well as noise correlation
matrices.



FR protocol or the SR protocol.
The source node broadcasts OSTBC encoded signal. Let

rt b.p.c.u be the information rate targeted by the source.
More specifically, suppose that the source transmits a vector
of complex symbols drawn from a constellation Qm, where
m stands for the modulation order. Let Nb be the number
of bits transmitted by the source in T channel uses. In the
SR protocol, the destination node broadcasts one-bit feedback
signal to indicate whether it is in outage. If the feedback bit
is a non-acknowledgment, i.e., an indication for the outage,
the source broadcasts its signal with the same target rate
of rt b.p.c.u. Because the relay is half-duplex, the source
requires to transmit more bits to maintain the same target rate.
We propose that the source transmits symbols from higher-
order constellation, i.e., 2Nb bits from the constellation Q2m.
The relay estimates the source signal with a linear MMSE
receiver, encodes the estimated symbols with the OSTBC and
transmits the resulting signals to the destination. Thus, 2Nb

bits transmitted via the S-R-D channel occupy 2T channel
uses. The destination employs MMSE receiver to decode the
signals received from the relay. On the other hand, if the
feedback bit is an acknowledgment, indicating that there is no
outage, the source transmits at the rate rt (Nb bits in T channel
uses) using the S-D link. In the SR protocol, the destination
is said to be in outage when transmissions via both the S-R-D
and S-D links fail5.

In the FR protocol, during the first transmission phase, the
source transmits, whereas the relay and destination receive the
signal. In the second transmission phase, the relay transmits
and the destination combines signals received from the source
and relay. In order to make a fair comparison, we use the
same target rate as in the SR protocol (i.e., rt) to define the
outage at the destination. Because the end-to-end transmission
from the source to the destination always occupies 2T channel
uses in the FR protocol, the source transmits data using the
constellation Q2m to maintain the rate rt.

III. SIGNAL MODEL AND PROPOSED SCHEME

The signals received by the relay and the destination are,
respectively, given by

Y1 =

√
Psµ1

Ns
H̃1S + V1 → Y1 = H1S + V1

Y3 =

√
Psµ3

Ns
H̃3S + V3 → Y3 = H3S + V3 (2)

where H̃1 ∈ CNr×Ns and H̃3 ∈ CNd×Ns are the normalized S-
R and S-D MIMO channels, µ1 and µ2 are the corresponding
path gains, and Ps is the transmit power of the source node.
V1 ∈ CNr×T /V3 ∈ CNd×T are due to additive Gaussian
noise, where each column of the matrices is a Nr/Nd column
vector with correlated complex Gaussian random variables.
S ∈ CNs×T is the OSTBC formed from a set of K complex
symbols S = [s1, s2, · · · sK ], where E

{
|sk|2 = 1

}
,∀k and

T is the number of channel uses during which the channels
remain constant (also the time dimension of the OSTBC). The

5We consider that when the destination is not in outage, it can correctly
decode the source symbol.

path gains µ1 and µ3 are given by µ1 = d−ζ1 and µ3 = d−ζ3 ,
where d1 and d3 are respectively the S-R and S-D distances,
and ζ is the path-loss exponent. Note that we consider that the
destination and relay nodes move within a limited geographical
area where big obstacles do not exist. As such, the effect
of shadow fading is negligible and the outage in this paper
is mainly due to small-scale fading.6 The OSTBC matrix S
satisfies SHS = ||s||2IK where the entries of S consist of
linear combinations of {sk}Kk=1 as

S =
K∑
k=1

CkR(sk) + DkI(sk), (3)

and Ck and Dk are the dispersion matrices. Note that Ck =
S(ek) and Dk = S(jek), where ek is a vector of ones and
zeros with one at the kth symbol in S. For an example, in

the case of Alamouti code, we have C1 =

[
1 0
0 1

]
, C2 =[

0 1
−1 0

]
, D1 =

[
j 0
−j 0

]
and D2 =

[
0 j
j 0

]
. The

received signal Y1 is expressed in vector form as

y1 = He,1s̃ + v1, where (4)

y1 =

[
vec (R(Y1))
vec (I(Y1))

]
, v1 =

[
vec (R(V1))
vec (I(V1))

]
,

s̃ =

[
R(s)
I(s)

]
, and (5)

He,1 =



vec (R(H1C1)) vec (I(H1C1))
...

...
vec (R(H1CK)) vec (I(H1CK))
vec (R(H1D1)) vec (I(H1D1))

...
...

vec (R(H1DK)) vec (I(H1DK))



T

. (6)

Note that y1 and v1 are of the size 2NrT×1, whereas He,1 has
a size of 2NrT×2K. In a similar way, we get y3 = He,3s̃+v3.
Using the properties of the dispersion matrices, HT

e,1He,1 and
HT

e,3He,3 are expressed as in [6]-[7] as

HT
e,1He,1 = ||H1||2F I2K , HT

e,3He,3 = ||H3||2F I2K . (7)

Let v1 be expressed as v1 =[
R(v1,1)T , · · · ,R(v1,T )T , I(v1,1)T , · · · , I(v1,T )T

]T
,

where v1,t, t = 1, · · ·T is the tth column of V1. Consider
that the spatial correlation matrix of noise at the relay is
R̄v,1 ∈ CNr×Nr . Then, we express v1,t as v1,t = R̄

1
2
v,1ṽ1,t

where the elements of ṽ1,t are considered to be independent
and identically distributed (i.i.d.) zero-mean circularly

6This is a standard system model assumption used widely in the literature
of cooperative communications. On the other hand, an exact performance
analysis in the presence of both small-scale and shadow fading is not
theoretically tractable for a MIMO AF relay system considered in this
manuscript. This is due to the fact that we need to deal with the product
of the functions of two random processes. The related complexity is also
evident from [25] which limits the analysis to a single-antenna decode-and-
forward relay system for obtaining the upper bound of the system symbol
error rate.



symmetric complex Gaussian (ZMCSCG) random variables
with unit variance. From (1a)-(1b), we get

R(R̄
1
2
v,1ṽ1,t) =

[
R(R̄

1
2
v,1),−I(R̄

1
2
v,1)
] [ R(ṽ1,t)
I(ṽ1,t)

]
I(R̄

1
2
v,1ṽ1,t) =

[
I(R̄

1
2
v,1),R(R̄

1
2
v,1)
] [ R(ṽ1,t)
I(ṽ1,t)

]
.

Thus, v1 is expressed as

v1 =

[
IT ⊗R(R̄

1
2
v,1) −IT ⊗ I(R̄

1
2
v,1)

IT ⊗ I(R̄
1
2
v,1) IT ⊗R(R̄

1
2
v,1)

]


R(ṽ1,1)
...

R(ṽ1,T )
I(ṽ1,1)

...
I(ṽ1,T )


.

Since E
{
R(ṽ1,t̄)R(ṽ1,t)

T
}

= 0 and E
{
I(ṽ1,t̄)I(ṽ1,t)

T
}

=
0 for t 6= t̄, and E

{
R(ṽ1,t)R(ṽ1,t)

T
}

=

E
{
I(ṽ1,t)I(ṽ1,t)

T
}
, 1

2INr
,∀t, we obtain

Rv,1 = E
{
v1v

T
1

}
=

1

2

[
IT ⊗Rd −IT ⊗Rnd

IT ⊗Rnd IT ⊗Rd

]
, (8)

where

Rd =R(R̄
1
2
v,1)R(R̄

1
2
v,1)T + I(R̄

1
2
v,1)I(R̄

1
2
v,1)T

Rnd =I(R̄
1
2
v,1)R(R̄

1
2
v,1)T −R(R̄

1
2
v,1)I(R̄

1
2
v,1)T . (9)

The relay and destination nodes employ MMSE receivers.
Consider the S-R MIMO channel. The estimated symbol is
expressed as

ˆ̃sr = ZT1 y1 = ZT1 (He,1s̃ + v1) , (10)

where Z1 ∈ R2NrT×2K is a linear receiver at the relay. The
MMSE receiver Z1 is given by

Z1 =
(
He,1Rs̃H

T
e,1 + Rv,1

)−1
He,1Rs̃ (11)

where Rs̃ = E
{
s̃s̃T
}

. Since E
{
|sk|2

}
= 1 and E

{
sks
∗
k̄

}
=

0,∀k 6= k̄, we have Rs̃ = 1
2I2K . Thus, the MMSE estimate

is given by

ˆ̃sr = HT
e,1

(
He,1H

T
e,1 + 2Rv,1

)−1
(He,1s̃ + v1). (12)

After using the following matrix-identity [24](
2Rv,1 + He,1H

T
e,1

)−1
He,1 =

1

2
R−1

v,1He,1

[
I +

1

2
HT

e,1

R−1
v,1He,1

]−1

(13)

and defining T , 1
2HT

e,1R
−1
v,1He,1, the MMSE estimate (12)

is given by

ˆ̃sr = T (I + T)
−1

s̃ + (I + T)
−1 1

2
HT

e,1R
−1
v,1v1. (14)

We show that T turns to a scaled identity matrix due to
the properties of the OSTBC. This result is an extension
of (7) which is a specific case with Rv,1 = I2NrT and
proved in [7] using constellation space invariance property
of OSTBC. Our result for general Rv,1 is formulated in
the following proposition which in other words establishes

the equivalency between the maximum-likelihood (ML) and
MMSE receivers for an OSTBC-based MIMO system that is
subject to correlated noise.
Proposition 1: The estimate ˆ̃sr of the relay is expressed in the
following decoupled form as7

ˆ̃sl,r =
α1

1 + α1
s̃l +

1

1 + α1
ṽl, l = 1, · · · 2K,where (15)

α1 = tr
(
H1H

H
1 R̄−1

v,1

)
, ṽl =

1

2

(
[HT

e,1R
−1
v,1]l,:

)
v1. (16)

Proof: Please refer to Appendix A. �
The destination processes the signal received from the

source with the MMSE receiver. Using the result of Proposi-
tion 1, the source signal estimated by the destination is given
by

ˆ̃sd =
α3s̃

1 + α3
+

(1/2)HT
e,3R

−1
v,2v3

1 + α3
, α3 = tr

(
H3H

H
3 R̄−1

v,2

)
(17)

where v3 ∈ R2NdT×1 is formed from V3 and defined as
v1 in (5), and R̄v,2 ∈ CNd×Nd is the correlation matrix of
the destination noise. Moreover, Rv,2 ∈ R2NdT×2NdT is the
function of R̄v,2 as given by (8) for the case with Rv,1. The
SNR of the S-D link is then given by

γ3 = α3 = tr
(
H3H

H
3 R̄−1

v,2

)
. (18)

In the SR protocol, transmission via the relay takes place only
when the S-D link fails to support the target rate, whereas in
the FR protocol the relay is always used during the second
phase of the transmission. The relay normalizes the estimated
signal ŝl,r , ˆ̃sl,r + jˆ̃sl+K,r, l = 1, · · · ,K, encodes the
normalized signal with the OSTBC and forwards the resulting
signal to the destination. The power of the lth complex symbol
received at the relay is given by

E
{
|ŝl,r|2

}
=

(
α2

1E
{
|s̃l + js̃l+K |2

}
+ E

{
|ṽl + jṽl+K |2

})
(1 + α1)2

=
α1

(1 + α1)
, (19)

where we use the facts that E
{
|s̃l + js̃l+K |2

}
= 1 and

E
{
|ṽl|2

}
= E

{
|ṽl+K |2

}
= α1. The normalized lth complex

symbol ȳl,r at the relay is expressed as

ȳl,r =

√
α1

(1 + α1)

(
(s̃l + js̃l+K) +

1

α1
(ṽl + jṽl+K)

)
. (20)

Let ȳr = [ȳ1,r, · · · , ȳK,r]T ∈ CK×1. The relay employs
OSTBC which is a function of ȳr as in (3) and transmits
the resulting Nr × T signal to the destination. The Nd × T
matrix of received signal samples at the destination is given
by

Y2 =

√
Prµ2

Nr
H̃2S(ȳr) + V2 = H2S(ȳr) + V2 (21)

where H̃2 is the normalized Nd × T R-D MIMO channel,
µ2 is the corresponding path gain, V2 is Nd × T matrix of

7Notice that the proposed analysis with the MMSE receiver is general since
the derivations of this proposition can be straightforwardly extended to the
case where interferers employ OSTBCs and their channels are known [26].



noise signals at the destination and S(ȳr) is the NT × T
OSTBC formed from complex symbols ȳr. The path gain
µ2 is given by µ2 = d−ζ2 , where d2 is the R-D distance.
The destination also employs MMSE receiver to decode the
source signal from Y2 . Using Proposition 1, the estimated
source signal at the destination is derived in the following
proposition. This proposition in fact establishes equivalency
between the ML and MMSE receivers for an OSTBC-MIMO
relay system where noise at both relay and destination nodes
are spatially correlated.
Proposition 2: The estimated source signal from Y2 is given
by

ˆ̃sl,d =
α̃s̃l
α̃+ 1

+
(1/2)

([
H̄T

e,2R
−1
ṽ

]
l,:

)
ṽ

α̃+ 1
, l = 1, · · · , 2K,(22)

where α̃ = α1α2

α1+α2+1 and

α2 = tr
(
H2H

H
2 R̄−1

v,2

)
, H̄e,2 =

√
α1

(1 + α1)
He,2,

ṽ =
H̄e,2(1/2)HT

e,1R
−1
v,1v1

α1
+ v2,Rṽ = E

{
ṽṽH

}
,(23)

v2 ∈ R2NdT×1 and He,2 ∈ R2NdT×2K are given as in (4)-
(6).
Proof: Please refer to Appendix B. �
From Proposition 2, the SNR of the S-R-D link is given by

γ1−2 =
tr
(
H1H

H
1 R̄−1

v,1

)
tr
(
H2H

H
2 R̄−1

v,2

)
tr
(
H1HH

1 R̄−1
v,1

)
+ tr

(
H2HH

2 R̄−1
v,2

)
+ 1

. (24)

It is clear from (22) that the estimated source symbols at
the destination do not interfere with each other. As such,
application of OSTBCs at the source and relay, and the linear
MMSE receivers at the relay and destination makes symbol
by symbol decoding possible. Therefore, the MMSE receivers
are optimal.

IV. PERFORMANCE ANALYSIS

In this section, exact and asymptotic expressions of the
outage probability are derived for the SR protocol, whereas the
asymptotic expression is derived for the FR protocol8. Based
on the asymptotic expressions, diversity gains are obtained for
both protocols.

Using double-sided Kronceker’s correlation model [27], thel
MIMO channels (S-R, R-D and S-D) are given by

Hm =
√
ηmR

1
2
r,mHw,mR

1
2
t,m,m = 1, 2, 3, η1 =

Psµ1

Ns
,

η2 =
Prµ2

Nr
, η3 =

Psµ3

Ns
(25)

where Rr,m and Rt,m are respectively, the receive-side and
transmit-side correlation matrices for the ith MIMO channel9.
The entries of Hw,m are assumed to be i.i.d. ZMCSCG random
variables. Substituting Hm from (25) into αm yields αm =

8The derivation of the exact expression in the FR protocol turns to be
mathematically intractable, and, as in the SR protocol, it is very much likely
that such exact expression does not provide insights into diversity and CGs.

9The proposed performance analysis also holds true when mutual coupling
matrices [22] are lumped to spatial channel correlation matrices.

ηmtr
(
HH

w,mR
1
2
r,mR̄−1

vm̄R
1
2
r,mHw,mRt,m

)
, where m̄ = m for

m = 1, 2 and m̄ = 2 for m = 3. Using the facts that
tr(XHAXB) = vec(X)Hvec(AXB) = vec(X)H(BT ⊗
A)vec(X) [24], we get

αm = ηmvec(Hw,m)H
[
RT

t,m ⊗
(
R

1
2
r,mR̄−1

vm̄R
1
2
r,m

)]
vec(Hw,m). (26)

Define Φ̃m , RT
t,m ⊗

(
R

1
2
r,mR̄−1

vm̄R
1
2
r,m

)
and let Φ̃m =

UmΛ̃mUH
m be the eigen decomposition of Φ̃m, where Um

are the unitary matrices and Λ̃m are the diagonal matrices
with the eigenvalues. αm is expressed as

αm = (vec(Hw,m)HUm)(ηmΛ̃m)(UH
mvec(Hw,m))

, hHmΛmhm (27)

where Λm = ηmΛ̃m and hm = UH
mvec(Hw,m). Since Um

are unitary matrices, and the elements of vec(Hw,m) are i.i.d.
ZMCSCG random variables, the entries of hm remain i.i.d.
ZMCSCG random. Let Λm = diag

(
λ

(m)
1 , · · · , λ(m)

Lm
,

0, · · · , 0), where Lm = rank(Φ̃m). Then, αm is written as
αm =

∑Lm
i=1 λ

(m)
i |hmi |2, where hmi is the ith element of hm.

Since hmi ,∀i, are i.i.d. ZMCSCG with the unit variance, |hmi |2
are exponentially distributed with the unit rate parameter. Con-
sequently, αm,∀m are the weighted sum of the exponentially

distributed random variables. Assuming that
{
λ

(m)
i

}Lm
i=1

are

distinct for a given m10, the probability density function (PDF)
of αm is given by [28]

fαm(z) =

Lm∑
i=1

a
(m)
i e

− z

λ
(m)
i ,

with a
(m)
i =

(λ
(m)
i )Lm−2∏Lm

j=1,j 6=i λ
(m)
i − λ(m)

j

. (28)

A. Outage Probability of Selection Relaying

Note that the transmission through the relay is employed
only if the direct link is in outage, i.e., when ln2(1+γ3) ≤ rt.
Therefore, the destination will be in outage if the relay is
selected (i.e., direct link is in outage) and corresponding trans-
mission is in outage. The outage probability at the destination
is11

Po = Pr

{
1

2
ln2(1 + γ1−2) ≤ rt, ln2(1 + γ3) ≤ rt

}
= Pr

{
γ1−2 ≤ 22rt − 1

}
Pr {γ3 ≤ 2rt − 1} . (29)

Let us define Po,1 = Pr
{
γ1−2 ,

α1α2

1+α1+α2
≤ r̃1

}
with r̃1 ,

22rt − 1 and Po,3 = Pr {γ3 ≤ r̃2} with r̃2 , 2rt − 1. Using

10The assumption is made so that the difference between the SR and FR
protocols can be analytically established in a comprehensive way. Nonetheless,
due to the structure of eigenvalues of noise [17]-[22] and channel correlation
matrices [29] in practice, the probability of having non-zero eigenvalues of
multiplicity greater than one is minimum for Φ̃m [24].

11For notational clarity of the derivations, we consider full-rate OSTBC
without loss of generality (w.l.o.g). Thus, the rate of the OSTBC does not
appear in the expressions of performance analysis.



the PDF of α3, Po,3 is expressed as

Po,3 = 1−
L3∑
l=1

a
(3)
l λ

(3)
l e
− r̃2

λ
(3)
l , 1− P̃o,3 (30)

where we use the fact that
∑L3

l=1 a
(3)
l λ

(3)
l = 1. We express

Po,1 as

Po,1 =

∫ ∞
0

Pr {α1(x− r̃1) ≤ r̃1(x+ 1)} fα2(x) dx

=

∫ r̃1

0

fα2
(x) dx+

∫ ∞
r̃1

Pr

{
α1 ≤

r̃1(x+ 1)

x− r̃1

}
fα2

(x) dx

where the last step is due to Pr {α1(x− r̃1) ≤ x(r̃1 + 1)} =
1 for 0 ≤ x < r̃1. With the help of (28) and the relation∑L1

i=1 a
(1)
i λ

(1)
i = 1, we obtain

Pr

{
α1 ≤

r̃1(x+ 1)

x− r̃1

}
= 1−

L1∑
i=1

a
(1)
i λ

(1)
i e
− r̃1(x+1)

(x−r̃1)λ
(1)
i . (31)

Using (31) and (28), the integral I2 ,∫∞
r̃1

Pr
{
α1 ≤ r̃1(x+1)

x−r̃1

}
fα2(x) dx is expressed as

I2 =

∫ ∞
r̃1

fα2(x) dx−
L1∑
i=1

a1
iλ

(1)
i

×
∫ ∞
r̃1

e
− r̃1(x+1)

(x−r̃1)λ
(m)
i fα2

(x) dx. (32)

Noting that
∫ r̃1

0
fα2

(x) dx +
∫∞
r̃1
fα2

(x) dx = 1, making a
variable substitution x′ = x− r̃1 and applying [eq. (3.324.1),
[30] ], Po,1 is given by12

Po,1 = 1−
L1∑
i=1

L2∑
k=1

a
(1)
i λ

(1)
i a

(2)
k λ

(2)
k e
− r̃1

λ
(1)
i e
− r̃1

λ
(2)
k β̃i,kK1(β̃i,k), (33)

where β̃i,k = 2

√
r̃1(r̃1+1)

λ
(1)
i λ

(2)
k

and K1(·) is the modified first-order

Bessel function of the second type. Therefore, the closed-form
expression for the outage probability Po = Po,1Po,3 = Po,1−
Po,1P̃o,3 is obtained. However, the exact expression remains
complicated, and thus, sufficient metrics and the corresponding
insights may not be obtained13. As such, we derive a novel
asymptotic expression for Po. Our key contribution in this
regard is to carefully identify the properties of functions of
the coefficients a(m)

i and exploit those properties to derive the
asymptotic expressions that have simplified form and do not
further depend on a(m)

i .
1) Asymptotic analysis of selection relaying: We propose

an asymptotic analysis (i.e., high SNR analysis) of Po. Define
Φm , Us

mΛ̃s
m(Us

m)H , where Λ̃s
m = diag(λ

(m)
1 , · · · , λ(m)

Lm
)

is the diagonal matrix of non-zero eigenvalues of Φm and Us
m

is the matrix of columns of Um corresponding to these non-
zero eigenvalues. Then, the main result is expressed in the
following proposition.

12Note that when L1 = 1 and L2 = 1, Po,1 reduces to the OP expression
derived in [31] for a two-hop single-antenna AF relay channel.

13It is also difficult to use exact expression in optimization problems, for
example, when

{
λ
(1)
i , λ

(2)
k , λ

(3)
l

}
are the functions of the source and relay

precoders [32].

Proposition 3: The outage probability of the SR protocol at
high SNR is approximated as

Po ≈
c2c3

ηL2
2 ηL3

3 det(Φ2)det(Φ3)
+

c1c3

ηL1
1 ηL3

3 det(Φ1)det(Φ3)
(34)

where cm = r̄Lm

Lm! , r̄ = r̃1 for m = 1, 2, and r̄ = r̃2 for m = 3.
Proof: Please refer to Appendix C. �

Let {ηm}3m=1 be expressed in terms of ρ , Ps

Ns
as ηm =

δmρ,∀m, where δ1 = d−ζ1 , δ2 = δ̄2d
−ζ
2 (with Pr

Nr
= δ̄2ρ, δ̄2 >

0) and δ3 = d−ζ3 . Substituting these values into (34), we obtain

Po ≈ c2c3

δL2
2 δL3

3 det(Φ2)det(Φ3)
ρ−(L2+L3)

+
c1c3

δL1
1 δL3

3 det(Φ1)det(Φ3)
ρ−(L1+L3)

≈ cm̂c3

δLm̂m̂ δL3
3 det(Φm̂)det(Φ3)

ρ−(Lm̂+L3) (35)

where m̂ = arg min
1,2
{L1, L2}. Comparing (35) with the stan-

dard asymptotic result Po ≈ (Gcρ)−Gd [33], where Gc and Gd

are respectively the coding and diversity gains, we find that the
diversity order of the SR protocol is min(L2 +L3, L1 +L3).
When all MIMO channels and noise are spatially uncorrelated,
L1 = NsNr, L2 = NrNd, and L3 = NsNd, i.e., the diversity
gain of the SR protocol becomes NsNd + min(NsNr, NrNd)
which, in fact, is the maximum diversity gain of a coherent
MIMO relay system [14].

B. Asymptotic Analysis of Fixed Relaying

The FR protocol always uses the MIMO relay. In the
first transmission phase, the source transmits, whereas the
relay and destination listen to the source. In the second
transmission phase, the relay transmits and the destination
combines signals received from the source and destination.
The outage probability of the FR protocol is therefore given
by

Po,fr = Pr

{
1

2
ln2 (1 + γ1−2 + γ3) ≤ rt

}
. (36)

We derive a new asymptotic expression for Po,fr and determine
the diversity gain of the FR protocol. Using the approximation
that γ1−2 = α1α2

α1+α2+1 ≈ min(α1, α2) for high SNR regions,
Po,fr is approximated as

Po,fr≈
∫ r̃1

0

Pr {min(α1, α2) ≤ r̃1 − y} fα3
(y)dy

=

∫ r̃1

0

[1− Pr {min(α1, α2) ≥ r̃1 − y}] fα3
(y)dy, (37)

=

∫ r̃1

0

[1− Pr {α1 ≥ r̃1 − y}Pr {α2 ≥ r̃1 − y}] fα3(y)dy

=

∫ r̃1

0

{
Pr {α1 ≤ r̃1 − y}+ Pr {α2 ≤ r̃1 − y}

−Pr {α1 ≤ r̃1 − y}Pr {α2 ≤ r̃1 − y}
}
fα3

(y)dy.

Since Pr {α1 ≤ r̃1 − y} = 1 −
∑L1

i=1 a
(1)
i λ

(1)
i e
− r̃1−y

λ
(1)
i and

Pr {α2 ≤ r̃1 − y} = 1 −
∑L2

k=1 a
(2)
k λ

(2)
k e
− r̃1−y

λ
(2)
k , Po,fr in (37)



is expressed as

Po,fr ≈
∫ r̃1

0

1−
L1∑
i=1

L2∑
k=1

a
(1)
i λ

(1)
i a

(2)
k λ

(2)
k e
−r̃1

(
1

λ
(1)
i

+ 1

λ
(2)
k

)
e
y

(
1

λ
(1)
i

+ 1

λ
(2)
k

)
fα3

(y)dy. (38)

Substituting fα3(y) into (38), Po,fr is re-expressed as

Po,fr ≈ 1− P̄o,3 −
L1∑
i=1

L2∑
k=1

L3∑
l=1

a
(1)
i λ

(1)
i a

(2)
k λ

(2)
k a

(3)
l

λ̃i,k,le
−r̃1 1

λ
(3)
l − e

−r̃1

(
1

λ
(1)
i

+ 1

λ
(2)
k

) (39)

where λ̃i,k,l = 1

λ
(1)
i

+ 1

λ
(2)
k

− 1

λ
(3)
l

and P̄o,3 = 1 −∑L3

l=1 a
(3)
l λ

(3)
l e
− r̃1

λ
(3)
l . The final result of the asymptotic ex-

pansion for Po,fr is given in the following proposition14

Proposition 4: For high SNR, Po,fr is approximated as

Po,fr ≈ r̃L1+L3
1

(L1 + L3)!

1

ηL1
1 ηL3

3 det(Φ1)det(Φ3)

+
r̃L2+L3
1

(L2 + L3)!

1

ηL2
2 ηL3

3 det(Φ2)det(Φ3)
. (40)

Proof: Please refer to Appendix D. �
As in the case of SR protocol, w.l.o.g., consider that ηm =

δmρ,∀m. Then, (40) is expressed as

Po,fr ≈
r̃Lm̂+L3
1

(Lm̂ + L3)!δLm̂m̂ δL3
3 det(Φm̂)det(Φ3)

ρ−(Lm̂+L3). (41)

By comparing (41) with Po,fr ≈ (Gcρ)−Gd , we find that the di-
versity order of the FR protocol is also min(L1+L3, L2+L3).
For uncorrelated channels and noise, the FR protocol achieves
maximum diversity gain of NsNd + min(NsNr, NrNd) as in
the SR protocol.

V. COMPARISON OF CODING GAINS

The CGs of the SR and FR protocols can be expressed,
respectively, from (35) and (41) as

Gc,1 =

[
r̃Lm̂1 r̃L3

2

Lm̂!L3!det(Φm̂)det(Φ3)

]Lm̂+L3

,

Gc,2 =

[
r̃Lm̂+L3
1

(Lm̂ + L3)!det(Φm̂)det(Φ3)

]Lm̂+L3

, (42)

14The main contribution is to rigorously utilize the properties of functions
of a(m)

i to derive a general simplified asymptotic expression that does not
further depend on a(m)

i . As it will be evident from Section V, the advantage
of this contribution is that we are able to propose a comprehensive asymptotic
analysis of the SR and FR protocols and provide important insights on their
performance.

which means that the CG of the SR is better than that of the
FR protocol if

r̃Lm̂1 r̃L3
2

Lm̂!L3!
≤ r̃Lm̂+L3

1

(Lm̂ + L3)!
=⇒ 2rt − 1

22rt − 1
≤
(

Lm̂!L3!

(Lm̂ + L3)!

) 1
L3

=⇒ 1

2rt + 1
≤
(

Lm̂!L3!

(Lm̂ + L3)!

) 1
L3

, (43)

where the last step is due to rt > 0. It is very difficult to
simplify the term on the right-hand side of (43) for general
values of Lm̂ and L3. However, important insights can be
obtained by analyzing (43) for some specific cases.

A. Case A: Lm̂ = 1, L3 ≥ 1

This is the case when one of the two-hop MIMO channels
reduces to rank-one due to perfect spatial correlation or is a
single-input single-output (SISO) channel. For this case, (43)

simplifies to 1
2rt+1 ≤

(
1

L3+1

) 1
L3 . It can be readily shown that

1
2 ≤

(
1

L3+1

) 1
L3 ≤ 1 for any L3 ≥ 1. This means that Gc,1 ≤

Gc,2 if rt > 0. Consequently, the CG of the SR protocol is
always better than that of the FR protocol in this case, and
when all nodes are single-antenna nodes.

B. Case B: Lm̂ = L3 = L > 1

In this case, the direct channel is as good as one of the
two-hop links in terms of effective ranks. Using Stirling’s
approximation for a factorial of an integer (8.327.21 of [30]),
L! can be lower and upper bounded as

√
2πL

(
L

ec

)L
≤ L! ≤ ec

√
L

(
L

ec

)L
(44)

where ec ≈ 2.718 is Euler’s number [30]. From (44), the
following bounds are obtained

(L!L!)
1
L ≥

(
√

2πL

(
L

ec

)L) 2
L

,

((2L)!)
1
L ≤

(
ec

√
2L

(
2L

ec

)2L
) 1
L

, (45)

which yield the following lower bound to
(
L!L!
(2L)!

) 1
L

(
L!L!

(2L)!

) 1
L

≥ 1

4

(√
2π

ec

) 1
L

L
1

2L . (46)

Let ȳ , s
1
L
c L

1
2L where sc =

√
2π
ec
≈ 1.634. By plotting ȳ for

L ≥ 1, we easily observe that ȳ is a monotonically decreasing
function of L. Alternatively, this can be verified from the first-
order derivative of ȳ w.r.t. L. As such, the minimum value of ȳ
is obtained when L→∞. It can be readily shown that ȳ → 1
as L → ∞. Therefore, (46) can be further lower bounded as(
L!L!
(2L)!

) 1
L ≥ 1

4 . Consequently, the inequality in (43) can be
further tightened as

1

2rt + 1
≤ 1

4
(47)



This means that, irrespective of the value of L, the CG of the
SR protocol is better than that of the FR scheme as long as
rt ≥ ln2(3).

C. Case C: L3 = 1, Lm̂ > 1

This is the case when the S-D channel is in the worst-
scenario when compared to the two-hop link in terms of rank.
For this case, (43) simplifies to 1

2rt+1 ≤
(

1
Lm̂+1

)
. Note

that Lm̂ ≤ min(NsNr, NrNd), i.e., the inequality is further
tightened as 1

2rt+1 ≤
(

1
Nrmin(Ns,Nd)+1

)
. For the desired

full-rate OSTBCs (e.g., the Alamouti code), the number of
antennas at transmit-side nodes turns to Nr = Ns = 2. Since
Nd = 1 is implicitly included in Case A, we obtain 1

2rt+1 ≤
1
5 .

This means that the CG of the SR protocol is better than that
of the FR protocol if rt ≥ 2. With this analysis, we end this
section with the following remarks.

Remark 1: When the effective rank of the S-D link is
lower bounded by the minimum rank of the two-hop links,
the SR protocol outperforms the FR protocol if the target
information rate lies above zero or some small value (Cases
A and B). However, when the S-D channel is in the worst-
scenario (in terms of effective rank ), depending on the value
of Nrmin(Ns, Nd), the SR protocol can be better than the FR
only for larger values of rt. Nevertheless, if Alamouti code is
employed to avoid rate reduction, the CG of the SR protocol
becomes better than the SR protocol with rt ≥ 2.

Remark 2: It is worthwhile to perform a large scale analysis
of the proposed system having a large number of antennas at
the source and relay nodes (i.e., (Ns, Nr)→∞) . Since such
analysis for a general case with spatially correlated channels
and noise is much more involved and beyond the scope of
this manuscript, we consider a case when channels and noise
are spatially uncorrelated. Due to implementation and cost
constraints at the destination node, Nd is assumed to be fixed.
For the uncorrelated case, the end-to-end two-hop SNR is
given by

γu
1−2 =

η1η2tr(Hw,1H
H
w,1)tr(Hw,2H

H
w,2)

η1tr(Hw,1HH
w,1) + η2tr(Hw,2HH

w,2) + 1
(48)

=
a1

vec(Hw,1)Hvec(Hw,1)
NsNr

vec(Hw,2)Hvec(Hw,2)
NrNd

a2
vec(Hw,1)Hvec(Hw,1)

NsNr
+ a3

vec(Hw,2)Hvec(Hw,2)
NrNd

+ 1

where we use Rr,m = Rt,m = R̄v̄,m̄ = I,∀m, m̄,
tr(Hw,mHH

w,m) = vec(Hw,m)Hvec(Hw,m), ∀m, a1 =
PrPsµ1µ2(NrNd), a2 = Psµ1Nr, and a3 = Prµ2Nd. The
elements of vec(Hw,m) are i.i.d. random variables with zero-
mean and unit-variance. Applying the law of large numbers
[34], we obtain

vec(Hw,1)Hvec(Hw,1)

NsNr
→ 1, as (Ns, Nr)→∞,

vec(Hw,2)Hvec(Hw,2)

NrNd
→ 1, as Nr →∞. (49)

Substituting (49) into (48), the asymptotic value of γu
1−2 is

given by

γu
1−2 →

PrPsµ1µ2(NrNd)

Psµ1Nr + Prµ2Nd + 1
as (Ns, Nr)→∞ (50)
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Fig. 2. Outage probability versus SNR for rt = 3 b.p.c.u.

which after simple step reduces to

γu
1−2 → Prµ2Nd as (Ns, Nr)→∞. (51)

Similarly, using law of large numbers in γu
3 =

η3tr(Hw,3H
H
w,3) as Ns →∞, γu

3 is given by

γu
3 → Psµ3Nd as Ns →∞. (52)

As such, for (Ns, Nr) → ∞ and fixed Nd, the SR protocol
selects the relay only when ln2(1+Psµ3Nd) < rt, and outage
occurs if both ln2(1 + Psµ3Nd) and 1

2 ln2(1 + Prµ2Nd) are
smaller than rt. However, in the FR protocol, the outage occurs
if 1

2 ln2(1 + (Psµ3 + Prµ2)Nd) < rt. It is interesting to note
that as (Ns, Nr) → ∞ and Nd is fixed, the outage depends
only on Nd.

VI. NUMERICAL RESULTS

In this section, we provide Monte Carlo simulation results
to assess the accuracy of the exact and asymptotic outage
probability expressions. As a benchmark performance, we also
show the performance of the FR protocol with the MRC
receiver. The fast fading components of all MIMO channels,
i.e., Hw,m,∀m are taken from the entries of ZMCSCG random
variables with unit variances. Throughout all simulations, the
S-D distance is normalized, i.e., d3 = 1, whereas the S-R
and R-D distances are respectively taken as d1 = 0.5d3 and
d2 = 1 − d1. This means that the relay is located at the
midpoint between the source and destination. The path loss
exponent ζ takes the values of 2 and 3.

For all results, we take Ps = Pr = P , ns = nr =
nd = 2, and use Alamouti code. For comparing theoretical
and simulation results, a common average SNR ρ is used,
which is varied by changing P . In all simulations, we take

R̄v,1 = R̄v,2 =

[
1 0.5

0.5 1

]
and exponential correlation

models for channels, i.e., Rr,m = Rt,m =

[
1 νm
νm 1

]
with

νm ≥ 0.
In Figs. 2 and 3, the outage probability versus SNR is dis-

played for the SR protocol, and the FR protocol that employs
the MMSE and MRC receivers. We take νm = ν = 0.4,∀m
in both figures, and rt = 3 b.p.c.u and rt = 5 b.p.c.u in Figs.
2 and 3, respectively. It can be observed from these figures
that the SR method performs better than the FR protocol. In
particular, at the outage probability of 10−2, the SR protocol,
respectively, provides gains of around 2.5 dB and 3.5 dB
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Fig. 4. Outage probability versus rt for SNR=18 dB.

over the FR method with the MMSE and MRC receivers
when ζ = 2. These gains reduce to around 2 dB and 3 dB,
respectively, when ζ = 3 due to the fact that the attenuations
of the S-R and R-D links decrease. As the value of rt increases
(e.g., from 3 to 5 b.p.c.u), the relative gain of the SR method
over the FR-based methods improves further. For example, at
the outage probability of 10−2, the respective gains of the
SR method over the FR-based MMSE and MRC methods are
around 7.5 dB and 8.4 dB when ζ = 2, and around 5.7 dB and
6.8 dB when ζ = 3. Fig. 4 shows the outage probability versus
rt for different methods, where we fix ρ to 18 dB and take
νm = ν = 0.4,∀m. This figure also shows that the SR protocol
outperforms the methods based on FR protocol. At the outage
probability of 10−2, the gains of the SR method over the FR
method with the MMSE and MRC receivers are about 1.1
and 1.2 b.p.c.u, respectively, when ζ = 2, and 0.9 and 1
b.p.c.u when ζ = 3. This result also shows that when two-
hop channel gains improve, the gain of the SR method over
the FR-based schemes starts to decrease. In Fig. 5, the outage
performance of different methods is depicted when the S-R
and R-D channels observe much higher spatial correlation than
the S-D channel. For this purpose, we take νm = 0.9,m = 1, 2
and ν3 = 0.1. The target rate is set to rt = 3 b.p.c.u. At the
outage probability of 10−2, the SR method provides around
2.7 dB and 3.2 dB improvements over the FR scheme with
the MMSE and MRC receivers, respectively, when ζ = 2.
When ζ = 3, these improvements reduce to around 1.8 dB
and 2.5 dB, respectively. As in previous results, it is seen
that the benefit of the SR method starts to shrink when the
attenuations of the two-hop channels decrease.

The SR method is compared with the FR scheme employing
MMSE and MRC receivers in Fig. 6 by considering that the
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Fig. 5. Outage probability versus SNR for rt = 3 b.p.c.u (ν1 = ν2 =
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S-D channel observes much higher spatial correlation than
the S-R and R-D channels. As such, we take ν3 = 0.9 and
ν1 = ν2 = 0.1. In this figure, the target rate is fixed to rt = 5
b.p.c.u. For the outage probability of 10−2, the respective gains
of the SR method over the FR scheme with the MMSE and
MRC receivers are about 4.25 dB and 5.1 dB when ζ = 2 , and
3.1 dB and 4.1 dB when ζ = 3. As in Figs. 2-5, Fig. 6 shows
that the gain of the SR method w.r.t. to the FR-based methods
increase when path-loss exponent decreases from 3 to 2. In a
nutshell, it can be observed from Figs. 5 and 6 that the SR
method provides better performance than the FR methods in
all of the considered examples. In Fig. 7, the asymptotic outage
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Fig. 7. Outage probability versus SNR for rt = 3, 2 b.p.c.u.

probability expressions of the SR and FR protocols are shown
for rt = 3 b.p.c.u and rt = 2 b.p.c.u. We take νm = 0.2, ∀m
and ζ = 2 in this figure. It can be observed from Fig. 7 that



the asymptotic outage probabilities of both protocols converge
to corresponding actual outage probabilities as SNR increases.
When rt increases, the gap between the asymptotic and the
actual outage probabilities increases in the low SNR region.
However, it can be seen that the derived asymptotic outage
probability of the SR protocol is much tighter than that of the
FR protocol at low SNR region. Moreover, for a small value
of rt (e.g., rt = 0.8 ), the FR protocol performs better than
the SR protocol. The corresponding simulation results are not
shown in this paper due to space constraints. However, all of
these results are in accordance with the theoretical results of
Section V.

We also investigate the relative performance difference
between the SR and FR protocols for different relay positions.
Although simulation results are not shown for conciseness,
we find that the SR protocol significantly outperforms the
FR-based methods for all positions of the relay, where the
best performance of all methods is obtained when the relay
is located at around the mid-point between the source and
destination

VII. CONCLUSIONS

In this paper, selection relaying protocol is proposed for
an OSTBC-based coherent AF MIMO relay system where the
direct link between the source and the destination exists, and
the channels and noise are spatially correlated. Asymptotic
expressions of the outage probability are derived for the
selection and fixed relaying protocols. It is shown that the
performance of both protocols depends on the rank of a
composite matrix which is a function of the channel and noise
spatial correlation matrices. Moreover, both protocols achieve
the same diversity gain. However, small values of target
information rate can be sufficient for the selection relaying
protocol to have better coding gain than the fixed relaying
protocol. Simulation results show that the former protocol
significantly outperforms the latter protocol with the MMSE
and MRC receivers, especially for larger values of the target
rate. These results may justify the complexity due to one-
bit feedback requirement in the selection protocol. Moreover,
the benefits of the selection relaying approach is much more
pronounced when the attenuations of the two-hop channels
increase.

APPENDIX A : PROOF OF PROPOSITION 1
Let t(p, q) be the (p, q)th element of T where p, q =

1, · · · 2K. Then, t(p, q) is expressed as

t(p, q) =
1

2

[
vec
(
H1,RC̃p

)T
, vec

(
H1,IC̃p

)T]
R−1

v,1

×
[
vec
(
H1,RC̃q

)T
, vec

(
H1,IC̃q

)T]T
=

1

2

[
vec(C̃p)

T
(
IT ⊗HT

1,R

)
, vec(C̃p)

T
(
IT ⊗HT

1,I

)]
×R−1

v,1

[
(IT ⊗H1,R) vec(C̃q)

(IT ⊗H1,I) vec(C̃q)

]
(53)

where C̃p = [R(Cp)
T , I(Cp)

T ]T , H1,R =
[R(H1),−I(H1)], H1,I = [I(H1),R(H1)], and we

have used (1a)-(1b) and (1d). For a positive definite matrix
X of complex values, we know that[

R(X) −I(X)
I(X) R(X)

]−1

=

[
R(X−1) −I(X−1)
I(X−1) R(X−1)

]
. (54)

Using (54), we express R−1
v,1 as

R−1
v,1 = 2

[
IT ⊗R

(
R̄−1

v,1

)
−IT ⊗ I

(
R̄−1

v,1

)
IT ⊗ I

(
R̄−1

v,1

)
IT ⊗R

(
R̄−1

v,1

) ]
, (55)

where we use the fact that R̄v,1 = Rd + jRnd. Substituting
R−1

v,1 from (55) into (53), using (1e) and after some simplifi-
cations, we express t(p, q) as

t(p, q) = vec(C̃p)
T
[
IT ⊗ H̄1

]
vec(C̃q), (56)

where

H̄1 =
[
HT

1,R,H
T
1,I

] [ R(R̄−1
v,1) −I(R̄−1

v,1)

I(R̄−1
v,1) R(R̄−1

v,1)

] [
H1,R

H1,I

]
.

Applying (1d) and (1c) to (56), t(p, q) is re-expressed as

t(p, q) = tr
(
C̃pC̃

T
q H̄1

)
=

{
tr
(
H1H

H
1 R̄−1

v,1

)
, p = q

0, p 6= q
(57)

where the last equality is due to the properties of the dispersion
matrices. The same result can be shown for (p, q) = K +
1, · · · , 2K, i.e., for the terms including DpD

T
q and CpD

T
q .

Therefore, T reduces to the following scaled identity matrix

T = tr
(
H1H

H
1 R̄−1

v,1

)
I2K . (58)

Substituting (58) into (14), ˆ̃sr is expressed as

ˆ̃sr =
tr
(
H1H

H
1 R̄−1

v,1

)
1 + tr

(
H1HH

1 R̄−1
v,1

) s̃ +
(1/2)HT

e,1R
−1
v,1v1

1 + tr
(
H1HH

1 R̄−1
v,1

) , (59)

which means that the lth element (l = 1, · · · , 2K) of ˆ̃sr is

ˆ̃sl,r =
α1

1 + α1
s̃l +

1

1 + α1

(
(1/2)[HT

e,1R
−1
v,1]l,:

)
v1, (60)

where s̃l is the lth element of s̃ ,
[s̃1, · · · , s̃K , s̃K+1, · · · , s̃2K ]T . This completes the proof
of Proposition 1. �

APPENDIX B : PROOF OF PROPOSITION 2

Using similar steps as (4)-(6) for the S-R MIMO channel,
(21) is expressed in vector form as

y2 = He,2 ˜̄yr + v2, where

˜̄yr =

√
α1

(1 + α1)
s̃ +

√
1

α1(1 + α1)

1

2
HT

e,1R
−1
v,1v1, (61)

and y2 ∈ R2NdT×1 is given as in (4)-(6). Using ˜̄yr, y2 in
(61) is expressed as

y2 = He,2s̃

√
α1

(1 + α1)
+

√
1

α1(1 + α1)
He,2

1

2
HT

e,1

R−1
v,1v1 + v2 = H̄e,2s̃ + ṽ. (62)



Note that Rṽ is given by
Rṽ =

1

4α2
1

H̄e,2H
T
e,1R

−1
v,1He,1H̄

T
e,2 + Rv,2

=
1

2α1
H̄e,2H̄

T
e,2 + Rv,2 (63)

where Rv,2 ∈ R2NdT×2NdT is a function of R̄v,2 and given
as in (8)-(9). Using the steps (10)-(14), the MMSE estimate
of the source signal at the destination is given by

ˆ̃sd = T̃
[
I + T̃

]−1

s̃ +
[
I + T̃

]−1 1

2
H̄T

e,2R
−1
ṽ ṽ (64)

where T̃ = 1
2H̄T

e,2R
−1
ṽ H̄e,2. Using (63) and (13), T̃ is

expressed as

T̃ =
1

2
H̄T

e,2

[
1

2α1
H̄e,2H̄

T
e,2 + Rv,2

]−1

H̄e,2 =
α1

1 + α1

1

2
HT

e,2R
−1
v,2He,2

[
I2K +

1

1 + α1

1

2
HT

e,2R
−1
v,2He,2

]−1

.(65)

With the help of (53)-(57), 1
2HT

e,2R
−1
v,2He,2 is expressed as

1

2
HT

e,2R
−1
v,2He,2 = tr

(
H2H

H
2 R̄−1

v,2

)
I2K , α2I2K . (66)

Therefore, we get T̃ = α1α2

α1+α2+1I2K = α̃I2K . Consequently,
the estimated signal at the destination is

ˆ̃sd =
α̃

α̃+ 1
s̃ +

1

α̃+ 1
(1/2)H̄T

e,2R
−1
ṽ ṽ, (67)

which yields (22) with ˆ̃sd , [ˆ̃s1,d, · · · , ˆ̃s2K,d]T . This com-
pletes the proof of the Proposition 2. �

APPENDIX C : PROOF OF PROPOSITION 3

For high SNR regions, K1(x) can be approximated by 1
x .

Consequently, Po,1 is expressed as

Po,1 ≈ 1−
L1∑
i=1

a
(1)
i λ

(1)
i e
− r̃1

λ
(1)
i

L2∑
k=1

a
(2)
k λ

(2)
k e
− r̃1

λ
(2)
k

= 1− P̃o,1P̃o,2

where P̃o,1 and P̃o,2 are, respectively, the functions of λ(1)
i and

λ
(2)
k . Noting that e−x =

∑∞
n=0

(−1)nxn

n! , P̃o,m is expressed as

P̃o,m=

Lm∑
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(m)
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i

)
,m = 1, 2, 3,(68)

where r̄ = r̃1 for m = 1, 2, r̄ = r̃2 for m = 3, and O (x)

stands for higher-order terms of x. Resubstituting a
(m)
i from

(28) into (68), and after some simple steps of derivations, we
find that the first two terms (denoted by l̃ = 0, 1) of (68)
reduce to

∑Lm
i=1 a

(m)
i λ

(m)
i = 1,

∑Lm
i=1 a
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. (69)

With the help of (69), P̃o,m is approximated at high-SNR
region as

P̃o,m ≈ 1− cm
1∏Lm

i=1 λ
(1)
i

= 1− cm
1

ηLmm det(Φm)
(70)

where cm = r̄Lm

Lm! . Therefore, the outage probability of the SR
protocol at high SNR is approximated as

Po ≈
(

1−
(

1− c1
1

ηL1
1 det(Φ1)

)(
1− c2

1

ηL2
2 det(Φ2)
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, (71)

from which (34) follows. �

APPENDIX D : PROOF OF PROPOSITION 4

Noting that e−x =
∑∞
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Define t1 , r̃1λ̃i,k,l and t2 ,
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Note that in the following steps, we often use the property
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Applying (73), it can be shown that
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With the definition t4 ,

r̃4
1

24 λ̃i,k,l

[
1

λ
(1)
i

+ 1

λ
(2)
k

+ 1

λ
(3)
l

][(
1

λ
(1)
i

+ 1

λ
(2)
k

)2

+ 1(
λ

(3)
l

)2

]
,

we get
L1∑
i=1

L2∑
k=1

L3∑
l=1

a
(1)
i λ

(1)
i a

(2)
k λ

(2)
k a

(3)
l

λ̃i,k,l
t4 =

r̃4
1

24

L1∑
i=1

L2∑
k=1

L3∑
l=1

a
(1)
i

×λ(1)
i a

(2)
k λ

(2)
k a

(3)
l

{(
1

λ
(1)
i

+
1

λ
(2)
k

)3

+
1(

λ
(3)
l

)3

(
1

λ
(1)
i

+
1

λ
(2)
k

)
1(

λ
(3)
l

)2 +

(
1

λ
(1)
i

+
1

λ
(2)
k

)2
1

λ
(3)
l

}
.(76)

On the other hand, using (73) and e−x =
∑∞
n=0

(−1)nxn

n! , P̄o,3

is expressed as

P̄o,3 = −
L3∑
l=1

a
(3)
l λ

(3)
l

∞∑
n=2

(−1)nr̃n1

n!(λ
(3)
l )n

. (77)

With the help of (72)-(76) and (77), Po,fr is generalized to

Po,fr ≈
∞∑
n=2

r̃n1
n!

L1∑
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L2∑
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L3∑
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l
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}
. (78)

In order to find the non-zero terms with the lowest order of
1(

λ
(m)
q

) , q = (i, k, l), we apply (69) and (73) to (78). This

means that when L1 = L2 = L12, the non-zero terms with
the lowest order of 1(

λ
(m)
q

) , q = (i, k, l) are contained in

td(n) =

(
1

λ
(1)
i

+
1

λ
(2)
k

)n−L3

1(
λ

(3)
l

)L3−1
, n− L3 = L12 (79)

whereas, for L1 6= L2, such terms are contained in td(n)
corresponding to two different values of n. In particular, these
values are n1 = L1 + L3 and n2 = L2 + L3. Furthermore,
applying (69), td(n) reduces to

td(n) =

 1(
λ

(1)
i

)n−L3−1
+

1(
λ

(2)
k
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λ
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1(
λ

(3)
l

)L3−1
. (80)

Applying (80) in (78), Po,fr is approximated at high SNR as

Po,fr≈
r̃L1+L3
1

(L1 + L3)!

L1∑
i=1

a
(1)
i(

λ
(1)
i

)L1−1

L3∑
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+
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λ
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l(

λ
(3)
l

)L3−1
.(81)

Applying (69) in (81), Po,fr is further expressed as

Po,fr ≈ r̃L1+L3
1

(L1 + L3)!

1∏2
i=1 λ

(1)
i

∏2
l=1 λ

(3)
l

+
r̃L2+L3
1

(L2 + L3)!

1∏2
k=1 λ

(2)
k

∏2
l=1 λ

(3)
l

(82)

which means that Po,fr is generalized as in (40). This com-
pletes the proof of the Proposition 4. �
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