590 research outputs found

    Cross-layer Resource Allocation Scheme for Multi-band High Rate UWB Systems

    Get PDF
    In this paper, we investigate the use of a cross-layer allocation mechanism for the high-rate ultra-wideband (UWB) systems. The aim of this paper is twofold. First, through the cross-layer approach that provides a new service differentiation approach to the fully distributed UWB systems, we support traffic with quality of service (QoS) guarantee in a multi-user context. Second, we exploit the effective SINR method that represents the characteristics of multiple sub-carrier SINRs in the multi-band WiMedia solution proposed for UWB systems, in order to provide the channel state information needed for the multi-user sub-band allocation. This new approach improves the system performance and optimizes the spectrum utilization with a low cost data exchange between the different users while guaranteeing the required QoS. In addition, this new approach solves the problem of the cohabitation of more than three users in the same WiMedia channel

    Regulatory and Policy Implications of Emerging Technologies to Spectrum Management

    Get PDF
    This paper provides an overview of the policy implications of technological developments, and how these technologies can accommodate an increased level of market competition. It is based on the work carried out in the SPORT VIEWS (Spectrum Policies and Radio Technologies Viable In Emerging Wireless Societies) research project for the European Commission (FP6)spectrum, new radio technologies, UWB, SDR, cognitive radio, Telecommunications, regulation, Networks, Interconnection

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Personal area technologies for internetworked services

    Get PDF

    Sub-sampled OFDM based sub-band ultra-wideband system

    Get PDF
    In sub-band ultra-wideband (SUWB) systems, the use of spreading codes in conjunction with sub-banding enables energy efficient reduced sampling rate receiver designs. In this work, the orthogonal frequency division multiplexing (OFDM) technique is proposed for SUWB systems as a means to mitigate the multipath fading effects of the channel. The OFDM demodulation performed at the sub-sampled rate with reduced number of discrete Fourier transform (DFT) points provides scope for low power receiver implementations. Moreover, OFDM improves the flexibility as bandwidth resources can be allocated with improved granularity at integral multiples of the OFDM sub-channel bandwidth. The requisite correlation properties of the spreading codes is relaxed in the proposed OFDM-SUWB system and more number of spreading codes can be used when compared to the existing SUWB system. Also, a simple channel estimation method exploiting the low complexity advantage of the inherent spreading code based receiver is proposed. Simulation results in terms of the bit error rate (BER) performance are presented over the IEEE 802.15.4a channel models and also comparisons with the multi-band OFDM (MB-OFDM) system are made demonstrating the usefulness of the proposed scheme

    Combination of OFDM and CDMA for high data rate UWB

    Get PDF
    For Wireless Personal Area Network (WPAN) systems, resource allocation between several users within a piconet and the coexistence of several piconets are very important points to take into consideration for the optimization of high data rate Ultra Wide Band (UWB) systems. To improve the performance of the Multi-Band OFDM (Orthogonal Frequency Division Multiplex) solution proposed by the Multi-Band OFDM Alliance (MBOA), the addition of a spreading component in the frequency domain is a good solution since it makes resource allocation easier and also offers better robustness against channel frequency selectivity and narrowband interference. The Spread Spectrum - Multi-Carrier - Multiple Access (SS-MC-MA) system proposed in this article offers not only the advantages of Multi-Carrier - Coded Division Multiple Access (MC-CDMA) brought by frequency spreading, but also a more effective dynamic resource allocation in a multi-user and multi-piconet context. These improvements are obtained without increasing the complexity of the radio-frequency part compared to the classical MBOA solution

    Ultra-Wideband RF Transceive

    Get PDF

    Intelligent Processing in Wireless Communications Using Particle Swarm Based Methods

    Get PDF
    There are a lot of optimization needs in the research and design of wireless communica- tion systems. Many of these optimization problems are Nondeterministic Polynomial (NP) hard problems and could not be solved well. Many of other non-NP-hard optimization problems are combinatorial and do not have satisfying solutions either. This dissertation presents a series of Particle Swarm Optimization (PSO) based search and optimization algorithms that solve open research and design problems in wireless communications. These problems are either avoided or solved approximately before. PSO is a bottom-up approach for optimization problems. It imposes no conditions on the underlying problem. Its simple formulation makes it easy to implement, apply, extend and hybridize. The algorithm uses simple operators like adders, and multipliers to travel through the search space and the process requires just five simple steps. PSO is also easy to control because it has limited number of parameters and is less sensitive to parameters than other swarm intelligence algorithms. It is not dependent on initial points and converges very fast. Four types of PSO based approaches are proposed targeting four different kinds of problems in wireless communications. First, we use binary PSO and continuous PSO together to find optimal compositions of Gaussian derivative pulses to form several UWB pulses that not only comply with the FCC spectrum mask, but also best exploit the avail- able spectrum and power. Second, three different PSO based algorithms are developed to solve the NLOS/LOS channel differentiation, NLOS range error mitigation and multilateration problems respectively. Third, a PSO based search method is proposed to find optimal orthogonal code sets to reduce the inter carrier interference effects in an frequency redundant OFDM system. Fourth, a PSO based phase optimization technique is proposed in reducing the PAPR of an frequency redundant OFDM system. The PSO based approaches are compared with other canonical solutions for these communication problems and showed superior performance in many aspects. which are confirmed by analysis and simulation results provided respectively. Open questions and future Open questions and future works for the dissertation are proposed to serve as a guide for the future research efforts

    Comparative Evaluation of UMTS, WLAN, BWA, MBWA, and UWB Systems

    Get PDF
    UMTS, WLAN, BWA and UWB systems are compared in this paper. The comparative analysis covers system capacity, QoS, and radiowave propagation
    corecore